JP2008298635A - Optical gas detection method and optical gas detector - Google Patents

Optical gas detection method and optical gas detector Download PDF

Info

Publication number
JP2008298635A
JP2008298635A JP2007146172A JP2007146172A JP2008298635A JP 2008298635 A JP2008298635 A JP 2008298635A JP 2007146172 A JP2007146172 A JP 2007146172A JP 2007146172 A JP2007146172 A JP 2007146172A JP 2008298635 A JP2008298635 A JP 2008298635A
Authority
JP
Japan
Prior art keywords
signal
gas
detection
value
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007146172A
Other languages
Japanese (ja)
Other versions
JP4976924B2 (en
Inventor
Koji Satori
耕自 佐鳥
Yuriko Nakamura
百合子 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Japan Oil Gas and Metals National Corp
Tokyo Electric Power Services Co Ltd
Original Assignee
Hitachi Cable Ltd
Japan Oil Gas and Metals National Corp
Tokyo Electric Power Services Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Japan Oil Gas and Metals National Corp, Tokyo Electric Power Services Co Ltd filed Critical Hitachi Cable Ltd
Priority to JP2007146172A priority Critical patent/JP4976924B2/en
Publication of JP2008298635A publication Critical patent/JP2008298635A/en
Application granted granted Critical
Publication of JP4976924B2 publication Critical patent/JP4976924B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical gas detection method which enables the suppression of the variation of a gas signal due to the variation of a detection signal, and to provide an optical gas detector. <P>SOLUTION: In the optical gas detector equipped with a light source part 2 for sweeping a modulation center wavelength within a predetermined sweep range while modulating the wavelength of a laser beam, an optical system 3 for transmitting the laser beam through an atmosphere to be measured, a light detection part 4 for detecting a detection signal from the light detection signal of transmitted light by phase sensitive detection and a signal processing part 5 for calculating a gas signal from the detection signal, calculating the wave height value of the waveform of the gas signal and detecting the concentration of a predetermined gas in the atmosphere to be measured from the wave height value, the signal processing part 5 divides the gas signal by the divisor value corresponding to the level of the gas signal to calculate the wave height value. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、検波信号の変動によるガス信号の変動を抑制できる光式ガス検知方法及び光式ガス検知装置に関する。   The present invention relates to an optical gas detection method and an optical gas detection device that can suppress fluctuations in a gas signal due to fluctuations in detection signals.

ガス分子は吸収帯と呼ばれる特定波長帯の光を吸収する性質を持っており、ガス濃度によって吸収量が左右されることから、この性質を利用してガスの濃度を検知することができる。この光式ガス検知方法は、工業計測、公害監視などの分野で用いられる。この光を光ファイバで伝送することにより、ガスの遠隔検知ができる。   Gas molecules have the property of absorbing light in a specific wavelength band called an absorption band, and the amount of absorption depends on the gas concentration. Therefore, the gas concentration can be detected using this property. This optical gas detection method is used in fields such as industrial measurement and pollution monitoring. By transmitting this light through an optical fiber, it is possible to detect gas remotely.

特許文献1等の従来技術においては、光源部では、半導体レーザの駆動電流を所定の電流値を中心として高周波数の正弦波で変調することにより、波長及び強度が変調されたレーザ光を発振させる。半導体レーザの温度を掃引することにより、発振波長を対象ガスの吸収帯を中心として所定の波長範囲を所定の掃引周期で掃引する。   In the conventional technology such as Patent Document 1, the light source unit oscillates a laser beam having a modulated wavelength and intensity by modulating the driving current of the semiconductor laser with a high-frequency sine wave around a predetermined current value. . By sweeping the temperature of the semiconductor laser, the oscillation wavelength is swept within a predetermined wavelength range around the absorption band of the target gas at a predetermined sweep cycle.

このレーザ光を光ファイバに入射させて光学系に導き、光学系内の未知濃度の対象ガスを透過させる。透過光を光ファイバで受光検波部に導き、透過光を受光した受光信号から位相敏感検波により1倍検波信号と2倍検波信号を検波する。   The laser light is incident on an optical fiber and guided to the optical system, and the target gas having an unknown concentration in the optical system is transmitted. The transmitted light is guided to the light receiving detection unit by the optical fiber, and the 1st detection signal and the 2nd detection signal are detected from the received light signal that has received the transmitted light by the phase sensitive detection.

1倍検波信号と2倍検波信号の比を変調中心波長の掃引周期分求めてガス信号とし、ガス信号の波形からピーク値(波高値)を求め、波高値から光学系内の対象ガスの濃度を検知する。   The ratio of the 1 × detection signal and the 2 × detection signal is obtained for the sweep period of the modulation center wavelength to obtain a gas signal. Is detected.

特開平5−256769号公報JP-A-5-256769

光源部や受光検波部は、半導体素子で構成されるため、温度特性やドリフト特性を有する。また、光ファイバ等の光学系も温度特性を有する。ドリフト特性の主な要因は、レーザダイオードの温度特性、光ファイバの特性変化による。   Since the light source unit and the light receiving detection unit are composed of semiconductor elements, they have temperature characteristics and drift characteristics. An optical system such as an optical fiber also has temperature characteristics. The main factor of drift characteristics is due to temperature characteristics of the laser diode and changes in the characteristics of the optical fiber.

こうした温度特性やドリフト特性により、受光検波部内の回路の倍率の微妙な変動が起きるなどして、1倍検波信号や2倍検波信号に微妙な変動が生じてしまい、これが原因でガス信号が変動してガス検知精度が低下してしまう。   Due to such temperature characteristics and drift characteristics, subtle fluctuations in the magnification of the circuit within the light receiving detection section occur, resulting in subtle fluctuations in the 1 × detection signal and 2 × detection signal, which causes the gas signal to fluctuate. As a result, the gas detection accuracy decreases.

そこで、本発明の目的は、上記課題を解決し、検波信号の変動によるガス信号の変動を抑制できる光式ガス検知方法及び光式ガス検知装置を提供することにある。   Accordingly, an object of the present invention is to provide an optical gas detection method and an optical gas detection device that can solve the above-described problems and can suppress a change in a gas signal due to a change in a detection signal.

上記目的を達成するために本発明の光式ガス検知方法は、レーザ光の波長を変調しつつその変調中心波長を所定の掃引範囲内で掃引し、該レーザ光を被測定雰囲気中に透過させ、該透過光を受光した受光信号から位相敏感検波により検波信号を検波し、該検波信号からガス信号を求め、該ガス信号の波形の波高値を求め、該波高値から被測定雰囲気における所定のガスの濃度を検知する光式ガス検知方法において、上記ガス信号を該ガス信号のレベルに応じた除数値で除算してから上記波高値を求めるものである。   In order to achieve the above object, the optical gas detection method according to the present invention modulates the wavelength of the laser light, sweeps the modulation center wavelength within a predetermined sweep range, and transmits the laser light into the measured atmosphere. Detecting a detection signal by phase sensitive detection from the received light signal that has received the transmitted light, obtaining a gas signal from the detection signal, obtaining a peak value of the waveform of the gas signal, and obtaining a predetermined value in a measured atmosphere from the peak value In the optical gas detection method for detecting the gas concentration, the peak value is obtained after dividing the gas signal by a divisor value corresponding to the level of the gas signal.

上記ガス信号は、上記検波信号のうち1倍検波信号あるいは上記受光信号から検知したDC(直流)成分信号と2倍検波信号の比から求めてもよい。   The gas signal may be obtained from a ratio of a DC (direct current) component signal detected from the detected signal or a detected signal from the received light signal and a detected signal twice.

上記ガス信号は、上記検波信号のうち2倍検波信号から求めてもよい。   The gas signal may be obtained from a double detection signal among the detection signals.

上記除数値は、上記変調中心波長の掃引周期の先頭におけるガス信号の値としてもよい。   The divisor value may be the value of the gas signal at the beginning of the sweep cycle of the modulation center wavelength.

上記除数値は、上記変調中心波長の掃引周期の先頭におけるガス信号の値と末尾におけるガス信号の値から算出してもよい。   The divisor value may be calculated from the value of the gas signal at the beginning and the value of the gas signal at the end of the sweep cycle of the modulation center wavelength.

上記目的を達成するために本発明の光式ガス検知装置は、レーザ光の波長を変調しつつその変調中心波長を所定の掃引範囲内で掃引する光源部と、該レーザ光を被測定雰囲気中に透過させる光学系と、該透過光を受光した受光信号から位相敏感検波により検波信号を検波する受光検波部と、該検波信号からガス信号を求め、該ガス信号の波形の波高値を求め、該波高値から被測定雰囲気における所定のガスの濃度を検知する信号処理部とを備えた光式ガス検知装置において、上記信号処理部は、上記ガス信号を該ガス信号のレベルに応じた除数値で除算してから上記波高値を求めるものである。   In order to achieve the above object, an optical gas detector of the present invention includes a light source unit that modulates the wavelength of a laser beam and sweeps the modulation center wavelength within a predetermined sweep range, and the laser beam in a measured atmosphere. An optical system that transmits light, a light receiving detection unit that detects a detection signal by phase sensitive detection from a light reception signal that has received the transmitted light, a gas signal is obtained from the detection signal, and a peak value of the waveform of the gas signal is obtained, And a signal processing unit that detects a concentration of a predetermined gas in the atmosphere to be measured from the peak value, wherein the signal processing unit converts the gas signal to a divisor value corresponding to the level of the gas signal. The peak value is obtained after dividing by.

上記信号処理部は、上記ガス信号を上記検波信号のうち1倍検波信号あるいは上記受光信号から検知したDC(直流)成分信号と2倍検波信号の比から求めてもよい。   The signal processing unit may determine the gas signal from a ratio of a DC (direct current) component signal detected from the detected signal or a detected signal from the received light signal and a detected signal twice.

上記信号処理部は、上記ガス信号を上記検波信号のうち2倍検波信号から求めてもよい。   The signal processing unit may obtain the gas signal from a double detection signal of the detection signals.

上記信号処理部は、上記除数値を上記変調中心波長の掃引周期の先頭におけるガス信号の値としてもよい。   The signal processing unit may use the divisor value as the value of the gas signal at the beginning of the sweep cycle of the modulation center wavelength.

上記信号処理部は、上記除数値を上記変調中心波長の掃引周期の先頭におけるガス信号の値と末尾におけるガス信号の値から算出してもよい。   The signal processing unit may calculate the divisor value from a gas signal value at the beginning and a gas signal value at the end of the sweep cycle of the modulation center wavelength.

本発明は次の如き優れた効果を発揮する。   The present invention exhibits the following excellent effects.

(1)検波信号の変動によるガス信号の変動を抑制できる。   (1) The fluctuation of the gas signal due to the fluctuation of the detection signal can be suppressed.

以下、本発明の一実施形態を添付図面に基づいて詳述する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1に示されるように、本発明に係る光式ガス検知装置1は、レーザ光の波長及び強度を変調しつつその変調中心波長を所定の掃引範囲内で掃引する光源部2と、該レーザ光を被測定雰囲気中に透過させる光学系3と、該透過光を受光した受光信号から位相敏感検波により検波信号を検波する受光検波部4と、該検波信号から上記変調中心波長の掃引周期分のガス信号を求め、該ガス信号の波形の波高値を求め、該波高値から被測定雰囲気における所定のガスの濃度を検知する信号処理部5とを備えた光式ガス検知装置において、上記信号処理部5は、上記ガス信号を該ガス信号のレベルに応じた除数値で除算してから上記波高値を求めるものである。   As shown in FIG. 1, an optical gas detection device 1 according to the present invention includes a light source unit 2 that modulates the wavelength and intensity of laser light and sweeps the modulation center wavelength within a predetermined sweep range, and the laser. An optical system 3 that transmits light into the atmosphere to be measured; a light receiving detector 4 that detects a detection signal from the received light signal that has received the transmitted light by phase sensitive detection; and a sweep period of the modulation center wavelength from the detection signal. In the optical gas detection device comprising the signal processing unit 5 for obtaining a gas signal of the gas signal, obtaining a peak value of a waveform of the gas signal, and detecting a concentration of a predetermined gas in the measured atmosphere from the peak value. The processing unit 5 obtains the peak value after dividing the gas signal by a divisor value corresponding to the level of the gas signal.

光源部2は、半導体レーザ6、半導体レーザ6を加熱・冷却するペルチェ素子7、ペルチェ素子7の電流を制御する温度制御用定電流源8、バイアス電流を制御するバイアス用定電流源9、バイアス印加用インダクタ10、変調周波数ωで発振する発振器11、交流印加用コンデンサ12、2倍周波数2ωを生成する倍周器13を備える。   The light source unit 2 includes a semiconductor laser 6, a Peltier element 7 that heats and cools the semiconductor laser 6, a temperature control constant current source 8 that controls the current of the Peltier element 7, a bias constant current source 9 that controls a bias current, and a bias An application inductor 10, an oscillator 11 that oscillates at a modulation frequency ω, an AC application capacitor 12, and a frequency multiplier 13 that generates a double frequency 2ω are provided.

光学系3は、被測定雰囲気を有する筒体(ガスセル)21の両端にコリメートレンズ14と集光レンズ15とを設け、対象ガスを含む被測定雰囲気中の所定距離を光が伝播するようにしたものである。光源部2から光学系3まで、光学系3から受光検波部4までは光ファイバ16で結ばれる。   The optical system 3 is provided with a collimating lens 14 and a condensing lens 15 at both ends of a cylindrical body (gas cell) 21 having an atmosphere to be measured so that light propagates a predetermined distance in the atmosphere to be measured including the target gas. Is. The optical fiber 16 connects the light source unit 2 to the optical system 3 and the optical system 3 to the light receiving detection unit 4.

光式ガス検知装置1は、例えば、装置本体(図示せず)に光源部2と受光検波部4と信号処理部5を内蔵し、光学系3において所望の現場にガスセル21を配置し、装置本体からガスセル21まで光ファイバ16を布設することで、遠隔監視が可能となる。   The optical gas detector 1 includes, for example, a light source unit 2, a light receiving detector 4, and a signal processor 5 in a device main body (not shown), and a gas cell 21 is disposed at a desired site in the optical system 3. By laying the optical fiber 16 from the main body to the gas cell 21, remote monitoring becomes possible.

受光検波部4は、光ファイバ16に接続された受光素子17と、発振器11からの発振信号ωを用いて1倍検波信号を検波するロックインアンプ18と、倍周器13からの倍周信号2ωを用いて2倍検波信号を検波するロックインアンプ19と、両検波信号の比を計算する割算器20とを備える。   The light receiving detection unit 4 includes a light receiving element 17 connected to the optical fiber 16, a lock-in amplifier 18 that detects a 1 × detection signal using the oscillation signal ω from the oscillator 11, and a frequency multiplied signal from the frequency multiplier 13. A lock-in amplifier 19 that detects a double detection signal using 2ω and a divider 20 that calculates a ratio of both detection signals are provided.

信号処理部5は、単一のブロックで示したが、CPU、メモリ、クロック、A/D変換器等を備えたコンピュータで構成することにより、後述する手順で信号処理を行うものである。   Although the signal processing unit 5 is shown as a single block, the signal processing unit 5 is configured by a computer including a CPU, a memory, a clock, an A / D converter, and the like, and performs signal processing in a procedure to be described later.

光式ガス検知装置1の動作の概要を説明する。   An outline of the operation of the optical gas detector 1 will be described.

光源部2の半導体レーザ6から対象ガス検知用に制御された光を放射する。光源部2での制御は、光の波長を比較的速い周波数ω(100〜100KHz)で振動させながら、振動の中心波長を比較的遅い時間間隔(0.5〜10sec)で掃引することである。   Light controlled to detect the target gas is emitted from the semiconductor laser 6 of the light source unit 2. Control by the light source unit 2 is to sweep the center wavelength of vibration at a relatively slow time interval (0.5 to 10 sec) while vibrating the wavelength of light at a relatively fast frequency ω (100 to 100 KHz). .

光学系3では、光ファイバ16を介してガスセル21に光を入射させる。ガスセル21内で、コリメートレンズ14でコリメートされた光が被測定雰囲気中の所定距離を伝播し、集光レンズ15で集光されてガスセル21から出射される。被測定雰囲気を光が透過することにより、対象ガスによる吸光が起きる。   In the optical system 3, light is incident on the gas cell 21 through the optical fiber 16. In the gas cell 21, the light collimated by the collimating lens 14 propagates a predetermined distance in the atmosphere to be measured, is condensed by the condenser lens 15, and is emitted from the gas cell 21. As light passes through the atmosphere to be measured, light absorption by the target gas occurs.

光学系3を経た光は、受光検波部4の受光素子17で受光される。受光検波部4において、受光信号のうち周波数ωの1倍成分である1倍検波信号と2倍検波信号を検波し、割算器20で1倍検波信号と2倍検波信号の比を計算してガス信号を得る。   The light that has passed through the optical system 3 is received by the light receiving element 17 of the light receiving detector 4. In the received light detection unit 4, a 1 × detection signal and a 2 × detection signal, which are 1 × components of the frequency ω, of the received light signal are detected, and the divider 20 calculates the ratio of the 1 × detection signal and the 2 × detection signal. To get a gas signal.

信号処理部5では、必要な演算(詳しくは後述)をしてガス濃度を検知する。   The signal processor 5 performs necessary calculations (details will be described later) to detect the gas concentration.

図2は、1倍検波信号で2倍検波信号を割る割り算を、光源部2における中心波長掃引の周期を区切りとした所定の時間間隔(掃引周期)の間、連続して行った場合のガス信号31の概念図である。複数回の掃引周期分を重ねて表示してある。   FIG. 2 shows the gas when the division of the double detection signal by the single detection signal is continuously performed for a predetermined time interval (sweep cycle) with the central wavelength sweep cycle in the light source unit 2 as a partition. 3 is a conceptual diagram of a signal 31. FIG. Multiple sweep cycles are displayed in an overlapping manner.

ガス濃度は、図示したピーク32における縦軸値(ピーク値という)に対して公知である所定の演算を行うことで求められる。しかし、現実の計測では、温度特性やドリフト特性により、計測が不安定になり、掃引の度ごとにガス信号の波形が高さ方向に徐々にずれていく(縦軸値が総体的に減少又は増加する)現象が見られる。ガス濃度はガス信号31のピーク値に対して所定の演算を行うことで求められるので、上記ずれに応じてガス濃度には徐々に計測誤差が生じる。   The gas concentration is obtained by performing a known calculation on a vertical axis value (referred to as a peak value) at the peak 32 shown in the figure. However, in actual measurement, the measurement becomes unstable due to temperature characteristics and drift characteristics, and the waveform of the gas signal gradually shifts in the height direction at each sweep (the vertical axis value decreases overall or (Increased) phenomenon. Since the gas concentration is obtained by performing a predetermined calculation on the peak value of the gas signal 31, a measurement error gradually occurs in the gas concentration in accordance with the deviation.

図3に、実際に計測を行ったときの、複数回の掃引周期分のガス信号のグラフを示す。
横軸の数値はサンプリングタイミング数を表している。つまり、所定範囲にわたり波長を掃引する周期の間に、所定時間刻みでサンプリングをしたものである。各回のガス信号が少しずつ異なるために、波形は帯状に広がる。ピーク値の変動は、縦軸目盛りで約0.15である。
FIG. 3 shows a graph of gas signals for a plurality of sweep periods when actual measurement is performed.
The numerical value on the horizontal axis represents the number of sampling timings. That is, sampling is performed at predetermined time intervals during the period of sweeping the wavelength over a predetermined range. Since the gas signal of each time is slightly different, the waveform spreads in a band shape. The fluctuation of the peak value is about 0.15 on the vertical scale.

本発明者は、図2、図3の複数回の掃引周期分のガス信号が、適当な等比変形を加えることによって、各々の波形を互いに酷似した波形に変形できることを見出した。すなわち、変調中心波長の掃引周期ごとのガス信号を、当該掃引周期中のガス信号から該ガス信号のレベルに応じた値として求めた除数値(例えば、特定の時点における瞬時値)で除算することにより、波形を規格化する。ガス信号が当該掃引周期にわたってレベルが大きければ、除数値も当然大きい値になるので、除算によるレベル縮小効果が期待できる。逆に、ガス信号が当該掃引周期にわたってレベルが小さければ、除数値も当然小さい値になるので、除算によるレベル拡大効果が期待できる。その結果、複数回の掃引周期分の規格化ガス信号は、もとのガス信号に比して大小の差が縮まる。これにより、波形の変動を小さく抑えることができる。   The present inventor has found that the gas signals for a plurality of sweep periods in FIGS. 2 and 3 can be transformed into waveforms that are very similar to each other by applying appropriate geometric deformation. That is, the gas signal for each sweep cycle of the modulation center wavelength is divided by a divisor value (for example, an instantaneous value at a specific time) obtained from the gas signal in the sweep cycle as a value corresponding to the level of the gas signal. To normalize the waveform. If the level of the gas signal is large over the sweep period, the divisor value is naturally a large value, so that a level reduction effect by division can be expected. On the contrary, if the level of the gas signal is small over the sweep period, the divisor value is naturally small, so that the level expansion effect by division can be expected. As a result, the difference in magnitude between the normalized gas signals for a plurality of sweep cycles is reduced as compared with the original gas signal. Thereby, the fluctuation | variation of a waveform can be restrained small.

図4は、図2と同じガス信号31について、除数値を変調中心波長の掃引周期の先頭51(33)におけるガス信号31の値とし、除数値でガス信号31を除算して規格化したガス信号52の概念図である。規格化処理の結果、複数回の掃引周期の規格化ガス信号52が先頭51において大きさが1で、互いに等しくなり、各々の波形が相似形に近くなる。よって、ピーク値の変動は減少する。これにより、ガス濃度の誤差を低減することができる。   FIG. 4 shows the gas signal 31 that is the same as that in FIG. 2, in which the divisor value is the value of the gas signal 31 at the head 51 (33) of the modulation center wavelength sweep period, 3 is a conceptual diagram of a signal 52. FIG. As a result of the normalization process, the standardized gas signals 52 of a plurality of sweep periods are equal to each other at the head 51, and the respective waveforms are similar to each other. Therefore, the fluctuation of the peak value is reduced. Thereby, the error of gas concentration can be reduced.

すなわち、信号処理部5において、1掃引周期分のガス信号から先頭におけるガス信号の値を抽出して除数値として記憶し、除数値で当該掃引周期のガス信号を除算して規格化ガス信号を求め、規格化ガス信号から波高値を求めてガス濃度とする。   That is, the signal processing unit 5 extracts the value of the gas signal at the head from the gas signal for one sweep cycle and stores it as a divisor value, and divides the gas signal of the sweep cycle by the divisor value to obtain the normalized gas signal. Obtain the peak value from the normalized gas signal and use it as the gas concentration.

図5は、図2の1掃引周期分のガス信号61(31)について、除数値を変調中心波長の掃引周期の先頭62(33)におけるガス信号31の値と末尾63(34)におけるガス信号31の値から算出し、除数値をガス信号61と共に示した概念図である。詳しくは、先頭62におけるガス信号61の値と末尾63におけるガス信号61の値とを直線(基準線と呼ぶ)64で結び、この基準線64の各時点における縦軸値を除数値とする。各時点における除数値でガス信号61の瞬時値を除算することになる。   FIG. 5 shows the gas signal 61 (31) for one sweep period of FIG. 2 with the divisor value as the value of the gas signal 31 at the head 62 (33) of the sweep period of the modulation center wavelength and the gas signal at the tail 63 (34). It is the conceptual diagram which computed from the value of 31 and showed the divisor value with the gas signal 61. FIG. Specifically, the value of the gas signal 61 at the head 62 and the value of the gas signal 61 at the tail 63 are connected by a straight line (referred to as a reference line) 64, and the vertical axis value at each time point of the reference line 64 is taken as a divisor value. The instantaneous value of the gas signal 61 is divided by the divisor value at each time point.

ここで、1掃引周期分のガス信号を整数n個のデータ列で表す。先頭からk番目の値をVkとすると、先頭の値はV、末尾の値はVn−1で表される。このとき、基準線のk番目の値Lkは、式(1)で計算される。 Here, the gas signal for one sweep cycle is represented by an integer n data strings. If the k-th value from the beginning is Vk, the leading value is represented by V 0 and the trailing value is represented by V n−1 . At this time, the kth value Lk of the reference line is calculated by the equation (1).

Figure 2008298635
Figure 2008298635

図6は、ガス信号31の瞬時値Vkを除数値Lkで除算して規格化したガス信号71の概念図である。複数回の掃引周期分を重ねて表示する。規格化処理の結果、複数回の掃引周期の規格化ガス信号71が先頭72と末尾73において大きさが1で、互いに等しくなるため、ピーク値の変動は図4の場合よりも減少する。これにより、ガス濃度の誤差をいっそうよく低減することができる。   FIG. 6 is a conceptual diagram of the gas signal 71 normalized by dividing the instantaneous value Vk of the gas signal 31 by the divisor value Lk. Overlays multiple sweep cycles. As a result of the normalization process, the standardized gas signal 71 having a plurality of sweep periods has the same magnitude at the head 72 and the tail 73 and is equal to each other, so that the fluctuation of the peak value is smaller than in the case of FIG. Thereby, the error of the gas concentration can be further reduced.

図7に、図3で実際に計測を行ったデータについて、複数回の掃引周期分のガス信号をガス信号の掃引一周期の先頭の値と末尾の値から算出した除数値により規格化処理した結果のグラフを示す。各回の規格化ガス信号は、ほとんど一致しているため、波形は一つに見える。ピーク値の変動は、縦軸目盛りで約0.01である。   In FIG. 7, the data actually measured in FIG. 3 is normalized by the divisor calculated from the first value and the last value of the gas signal sweep cycle for a plurality of sweep cycles. The graph of a result is shown. Since the normalized gas signals at each time are almost the same, the waveform appears to be one. The fluctuation of the peak value is about 0.01 on the vertical scale.

以上のように、本発明では、検波信号の変動によってガス信号が変動しても、ガス信号を規格化によって補正することで、ガス信号の変動を抑制することができる。よって、ガス濃度の誤差を低減することができる。   As described above, in the present invention, even if the gas signal fluctuates due to fluctuations in the detection signal, fluctuations in the gas signal can be suppressed by correcting the gas signals by normalization. Therefore, the gas concentration error can be reduced.

図1の光式ガス検知装置1では、受光検波部4が光学系3の透過光を受光した受光信号から位相敏感検波により1倍検波信号と2倍検波信号を検波し、該1倍検波信号と2倍検波信号から変調中心波長の掃引周期分のガス信号を求めた。しかし、ガス濃度を反映しているのは2倍検波信号であるので、受光検波部4では2倍検波信号のみを検波して、2倍検波信号をそのままガス信号としてもよい。また、受光信号から位相敏感検波により2倍検波信号を検波すると共に、受光信号を図示しないローパスフィルタに通して受光信号のDC(直流)成分信号を検知し、該2倍検波信号を該DC(直流)成分信号で除算してガス信号を求めても良い。信号処理部5では、図1の場合と同様に該ガス信号を規格化し、規格化ガス信号の波形の波高値からガス濃度を検知する。   In the optical gas detection device 1 of FIG. 1, the light detection unit 4 detects a 1 × detection signal and a 2 × detection signal by phase sensitive detection from a received light signal that has received the transmitted light of the optical system 3, and the 1 × detection signal. The gas signal for the sweep period of the modulation center wavelength was obtained from the double detection signal. However, since the double detection signal reflects the gas concentration, the light reception detection unit 4 may detect only the double detection signal and use the double detection signal as it is as a gas signal. Further, the double detection signal is detected from the received light signal by phase sensitive detection, and the received light signal is passed through a low-pass filter (not shown) to detect the DC (direct current) component signal of the received light signal, and the double detected signal is converted to the DC ( The gas signal may be obtained by dividing by a (DC) component signal. In the signal processing unit 5, the gas signal is normalized as in the case of FIG. 1, and the gas concentration is detected from the peak value of the waveform of the normalized gas signal.

本発明の一実施形態を示す光式ガス検知装置の光学及び電気回路構成図である。It is an optical and electric circuit block diagram of the optical gas detection apparatus which shows one Embodiment of this invention. ガス信号の波形図(横軸は波長、縦軸は無名数)である。It is a wave form diagram of a gas signal (a horizontal axis is a wavelength and a vertical axis is an unknown number). 実測によるガス信号の波形図(横軸は波長、縦軸は無名数)である。It is a waveform diagram of the gas signal by actual measurement (the horizontal axis is the wavelength, and the vertical axis is the anonymous number). 本発明により得られる規格化ガス信号の波形図(横軸は波長、縦軸は無名数)である。It is a wave form diagram (a horizontal axis is a wavelength and a vertical axis is an unknown number) of a standardized gas signal obtained by the present invention. 本発明の基準線を定義するガス信号の波形図(横軸は波長、縦軸は無名数)である。FIG. 4 is a waveform diagram of a gas signal that defines the reference line of the present invention (the horizontal axis is the wavelength, and the vertical axis is the anonymous number). 本発明により得られる規格化ガス信号の波形図(横軸は波長、縦軸は無名数)である。It is a wave form diagram (a horizontal axis is a wavelength and a vertical axis is an unknown number) of a standardized gas signal obtained by the present invention. 実測によるガス信号に基づいた本発明により得られる規格化ガス信号の波形図(横軸は波長、縦軸は無名数)である。It is a wave form diagram (a horizontal axis is a wavelength and a vertical axis is an unnamed number) of a standardized gas signal obtained by the present invention based on a gas signal by actual measurement.

符号の説明Explanation of symbols

1 光式ガス検知装置
2 光源部
3 光学系
4 受光検波部
5 信号処理部
DESCRIPTION OF SYMBOLS 1 Optical gas detector 2 Light source part 3 Optical system 4 Light reception detection part 5 Signal processing part

Claims (10)

レーザ光の波長を変調しつつその変調中心波長を所定の掃引範囲内で掃引し、該レーザ光を被測定雰囲気中に透過させ、該透過光を受光した受光信号から位相敏感検波により検波信号を検波し、該検波信号からガス信号を求め、該ガス信号の波形の波高値から被測定雰囲気における所定のガスの濃度を検知する光式ガス検知方法において、上記ガス信号を該ガス信号のレベルに応じた除数値で除算してから上記波高値を求めることを特徴とする光式ガス検知方法。   While modulating the wavelength of the laser beam, the modulation center wavelength is swept within a predetermined sweep range, the laser beam is transmitted through the measured atmosphere, and the detection signal is detected by the phase-sensitive detection from the received light signal. In the optical gas detection method of detecting, obtaining a gas signal from the detection signal, and detecting the concentration of a predetermined gas in the atmosphere to be measured from the peak value of the waveform of the gas signal, the gas signal is set to the level of the gas signal. An optical gas detection method characterized in that the peak value is obtained after dividing by a corresponding divisor value. 上記ガス信号は、上記検波信号のうち1倍検波信号あるいは上記受光信号から検知したDC(直流)成分信号と2倍検波信号の比から求めることを特徴とする請求項1記載の光式ガス検知方法。   2. The optical gas detection according to claim 1, wherein the gas signal is obtained from a ratio of a DC (direct current) component signal detected from the detected signal or a detected signal from the received light signal and a detected signal twice. Method. 上記ガス信号は、上記検波信号のうち2倍検波信号から求めることを特徴とする請求項1記載の光式ガス検知方法。   2. The optical gas detection method according to claim 1, wherein the gas signal is obtained from a double detection signal among the detection signals. 上記除数値は、上記変調中心波長の掃引周期の先頭におけるガス信号の値とすることを特徴とする請求項1〜3いずれか記載の光式ガス検知方法。   The optical gas detection method according to claim 1, wherein the divisor value is a value of a gas signal at the head of the sweep cycle of the modulation center wavelength. 上記除数値は、上記変調中心波長の掃引周期の先頭におけるガス信号の値と末尾におけるガス信号の値から算出することを特徴とする請求項1〜3いずれか記載の光式ガス検知方法。   The optical gas detection method according to claim 1, wherein the divisor value is calculated from a gas signal value at the beginning and a gas signal value at the end of the sweep cycle of the modulation center wavelength. レーザ光の波長を変調しつつその変調中心波長を所定の掃引範囲内で掃引する光源部と、該レーザ光を被測定雰囲気中に透過させる光学系と、該透過光を受光した受光信号から位相敏感検波により検波信号を検波する受光検波部と、該検波信号からガス信号を求め、該ガス信号の波形の波高値を求め、該波高値から被測定雰囲気における所定のガスの濃度を検知する信号処理部とを備えた光式ガス検知装置において、上記信号処理部は、上記ガス信号を該ガス信号のレベルに応じた除数値で除算してから上記波高値を求めることを特徴とする光式ガス検知装置。   A light source unit that modulates the wavelength of the laser light and sweeps the modulation center wavelength within a predetermined sweep range, an optical system that transmits the laser light into the measurement atmosphere, and a phase from a received light signal that receives the transmitted light A light receiving detector for detecting a detection signal by sensitive detection, a signal for obtaining a gas signal from the detection signal, obtaining a peak value of the waveform of the gas signal, and detecting a concentration of a predetermined gas in the measured atmosphere from the peak value An optical gas detection device comprising a processing unit, wherein the signal processing unit divides the gas signal by a divisor value corresponding to the level of the gas signal, and obtains the peak value. Gas detector. 上記信号処理部は、上記ガス信号を上記検波信号のうち1倍検波信号あるいは上記受光信号から検知したDC(直流)成分信号と2倍検波信号の比から求めることを特徴とする請求項6記載の光式ガス検知装置。   7. The signal processing unit obtains the gas signal from a ratio of a DC (direct current) component signal detected from the detected signal or a detected signal from the received light signal to a detected signal twice. Optical gas detector. 上記信号処理部は、上記ガス信号を上記検波信号のうち2倍検波信号から求めることを特徴とする請求項6記載の光式ガス検知装置。   7. The optical gas detection device according to claim 6, wherein the signal processing unit obtains the gas signal from a double detection signal of the detection signals. 上記信号処理部は、上記除数値を上記変調中心波長の掃引周期の先頭におけるガス信号の値とすることを特徴とする請求項6〜8いずれか記載の光式ガス検知装置。   9. The optical gas detection device according to claim 6, wherein the signal processing unit uses the divisor value as a value of a gas signal at the head of the sweep cycle of the modulation center wavelength. 上記信号処理部は、上記除数値を上記変調中心波長の掃引周期の先頭におけるガス信号の値と末尾におけるガス信号の値から算出することを特徴とする請求項6〜8いずれか記載の光式ガス検知装置。   9. The optical system according to claim 6, wherein the signal processing unit calculates the divisor value from the value of the gas signal at the beginning and the value of the gas signal at the end of the sweep cycle of the modulation center wavelength. Gas detector.
JP2007146172A 2007-05-31 2007-05-31 Optical gas detection method and optical gas detection device Expired - Fee Related JP4976924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007146172A JP4976924B2 (en) 2007-05-31 2007-05-31 Optical gas detection method and optical gas detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007146172A JP4976924B2 (en) 2007-05-31 2007-05-31 Optical gas detection method and optical gas detection device

Publications (2)

Publication Number Publication Date
JP2008298635A true JP2008298635A (en) 2008-12-11
JP4976924B2 JP4976924B2 (en) 2012-07-18

Family

ID=40172278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007146172A Expired - Fee Related JP4976924B2 (en) 2007-05-31 2007-05-31 Optical gas detection method and optical gas detection device

Country Status (1)

Country Link
JP (1) JP4976924B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010169625A (en) * 2009-01-26 2010-08-05 Anritsu Corp Gas detector
JP2011117868A (en) * 2009-12-04 2011-06-16 Shimadzu Corp Apparatus for measuring moisture in gas
JP2011117869A (en) * 2009-12-04 2011-06-16 Shimadzu Corp Gas analysis device
JP2011220758A (en) * 2010-04-07 2011-11-04 Shimadzu Corp Gas analyzing apparatus
JP2013113647A (en) * 2011-11-28 2013-06-10 Fuji Electric Co Ltd Laser gas analyzer
US8891085B2 (en) 2012-11-02 2014-11-18 Shimadzu Corporation Gas analyzer
CN104568834A (en) * 2015-01-08 2015-04-29 天津大学 TDLAS-based ammonia gas detection experiment system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106353453A (en) * 2016-08-23 2017-01-25 北京东泰富博新材料科技股份有限公司 Method for monitoring pollutant in home decorationspace on line based on big data

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08313437A (en) * 1995-05-19 1996-11-29 Japan Radio Co Ltd Carbon isotope analyzer
JPH09113445A (en) * 1995-10-16 1997-05-02 Hitachi Cable Ltd Gas-concentration detection apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08313437A (en) * 1995-05-19 1996-11-29 Japan Radio Co Ltd Carbon isotope analyzer
JPH09113445A (en) * 1995-10-16 1997-05-02 Hitachi Cable Ltd Gas-concentration detection apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010169625A (en) * 2009-01-26 2010-08-05 Anritsu Corp Gas detector
JP2011117868A (en) * 2009-12-04 2011-06-16 Shimadzu Corp Apparatus for measuring moisture in gas
JP2011117869A (en) * 2009-12-04 2011-06-16 Shimadzu Corp Gas analysis device
JP2011220758A (en) * 2010-04-07 2011-11-04 Shimadzu Corp Gas analyzing apparatus
JP2013113647A (en) * 2011-11-28 2013-06-10 Fuji Electric Co Ltd Laser gas analyzer
US8891085B2 (en) 2012-11-02 2014-11-18 Shimadzu Corporation Gas analyzer
CN104568834A (en) * 2015-01-08 2015-04-29 天津大学 TDLAS-based ammonia gas detection experiment system
CN104568834B (en) * 2015-01-08 2017-08-08 天津大学 Ammonia checking test based on TDLAS

Also Published As

Publication number Publication date
JP4976924B2 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
JP4976924B2 (en) Optical gas detection method and optical gas detection device
JP3307730B2 (en) Optical measuring device
JP4331741B2 (en) Gas detection method and gas detection apparatus
JP2006003127A (en) Optical-wave range finder
US20160047739A1 (en) Absorption spectrometer and method for measuring the concentration of a gaseous component of interest in a measurement gas
JP2007240248A (en) Optical multiple gas concentration detection method and device
JP5142320B2 (en) Optical flammable gas concentration detection method and optical flammable gas concentration detector
JP2001228017A (en) Vibration measuring method and frequency-measuring apparatus
JPH06347318A (en) Beat-frequency measuring method of optical vibration sensor
JPH06307875A (en) Method for detecting signal and method for detecting fluctuation of phase modulation degree
JP5594514B2 (en) Laser gas analyzer
JP2011174929A (en) System and method for magnitude and phase retrieval by path modulation
EP3211454B1 (en) Distance measuring device, distance measuring method, and program therefor
JP2006105669A (en) Method and apparatus for measuring laser interference displacement
JP5170034B2 (en) Gas analyzer
JP2744728B2 (en) Gas concentration measuring method and its measuring device
JP4217109B2 (en) Multipoint gas concentration detection method and system
JP2010048639A (en) Laser type gas analyzer and method for measuring gas concentration
JP4924980B2 (en) Distance measuring device
CN108709506A (en) A kind of method using in optic fiber displacement sensor probe and optic fiber displacement sensor system
JP2007218728A (en) Range finder
JP2013134239A (en) Gas measurement device and measuring method for state quantity in gas measurement device
JP2019078531A (en) Light wave range finder and method of determining modulation frequency of feedback signal
WO2000003202A1 (en) Optical fiber gyro
US20230280152A1 (en) Laser interferometer

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120413

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees