JP2006267716A - Light beam deflector - Google Patents

Light beam deflector Download PDF

Info

Publication number
JP2006267716A
JP2006267716A JP2005087227A JP2005087227A JP2006267716A JP 2006267716 A JP2006267716 A JP 2006267716A JP 2005087227 A JP2005087227 A JP 2005087227A JP 2005087227 A JP2005087227 A JP 2005087227A JP 2006267716 A JP2006267716 A JP 2006267716A
Authority
JP
Japan
Prior art keywords
light beam
temperature
astigmatism
deflection member
deflecting member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005087227A
Other languages
Japanese (ja)
Inventor
Hiroshi Matsuoka
浩 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2005087227A priority Critical patent/JP2006267716A/en
Publication of JP2006267716A publication Critical patent/JP2006267716A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Laser Beam Printer (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light beam deflector capable of high-speed and high-quality image formation by deforming a deflection member and properly correcting astigmatism so as to compensate the astigmatism and the like generated by a centrifugal force. <P>SOLUTION: Respective support plates 43 of a fastening member 39 formed with material having a linear expansion coefficient different from the linear expansion coefficient of material of the deflection member 41 which has an outline formed in approximately cubic shape, is provided with a reflection surface 38 along a diagonal therein and is constituted in a prism shape are respectively stuck to both edge surfaces of the deflection member 41 and are held. By setting the temperature of the deflection member 41 to a temperature different from the manufacture temperature when the support plates 43 are respectively stuck to the both edge surface parts of the deflection member 41, a distortion is caused between an incident surface 41A of a light beam and an emission surface 41B of the deflection member 41 by the difference of deformation amount generated by the difference of the linear expansion coefficients, the astigmatism as the desired state for compensation is produced and the astigmatism which is produced in the deflection member 41 by the other factors is compensated by the astigmatism for correction. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、レーザビームの走査光学系により円筒ドラム内面に配置した感光面を走査して露光処理するインナードラム露光装置(内面走査型光ビーム走査露光装置)等に用いて好適な、非点収差を補正可能とした光ビーム偏向器に関する。   Astigmatism suitable for use in an inner drum exposure apparatus (inner surface scanning type light beam scanning exposure apparatus) that scans and exposes a photosensitive surface disposed on the inner surface of a cylindrical drum by a laser beam scanning optical system. The present invention relates to a light beam deflector that can correct the above.

一般に、オフセット印刷には、感光性平版印刷版(いわゆるPS版)が利用されている。また、この平版印刷の分野では、コンピュータ等のデジタルデータに基づいてレーザ露光処理をし、自動現像機で感光性平版印刷版上に形成された潜像を顕像に変換する現像処理をして直接印刷版を製版するCTP(Computer to Plate)システムが実用化されている。   Generally, a photosensitive lithographic printing plate (so-called PS plate) is used for offset printing. In the field of lithographic printing, laser exposure processing is performed based on digital data from a computer or the like, and development processing is performed to convert a latent image formed on the photosensitive lithographic printing plate into a visible image by an automatic processor. A CTP (Computer to Plate) system for making a printing plate directly has been put into practical use.

このようなCTPシステムでは、円筒ドラムの内周面上に配置した記録媒体である感光性平版印刷版の感光面にレーザ等の光ビームを導いて走査露光処理を行うインナードラム露光装置(内面走査型光ビーム走査露光装置)が広く用いられている。   In such a CTP system, an inner drum exposure device (inner surface scanning) that conducts a scanning exposure process by introducing a light beam such as a laser beam onto the photosensitive surface of a photosensitive lithographic printing plate that is a recording medium disposed on the inner peripheral surface of a cylindrical drum. Type light beam scanning exposure apparatus) is widely used.

このインナードラム露光装置は、光ビーム偏向器(モノゴンスキャナー)としてのスピナーミラー装置を備える。このスピナーミラー装置は、高速で回転駆動されるスピナーミラーに、光源側の光学系からの集光ビームを反射させて、記録媒体の感光面上に対して主走査方向に偏向走査を行うと共に、副走査移動手段によってスピナーミラー部分を、インナードラム支持体の円弧中心軸の軸線方向に等速度で移動して副走査することにより、記録媒体の感光面の全面に露光処理を行う。   This inner drum exposure apparatus includes a spinner mirror device as a light beam deflector (monogon scanner). This spinner mirror device reflects a condensed beam from the optical system on the light source side to a spinner mirror that is rotationally driven at high speed, performs deflection scanning in the main scanning direction on the photosensitive surface of the recording medium, and By performing sub-scanning by moving the spinner mirror portion at a constant speed in the axial direction of the arc central axis of the inner drum support by the sub-scanning moving means, exposure processing is performed on the entire photosensitive surface of the recording medium.

従来の光ビーム偏向器(モノゴンスキャナー)には、傾斜鏡(スピナーミラー)が高速で回転されるときの変形を補正するための波面収差補正手段を具備したスピンモ−タモジユ−ルが提案されている。この光ビーム偏向器(モノゴンスキャナー)では、光路に沿って開口を設けた円筒筐体の内部に、傾斜鏡を配置する。この傾斜鏡は、円筒筐体の中心線に対して角度45度傾斜している。   As a conventional light beam deflector (monogon scanner), a spin motor module having wavefront aberration correction means for correcting deformation when a tilting mirror (spinner mirror) is rotated at high speed has been proposed. Yes. In this light beam deflector (monogon scanner), an inclined mirror is arranged inside a cylindrical casing provided with an opening along the optical path. This inclined mirror is inclined at an angle of 45 degrees with respect to the center line of the cylindrical housing.

この光ビーム偏向器では、入射光ビ−ムを円筒筐体の開口部から入光させ、傾斜鏡にて反射させる。反射光ビ−ムは、円筒筐体の側面に穿設された側開口部から出光し、記録媒体上に集光される。   In this light beam deflector, an incident light beam is incident from an opening of a cylindrical housing and reflected by an inclined mirror. The reflected light beam is emitted from a side opening formed in the side surface of the cylindrical housing and is collected on the recording medium.

この円筒筐体は、光ビ−ムを走査するために高速回転(10,000rpm以上)されるので、傾斜鏡が遠心力で変形して光ビ−ム内に収差が発生する。   Since this cylindrical casing is rotated at a high speed (10,000 rpm or more) in order to scan the optical beam, the inclined mirror is deformed by a centrifugal force and an aberration is generated in the optical beam.

そこで、従来の光ビーム偏向器の波面収差補正手段では、高速回転される支持固定用のマウント部材である円筒筐体の内部に偏向部材(ミラー等)としての傾斜鏡を設置し、プリズム状の波面収差補正部材としての光平面ガラス板を円筒筐体の開口部に角度調整可能に装着し、この光平面ガラス板の傾斜鏡との相対的な角度を調整することによって、収差を解消する波面収差補正を行っている(例えば、特許文献1参照。)。   Therefore, in the wavefront aberration correcting means of the conventional light beam deflector, an inclined mirror as a deflecting member (mirror etc.) is installed inside a cylindrical housing which is a mounting member for supporting and fixing that is rotated at high speed. A wavefront that eliminates aberration by attaching an optical flat glass plate as a wavefront aberration correction member to the opening of the cylindrical housing so that the angle can be adjusted, and adjusting the relative angle of the optical flat glass plate with the tilt mirror. Aberration correction is performed (for example, refer to Patent Document 1).

また、光ビーム偏向器(モノゴンスキャナー)には、偏向部材としてボールプリズム(内面反射プリズム)を利用したものがある。このようなボールプリズムを用いた光ビーム偏向器においては、ボールプリズムを高速回転するときの遠心力で、その反射面及び入出射面に歪を生じ、偏向方向とこれに垂直な方向での焦点位置が異なってしまう問題(非点収差)が発生し、露光面上でビームスポットを小さく維持する事が困難となり、画質が劣化するという問題があった。   Some light beam deflectors (monogon scanners) use ball prisms (internal reflection prisms) as deflecting members. In such a light beam deflector using a ball prism, a centrifugal force generated when the ball prism is rotated at a high speed causes distortion on the reflection surface and the light incident / exit surface, and a focal point in the deflection direction and a direction perpendicular thereto. There is a problem that the position is different (astigmatism), it is difficult to keep the beam spot small on the exposure surface, and the image quality is deteriorated.

この問題を回避する手段としては、前述した従来の光ビーム偏向器の波面収差補正手段を利用してボールプリズムに遠心力で発生する非点収差を打ち消すために光平面ガラス板を角度調整可能なようにボールプリズムの入射面側と出射面側とに装着する手段が考えられる。   As a means for avoiding this problem, the angle of the optical flat glass plate can be adjusted to cancel the astigmatism generated by the centrifugal force in the ball prism by using the wavefront aberration correcting means of the conventional light beam deflector described above. Thus, means for mounting on the incident surface side and the exit surface side of the ball prism can be considered.

しかし、この手段を利用する場合には、高精度に加工製造された光平面ガラス板や、光平面ガラス板をボールプリズムの入射面側と出射面側とに精密に角度調整可能に装着するための複雑で高価な構造が必要になる。また、従来の光ビーム偏向器の波面収差補正手段では、非点収差の発生量に応じて非点収差量を調整することが困難であった。
米国特許番号5,768,001号公報
However, when this means is used, an optical flat glass plate processed and manufactured with high precision, or an optical flat glass plate is mounted on the entrance surface side and the exit surface side of the ball prism so that the angle can be precisely adjusted. A complicated and expensive structure is required. Further, with the wavefront aberration correction means of the conventional light beam deflector, it has been difficult to adjust the amount of astigmatism according to the amount of astigmatism.
US Patent No. 5,768,001

本発明は、上述の問題に鑑み、遠心力により発生する非点収差や内部に反射面を備えたプリズム状に構成した偏向部材の製造時にできた非点収差等を打ち消すように、偏向部材を変形させることで非点収差を適正に補正して、高速、高画質な画像形成を可能とする光ビーム偏向器を新たに提供することを目的とする。   In view of the above-described problems, the present invention provides a deflecting member that cancels astigmatism caused by centrifugal force, astigmatism generated during the manufacture of a prism-shaped deflecting member having a reflecting surface therein, and the like. It is an object of the present invention to newly provide a light beam deflector capable of appropriately correcting astigmatism by deformation and enabling high-speed and high-quality image formation.

本発明の請求項1に記載の光ビーム偏向器は、外形が略立方体状に形成され内部に対角線に沿った反射面を備えたプリズム状に構成した偏向部材と、偏向部材の材料の線膨張係数と異なる線膨張係数を持つ材料で形成され、偏向部材の両端面部にそれぞれ支持板を貼着して保持する締結部材と、締結部材を回転軸の先端に一体的に設置したモーターと、を有する光ビーム偏向器において、偏向部材の両端面部に、それぞれ支持板を貼着したときの製作温度と異なる温度に設定し、偏向部材と各支持板との線膨張係数が異なることによる変形量の差によって偏向部材の光ビームの入射面と出射面とに生じた歪により、補正のための所要状態とした非点収差を生じさせ、当該補正用の非点収差によって、その他の要因によって偏向部材に生じた非点収差を打ち消すように構成したことを特徴とする。   According to a first aspect of the present invention, there is provided a light beam deflector comprising: a deflecting member configured in a prism shape having an outer shape formed in a substantially cubic shape and having a reflecting surface along a diagonal line; and linear expansion of a material of the deflecting member A fastening member that is formed of a material having a linear expansion coefficient different from the coefficient, and that holds and holds support plates on both end portions of the deflection member, and a motor in which the fastening member is integrally installed at the tip of the rotating shaft. In the light beam deflector having the deflection member, the temperature of the deflection member is set to a temperature different from the manufacturing temperature when the support plate is adhered to each end surface, and the deformation amount due to the difference in linear expansion coefficient between the deflection member and each support plate is set. Due to the difference, distortion generated on the incident surface and the exit surface of the light beam of the deflecting member causes astigmatism that is required for the correction, and the astigmatism for correction causes the deflecting member due to other factors. Caused non Characterized by being configured to cancel the aberration.

上述のように構成することにより、光ビーム偏向器で走査露光処理を行う際に、偏向部材とこれを保持する締結部材との部分の温度を所定温度に制御することにより、偏向部材の線膨張係数と、締結部材の線膨張係数との相違により生じる偏向部材の弾性歪により発生する補正用の非点収差によって、例えば、モーターで偏向部材を回動したときの遠心力で発生する偏向部材の変形で生じる非点収差、又は偏向部材の加工製造時のひずみや製作誤差によって反射面に生じる非点収差等を、打ち消すようにして補正することができる。よって、簡素な構成で廉価に製造でき、しかも非点収差を補正して、高速、高画質な画像形成を可能とする光ビーム偏向器を提供できる。   By configuring as described above, the linear expansion of the deflecting member is performed by controlling the temperature of the deflecting member and the fastening member holding the deflecting member to a predetermined temperature when performing the scanning exposure process with the light beam deflector. For example, due to the astigmatism for correction generated by the elastic strain of the deflection member caused by the difference between the coefficient and the linear expansion coefficient of the fastening member, for example, the deflection member generated by the centrifugal force when the deflection member is rotated by the motor Astigmatism caused by deformation, or astigmatism that occurs on the reflecting surface due to distortion or manufacturing error during processing of the deflecting member can be corrected so as to cancel. Therefore, it is possible to provide a light beam deflector that can be manufactured at a low cost with a simple configuration, and that can correct astigmatism and enables high-speed and high-quality image formation.

請求項2に記載の発明は請求項1に記載の光ビーム偏向器において、回転軸の一部を加熱することにより、偏向部材の両端面部にそれぞれ支持板を貼着したものを、所要温度に加熱保持する温度制御手段を設けたことを特徴とする。   According to a second aspect of the present invention, in the light beam deflector according to the first aspect, by heating a part of the rotating shaft, the support plates are attached to the both end surface portions of the deflecting member, respectively, to the required temperature. A temperature control means for heating and holding is provided.

上述のように構成することにより、前述した請求項1に記載の発明の作用、効果に加えて、締結部材の近くに温度制御手段を配置して、適切な温度制御が可能となる。   By configuring as described above, in addition to the operation and effect of the invention described in claim 1 described above, temperature control means can be arranged near the fastening member to enable appropriate temperature control.

請求項3に記載の発明は、請求項1又は請求項2に記載の光ビーム偏向器において、偏向部材の両端面部にそれぞれ支持板を貼着したものを、製作温度より高温の所要の一定温度に加熱することにより、偏向部材の光ビームの入射面と出射面とをそれぞれシリンドリカル状の凹面に弾性変形させるように構成したことを特徴とする。   According to a third aspect of the present invention, in the light beam deflector according to the first or second aspect, the support plate is attached to each end face of the deflecting member, and the required constant temperature higher than the manufacturing temperature. It is characterized in that the incident surface and the exit surface of the light beam of the deflecting member are each elastically deformed into a cylindrical concave surface by heating to a cylindrical shape.

本発明の光ビーム偏向器によれば、遠心力により発生する非点収差や内部に反射面を備えたプリズム状に構成した偏向部材の製造時にできた非点収差等を打ち消すように、偏向部材を変形させることで非点収差を適正に補正して、高速、高画質な画像を形成可能とした光ビーム偏向器を容易かつ廉価に製造できるという効果がある。   According to the light beam deflector of the present invention, the deflecting member cancels astigmatism generated by centrifugal force and astigmatism generated at the time of manufacturing the deflecting member configured in a prism shape having a reflecting surface inside. As a result, it is possible to easily and inexpensively manufacture a light beam deflector capable of appropriately correcting astigmatism and forming a high-speed, high-quality image.

本発明の光ビーム偏向器に関する実施の形態について、図1乃至図10により説明する。本実施の形態に係わる光ビーム偏向器は、オフセット印刷用の感光性平版印刷版(いわゆるPS版)を記録媒体とし、コンピュータ等のデジタルデータに基づいてレーザ露光処理をし、自動現像機で感光性平版印刷版上に形成された潜像を顕像に変換する現像処理をして直接印刷版を製版するCTPシステムに用いて好適なものである。   Embodiments of the light beam deflector according to the present invention will be described with reference to FIGS. The light beam deflector according to the present embodiment uses a photosensitive lithographic printing plate (so-called PS plate) for offset printing as a recording medium, performs laser exposure processing based on digital data from a computer or the like, and performs photosensitivity with an automatic processor. It is suitable for use in a CTP system in which a latent image formed on a photolithographic printing plate is subjected to a development process for converting it into a visible image and directly plate-making a printing plate.

図1及び図2には、本実施の形態に係る、光ビーム偏向器としての内面ドラム型画像形成装置(インナードラム露光装置)を備えたCTPシステムの概略構成が示されている。   1 and 2 show a schematic configuration of a CTP system including an internal drum type image forming apparatus (inner drum exposure apparatus) as a light beam deflector according to the present embodiment.

このCTPシステムは、印刷版供給カセット20の自動送給装置10と、印刷版供給カセット内の感光性平版印刷版であるPS版(記録媒体)22を1枚づつ分離して供給する枚葉供給装置12と、インナードラム露光装置14と、バッファ装置16と、現像処理装置18とを備える。   In this CTP system, the automatic feeding device 10 of the printing plate supply cassette 20 and the PS plate (recording medium) 22 which is a photosensitive lithographic printing plate in the printing plate supply cassette are separated and supplied one by one. The apparatus 12 includes an inner drum exposure device 14, a buffer device 16, and a development processing device 18.

このCTPシステムでは、露光処理の対象とする記録媒体として、例えば薄いアルミニウム板である支持体上に感光材料を含有する画像記録層を形成したPS版若しくはフォトポリマー版又は銀塩タイプの感光材料等を用いることができる。   In this CTP system, as a recording medium to be subjected to exposure processing, for example, a PS plate or a photopolymer plate in which an image recording layer containing a photosensitive material is formed on a support which is a thin aluminum plate, a silver salt type photosensitive material, or the like Can be used.

このCTPシステムにおける自動送給装置10は、外部から作業員が搬入した複数の印刷版供給カセット20をそれぞれ保管棚24上に保管し、所要の印刷版供給カセット20を枚葉供給装置12へ供給する。   The automatic feeding device 10 in this CTP system stores a plurality of printing plate supply cassettes 20 carried by an operator from the outside on a storage shelf 24 and supplies the required printing plate supply cassettes 20 to the sheet supply device 12. To do.

この枚葉供給装置12は、供給された印刷版供給カセット20の蓋を開放し、内部に収納されているPS版22の束を引き上げ機構26で引き上げながら、分離ローラ28で1枚づつ分離してインナードラム露光装置14へ供給する。なお、この枚葉供給装置12には、重ねられたPS版22の間に感光面保護のため挟み込まれた合紙30を分離してストックする合紙除去部32を備える。   The sheet feeding device 12 opens the lid of the supplied printing plate supply cassette 20 and separates the bundle of PS plates 22 accommodated therein by the separation roller 28 one by one while pulling up the bundle by the lifting mechanism 26. To the inner drum exposure device 14. The sheet feeding device 12 includes a slip sheet removing unit 32 that separates and stocks the slip sheet 30 sandwiched between the stacked PS plates 22 to protect the photosensitive surface.

図2及び図3に示すように、CTPシステムにおける光ビーム偏向器としてのインナードラム露光装置14は、円弧内周面形状(円筒内周面の一部を構成する形状)の内面ドラム34を母体として構成されており、この内面ドラム34の内周面に沿ってPS版22を支持するようになっている。   As shown in FIGS. 2 and 3, the inner drum exposure device 14 as a light beam deflector in the CTP system has an inner surface drum 34 having a circular arc inner peripheral surface shape (a shape constituting a part of a cylindrical inner peripheral surface) as a parent body. The PS plate 22 is supported along the inner peripheral surface of the inner drum 34.

このインナードラム露光装置14では、図示しない真空吸着手段によって、未記録の記録媒体であるPS版22を内面ドラム34の内周面に確実に密着させて沿わせた状態に保持してから露光処理を行う。   In this inner drum exposure device 14, the PS plate 22, which is an unrecorded recording medium, is held in a state of being in close contact with the inner peripheral surface of the inner drum 34 by a vacuum suction means (not shown), and then an exposure process. I do.

このインナードラム露光装置14では、内面ドラム34の円弧中心位置に、光ビーム偏向器としてのスピナーミラー装置36を配設する。   In the inner drum exposure device 14, a spinner mirror device 36 as a light beam deflector is disposed at the center of the arc of the inner drum 34.

図3及び図4に示すように、このスピナーミラー装置36では、回転軸40の先端に、ホルダ(マウント部材)である締結部材39を一体的に設置し、この締結部材39に偏向部材41を取り付ける。   As shown in FIGS. 3 and 4, in the spinner mirror device 36, a fastening member 39 as a holder (mounting member) is integrally installed at the tip of the rotating shaft 40, and the deflection member 41 is attached to the fastening member 39. Install.

この偏向部材41は、いわゆる内面反射プリズム、キュービックプリズムと称される、外形が略立方体状に形成され内部に対角線に沿った反射面38を備えたプリズムとして構成するもので、例えば一般に市販されているいわゆるボールプリズムを用いることができる。   The deflecting member 41 is a so-called internal reflection prism or cubic prism, and is configured as a prism having a substantially cube-shaped outer shape and having a reflective surface 38 along a diagonal line. A so-called ball prism can be used.

このインナードラム露光装置14では、締結部材39を略U字状に形成し、この締結部材39における二股に分かれて立設された支持板43を、相互に平行な矩形平板状に形成する。   In the inner drum exposure apparatus 14, the fastening member 39 is formed in a substantially U shape, and the support plate 43 erected in a bifurcated manner in the fastening member 39 is formed in a rectangular flat plate shape parallel to each other.

この締結部材39には、一対の支持板43の間に、偏向部材41を挟み込む状態で、偏向部材41における反射面38の端辺が対角線として横切っている相対向する側面を、それぞれ対応する支持板43の内面に貼着して一体化する。   In this fastening member 39, the opposing side surfaces of the deflecting member 41 that are opposite to each other with the end sides of the reflecting surface 38 crossing diagonally in a state in which the deflecting member 41 is sandwiched between the pair of supporting plates 43 are respectively supported. Affix to the inner surface of the plate 43 and integrate.

このインナードラム露光装置14では、偏向部材41を支持板43に貼着するのに用いる接着剤として、エポキシ樹脂又は紫外線硬貨樹脂等を利用できる。   In the inner drum exposure device 14, an epoxy resin, an ultraviolet coin resin, or the like can be used as an adhesive used to stick the deflection member 41 to the support plate 43.

このスピナーミラー装置36では、反射面38を有する偏向部材41をホルダ(マウント部材)である締結部材39によって一体化した回転軸40を、制御装置で制御される駆動源としてのモーター45によって高速回転(例えば10,000rpm以上)可能に構成する。このスピナーミラー装置36では、回転軸40の回転中心軸を内面ドラム34の円弧中心軸と一致するように配置する。   In this spinner mirror device 36, a rotating shaft 40 in which a deflection member 41 having a reflecting surface 38 is integrated by a fastening member 39 that is a holder (mounting member) is rotated at high speed by a motor 45 as a drive source controlled by a control device. (For example, 10,000 rpm or more) In the spinner mirror device 36, the rotation center axis of the rotation shaft 40 is arranged so as to coincide with the arc center axis of the inner surface drum 34.

このスピナーミラー装置36では、光源側の光学系から投射された光ビームを、回動する偏向部材41の反射面38に反射させてPS版22の感光面に対して主走査方向への走査露光を行う。   In the spinner mirror device 36, the light beam projected from the optical system on the light source side is reflected by the reflecting surface 38 of the rotating deflection member 41, and scanning exposure in the main scanning direction is performed on the photosensitive surface of the PS plate 22. I do.

このスピナーミラー装置36は、副走査移動手段によって、内面ドラム34の円弧中心軸の軸線方向(図2の表面から裏面に貫通する方向)に等速度で移動制御されることにより副走査する。   The spinner mirror device 36 performs sub-scanning by being controlled to move at a constant speed in the axial direction of the arc central axis of the inner drum 34 (direction penetrating from the front surface to the back surface in FIG. 2) by the sub-scanning moving means.

このため、スピナーミラー装置36は、図示しない制御装置のスピナードライバによってそのモーター45の回転制御がされると共に、副走査移動手段により副走査方向に移動制御されるように構成されている。   For this reason, the spinner mirror device 36 is configured such that the rotation of the motor 45 is controlled by a spinner driver of a control device (not shown) and the movement is controlled in the sub-scanning direction by the sub-scanning moving means.

この副走査移動手段は、例えば図3に示すように、スピナーミラー装置36を内面ドラム34の円弧中心軸の軸線方向(副走査方向)に移動させる副走査ガイド機構と、このスピナーミラー装置36が移動中に、偏向部材41の反射面38の回転中心を内面ドラム34の円弧中心軸に一致させるように移動調整の制御をする位置制御手段とを有する。   For example, as shown in FIG. 3, the sub-scanning moving means includes a sub-scanning guide mechanism for moving the spinner mirror device 36 in the axial direction (sub-scanning direction) of the arc central axis of the inner surface drum 34, and the spinner mirror device 36. Position control means for controlling movement adjustment so that the center of rotation of the reflecting surface 38 of the deflecting member 41 coincides with the arc central axis of the inner surface drum 34 during movement.

このスピナーミラー装置36の副走査ガイド機構は、リニアガイド機構50と、ボールねじ送り機構52とを具備する。   The sub-scanning guide mechanism of the spinner mirror device 36 includes a linear guide mechanism 50 and a ball screw feed mechanism 52.

このリニアガイド機構50は、インナードラム露光装置14の内面ドラム34における断面半円弧の円弧中心軸に沿った長手方向両端部に、それぞれ平行となるように配置する。   The linear guide mechanisms 50 are arranged so as to be parallel to both ends in the longitudinal direction along the arc central axis of the semicircular arc in the inner drum 34 of the inner drum exposure device 14.

これら平行に配置されたリニアガイド機構50には、スピナーミラー装置36を中間に配置した支持フレーム54を、橋渡すように装着し、支持フレーム54に配置したスピナーミラー装置36が、内面ドラム34の円弧中心軸に沿って移動自在となるように構成する。   A support frame 54 having a spinner mirror device 36 disposed in the middle is attached to the linear guide mechanisms 50 disposed in parallel so as to bridge, and the spinner mirror device 36 disposed on the support frame 54 is attached to the inner drum 34. It is configured to be movable along the arc center axis.

また、スピナーミラー装置36を配置した支持フレーム54は、その一端部を一方のリニアガイド機構50から延出して、ボールねじ送り機構52に接続する。このボールねじ送り機構52は、送りねじ棒部材56に移動子58を螺挿し、送りねじ棒部材56を図示しない回動制御機構によって回動操作することにより、移動子58を移動操作するよう構成する。   Further, the support frame 54 on which the spinner mirror device 36 is arranged extends from one linear guide mechanism 50 at one end thereof and is connected to the ball screw feed mechanism 52. The ball screw feed mechanism 52 is configured to move the mover 58 by screwing the mover 58 into the feed screw rod member 56 and rotating the feed screw rod member 56 by a rotation control mechanism (not shown). To do.

このように構成されたスピナーミラー装置36は、光源側の光学系から投射され画像情報に応じて変調された光ビームを、回動する反射面38に反射させて主走査方向への走査露光を行いながら、スピナーミラー装置36を副走査方向へ移動することによって、PS版22の記録面(感光面)全面に対して2次元の画像を記録する処理を行う。   The spinner mirror device 36 configured in this manner reflects the light beam projected from the optical system on the light source side and modulated according to the image information to the rotating reflecting surface 38 to perform scanning exposure in the main scanning direction. While performing, a process of recording a two-dimensional image on the entire recording surface (photosensitive surface) of the PS plate 22 is performed by moving the spinner mirror device 36 in the sub-scanning direction.

このCTPシステムに設けるバッファ装置16は、インナードラム露光装置14で露光処理されたPS版22を、搬送速度を調整することによって所要のタイミングで現像処理装置18へ搬入する機能を有する。   The buffer device 16 provided in the CTP system has a function of carrying the PS plate 22 exposed by the inner drum exposure device 14 into the development processing device 18 at a required timing by adjusting the conveyance speed.

現像処理装置18は、搬入されて来た露光済のPS版22に対する現像処理を行って潜像を顕像化し、印刷版の製版を完了する。   The development processing device 18 performs development processing on the exposed PS plate 22 that has been carried in to visualize the latent image, and completes the plate making of the printing plate.

次に、上述のように構成されたスピナーミラー装置36に設ける非点収差の補正を行う手段について説明する。   Next, means for correcting astigmatism provided in the spinner mirror device 36 configured as described above will be described.

この非点収差の補正を行う手段は、スピナーミラー装置36で走査露光処理を行う際に、偏向部材41とこれを保持する締結部材39との部分の温度を所定温度に制御することにより、偏向部材41の線膨張係数と、締結部材39の線膨張係数との相違により生じる偏向部材41の弾性歪により発生する補正用の非点収差によって、モーター45で偏向部材41を回動したときの遠心力で発生する偏向部材41の変形で生じる非点収差、又は偏向部材41の加工製造時のひずみや製作誤差によって反射面38に生じる非点収差を、打ち消すようにして補正する。   The means for correcting this astigmatism is obtained by controlling the temperature of the portion of the deflection member 41 and the fastening member 39 holding the deflection member to a predetermined temperature when performing the scanning exposure process with the spinner mirror device 36. Centrifugal when the deflection member 41 is rotated by the motor 45 due to correction astigmatism generated by the elastic strain of the deflection member 41 caused by the difference between the linear expansion coefficient of the member 41 and the linear expansion coefficient of the fastening member 39. Astigmatism caused by deformation of the deflecting member 41 caused by force, or astigmatism occurring on the reflecting surface 38 due to distortion or manufacturing error during processing of the deflecting member 41 is corrected so as to cancel.

さらに、必要に応じて、偏向部材41を回動したときの遠心力で発生する非点収差と、偏向部材41の加工製造時のひずみや製作誤差によって生じる非点収差との組み合わせで複合的に生じる非点収差を補正可能なように非点収差の補正を行う手段を構成しても良い。   Furthermore, if necessary, a combination of astigmatism generated by centrifugal force when the deflecting member 41 is rotated and astigmatism caused by distortion or manufacturing error in the fabrication of the deflecting member 41 is combined. A means for correcting astigmatism may be configured so that the generated astigmatism can be corrected.

この非点収差の補正を行う手段では、走査露光の際に偏向部材41を回動したときの遠心力で発生する非点収差量と、必要に応じて、偏向部材41の加工製造時のひずみや製作誤差によって生じる非点収差量とを、それぞれ光学的な測定又は動的なシミュレーション等の非点収差量検出手段によって予め求めておく。   In the means for correcting astigmatism, the amount of astigmatism generated by the centrifugal force when the deflection member 41 is rotated during scanning exposure and, if necessary, distortion during processing of the deflection member 41 are manufactured. And the astigmatism amount caused by manufacturing errors are obtained in advance by an astigmatism amount detecting means such as optical measurement or dynamic simulation.

この図3及び図4に示す非点収差を補正する手段では、偏向部材41の材料の線膨張係数と、支持板43の材料の線膨張係数とが、異なるように構成する。この偏向部材41は、光学ガラスを材料として構成する。また、支持板43は、鉄又はアルミニュウム等の金属又はその他の材料で構成することができる。   The astigmatism correcting means shown in FIGS. 3 and 4 is configured such that the linear expansion coefficient of the material of the deflecting member 41 and the linear expansion coefficient of the material of the support plate 43 are different. The deflection member 41 is made of optical glass. The support plate 43 can be made of metal such as iron or aluminum, or other materials.

この非点収差を補正する手段では、例えば偏向部材41を光学ガラスで構成し、支持板43を鉄で構成した場合に、光学ガラスよりも鉄の方が線膨張係数が大きいので、偏向部材41の両端面部にそれぞれ支持板43を貼着して製造したときの製作温度よりも高い温度に加熱すると、偏向部材41の両端面部に貼着された各支持板43が偏向部材41よりも大きくなるように変形するため、図5に示すように偏向部材41が変形する。   In this means for correcting astigmatism, for example, when the deflecting member 41 is made of optical glass and the support plate 43 is made of iron, iron has a larger linear expansion coefficient than optical glass. When the support plates 43 are attached to both end surface portions of the substrate, the support plates 43 attached to the both end surface portions of the deflecting member 41 are larger than the deflecting member 41 when heated to a temperature higher than the manufacturing temperature at the time of manufacture. Therefore, the deflection member 41 is deformed as shown in FIG.

すなわち、図5に示す製作温度よりも高い温度に加熱したときの偏向部材41の変形状態では、偏向部材41の入射面41Aと、偏向部材41の出射面41Bとがそれぞれシリンドリカル状の凹面となりシリンドリカル状の凹レンズを構成するように弾性変形する。   That is, in the deformed state of the deflecting member 41 when heated to a temperature higher than the manufacturing temperature shown in FIG. 5, the incident surface 41A of the deflecting member 41 and the exit surface 41B of the deflecting member 41 become cylindrical concave surfaces, respectively. It is elastically deformed to form a concave lens.

また、この加熱したときのシリンドリカル状の凹面の曲率半径は、製作温度よりも高い温度になるに連れて、シリンドリカル状の凹面の曲率半径が小さくなるという特性を有する。   Further, the curvature radius of the cylindrical concave surface when heated has a characteristic that the curvature radius of the cylindrical concave surface becomes smaller as the temperature becomes higher than the manufacturing temperature.

また、偏向部材41の両端面部にそれぞれ支持板43を貼着したものを、偏向部材41の両端面部にそれぞれ支持板43を貼着して製造したときの製作温度よりも低い温度にしたときには、偏向部材41の両端面部に貼着された各支持板43が偏向部材41よりも小さくなるように変形するため、図8に示すように偏向部材41が変形する。   Further, when the support plate 43 is attached to both end surface portions of the deflecting member 41 and the support plate 43 is attached to both end surface portions of the deflecting member 41 and the temperature is lower than the manufacturing temperature when manufactured, Since each support plate 43 attached to both end portions of the deflecting member 41 is deformed so as to be smaller than the deflecting member 41, the deflecting member 41 is deformed as shown in FIG.

すなわち、図8に示す製作温度よりも低い温度にしたときの偏向部材41の変形状態では、偏向部材41の入射面41Aと、偏向部材41の出射面41Bとがそれぞれシリンドリカル状の凸面となりシリンドリカル状の凸レンズを構成するように弾性変形する。   That is, in the deformed state of the deflecting member 41 when the temperature is lower than the manufacturing temperature shown in FIG. 8, the incident surface 41A of the deflecting member 41 and the exit surface 41B of the deflecting member 41 become cylindrical convex surfaces, respectively. It is elastically deformed to constitute a convex lens.

また、冷却する等の手段で製作温度よりも低い温度にしたときにおけるシリンドリカル状の凸面の曲率半径は、製作温度よりも低い温度になるに連れて、シリンドリカル状の凸面の曲率半径が小さくなるという特性を有する。   In addition, the curvature radius of the cylindrical convex surface when the temperature is lower than the manufacturing temperature by means of cooling or the like is said to decrease as the temperature of the cylindrical convex surface becomes lower than the manufacturing temperature. Has characteristics.

よって、この非点収差を補正する手段では、モーター45で偏向部材41を回動したときの遠心力で偏向部材41の反射面38が、下に凸となるよう変形する状態である図6に示すようなシリンドリカルな凹面鏡(円筒内曲面の凹面鏡)となる場合、又は偏向部材41の加工製造時のひずみや製作誤差によって反射面38が図6に示す下に凸となるようなシリンドリカルな凹面鏡(円筒内曲面の凹面鏡)となる場合に生じる非点収差を、両端面部にそれぞれ支持板43を貼着した偏向部材41を製作温度よりも高い所定温度に設定することにより偏向部材41の入射面41Aと出射面41Bとをそれぞれ所定曲率半径を持つシリンドリカル状の凹面に弾性変形させて打ち消すようにして補正する。   Therefore, in the means for correcting this astigmatism, the reflecting surface 38 of the deflecting member 41 is deformed to be convex downward by the centrifugal force when the deflecting member 41 is rotated by the motor 45 in FIG. In the case of a cylindrical concave mirror as shown in the figure (a concave mirror having a curved surface in a cylinder), or a cylindrical concave mirror in which the reflecting surface 38 is convex downward as shown in FIG. The astigmatism generated in the case of an in-cylindrical curved mirror) is set to a predetermined temperature higher than the manufacturing temperature of the deflecting member 41 having the support plates 43 attached to both end portions, and the incident surface 41A of the deflecting member 41 And the exit surface 41B are corrected so as to cancel each other by elastically deforming them into cylindrical concave surfaces each having a predetermined radius of curvature.

すなわち、偏向部材41を回動したときの遠心力又は加工製造時のひずみ等で偏向部材41の反射面38が図6に示すようなシリンドリカルな凹面鏡(円筒内曲面の凹面鏡)となる場合には、反射面38の副走査方向(入射ビームに対して反射面38が傾斜する方向)に入射するスリット状の仮想光ビーム51を考えたとき、このスリット状の仮想光ビーム51は、平面鏡で反射されて、比較的遠くの位置Lに合焦する。   That is, when the reflecting surface 38 of the deflecting member 41 becomes a cylindrical concave mirror (a concave mirror having a curved surface in a cylinder) as shown in FIG. 6 due to centrifugal force when the deflecting member 41 is rotated or distortion during processing and the like. When considering a slit-like virtual light beam 51 incident in the sub-scanning direction of the reflecting surface 38 (direction in which the reflecting surface 38 is inclined with respect to the incident beam), the slit-like virtual light beam 51 is reflected by a plane mirror. As a result, focusing is performed on a relatively distant position L.

このとき、図6に示すように、反射面38の主走査方向(入射ビームに対して反射面38が直交する方向)に入射するスリット状の仮想光ビーム53を考えたとき、このスリット状の仮想光ビーム53は、凹面鏡で反射されて、比較的近くの位置Mに合焦する。   At this time, as shown in FIG. 6, when a slit-like virtual light beam 53 incident in the main scanning direction of the reflection surface 38 (the direction in which the reflection surface 38 is orthogonal to the incident beam) is considered, The virtual light beam 53 is reflected by the concave mirror and is focused on a relatively close position M.

そこで、この場合には、図5及び図7に示すように、両端面部にそれぞれ支持板43を貼着した偏向部材41を製作温度よりも高い所定温度に設定することにより偏向部材41の入射面41Aと出射面41Bとをそれぞれ所定曲率半径を持つシリンドリカル状の凹面に弾性変形させる。   Therefore, in this case, as shown in FIGS. 5 and 7, the incident surface of the deflecting member 41 is set by setting the deflecting member 41 having the support plates 43 attached to the both end surface portions to a predetermined temperature higher than the manufacturing temperature. 41A and the emission surface 41B are each elastically deformed into a cylindrical concave surface having a predetermined radius of curvature.

またこの場合には、前述したように予め測定しておいた反射面38の歪み量に対応して、適切に補正できる曲率半径をもつ入射面41Aと出射面41Bとが現れるように、両端面部にそれぞれ支持板43を貼着した偏向部材41を製作温度よりも高い所定温度に設定する制御を行う。   Further, in this case, both end surface portions are formed so that the incident surface 41A and the exit surface 41B having a radius of curvature that can be appropriately corrected appear corresponding to the distortion amount of the reflecting surface 38 measured in advance as described above. The deflection member 41 to which the support plate 43 is attached is controlled to be set to a predetermined temperature higher than the manufacturing temperature.

これにより図7に示す非点収差を補正する手段の条件の場合には、反射面38の主走査方向(入射ビームに対して反射面38が直交する方向)に入射するスリット状の仮想光ビーム53の光路上に、シリンドリカル状の凹面レンズの機能を有する入射面41Aと、出射面41Bとが現れて、反射面38の主走査方向に入射する仮想光ビーム53の焦点位置を比較的近くの合焦位置Mから比較的遠くの合焦位置Lへ遠ざけることにより、反射面38の副走査方向に入射する仮想光ビーム51の焦点位置に一致させ、適正な露光処理ができるようになる。   Thus, in the case of the conditions of the means for correcting astigmatism shown in FIG. 7, a slit-like virtual light beam incident in the main scanning direction of the reflecting surface 38 (the direction in which the reflecting surface 38 is orthogonal to the incident beam). An incident surface 41A having the function of a cylindrical concave lens and an output surface 41B appear on the optical path 53, and the focal position of the virtual light beam 53 incident in the main scanning direction of the reflecting surface 38 is relatively close. By moving away from the in-focus position M to the in-focus position L that is relatively far away, the focal position of the virtual light beam 51 incident in the sub-scanning direction of the reflecting surface 38 can be made coincident and appropriate exposure processing can be performed.

また、偏向部材41を回動したときの遠心力又は加工製造時のひずみ等で偏向部材41の反射面38が図9に示すような上に凸となるシリンドリカルな凸面鏡(円柱曲面の凸面鏡)となる場合には、反射面38の副走査方向(入射ビームに対して反射面38が傾斜する方向)に入射するスリット状の仮想光ビーム51を考えたとき、このスリット状の仮想光ビーム51は、平面鏡で反射されて、比較的近くの位置Mに合焦する。   Also, a cylindrical convex mirror (cylindrical curved convex mirror) in which the reflecting surface 38 of the deflection member 41 is convex upward as shown in FIG. 9 due to centrifugal force when the deflection member 41 is rotated or distortion during processing and the like. In this case, when considering the slit-like virtual light beam 51 incident in the sub-scanning direction of the reflection surface 38 (the direction in which the reflection surface 38 is inclined with respect to the incident beam), the slit-like virtual light beam 51 is The light is reflected by the plane mirror and focused on a relatively close position M.

このとき、図9に示すように、反射面38の主走査方向(入射ビームに対して反射面38が直交する方向)に入射するスリット状の仮想光ビーム53を考えたとき、このスリット状の仮想光ビーム53は、凸面鏡で反射されて、比較的遠くの位置Lに合焦する。   At this time, as shown in FIG. 9, when considering a slit-like virtual light beam 53 incident in the main scanning direction of the reflecting surface 38 (a direction in which the reflecting surface 38 is orthogonal to the incident beam), The virtual light beam 53 is reflected by the convex mirror and is focused at a relatively distant position L.

そこで、この場合には、図8及び図10に示すように、両端面部にそれぞれ支持板43を貼着した偏向部材41を製作温度よりも低い所定温度に設定することにより偏向部材41の入射面41Aと出射面41Bとをそれぞれ所定曲率半径を持つシリンドリカル状の凸面に弾性変形させる。   Therefore, in this case, as shown in FIG. 8 and FIG. 10, the incident surface of the deflecting member 41 is set by setting the deflecting member 41 having the support plates 43 attached to both end surfaces to a predetermined temperature lower than the manufacturing temperature. 41A and the emission surface 41B are each elastically deformed into a cylindrical convex surface having a predetermined radius of curvature.

またこの場合には、前述したように予め測定しておいた反射面38の歪み量に対応して、適切に補正できる曲率半径をもつ入射面41Aと出射面41Bとが現れるように、両端面部にそれぞれ支持板43を貼着した偏向部材41を製作温度よりも低い所定温度に設定する制御を行う。   Further, in this case, both end surface portions are formed so that the incident surface 41A and the exit surface 41B having a radius of curvature that can be appropriately corrected appear corresponding to the distortion amount of the reflecting surface 38 measured in advance as described above. The deflection member 41 to which the support plate 43 is attached is controlled to be set to a predetermined temperature lower than the manufacturing temperature.

これにより図10に示す非点収差を補正する手段の条件の場合には、反射面38の主走査方向(入射ビームに対して反射面38が直交する方向)に入射するスリット状の仮想光ビーム53の光路上に、シリンドリカル状の凸面レンズの機能を有する入射面41Aと、出射面41Bとが現れて、反射面38の主走査方向に入射する仮想光ビーム53の焦点位置を比較的遠くの合焦位置Lから比較的近くの合焦位置Mへ近づけることにより、反射面38の副走査方向に入射する仮想光ビーム51の焦点位置に一致させ、適正な露光処理ができるようになる。   Thus, in the case of the condition of the means for correcting astigmatism shown in FIG. 10, a slit-like virtual light beam incident in the main scanning direction of the reflecting surface 38 (direction in which the reflecting surface 38 is orthogonal to the incident beam). An incident surface 41A having the function of a cylindrical convex lens and an output surface 41B appear on the optical path 53, and the focal position of the virtual light beam 53 incident in the main scanning direction of the reflecting surface 38 is relatively far away. By bringing the in-focus position L closer to the in-focus position M, it is possible to match the focal position of the virtual light beam 51 incident in the sub-scanning direction of the reflecting surface 38 and perform an appropriate exposure process.

次に、図示しないが、この非点収差を補正する手段では、加工製造時のひずみや製作誤差等によって、偏向部材41の入射面41Aと出射面41Bとが、主走査方向(入射ビームに対して反射面38が直交する方向)に湾曲するシリンドリカル状の凸面となっている場合に、これを補正することができる。   Next, although not shown, in the means for correcting this astigmatism, the incident surface 41A and the exit surface 41B of the deflecting member 41 are moved in the main scanning direction (with respect to the incident beam) due to distortion during manufacturing and manufacturing errors. Thus, this can be corrected when the reflecting surface 38 is a cylindrical convex surface that is curved in a direction orthogonal thereto.

この場合には、両端面部にそれぞれ支持板43を貼着した偏向部材41を製作温度よりも高い所定温度に設定することにより偏向部材41の入射面41Aと出射面41Bとをそれぞれシリンドリカル状の凹面となるような方向に弾性変形させることにより、偏向部材41の入射面41Aと出射面41Bとが平面を形成して補正されるようにする。   In this case, the incident surface 41A and the exit surface 41B of the deflecting member 41 are respectively formed as cylindrical concave surfaces by setting the deflecting member 41 with the support plates 43 attached to both end surface portions to a predetermined temperature higher than the manufacturing temperature. By being elastically deformed in such a direction, the incident surface 41A and the exit surface 41B of the deflecting member 41 form a flat surface and are corrected.

また、図示しないが、この非点収差を補正する手段では、加工製造時のひずみや製作誤差等によって、偏向部材41の入射面41Aと出射面41Bとが、主走査方向(入射ビームに対して反射面38が直交する方向)に湾曲するシリンドリカル状の凹面となっている場合にも、これを補正することができる。   Although not shown, the means for correcting astigmatism causes the incident surface 41A and the exit surface 41B of the deflecting member 41 to move in the main scanning direction (with respect to the incident beam) due to distortion during manufacturing and manufacturing errors. This can also be corrected when the reflecting surface 38 is a cylindrical concave surface curved in a direction perpendicular to the reflecting surface 38.

この場合には、両端面部にそれぞれ支持板43を貼着した偏向部材41を製作温度よりも低い所定温度に設定することにより偏向部材41の入射面41Aと出射面41Bとをそれぞれシリンドリカル状の凸面となるような方向に弾性変形させることにより、偏向部材41の入射面41Aと出射面41Bとが平面を形成して補正されるようにする。   In this case, the incident surface 41A and the exit surface 41B of the deflecting member 41 are set to be cylindrical convex surfaces by setting the deflecting member 41 having the support plates 43 attached to both end surface portions to a predetermined temperature lower than the manufacturing temperature. By being elastically deformed in such a direction, the incident surface 41A and the exit surface 41B of the deflecting member 41 form a flat surface and are corrected.

前述のように非点収差を補正する手段を用いたスピナーミラー装置36で露光処理する場合には、PS版22の感光面上にビームスポットを細く絞って露光処理するため焦点深度が短い場合でも、略全ての光ビームをビームスポットに良好に合焦させて、非点隔差の悪影響を受ける事無く高精度で画像を露光し、精細な画像を形成して画像品質を向上できる。   As described above, when the exposure processing is performed by the spinner mirror device 36 using the means for correcting astigmatism, the exposure is performed by narrowing the beam spot on the photosensitive surface of the PS plate 22, so that even when the depth of focus is short. It is possible to improve the image quality by focusing the substantially all light beams on the beam spot, exposing the image with high accuracy without being adversely affected by the astigmatic difference, and forming a fine image.

また、このスピナーミラー装置36では、非点収差を補正する手段で非点収差を補正する操作を容易にするため、図3及び図4に示すように、両端面部にそれぞれ支持板43を貼着した偏向部材41部分に対する、温度制御手段47を設ける。   Further, in this spinner mirror device 36, as shown in FIGS. 3 and 4, in order to facilitate the operation of correcting astigmatism by means for correcting astigmatism, support plates 43 are respectively attached to both end surfaces. A temperature control means 47 is provided for the deflecting member 41 portion.

この温度制御手段47は、回転軸40の一部を加熱又は冷却することにより、回転軸40と一体の支持板43と、この支持板43に貼着された偏向部材41との温度を所要の任意の温度に変更調整する温度制御を行えるように構成する。   This temperature control means 47 heats or cools a part of the rotating shaft 40 to thereby adjust the temperature of the support plate 43 integral with the rotating shaft 40 and the deflection member 41 attached to the support plate 43 to a required level. It is configured so that temperature control for changing and adjusting to an arbitrary temperature can be performed.

この温度制御手段47は、ヒータ、冷却器又はペルチェ素子等のいわゆる熱電素子を利用して構成することができる。   The temperature control means 47 can be configured using a so-called thermoelectric element such as a heater, a cooler, or a Peltier element.

また、このスピナーミラー装置36は、走査露光を行っているときに発熱して、両端面部にそれぞれ支持板43を貼着した偏向部材41部分が使用時の温度状態となる。   In addition, the spinner mirror device 36 generates heat during scanning exposure, and the deflecting member 41 portion having the support plates 43 attached to both end surface portions is in a temperature state during use.

そこで、このスピナーミラー装置36では、非点収差を補正する手段を、両端面部にそれぞれ支持板43を貼着した偏向部材41部分が使用時の温度状態となったときに、遠心力等で発生する非点収差が適正に補正がされる状態に構成することが、温度制御を最小限にする上で望ましい。   Therefore, in this spinner mirror device 36, the means for correcting astigmatism is generated by a centrifugal force or the like when the deflection member 41 portion having the support plates 43 attached to both end surface portions is in a temperature state during use. In order to minimize temperature control, it is desirable that the astigmatism to be corrected is appropriately corrected.

そこで、図5乃至図7に示すように、非点収差を補正する手段を、両端面部にそれぞれ支持板43を貼着した偏向部材41部分が加熱されることを条件として構成する場合には、偏向部材41の入射面41Aと出射面41Bとを非点収差を適正に補正する量に対応した曲率半径を持つシリンドリカル状の凹面に弾性変形させるための加熱温度差分だけ、使用時の温度から差し引いた値を、偏向部材41の両端面部にそれぞれ支持板43を貼着して製造したときの製作温度として設定する。   Therefore, as shown in FIG. 5 to FIG. 7, when the means for correcting astigmatism is configured on the condition that the deflection member 41 portion having the support plates 43 attached to both end surfaces is heated, Only the heating temperature difference for elastically deforming the incident surface 41A and the exit surface 41B of the deflecting member 41 into a cylindrical concave surface having a radius of curvature corresponding to the amount for appropriately correcting astigmatism is subtracted from the temperature during use. This value is set as the manufacturing temperature when the support plate 43 is bonded to each end surface of the deflecting member 41 for manufacturing.

このように非点収差を補正する手段を構成した場合には、スピナーミラー装置36を使用状態に回動させて両端面部にそれぞれ支持板43を貼着した偏向部材41部分が使用時の温度状態となったときに、偏向部材41の入射面41Aと出射面41Bとが適量の曲率半径を持つシリンドリカル状の凹面に弾性変形して、遠心力等で発生する非点収差を適正に補正する。   When the means for correcting astigmatism is configured in this way, the deflecting member 41 portion in which the spinner mirror device 36 is rotated to the use state and the support plates 43 are respectively attached to both end surface portions is in the temperature state during use. Then, the entrance surface 41A and the exit surface 41B of the deflecting member 41 are elastically deformed into a cylindrical concave surface having an appropriate amount of curvature radius, and astigmatism generated by centrifugal force or the like is appropriately corrected.

さらに、この場合には、スピナーミラー装置36が駆動を開始したとき又は待機のため回動速度を低下させたときのように、スピナーミラー装置36の両端面部にそれぞれ支持板43を貼着した偏向部材41部分が使用時の温度以下となる際に、温度制御手段47を動作して両端面部にそれぞれ支持板43を貼着した偏向部材41部分を使用時の温度状態に維持すれば、温度上昇までの待ち時間を削減して露光処理を迅速に行えるようにできる。   Further, in this case, when the spinner mirror device 36 starts driving or when the rotation speed is lowered for standby, the deflection is performed by attaching the support plates 43 to both end portions of the spinner mirror device 36, respectively. When the temperature of the member 41 becomes lower than the temperature at the time of use, the temperature control means 47 is operated to maintain the temperature of the deflection member 41 with the support plates 43 attached to both end portions at the temperature state at the time of use. It is possible to reduce the waiting time until exposure processing can be performed quickly.

また、この場合には、スピナーミラー装置36のモーター45及びその回転軸40の軸受部分での発熱や、温度制御手段47での発熱によって、その周囲の空気が加熱されてから、偏向部材41に入射し反射される光ビームの光路上に漂い、空気中にできる温度勾配によって光ビームに揺らぎを生じることを防止するため、スピナーミラー装置36における偏向部材41側からモーター45側へ吹き抜けるように送風して、光路上に当たる空気中に温度勾配が生じることを防止することが望ましい。   Further, in this case, the surrounding air is heated by the heat generated by the motor 45 of the spinner mirror device 36 and the bearing portion of the rotary shaft 40 and the heat generated by the temperature control means 47 before the deflection member 41 is heated. In order to prevent the light beam from drifting on the optical path of the incident and reflected light beam and causing the light beam to fluctuate due to the temperature gradient generated in the air, the air is blown from the deflection member 41 side to the motor 45 side in the spinner mirror device 36. Thus, it is desirable to prevent a temperature gradient from occurring in the air hitting the optical path.

また、図8乃至図10に示すように、非点収差を補正する手段を、両端面部にそれぞれ支持板43を貼着した偏向部材41部分の温度を低下させることを条件として構成する場合には、偏向部材41の入射面41Aと出射面41Bとを非点収差を適正に補正する量に対応した曲率半径を持つシリンドリカル状の凸面に弾性変形させるため温度降下させる温度差分だけ、使用時の温度に上乗せした値を、偏向部材41の両端面部にそれぞれ支持板43を貼着して製造したときの製作温度として設定する。   Further, as shown in FIGS. 8 to 10, when the means for correcting astigmatism is configured on the condition that the temperature of the deflection member 41 portion where the support plates 43 are bonded to the both end surfaces is lowered, respectively. The temperature at which the incident surface 41A and the exit surface 41B of the deflecting member 41 are used is only a temperature difference that causes a temperature drop to elastically deform the cylindrical convex surface having a radius of curvature corresponding to the amount for appropriately correcting astigmatism. The value added to is set as the manufacturing temperature when the support plate 43 is bonded to both end surfaces of the deflecting member 41 and manufactured.

すなわち、温度降下させる所定の温度差分だけ加熱した高温状態で偏向部材41の両端面部にそれぞれ支持板43を貼着して製造しておき、スピナーミラー装置36を使用状態に回動させて両端面部にそれぞれ支持板43を貼着した偏向部材41部分が、製造時の高温状態と比較して所定の低温となる、使用時の温度状態で使用する。   That is, the support plates 43 are attached to both end surface portions of the deflecting member 41 in a high temperature state heated by a predetermined temperature difference that causes the temperature to drop, and the spinner mirror device 36 is turned to the use state to rotate both end surface portions. In addition, the deflection member 41 portion to which the support plate 43 is attached is used in a temperature state at the time of use, which is a predetermined low temperature compared to a high temperature state at the time of manufacture.

このように非点収差を補正する手段を構成した場合には、スピナーミラー装置36を使用状態に回動させて両端面部にそれぞれ支持板43を貼着した偏向部材41部分が使用時の温度状態となったときに、偏向部材41の入射面41Aと出射面41Bとが適量の曲率半径を持つシリンドリカル状の凸面に弾性変形して、遠心力等で発生する非点収差を適正に補正する。   When the means for correcting astigmatism is configured in this way, the deflecting member 41 portion in which the spinner mirror device 36 is rotated to the use state and the support plates 43 are respectively attached to both end surface portions is in the temperature state during use. Then, the entrance surface 41A and the exit surface 41B of the deflecting member 41 are elastically deformed into a cylindrical convex surface having an appropriate amount of curvature radius, and astigmatism caused by centrifugal force or the like is appropriately corrected.

上述した非点収差を補正する手段では、偏向部材41の両端面部にそれぞれ支持板43を貼着して製造する際の製作温度より高温とするか、低温とするかで非点収差の発生方向を切り替えられ、かつ製作温度からの温度差により非点収差量を任意に調整できる。   In the above-described means for correcting astigmatism, the direction of occurrence of astigmatism is determined depending on whether the temperature is higher or lower than the manufacturing temperature when the support plates 43 are attached to both end portions of the deflecting member 41 for manufacturing. The amount of astigmatism can be arbitrarily adjusted by the temperature difference from the manufacturing temperature.

よって、この非点収差を補正する手段では、製作温度と異なる温度に、両端面部にそれぞれ支持板43を貼着した偏向部材41部分の温度を調整する事で、偏向部材41の持つ非点収差および遠心力により発生する非点収差を打ち消すように任意の量の非点収差を発生させる事が出来、スピナーミラー装置36で生じる非点収差を補正して、高速で高画質な画像形成を可能とする。   Therefore, in the means for correcting this astigmatism, the astigmatism of the deflecting member 41 is adjusted by adjusting the temperature of the deflecting member 41 portion where the support plates 43 are adhered to the both end surfaces to a temperature different from the manufacturing temperature. Any amount of astigmatism can be generated so as to cancel astigmatism generated by centrifugal force, and astigmatism generated by the spinner mirror device 36 can be corrected to form a high-quality image at high speed. And

すなわち、この非点収差を補正する手段を利用したスピナーミラー装置36では、集光される一部の光ビームだけしかPS版22の露光面上に焦点が合わず、他部分の光ビームの焦点が合わないような非点隔差を生じる状態となり露光形成された画像がボケて画像品質が低下するのを防止し、高画質な画像形成ができる。   That is, in the spinner mirror device 36 using the means for correcting this astigmatism, only a part of the condensed light beam is focused on the exposure surface of the PS plate 22 and the focus of the other part of the light beam. Astigmatism difference that does not match is generated, and the image formed by exposure is prevented from being blurred and image quality is deteriorated, and high-quality image formation can be performed.

また、この非点収差の補正を行う手段によれば、簡素な構成で、偏向部材41や締結部材39に何ら部材を追加することなく非点収差量を調整できるので、スピナーミラー装置36を廉価に製造できる。   Further, according to the means for correcting astigmatism, the amount of astigmatism can be adjusted with a simple configuration without adding any member to the deflection member 41 or the fastening member 39, so that the spinner mirror device 36 is inexpensive. Can be manufactured.

なお、本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で、その他種々の構成を取り得ることは勿論である。   In addition, this invention is not limited to embodiment mentioned above, Of course, it can take other various structures in the range which does not deviate from the summary of this invention.

本発明の実施の形態に係る光ビーム偏向器を備えたCTPシステムの概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the CTP system provided with the light beam deflector which concerns on embodiment of this invention. 本発明の実施の形態に係るCTPシステム内部の構成を示す概略説明図である。It is a schematic explanatory drawing which shows the structure inside the CTP system which concerns on embodiment of this invention. 本発明の実施の形態に係るインナードラム露光装置の要部を取り出して示す要部斜視図である。It is a principal part perspective view which takes out and shows the principal part of the inner drum exposure apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係わる光ビーム偏向器であるスピナーミラー装置の要部を示す概略分解斜視図である。It is a general | schematic disassembled perspective view which shows the principal part of the spinner mirror apparatus which is a light beam deflector concerning embodiment of this invention. 本発明の実施の形態に係わる光ビーム偏向器における両端面部にそれぞれ支持板を貼着した偏向部材部分を製作温度より加熱した状態を示す要部の説明図である。It is explanatory drawing of the principal part which shows the state which heated the deflection | deviation member part which each adhered the support plate to the both end surface parts in the light beam deflector concerning embodiment of this invention from manufacturing temperature. 本発明の実施の形態に係わる光ビーム偏向器における偏向部材の反射面が下に凸の状態となったときの非点収差の状態を示す要部の説明図である。It is explanatory drawing of the principal part which shows the state of astigmatism when the reflective surface of the deflection | deviation member in the light beam deflector concerning embodiment of this invention becomes a convex state. 本発明の実施の形態に係わる光ビーム偏向器における偏向部材の反射面が下に凸の状態となったときの非点収差を、非点収差を補正する手段で補正する状態を示す要部の説明図である。The main part showing the state of correcting astigmatism when the reflecting surface of the deflecting member in the light beam deflector according to the embodiment of the present invention is convex downward by means for correcting astigmatism. It is explanatory drawing. 本発明の実施の形態に係わる光ビーム偏向器における両端面部にそれぞれ支持板を貼着した偏向部材部分を製作温度より冷却した状態を示す要部の説明図である。It is explanatory drawing of the principal part which shows the state which cooled the deflection | deviation member part which each adhered the support plate to the both end surface parts in the light beam deflector concerning embodiment of this invention from manufacturing temperature. 本発明の実施の形態に係わる光ビーム偏向器における偏向部材の反射面が上に凸の状態となったときの非点収差の状態を示す要部の説明図である。It is explanatory drawing of the principal part which shows the state of astigmatism when the reflective surface of the deflection | deviation member in the light beam deflector concerning embodiment of this invention becomes a convex state. 本発明の実施の形態に係わる光ビーム偏向器における偏向部材の反射面が上に凸の状態となったときの非点収差を、非点収差を補正する手段で補正する状態を示す要部の説明図である。The main part showing the state of correcting astigmatism when the reflecting surface of the deflecting member in the light beam deflector according to the embodiment of the present invention is convex upward by means for correcting astigmatism. It is explanatory drawing.

符号の説明Explanation of symbols

10 自動送給装置
14 インナードラム露光装置
18 現像処理装置
22 PS版
34 内面ドラム
36 スピナーミラー装置
38 反射面
39 締結部材
40 回転軸
41 偏向部材
41A 入射面
41B 出射面
43 支持板
45 モーター
47 温度制御手段
DESCRIPTION OF SYMBOLS 10 Automatic feeding apparatus 14 Inner drum exposure apparatus 18 Development processing apparatus 22 PS plate 34 Inner surface drum 36 Spinner mirror apparatus 38 Reflective surface 39 Fastening member 40 Rotating shaft 41 Deflection member 41A Incidence surface 41B Output surface 43 Support plate 45 Motor 47 Temperature control means

Claims (3)

外形が略立方体状に形成され内部に対角線に沿った反射面を備えたプリズム状に構成した偏向部材と、
前記偏向部材の材料の線膨張係数と異なる線膨張係数を持つ材料で形成され、前記偏向部材の両端面部にそれぞれ支持板を貼着して保持する締結部材と、
前記締結部材を回転軸の先端に一体的に設置したモーターと、を有する光ビーム偏向器において、
前記偏向部材の両端面部に、それぞれ前記支持板を貼着したときの製作温度と異なる温度に設定し、前記偏向部材と前記各支持板との線膨張係数が異なることによる変形量の差によって前記偏向部材の光ビームの入射面と出射面とに生じた歪により、補正のための所要状態とした非点収差を生じさせ、当該補正用の非点収差によって、その他の要因によって偏向部材に生じた非点収差を打ち消すように構成したことを特徴とする光ビーム偏向器。
A deflecting member configured in a prism shape with an outer shape formed in a substantially cubic shape and having a reflecting surface along a diagonal line inside;
A fastening member that is formed of a material having a linear expansion coefficient different from the linear expansion coefficient of the material of the deflection member, and that holds and holds support plates on both end surface portions of the deflection member,
A light beam deflector having a motor in which the fastening member is integrally installed at the tip of the rotating shaft,
The temperature is set to a temperature different from the manufacturing temperature when the support plate is attached to both end surfaces of the deflection member, and the difference in deformation amount due to the difference in linear expansion coefficient between the deflection member and each support plate. Astigmatism, which is a required condition for correction, is caused by distortion generated on the incident surface and the exit surface of the light beam of the deflecting member. An optical beam deflector configured to cancel astigmatism.
前記回転軸の一部を加熱することにより、前記偏向部材の両端面部にそれぞれ前記支持板を貼着したものを、所要温度に加熱保持する温度制御手段を設けたことを特徴とする請求項1に記載の光ビーム偏向器。 2. A temperature control means is provided for heating and holding the support plates attached to both end portions of the deflection member by heating a part of the rotating shaft to a required temperature. A light beam deflector according to 1. 前記偏向部材の両端面部にそれぞれ前記支持板を貼着したものを、前記製作温度より高温の所要の一定温度に加熱することにより、前記偏向部材の光ビームの前記入射面と前記出射面とをそれぞれシリンドリカル状の凹面に弾性変形させるように構成したことを特徴とする請求項1又は請求項2に記載の光ビーム偏向器。 The incident surface and the exit surface of the light beam of the deflection member are heated by heating the support plates attached to both end portions of the deflection member to a required constant temperature higher than the manufacturing temperature. 3. The light beam deflector according to claim 1, wherein each of the light beam deflectors is elastically deformed into a cylindrical concave surface.
JP2005087227A 2005-03-24 2005-03-24 Light beam deflector Pending JP2006267716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005087227A JP2006267716A (en) 2005-03-24 2005-03-24 Light beam deflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005087227A JP2006267716A (en) 2005-03-24 2005-03-24 Light beam deflector

Publications (1)

Publication Number Publication Date
JP2006267716A true JP2006267716A (en) 2006-10-05

Family

ID=37203752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005087227A Pending JP2006267716A (en) 2005-03-24 2005-03-24 Light beam deflector

Country Status (1)

Country Link
JP (1) JP2006267716A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008298874A (en) * 2007-05-29 2008-12-11 Fujinon Corp Reflection prism, optical pickup, and method for manufacturing reflection prism
JP2008298873A (en) * 2007-05-29 2008-12-11 Fujinon Corp Reflection prism, optical pickup, and method for manufacturing reflection prism

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008298874A (en) * 2007-05-29 2008-12-11 Fujinon Corp Reflection prism, optical pickup, and method for manufacturing reflection prism
JP2008298873A (en) * 2007-05-29 2008-12-11 Fujinon Corp Reflection prism, optical pickup, and method for manufacturing reflection prism

Similar Documents

Publication Publication Date Title
JP2951842B2 (en) Optical scanning device
JP2008292916A (en) Image exposure device, microlens unit, and its manufacturing method
TW440709B (en) Mechanically simplified, high resolution, optical focusing and steering apparatus
US6844892B2 (en) Multi-beam scanning device
JP3216261B2 (en) Light beam recording device
JP3493848B2 (en) Optical scanning device
JP2006267716A (en) Light beam deflector
US20070296800A1 (en) Light scanning apparatus and image forming apparatus including light scanning apparatus
JP2006323346A (en) Image recording apparatus
JPH08122675A (en) Laser scanning device
JP2964629B2 (en) Laser beam scanning optical device
JP3373079B2 (en) Optical device
JP2000193901A (en) Fluctuation correction monogon scanner for laser imaging system
US6785030B2 (en) Optical element and optical scanning device using the same
JP2006163321A (en) Light beam deflector
JP2006163322A (en) Light beam deflector
JP2008257194A (en) Optical scanner and image forming apparatus provided with optical scanner
JPH08286135A (en) Optical scanning device
JP2006163319A (en) Light beam deflector
JPH07120696A (en) Light scanning device
JP2007156185A (en) Light beam deflector
JP2006163320A (en) Light beam deflector
JP2008310257A (en) Scanning optical system and optical scanner and image forming apparatus equipped with the same
JP4669656B2 (en) Electrophotographic equipment
JP2007206707A (en) Light source apparatus, optical scanner and image forming apparatus

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070223