JP2008298675A - Linear sensor - Google Patents

Linear sensor Download PDF

Info

Publication number
JP2008298675A
JP2008298675A JP2007146801A JP2007146801A JP2008298675A JP 2008298675 A JP2008298675 A JP 2008298675A JP 2007146801 A JP2007146801 A JP 2007146801A JP 2007146801 A JP2007146801 A JP 2007146801A JP 2008298675 A JP2008298675 A JP 2008298675A
Authority
JP
Japan
Prior art keywords
core body
magnetic poles
windings
projecting
magnetic pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007146801A
Other languages
Japanese (ja)
Inventor
Hisafumi Mimura
尚史 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamagawa Seiki Co Ltd
Original Assignee
Tamagawa Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamagawa Seiki Co Ltd filed Critical Tamagawa Seiki Co Ltd
Priority to JP2007146801A priority Critical patent/JP2008298675A/en
Publication of JP2008298675A publication Critical patent/JP2008298675A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To form first and second channel sensors by winding a winding around each projection magnetic pole formed on both sides of the first core body, and by making a plurality of projection magnetic poles of the second core body correspond to both sides of the first core body. <P>SOLUTION: This linear sensor includes the first core body 1 having a plurality of first and second projected magnetic poles 2, 2A projecting to both sides; the second core body 6 disposed corresponding to the first core body 1; and a plurality of third and fourth projected magnetic poles 15, 15A formed on each inner wall 6a, 6b of the second core body 6, in correspondence with the first and second projection magnetic poles 2, 2A. The linear sensor has a constitution wherein the first channel sensor 20 is formed on the side of the first and second projected magnetic poles 2, 15, and the second channel sensor 30 is formed on the side of the second and fourth projected magnetic poles 2A, 15A. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、リニアセンサに関し、特に、両側に突出磁極と巻線を有する第1コア体の両側に、第2コア体の突出磁極を配設して一対のチャンネルセンサを形成し、各チャンネルセンサの出力信号の和を用いることにより、各コア体の軸ずれや傾き等の取付誤差の影響を低減させ、高精度の直線位置を検出するための新規な改良に関する。   The present invention relates to a linear sensor, and in particular, a pair of channel sensors is formed by arranging projecting magnetic poles of a second core body on both sides of a first core body having projecting magnetic poles and windings on both sides, and each channel sensor. The present invention relates to a novel improvement for detecting a linear position with high accuracy by reducing the influence of mounting errors such as axial deviation and inclination of each core body by using the sum of the output signals.

従来、用いられていたこの種のリニアセンサとしては、一般的に、特許文献1に開示されている直線位置検出装置のように、丸棒状のロッドの外周に、所定の間隔で導電体部分を設け、円筒状のコイルケース内にこのロッドを挿入し、ロッドの直線位置をコイルケース内のコイルより検出する構成が提案されている。   Conventionally, as this type of linear sensor that has been used in the past, a conductor portion is generally provided at a predetermined interval on the outer periphery of a round rod-like rod as in the linear position detection device disclosed in Patent Document 1. A configuration has been proposed in which the rod is inserted into a cylindrical coil case and the linear position of the rod is detected from the coil in the coil case.

また、図3及び図4に示される構成は、本出願人が社内製作したリニアセンサを示しており、長手形状の第1コア体1の内壁1aには、その長手方向に沿って所定間隔で複数の突出磁極2がスロット3を介して配設されている。
前記各突出磁極2には、周知の励磁巻線と検出巻線からなる巻線4が巻回して設けられ、各巻線4は直列又は並列に接続されてリード線5で外部に導出されている。
前記第1コア体1には、間隙Dを介して前記各突出磁極2とは非接触状態を保持した状態で第2コア体6が配設されている。
The configuration shown in FIGS. 3 and 4 shows a linear sensor manufactured in-house by the applicant, and the inner wall 1a of the first core body 1 having a longitudinal shape is arranged at predetermined intervals along the longitudinal direction. A plurality of projecting magnetic poles 2 are arranged via slots 3.
Each protruding magnetic pole 2 is provided with a winding 4 comprising a known excitation winding and a detection winding, and each winding 4 is connected in series or in parallel and led out to the outside by a lead wire 5. .
The first core body 1 is provided with a second core body 6 in a state in which it is not in contact with the protruding magnetic poles 2 through the gap D.

前記第2コア体6は、前記第1コア体1と同様に長手形状に形成されると共に、その内壁6aには長手方向に沿って波形に形成された凹凸部7が形成され、前記第1コア体1が固定側で、前記第2コア体6が可動側として構成されている。
従って、前記各巻線4の励磁巻線(図示せず)を励磁し、第2コア体6を被検出部材(図示せず)に接続した状態で直線移動させると、凹凸部7と突出磁極2との周知の磁気結合度の変化が巻線4の検出巻線(図示せず)によって検出され、第2コア体6の直線位置すなわち被検出部材の直線位置が検出される。尚、前記巻線4は、周知の励磁巻線と検出巻線によって構成されている。
The second core body 6 is formed in a longitudinal shape similarly to the first core body 1, and the inner wall 6a is provided with a concavo-convex portion 7 formed in a waveform along the longitudinal direction. The core body 1 is configured as a fixed side, and the second core body 6 is configured as a movable side.
Therefore, when the exciting windings (not shown) of the windings 4 are excited and the second core body 6 is linearly moved while being connected to the member to be detected (not shown), the concavo-convex portion 7 and the protruding magnetic pole 2 are obtained. Is detected by a detection winding (not shown) of the winding 4, and the linear position of the second core body 6, that is, the linear position of the member to be detected is detected. The winding 4 is constituted by a known excitation winding and detection winding.

特公平5−80603号公報Japanese Patent Publication No. 5-80603

従来のリニアセンサは、以上のように構成されていたため、次のような課題が存在していた。
すなわち、前述の特許文献1の構成の場合、可動体に複数の電極パターンを形成すると共に、固定体に複数の巻線を形成しなければならず、構造が複雑となり、量産化には不向きであった。
また、図3及び図4で示される従来構成の場合、第1、第2コア体によって1チャンネルのセンサのみが形成されているため、例えば、第2コア体を被検出部材に取付ける場合、その取付状態に若干の位置ずれ等による軸ずれや傾き等が発生すると、直線位置検出の精度誤差が発生し、高精度の位置検出を行うには限界があった。
Since the conventional linear sensor is configured as described above, the following problems exist.
That is, in the case of the configuration of the above-mentioned Patent Document 1, a plurality of electrode patterns must be formed on the movable body and a plurality of windings must be formed on the fixed body, which makes the structure complicated and unsuitable for mass production. there were.
Further, in the case of the conventional configuration shown in FIGS. 3 and 4, since only the 1-channel sensor is formed by the first and second core bodies, for example, when the second core body is attached to the member to be detected, If a shaft misalignment or inclination due to a slight misalignment or the like occurs in the mounting state, an accuracy error in linear position detection occurs, and there is a limit to highly accurate position detection.

本発明によるリニアセンサは、長手平板形状をなし両側に突出する複数の第1、第2突出磁極を有する第1コア体と、前記第1突出磁極に巻回された第1チャンネル用の第1巻線と、前記第2突出磁極に巻回された第2チャンネル用の第2巻線と、前記第1コア体に対応して配設され長手形状をなす断面C字型の第2コア体と、前記第2コア体の両内壁でその長手方向に沿って所定間隔毎に内方へ突出する複数の第3、第4突出磁極と、前記第3突出磁極に巻回された前記第1チャンネル用の第3巻線と、前記第4突出磁極に巻回された前記第2チャンネル用の第4巻線と、を備え、前記各第1、第3突出磁極と各第1、第3巻線により第1チャンネルセンサを形成し、前記各第2、第4突出磁極と各第2、第4巻線により第2チャンネルセンサを形成し、前記第1、第2コア体の相対移動により、前記第1、第2巻線を励磁した場合の前記第3、第4巻線からの出力信号の和、又は、前記第3、第4巻線を励磁した場合の前記第1、第2巻線からの出力信号の和を用いて、前記第1コア体又は第2コア体の直線位置を検出する構成であり、また、前記第1コア体は、前記第2コア体の窪み部内に位置している構成であり、また、前記各第1巻線同志、各第2巻線同志、各第3巻線同志、各第4巻線同志は各々、互いに直列に接続されるか、又は、並列に接続されている構成であり、また、前記第1コア体の前記第1突出磁極と各第2突出磁極との間には、空洞が形成されている構成であり、また、前記第1コア体の第1、第2突出磁極の第1磁極幅は、前記第2コア体の第3、第4突出磁極の第2磁極幅よりも大である構成であり、また、前記第2磁極幅は、前記第1磁極幅の1/3以下である構成であり、また、前記第1、第2突出磁極及び第3、第4突出磁極は、前記第1、第2コア体の長手方向に沿って対称又は非対称に配置され、前記第1、第2突出磁極の数、及び、前記第3、第4突出磁極の数は各々同一又は異なる構成である。   A linear sensor according to the present invention has a first core body having a plurality of first and second projecting magnetic poles that are formed in a longitudinal flat plate shape and project on both sides, and a first channel for a first channel wound around the first projecting magnetic poles. A winding, a second winding for the second channel wound around the second projecting magnetic pole, and a second core body having a C-shaped cross section disposed corresponding to the first core body and having a longitudinal shape A plurality of third and fourth projecting magnetic poles projecting inward at predetermined intervals along the longitudinal direction on both inner walls of the second core body, and the first wound around the third projecting magnetic poles A third winding for the channel and a fourth winding for the second channel wound around the fourth protruding magnetic pole, and each of the first and third protruding magnetic poles and the first and third windings. A first channel sensor is formed by windings, and a second channel sensor is formed by the second and fourth protruding magnetic poles and the second and fourth windings. A sum of output signals from the third and fourth windings when the first and second windings are excited by relative movement of the first and second core bodies, or 3. A configuration in which a linear position of the first core body or the second core body is detected using a sum of output signals from the first and second windings when the fourth winding is excited. The first core body is located in the recess of the second core body, and the first windings, the second windings, the third windings, The fourth windings are connected in series to each other or connected in parallel, and between the first protruding magnetic pole and each second protruding magnetic pole of the first core body. Are formed with cavities, and the first magnetic pole width of the first and second protruding magnetic poles of the first core body is the third and second of the second core body. The projecting magnetic pole is configured to be larger than the second magnetic pole width, and the second magnetic pole width is 1/3 or less of the first magnetic pole width, and the first and second projecting poles are configured. The magnetic poles and the third and fourth projecting magnetic poles are disposed symmetrically or asymmetrically along the longitudinal direction of the first and second core bodies, and the number of the first and second projecting magnetic poles and the third and fourth projecting magnetic poles are arranged. The number of the four protruding magnetic poles is the same or different.

本発明によるリニアセンサは、以上のように構成されているため、次のような効果を得ることができる。
すなわち、複数の突出磁極を両側に有する第1コア体の両側に、断面角状のC字型をなす第2コア体の両内壁の各突出磁極を相対移動可能に設けて第1、第2チャンネルセンサとし、各突出磁極に巻線を設けることにより検出方向中心軸対称に前記巻線を配置して直線位置の検出を行っているため、固定側と可動側の各コア体の取り付け偏芯及び傾き等が発生した場合においても、各方向の移動による出力電圧は、第1コア体の各突出磁極と第2コア体の各突出磁極の重合状態によって増加又は減少となり、各チャンネルセンサにおける出力電圧の増減の和(合成)は、前述の各コア体の偏芯及び傾きのない状態とほぼ一致した出力電圧となり、その結果、偏芯及び傾きによる出力電圧変化を従来よりも大幅に低減し、高精度の直線位置検出を行うことができる。
また、各突出磁極を両側に有する第1コア体の各突出磁極間に空洞が形成されているため、各チャンネル間の磁気的干渉(クロストーク)を防止することができる。
また、断面コ字型をなす第2コア体の窪み部内に第1コア体が位置しているため、リニアセンサの厚さをほぼ第2コア体の厚さとすることができ、薄型の構成とすることができる。
Since the linear sensor according to the present invention is configured as described above, the following effects can be obtained.
That is, the projecting magnetic poles on both inner walls of the second core body having a square C-shaped cross section are provided on both sides of the first core body having a plurality of projecting magnetic poles on both sides so as to be relatively movable. As a channel sensor, windings are provided on each projecting magnetic pole so that the windings are arranged symmetrically with respect to the central axis in the detection direction to detect the linear position. Even when a tilt or the like occurs, the output voltage due to the movement in each direction increases or decreases depending on the overlapping state of the protruding magnetic poles of the first core body and the protruding magnetic poles of the second core body. The sum of voltage increases / decreases (synthesis) results in an output voltage that almost matches the above-mentioned state of each core body having no eccentricity and inclination, and as a result, the change in output voltage due to eccentricity and inclination is greatly reduced compared to the conventional case. High-precision linear position detection It can be carried out.
Moreover, since the cavity is formed between the projecting magnetic poles of the first core body having the projecting magnetic poles on both sides, magnetic interference (crosstalk) between the channels can be prevented.
In addition, since the first core body is located in the recess of the second core body having a U-shaped cross section, the thickness of the linear sensor can be made substantially the same as the thickness of the second core body. can do.

本発明は、両側に突出磁極と巻線を有する第1コア体の両側に、第2コア体の突出磁極を配設して一対のチャンネルセンサを形成し、各チャンネルセンサの出力信号の和を用いることにより、各コア体の軸ずれや傾き等の取付誤差の影響を低減させ、高精度の直線位置を検出するようにしたリニアセンサを提供することを目的とする。   In the present invention, a pair of channel sensors are formed by disposing the projecting magnetic poles of the second core body on both sides of the first core body having projecting magnetic poles and windings on both sides, and the sum of the output signals of the channel sensors is calculated. It is an object of the present invention to provide a linear sensor that detects an accurate linear position by reducing the influence of an attachment error such as an axis deviation or an inclination of each core body.

以下、図面と共に本発明によるリニアセンサの好適な実施の形態について説明する。
尚、従来例と同一又は同等部分については同一符号を用いて説明する。
図1及び図2において符号1で示されるものは、長手形状をなし平板状に積層(積層でなく一体のコアも可)されて形成された第1コア体であり、この第1コア体1の両側には、この第1コア体1の長手方向Aと直交する方向に突出する複数の第1、第2突出磁極2,2Aが前記長手方向Aに沿って所定間隔で一体形成されている。
Hereinafter, preferred embodiments of a linear sensor according to the present invention will be described with reference to the drawings.
Note that the same or equivalent parts as in the conventional example will be described using the same reference numerals.
In FIG. 1 and FIG. 2, reference numeral 1 denotes a first core body that is formed in a longitudinal shape and laminated in a flat plate shape (a laminated core may be used instead of a laminated core). A plurality of first and second projecting magnetic poles 2 and 2A projecting in a direction perpendicular to the longitudinal direction A of the first core body 1 are integrally formed at predetermined intervals along the longitudinal direction A. .

前記第1、第2突出磁極2,2Aは、スロット3を介して配設されていると共に、前記第1、第2突出磁極2,2A間のほぼ中央位置には、各々第1コア体1を貫通する空洞10が形成されている。
前記各突出磁極2,2Aの第1、第2巻線4,4Aは、第1、第2チャンネル用とされると共に、周知の巻線型のレゾルバの巻線と同様に構成され、リード線5により外部に導出されている。
The first and second projecting magnetic poles 2 and 2A are disposed via a slot 3, and the first core body 1 is provided at a substantially central position between the first and second projecting magnetic poles 2 and 2A, respectively. A cavity 10 penetrating through is formed.
The first and second windings 4 and 4A of the protruding magnetic poles 2 and 2A are used for the first and second channels, and are configured in the same manner as the windings of a well-known winding type resolver. Is derived to the outside.

前記各第1、第2巻線4,4A及び第1、第2突出磁極2,2A間の磁気的干渉(クロストーク)は前記空洞10によって防止されるように構成されている。尚、前記各第1巻線4同志は各々互いに直列又は並列に接続され、また、第2巻線4A同志は各々互いに直列又は並列に接続されている。   Magnetic interference (crosstalk) between the first and second windings 4 and 4A and the first and second projecting magnetic poles 2 and 2A is prevented by the cavity 10. The first windings 4 are connected to each other in series or in parallel, and the second windings 4A are connected to each other in series or in parallel.

前記第1コア体1は、図2の断面図にも示されるように、断面角状のC字型をなす第2コア体6の長手方向Aに沿って形成された長溝状の窪み部11内に位置して収容されている。   As shown in the cross-sectional view of FIG. 2, the first core body 1 has a long groove-like depression 11 formed along the longitudinal direction A of the second core body 6 having a C-shaped cross section. Located inside and housed.

前記第2コア体6の第1、第2内壁6a,6bには、その長手方向Aに沿って所定間隔毎に、かつ、前記長手方向Aと直交する内方へ向けて突出する複数の第3、第4突出磁極15,15Aが形成されている。
前記第3突出磁極15には前記第1チャンネル用の第3巻線16が巻回され、前記第4突出磁極15Aには第2チャンネル用の第4巻線16Aが巻回されている。
The first and second inner walls 6a and 6b of the second core body 6 are provided with a plurality of first protrusions protruding inwardly at a predetermined interval along the longitudinal direction A and perpendicular to the longitudinal direction A. 3, fourth protruding magnetic poles 15 and 15A are formed.
A third winding 16 for the first channel is wound around the third protruding magnetic pole 15, and a fourth winding 16A for the second channel is wound around the fourth protruding magnetic pole 15A.

前記第3巻線16及び第4巻線16Aは、前述の第1、第2巻線4,4Aと同様に、各第3巻線16同志が各々互いに直列又は並列に接続され、また、各第4巻線16A同志が各々互いに直列又は並列に接続されている。
従って、前述の各第1突出磁極2、各第1巻線4、各第3突出磁極15及び各第3巻線16によって第1チャンネルセンサ20が形成され、前述の各第2突出磁極2A、各第2巻線4A、各第4突出磁極15A及び各第4巻線16Aによって第2チャンネルセンサ30が形成されている。
Similarly to the first and second windings 4 and 4A, the third winding 16 and the fourth winding 16A are connected to each other in series or in parallel with each other. The fourth windings 16A are connected to each other in series or in parallel.
Accordingly, the first channel sensor 20 is formed by the first protruding magnetic poles 2, the first windings 4, the third protruding magnetic poles 15, and the third windings 16, and the second protruding magnetic poles 2A, A second channel sensor 30 is formed by each second winding 4A, each fourth protruding magnetic pole 15A, and each fourth winding 16A.

前記第1コア体1の各第1、第2突出磁極2,2Aの長手方向Aに沿う第1磁極幅Wは、前記第2コア体6の各第3、第4突出磁極15,15Aの長手方向Aに沿う第2磁極幅Wより大に形成され、一例として、図1の構成では、3倍に設定していると共に、WはWの1/3以下である。尚、このWとWの幅の比率は任意に設定できるものである。 The first magnetic pole width W 1 along the longitudinal direction A of each of the first and second projecting magnetic poles 2, 2 A of the first core body 1 is equal to the third and fourth projecting magnetic poles 15, 15 A of the second core body 6. is the formation from the longitudinal second pole width along the direction a W 2 on a large, by way of example, in the configuration of FIG. 1, with is set to 3 times, W 2 is less than 1/3 of W 1. The ratio of the width of the W 2 and W 1 are those that can be set arbitrarily.

次に、前述の構成において、前述の第1、第2コア体1,6は、何れも、可動側又は固定側とすることができるが、例えば、一例として、第1コア体1に非検出部材(図示せず)を接続し、第2コア体6の第3、第4巻線16,16Aに励磁信号を印加した状態下で、固定した第2コア体6に対して前記第1コア体1を直線移動させると、前述の第3、第4突出磁極15,15Aから発生している磁束を前記各突出磁極2,2Aの各巻線4,4Aが横切る状態で移動し、前記各突出磁極2,2Aと15,15A間の磁気結合度合が変化し、周知の巻線型ロータリーレゾルバと同様に出力側である前記第1、第2巻線4,4Aからの出力信号(出力電圧)が変化する。   Next, in the above-described configuration, each of the first and second core bodies 1 and 6 can be a movable side or a fixed side. For example, the first core body 1 is not detected. A member (not shown) is connected, and the first core is fixed to the fixed second core body 6 in a state where an excitation signal is applied to the third and fourth windings 16 and 16A of the second core body 6. When the body 1 is linearly moved, the magnetic flux generated from the third and fourth projecting magnetic poles 15 and 15A moves in a state where the windings 4 and 4A of the projecting magnetic poles 2 and 2A cross each other, and The degree of magnetic coupling between the magnetic poles 2 and 2A and 15 and 15A changes, and the output signals (output voltages) from the first and second windings 4 and 4A on the output side are the same as those of a known winding type rotary resolver. Change.

前述の場合、前記第1コア1と第2コア6との重合状態に応じて前記出力信号の電圧レベルが変化し、前記第1、第2巻線4,4Aから出力される出力信号(出力電圧)を合成して和を得ることにより、例えば、第1コア体1の検出方向中心軸Bに対して第2コア体6の中心軸が偏芯又は傾斜していたとしても、偏芯や傾斜のない状態とほぼ一致した出力信号(出力電圧)となり、その結果、図3の従来例に比較して、前述の偏芯や傾きによる出力信号の電圧レベルの変化を低減することができる。
尚、各コア体1,6は、第1コア体1を固定側とし、第2コア体6を可動側とすること、及び、第1、第2巻線4,4Aを励磁側とし、第3、第4巻線16,16Aを出力側とすることもできる。
In the case described above, the voltage level of the output signal changes according to the overlapping state of the first core 1 and the second core 6, and the output signal (output) output from the first and second windings 4 and 4A. For example, even if the central axis of the second core body 6 is eccentric or inclined with respect to the detection-direction central axis B of the first core body 1, As a result, the output signal (output voltage) substantially coincides with the state without the inclination, and as a result, the change in the voltage level of the output signal due to the eccentricity and inclination can be reduced as compared with the conventional example of FIG.
Each of the core bodies 1 and 6 has the first core body 1 as a fixed side, the second core body 6 as a movable side, and the first and second windings 4 and 4A as excitation sides, 3. The fourth windings 16 and 16A may be output.

尚、前述の形態では、前記各突出磁極2と2A、及び、15と15Aは、検出方向中心軸Bに対して対称でかつ互いに対向するように配設されている場合について述べたが、この形態に限ることなく、各突出磁極2と2A、及び、各突出磁極15,15Aが対称配置でなく、検出方向中心軸B、すなわち、長手方向Aに沿って互いに非対称にずれている形態とすることもできる。
また、前記各突出磁極2,2Aと15,15Aは1つ以上の整数よりなり、各突出磁極2,2Aと15,15A及び各巻線4,4Aと16,16Aは、前記長手方向Aすなわち検出方向中心軸Bに対して対称で同一数又は非対称で異なる数に形成できる。
尚、前述の非対称及び異なる数に各突出磁極2と2A及び15と15Aを配設した場合には、各巻線4,4A及び16,16Aの巻数及び巻線分布等を変更して、各チャンネルセンサ20,30の出力信号の和が前述の対称及び同一数の時と同じ出力信号となるように構成することが必要である。
In the above-described embodiment, the case where the protruding magnetic poles 2 and 2A and 15 and 15A are arranged symmetrically with respect to the detection direction central axis B and opposed to each other has been described. Without limiting to the form, each of the projecting magnetic poles 2 and 2A and each of the projecting magnetic poles 15 and 15A are not symmetrically arranged, but are configured to be asymmetrically shifted from each other along the detection direction central axis B, that is, the longitudinal direction A. You can also.
Each of the protruding magnetic poles 2, 2A, 15, 15A is composed of one or more integers, and each of the protruding magnetic poles 2, 2A, 15, 15A and each of the windings 4, 4A, 16, 16A is the longitudinal direction A, that is, the detection. They can be formed symmetrically with respect to the central axis B in the same number or asymmetrically with different numbers.
When the protruding magnetic poles 2 and 2A and 15 and 15A are arranged in asymmetrical and different numbers as described above, the number of turns and the distribution of windings of the windings 4, 4A and 16, 16A are changed, and each channel is changed. It is necessary to configure so that the sum of the output signals of the sensors 20 and 30 becomes the same output signal as when the above-mentioned symmetry and the same number.

本発明によるリニアセンサを示す正面図である。It is a front view which shows the linear sensor by this invention. 図1の横断面図である。It is a cross-sectional view of FIG. 従来のリニアセンサを示す正面図である。It is a front view which shows the conventional linear sensor. 図3の横断面図である。It is a cross-sectional view of FIG.

符号の説明Explanation of symbols

1 第1コア体
2,2A 第1、第2突出磁極
3 スロット
4,4A 第1、第2巻線
5 リード線
6 第2コア体
6a,6b 第1、第2内壁
7,7A 第1、第2凹凸部
10 空洞
11 窪み部
15,15A 第3、第4突出磁極
16,16A 第3、第4巻線
20 第1チャンネルセンサ
30 第2チャンネルセンサ
A 長手方向
B 検出方向中心軸
第1磁極幅
第2磁極幅
DESCRIPTION OF SYMBOLS 1 1st core body 2, 2A 1st, 2nd protrusion magnetic pole 3 Slot 4, 4A 1st, 2nd winding 5 Lead wire 6 2nd core body 6a, 6b 1st, 2nd inner wall 7, 7A 1st, Second concavo-convex portion 10 Cavity 11 Depressed portion 15, 15A Third and fourth projecting magnetic poles 16, 16A Third and fourth windings 20 First channel sensor 30 Second channel sensor A Longitudinal direction B Detection direction central axis W 1st 1 magnetic pole width W 2 2nd magnetic pole width

Claims (7)

長手平板形状をなし両側に突出する複数の第1、第2突出磁極(2,2A)を有する第1コア体(1)と、前記第1突出磁極(2)に巻回された第1チャンネル用の第1巻線(4)と、前記第2突出磁極(2A)に巻回された第2チャンネル用の第2巻線(4A)と、前記第1コア体(1)に対応して配設され長手形状をなす断面C字型の第2コア体(6)と、前記第2コア体(6)の両内壁(6a,6b)でその長手方向(A)に沿って所定間隔毎に内方へ突出する複数の第3、第4突出磁極(15,15A)と、前記第3突出磁極(15)に巻回された前記第1チャンネル用の第3巻線(16)と、前記第4突出磁極(15A)に巻回された前記第2チャンネル用の第4巻線(16A)と、を備え、
前記各第1、第3突出磁極(2,15)と各第1、第3巻線(4,16)により第1チャンネルセンサ(20)を形成し、
前記各第2、第4突出磁極(2A,15A)と各第2、第4巻線(4A,16A)により第2チャンネルセンサ(30)を形成し、
前記第1、第2コア体(1,6)の相対移動により、前記第1、第2巻線(4,4A)を励磁した場合の前記第3、第4巻線(16,16A)からの出力信号の和、又は、前記第3、第4巻線(16,16A)を励磁した場合の前記第1、第2巻線(4,4A)からの出力信号の和を用いて、前記第1コア体(1)又は第2コア体(6)の直線位置を検出することを特徴とするリニアセンサ。
A first core body (1) having a plurality of first and second projecting magnetic poles (2, 2A) projecting on both sides and having a longitudinal flat plate shape, and a first channel wound around the first projecting magnetic pole (2) Corresponding to the first winding (4) for the second channel, the second winding (4A) for the second channel wound around the second projecting magnetic pole (2A), and the first core body (1). A second core body (6) having a C-shaped cross section disposed and having a longitudinal shape, and both inner walls (6a, 6b) of the second core body (6) at predetermined intervals along the longitudinal direction (A). A plurality of third and fourth projecting magnetic poles (15, 15A) projecting inward, and a third winding (16) for the first channel wound around the third projecting magnetic pole (15), A fourth winding (16A) for the second channel wound around the fourth projecting magnetic pole (15A),
A first channel sensor (20) is formed by the first and third projecting magnetic poles (2, 15) and the first and third windings (4, 16).
A second channel sensor (30) is formed by the second and fourth projecting magnetic poles (2A, 15A) and the second and fourth windings (4A, 16A),
From the third and fourth windings (16, 16A) when the first and second windings (4, 4A) are excited by relative movement of the first and second core bodies (1, 6). Or the sum of output signals from the first and second windings (4, 4A) when the third and fourth windings (16, 16A) are excited, A linear sensor for detecting a linear position of a first core body (1) or a second core body (6).
前記第1コア体(1)は、前記第2コア体(6)の窪み部(11)内に位置していることを特徴とする請求項1記載のリニアセンサ。   The linear sensor according to claim 1, wherein the first core body (1) is located in a recess (11) of the second core body (6). 前記各第1巻線(4)同志、各第2巻線(4A)同志、各第3巻線(16)同志、各第4巻線(16A)同志は各々、互いに直列に接続されるか、又は、並列に接続されていることを特徴とする請求項1又は2記載のリニアセンサ。   Are each of the first windings (4), each of the second windings (4A), each of the third windings (16), and each of the fourth windings (16A) connected in series? 3. The linear sensor according to claim 1, wherein the linear sensor is connected in parallel. 前記第1コア体(1)の前記各第1突出磁極(2)と各第2突出磁極(2A)との間には、空洞(10)が形成されていることを特徴とする請求項1ないし3の何れかに記載のリニアセンサ。   A cavity (10) is formed between each first projecting magnetic pole (2) and each second projecting magnetic pole (2A) of the first core body (1). Thru | or 3 linear sensor in any one. 前記第1コア体(1)の第1、第2突出磁極(2,2A)の第1磁極幅(W1)は、前記第2コア体(6)の第3、第4突出磁極(15,15A)の第2磁極幅(W2)よりも大であることを特徴とする請求項1ないし4の何れかに記載のリニアセンサ。 The first magnetic pole width (W 1) of the first and second projecting magnetic poles (2, 2A) of the first core body ( 1 ) is the same as the third and fourth projecting magnetic poles (15) of the second core body (6). The linear sensor according to any one of claims 1 to 4, wherein the linear sensor is larger than the second magnetic pole width (W 2 ) of 15A). 前記第2磁極幅(W2)は、前記第1磁極幅(W1)の1/3以下であることを特徴とする請求項1ないし5の何れかに記載のリニアセンサ。 6. The linear sensor according to claim 1, wherein the second magnetic pole width (W 2 ) is 3 or less of the first magnetic pole width (W 1 ). 前記第1、第2突出磁極(2,2A)及び第3、第4突出磁極(15,15A)は、前記第1、第2コア体(1,6)の長手方向(A)に沿って対称又は非対称に配置され、前記第1、第2突出磁極(2,2A)の数、及び、前記第3、第4突出磁極(15,15A)の数は各々同一又は異なることを特徴とする請求項1ないし6の何れかに記載のリニアセンサ。   The first and second protruding magnetic poles (2, 2A) and the third and fourth protruding magnetic poles (15, 15A) are arranged along the longitudinal direction (A) of the first and second core bodies (1, 6). The number of the first and second protruding magnetic poles (2, 2A) and the number of the third and fourth protruding magnetic poles (15, 15A) are the same or different from each other. The linear sensor according to claim 1.
JP2007146801A 2007-06-01 2007-06-01 Linear sensor Pending JP2008298675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007146801A JP2008298675A (en) 2007-06-01 2007-06-01 Linear sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007146801A JP2008298675A (en) 2007-06-01 2007-06-01 Linear sensor

Publications (1)

Publication Number Publication Date
JP2008298675A true JP2008298675A (en) 2008-12-11

Family

ID=40172312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007146801A Pending JP2008298675A (en) 2007-06-01 2007-06-01 Linear sensor

Country Status (1)

Country Link
JP (1) JP2008298675A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013221904A (en) * 2012-04-19 2013-10-28 Mitsubishi Electric Corp Resolver and rotational electric machine for vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013221904A (en) * 2012-04-19 2013-10-28 Mitsubishi Electric Corp Resolver and rotational electric machine for vehicle

Similar Documents

Publication Publication Date Title
JP4862118B2 (en) Angle detector
KR101751356B1 (en) Motor having stator with coupled teeth
KR102404299B1 (en) Electronically commutated electric motor with two rotor cores
JP4696209B2 (en) Angle detector
JP2012242176A (en) Current sensor
US20220003617A1 (en) Torque detection sensor
US10655987B2 (en) Resolver
JP2007181370A (en) Linear motor and process for manufacturing stator included therein
JP4910175B2 (en) Redundant linear sensor
US9412516B2 (en) Resolver and method of manufacturing the same
JP2008298675A (en) Linear sensor
JP2009002666A (en) Redundant type linear sensor
JP2008164435A (en) Variable reluctance type resolver
JP5017657B2 (en) Linear sensor
JP5374741B2 (en) Multiple redundant linear sensor
JP2008029070A (en) Angle detector
JP5374739B2 (en) Linear sensor
ITBO20090118A1 (en) TUBULAR ELECTRIC MOTOR
KR102253691B1 (en) Variable reluctance type resolver
KR20140127067A (en) Resolver
JP2007051909A (en) Resolver
JP4890506B2 (en) Current detector
JP2011151973A (en) Insulator of stator, and motor
JP2003247861A (en) Linear sensor
JP2012052899A (en) Magnetic balance type current sensor