JP2008298037A - Vertical type rotary compressor - Google Patents

Vertical type rotary compressor Download PDF

Info

Publication number
JP2008298037A
JP2008298037A JP2007147977A JP2007147977A JP2008298037A JP 2008298037 A JP2008298037 A JP 2008298037A JP 2007147977 A JP2007147977 A JP 2007147977A JP 2007147977 A JP2007147977 A JP 2007147977A JP 2008298037 A JP2008298037 A JP 2008298037A
Authority
JP
Japan
Prior art keywords
eccentric
compression element
eccentric portion
electric motor
oil supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007147977A
Other languages
Japanese (ja)
Inventor
Atsushi Kubota
淳 久保田
Hiroshi Yoneda
広 米田
Tetsuya Tadokoro
哲也 田所
Atsushi Onuma
敦 大沼
Kenichi Oshima
健一 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2007147977A priority Critical patent/JP2008298037A/en
Publication of JP2008298037A publication Critical patent/JP2008298037A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/005Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • F04C29/0057Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions for eccentric movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts

Abstract

<P>PROBLEM TO BE SOLVED: To reduce local frictional loss of a roller and an eccentric part in a discharge stroke during low speed operation, in a vertical type rotary compressor. <P>SOLUTION: This compressor 1 is provided with a motor 14, a rotary shaft 2 driven by the motor 14 and having the substantially columnar eccentric part 5, and a compression element 20 provided with the roller 11 performing a revolving motion by eccentric rotation of the eccentric part 5 in a substantially cylindrical cylinder 10, in a closed container 13 filled with lubricating oil 21. The motor 14 and the compression element 20 are vertically arranged. An oil feed hole 3 is provided to be opened on a side surface of the eccentric part 5. The oil feed hole 3 is arranged eccentrically to an upper side in relation to a center of a height direction of the cylinder 10. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、縦型ロータリ圧縮機に係り、特に、冷凍サイクルを備えた空気調和機に使用される縦型ロータリ圧縮機に好適なものである。   The present invention relates to a vertical rotary compressor, and is particularly suitable for a vertical rotary compressor used in an air conditioner having a refrigeration cycle.

従来、冷凍サイクルに使用される縦型ロータリ圧縮機として、例えば特開昭61−145388号公報(特許文献1)に開示された構造が知られている。この従来技術における圧縮機は、密閉容器内の上部にステータとロータからなる電動機を備えている。この電動機に連結された回転軸は偏心部を備え、この偏心部に対応した圧縮要素が密閉容器の下部に設けられている。   Conventionally, as a vertical rotary compressor used in a refrigeration cycle, for example, a structure disclosed in Japanese Patent Application Laid-Open No. 61-145388 (Patent Document 1) is known. The compressor in this prior art is provided with an electric motor composed of a stator and a rotor at the upper part in a sealed container. The rotating shaft connected to the electric motor includes an eccentric portion, and a compression element corresponding to the eccentric portion is provided at the lower portion of the sealed container.

この従来技術の縦型ロータリ圧縮機を図6および図7を用いて説明する。   This conventional vertical rotary compressor will be described with reference to FIGS. 6 and 7. FIG.

圧縮要素20は、電動機側の壁面となりかつ回転軸2を軸支する主軸受9と、電動機の逆側の壁面となりかつ回転軸2を軸支する副軸受19と、略円筒状のシリンダ10と、このシリンダ10内に配置され回転軸2の偏心部5の偏心回転により公転運動するローラ11とを備えている。   The compression element 20 includes a main bearing 9 that serves as a wall surface on the motor side and that pivotally supports the rotating shaft 2, a sub-bearing 19 that serves as a wall surface on the opposite side of the motor and pivotally supports the rotating shaft 2, and a substantially cylindrical cylinder 10. The roller 11 is disposed in the cylinder 10 and revolves by the eccentric rotation of the eccentric portion 5 of the rotating shaft 2.

圧縮要素20内に吸い込まれた低圧の冷媒ガスは、ローラ11の公転運動に伴い低圧から高圧へと圧縮される。圧縮された冷媒ガスは、シリンダ10や主軸受9あるいは副軸受19に設けられた吐出ポート(図示せず)から吐出され、さらに密閉容器内を通って圧縮機外に吐出される。   The low-pressure refrigerant gas sucked into the compression element 20 is compressed from a low pressure to a high pressure as the roller 11 revolves. The compressed refrigerant gas is discharged from a discharge port (not shown) provided in the cylinder 10, the main bearing 9 or the sub bearing 19, and is further discharged outside the compressor through the sealed container.

回転軸2は、偏心部5の主軸受側に偏心部5と一体化して成型された略楕円形状の主スラスト軸受22と、偏心部5の副軸受側に偏心部5と一体化して成型された略楕円形状の副スラスト軸受23とを備えている。主スラスト軸受22と副スラスト軸受23は、回転軸2の上下方向の運動を軸支するためのものであり、ローラ11と接触しないように偏心部5よりも回転軸2の半径方向に対して小さい形状となっている。   The rotating shaft 2 is molded integrally with the eccentric portion 5 on the sub-bearing side of the eccentric portion 5 and the substantially elliptical main thrust bearing 22 molded integrally with the eccentric portion 5 on the main bearing side of the eccentric portion 5. And a sub-thrust bearing 23 having a substantially elliptical shape. The main thrust bearing 22 and the sub-thrust bearing 23 are for supporting the vertical movement of the rotary shaft 2, and the radial direction of the rotary shaft 2 rather than the eccentric portion 5 so as not to contact the roller 11. It has a small shape.

主スラスト軸受22と副スラスト軸受23を有するため、偏心部5の高さLはシリンダ10の高さよりも低い。偏心部5の高さを低くするのは、ローラ11と偏心部5の摺動面積を小さくして、定格条件でのこの部位の摩擦損失を極力小さくするためである。   Since the main thrust bearing 22 and the sub thrust bearing 23 are provided, the height L of the eccentric portion 5 is lower than the height of the cylinder 10. The reason why the height of the eccentric part 5 is lowered is to reduce the sliding area between the roller 11 and the eccentric part 5 and to minimize the friction loss of this part under rated conditions.

偏心部5には、側面に開口する給油孔3が穿設されると共に、給油孔3と連通し且つ外周面に形成された貫通溝12が設けられている。回転軸2の内部には、その長手方向に貫通する貫通孔が穿設され、回転軸2の下部側の先端には絞り機構が設けられている。これらの構造が給油ポンプ4として機能し、回転軸2の回転作用で密閉容器内の底部に溜まった潤滑油を汲み上げて、偏心部5の給油孔3に供給する。給油孔3から流出した潤滑油は、貫通溝12と、ローラ11と偏心部5との隙間δ3を通り、さらにローラ11と主軸受9の隙間δ1、ローラ11と副軸受19の端板の隙間δ2を通して圧縮要素20内のローラ11とシリンダ10との隙間δ4に供給される。   The eccentric portion 5 is provided with an oil supply hole 3 that opens to the side surface, and is provided with a through groove 12 that communicates with the oil supply hole 3 and is formed on the outer peripheral surface. A through-hole penetrating in the longitudinal direction is formed inside the rotary shaft 2, and a throttle mechanism is provided at the lower end of the rotary shaft 2. These structures function as the oil supply pump 4, and the lubricating oil accumulated at the bottom in the sealed container is pumped by the rotating action of the rotary shaft 2 and supplied to the oil supply hole 3 of the eccentric portion 5. The lubricating oil flowing out from the oil supply hole 3 passes through the through groove 12, the gap δ 3 between the roller 11 and the eccentric part 5, and further, the gap δ 1 between the roller 11 and the main bearing 9, and the gap between the end plate of the roller 11 and the auxiliary bearing 19. It is supplied to the gap δ4 between the roller 11 and the cylinder 10 in the compression element 20 through δ2.

これらの隙間δ1からδ4は、通常、数μmから数十μmの範囲である。偏心部5や給油孔3は、図6の一点鎖線で示したシリンダ10の高さ方向の中心に位置している。ローラ11の自重により上側の隙間δ1よりも、下側の隙間δ2が狭くなる。そのため、ローラ11では、油膜が薄い隙間δ2からの油膜反力が、隙間δ1からの油膜反力よりも大きい。すなわち、ローラ11は、重力方向下向きの荷重に対して安定している。   These gaps δ1 to δ4 are usually in the range of several μm to several tens of μm. The eccentric part 5 and the oil supply hole 3 are located at the center in the height direction of the cylinder 10 indicated by a one-dot chain line in FIG. Due to the weight of the roller 11, the lower gap δ2 is narrower than the upper gap δ1. Therefore, in the roller 11, the oil film reaction force from the gap δ2 where the oil film is thin is larger than the oil film reaction force from the gap δ1. That is, the roller 11 is stable against a downward load in the gravity direction.

高回転数運転の定格条件におけるローラ11と偏心部5の位置関係は、図6に示すように、ローラ11が重力方向に対して傾斜していない状態である。   As shown in FIG. 6, the positional relationship between the roller 11 and the eccentric portion 5 in the rated condition for the high rotation speed operation is such that the roller 11 is not inclined with respect to the direction of gravity.

特開昭61−145388号公報(第6頁、第1図)JP 61-145388 (page 6, FIG. 1)

空気調和機では年間消費電力量が省エネの重要な指標となり、それに伴い空気調和機で用いられる圧縮機では、定格条件よりも低回転数運転での効率がより重要となってきている。空気調和機で用いられる縦型ロータリ圧縮機においても、低回転数運転の効率向上、すなわち損失の低減が望まれるようになってきている。   In an air conditioner, the annual power consumption is an important index for energy saving, and as a result, in a compressor used in the air conditioner, efficiency at low speed operation is more important than rated conditions. Also in a vertical rotary compressor used in an air conditioner, it has been desired to improve the efficiency of low-speed operation, that is, to reduce loss.

しかしながら、上述した従来の縦型ロータリ圧縮機では、低回転数運転において、ローラ11と偏心部5が図7の点Qにおいて局所的に固体接触し、摩擦損失が増大するという課題があることが分かった。   However, in the conventional vertical rotary compressor described above, there is a problem in that the roller 11 and the eccentric portion 5 are in solid contact locally at the point Q in FIG. I understood.

すなわち、圧縮要素20内の冷媒ガスを圧縮するに伴い、ローラ11にはガス荷重Pが発生する。特に冷媒ガスを吐出する行程で圧縮要素20内の圧力分布が不安定となり、図7に示すようにガス荷重Pの作用方向が変動する。ガス荷重Pが上向きの成分をもつ場合、ローラ11は転覆モーメントMによりローラ11が傾斜する。図6に示したローラ11に関する隙間δの大小関係は,一般的に(δ1+δ2)<δ3であるから、図7に示すように、転覆モーメントMと釣り合うように偏心部5の上側外縁部の点Qから局所荷重Fがローラ11に発生する。   That is, as the refrigerant gas in the compression element 20 is compressed, a gas load P is generated on the roller 11. In particular, the pressure distribution in the compression element 20 becomes unstable during the process of discharging the refrigerant gas, and the direction of action of the gas load P varies as shown in FIG. When the gas load P has an upward component, the roller 11 is inclined by the rollover moment M. 6 is generally (δ1 + δ2) <δ3. Therefore, as shown in FIG. 7, the point of the upper outer edge portion of the eccentric portion 5 is balanced with the overturning moment M. From Q, a local load F is generated on the roller 11.

このときの偏心部5の高さをLとすると、ローラ11の傾斜回転の中心から局所荷重Fの作用点Qまでの距離は(L/2)となる。このローラ11の傾斜に伴い局所荷重Fが増大し、ローラ11と偏心部5が局所的に固体接触を生じて摩擦損失を増大する。加えて、冷媒ガスの吐出行程では冷媒ガスの圧力が圧縮工程で最大となるため、ガス荷重Pや局所荷重Fも圧縮工程で最大となり、作用点Qでの摩擦損失すなわち圧縮機全体の入力が増大していた。なお、ガス荷重Pが下向きの成分をもつ場合は、先に述べたようにローラ11は重力方向下向きの荷重に対して安定しているので、傾斜は少ない。   If the height of the eccentric portion 5 at this time is L, the distance from the center of the inclined rotation of the roller 11 to the point of action Q of the local load F is (L / 2). As the roller 11 is inclined, the local load F is increased, and the roller 11 and the eccentric portion 5 are locally brought into solid contact to increase friction loss. In addition, since the pressure of the refrigerant gas is maximized in the compression process in the discharge process of the refrigerant gas, the gas load P and the local load F are also maximized in the compression process, and the friction loss at the operating point Q, that is, the input of the entire compressor is increased. It was increasing. When the gas load P has a downward component, the roller 11 is stable against the downward load in the direction of gravity as described above, so that the inclination is small.

以上より、従来の縦型ロータリ圧縮機では、低回転数運転でかつ冷媒ガスの吐出行程において、作用点Qにおけるローラ11と偏心部5との摩擦損失の低減が重要な課題であることが分かった。   From the above, in the conventional vertical rotary compressor, it is found that the reduction of the friction loss between the roller 11 and the eccentric portion 5 at the operating point Q is an important issue in the low-speed operation and the discharge stroke of the refrigerant gas. It was.

本発明の目的は、低回転数運転の吐出行程におけるローラと偏心部の局所的な摩擦損失を低減できる縦型ロータリ圧縮機を提供することにある。   An object of the present invention is to provide a vertical rotary compressor capable of reducing local friction loss between a roller and an eccentric portion in a discharge stroke in a low rotation speed operation.

前述の目的を達成するための本発明の第1の態様は、潤滑油を封入してある密閉容器内に、電動機と、その電動機で駆動され略円柱状の偏心部を有する回転軸と、前記偏心部の偏心回転により公転運動するローラを略円筒状のシリンダ内に備えた圧縮要素とを備え、前記電動機と前記圧縮要素とを上下に配置すると共に前記偏心部の側面に開口する給油孔を有する縦型ロータリ圧縮機であって、前記電動機側の前記圧縮要素の壁面となりかつ前記回転軸を軸支する主軸受と、前記電動機と逆側の前記圧縮要素の壁面となりかつ前記回転軸を軸支する副軸受と、前記主軸受側に位置し前記偏心部と一体となった略円柱状の主スラスト軸受と、前記副軸受側に位置し前記偏心部と一体となった略円柱状の副スラスト軸受と、前記密閉容器の底部に溜まった潤滑油を前記回転軸の回転作用で汲み上げて前記偏心部の給油孔に供給する給油ポンプとを備え、前記偏心部の給油孔を、前記シリンダの高さ方向の中心に対して、上側に偏心して配置したことにある。   In a first aspect of the present invention for achieving the above-mentioned object, an electric motor, a rotary shaft that is driven by the electric motor and has a substantially cylindrical eccentric portion, in a sealed container enclosing lubricating oil, A compression element provided in a substantially cylindrical cylinder with a roller that revolves by eccentric rotation of the eccentric part, and the electric motor and the compression element are arranged vertically and an oil supply hole that opens on a side surface of the eccentric part is provided. A vertical rotary compressor having a wall surface of the compression element on the electric motor side and supporting the rotary shaft; a wall surface of the compression element on the opposite side of the electric motor; and the axis of the rotation shaft A sub-bearing to be supported, a substantially cylindrical main thrust bearing located on the main bearing side and integral with the eccentric part, and a substantially cylindrical sub-position located on the auxiliary bearing side and integral with the eccentric part. At the thrust bearing and the bottom of the sealed container An oil supply pump that pumps up the collected lubricating oil by the rotational action of the rotary shaft and supplies it to the oil supply hole of the eccentric part, and the oil supply hole of the eccentric part is located above the center in the height direction of the cylinder. Is arranged eccentrically.

係る本発明の第1の態様におけるより好ましい具体的構成例は次の通りである。
(1)前記偏心部を、前記シリンダの高さ方向の中心に対して、上側に偏心して配置したこと。
(2)前記偏心部の給油孔の上側への偏心量を前記偏心部の上側への偏心量より大きくしたこと。
(3)前記偏心部の上下の外縁部にそれぞれテーパを設け、上側の前記テーパを下側の前記テーパよりも大きくしたこと。
A more preferable specific configuration example in the first aspect of the present invention is as follows.
(1) The eccentric portion is arranged eccentrically upward with respect to the center in the height direction of the cylinder.
(2) The amount of eccentricity of the eccentric portion to the upper side of the oil supply hole is made larger than the amount of eccentricity of the eccentric portion to the upper side.
(3) The upper and lower outer edge portions of the eccentric portion are each tapered, and the upper taper is made larger than the lower taper.

また、本発明の第2の態様は、潤滑油を封入してある密閉容器内に、電動機と、その電動機で駆動され略円柱状の偏心部を有する回転軸と、前記偏心部の偏心回転により公転運動するローラを略円筒状のシリンダ内に備えた圧縮要素とを備え、前記電動機と前記圧縮要素とを上下に配置すると共に前記偏心部の側面に開口する給油孔を有する縦型ロータリ圧縮機であって、前記電動機側の前記圧縮要素の壁面となりかつ前記回転軸を軸支する主軸受と、前記電動機と逆側の前記圧縮要素の壁面となりかつ前記回転軸を軸支する副軸受と、前記主軸受側に位置し前記偏心部と一体となった略円柱状の主スラスト軸受と、前記副軸受側に位置し前記偏心部と一体となった略円柱状の副スラスト軸受と、前記密閉容器の底部に溜まった潤滑油を前記回転軸の回転作用で汲み上げて前記偏心部の給油孔に供給する給油ポンプとを備え、前記偏心部を、前記シリンダの高さ方向の中心に対して、上側に偏心して配置したことにある。   According to a second aspect of the present invention, an electric motor, a rotating shaft driven by the electric motor and having a substantially cylindrical eccentric portion, and an eccentric rotation of the eccentric portion are provided in a sealed container enclosing lubricating oil. A vertical rotary compressor comprising a compression element provided with a revolving roller in a substantially cylindrical cylinder, wherein the electric motor and the compression element are arranged vertically and have an oil supply hole opened on a side surface of the eccentric part. A main bearing which becomes a wall surface of the compression element on the motor side and supports the rotating shaft, and a sub-bearing which becomes a wall surface of the compression element on the opposite side of the motor and supports the rotating shaft; A substantially cylindrical main thrust bearing located on the main bearing side and integrated with the eccentric portion; a substantially cylindrical sub thrust bearing located on the sub bearing side and integrated with the eccentric portion; and the sealing The lubricating oil collected at the bottom of the container Pumped up by the rotation action of the rotating shaft and an oil pump for supplying the oil supply hole of the eccentric portion, the eccentric portion, with respect to the center in the height direction of the cylinder, it lies in the eccentrically disposed on the upper side.

係る本発明の第2の態様におけるより好ましい具体的構成例は次の通りである。
(1)前記副スラスト軸受の高さを前記主スラスト軸受の高さよりも高くしたこと。
A more preferable specific configuration example in the second aspect of the present invention is as follows.
(1) The height of the auxiliary thrust bearing is made higher than the height of the main thrust bearing.

また、本発明の第3の態様は、潤滑油を封入してある密閉容器内に、電動機と、その電動機で駆動され略円柱状の偏心部を回転角に対して互いに180゜ずれた位置で上下に2つ有する回転軸と、前記偏心部の偏心回転により公転運動するローラを略円筒状のシリンダ内に備えた2つの圧縮要素とを備え、前記電動機と前記圧縮要素とを上下に配置すると共に前記偏心部の側面に開口する給油孔を有する縦型ロータリ圧縮機であって、前記2つの圧縮要素における上側に位置する第1圧縮要素の前記電動機側の壁面となりかつ前記回転軸を軸支する主軸受と、前記2つの圧縮要素における下側に位置する第2圧縮要素の前記電動機と逆側の壁面となりかつ前記回転軸を軸支する副軸受と、前記第1圧縮要素および前記第2の圧縮要素の壁面となる仕切板と、前記主軸受側に位置し上側の前記偏心部と一体となった略円柱状の主スラスト軸受と、前記副軸受側に位置し下側の前記偏心部と一体となった略円柱状の副スラスト軸受と、前記密閉容器の底部に溜まった潤滑油を前記回転軸の回転作用で汲み上げて前記偏心部の給油孔に供給する給油ポンプとを備え、前記第1圧縮要素における前記偏心部の給油孔を、前記第1圧縮要素における前記シリンダの高さ方向の中心に対して、上側に偏心して配置したことにある。   In the third aspect of the present invention, the motor and the substantially cylindrical eccentric part driven by the motor are shifted from each other by 180 ° with respect to the rotation angle in the sealed container in which the lubricating oil is sealed. A rotary shaft having two upper and lower shafts, and two compression elements each having a roller that revolves by an eccentric rotation of the eccentric portion in a substantially cylindrical cylinder, and the electric motor and the compression element are arranged vertically. And a rotary rotary compressor having an oil supply hole that opens on a side surface of the eccentric portion, and serves as a wall surface on the motor side of the first compression element located on the upper side of the two compression elements and supports the rotating shaft. A main bearing, a sub-bearing serving as a wall surface on the opposite side of the electric motor of the second compression element located on the lower side of the two compression elements and supporting the rotating shaft, the first compression element, and the second compression element Wall of compression element Partition plate, a substantially cylindrical main thrust bearing that is located on the main bearing side and integrated with the upper eccentric portion, and a substantially cylindrical main thrust bearing that is located on the auxiliary bearing side and integrated with the lower eccentric portion. A cylinder-shaped sub-thrust bearing, and an oil supply pump that pumps up the lubricating oil accumulated at the bottom of the hermetic container by the rotating action of the rotary shaft and supplies the oil to the oil supply hole of the eccentric part, The oil supply hole of the eccentric part is arranged eccentrically on the upper side with respect to the center in the height direction of the cylinder in the first compression element.

係る本発明の第3の態様におけるより好ましい具体的構成例は次の通りである。
(1)前記第1圧縮要素における前記偏心部を、前記第1圧縮要素における前記シリンダの高さ方向の中心に対して、上側に偏心して配置したこと。
A more preferable specific configuration example in the third aspect of the present invention is as follows.
(1) The eccentric portion of the first compression element is arranged eccentrically upward with respect to the center in the height direction of the cylinder of the first compression element.

また、本発明の第4の態様は、潤滑油を封入してある密閉容器内に、電動機と、その電動機で駆動され略円柱状の偏心部を回転角に対して互いに180゜ずれた位置で上下に2つ有する回転軸と、前記偏心部の偏心回転により公転運動するローラを略円筒状のシリンダ内に備えた2つの圧縮要素とを備え、前記電動機と前記圧縮要素とを上下に配置すると共に前記偏心部の側面に開口する給油孔を有する縦型ロータリ圧縮機であって、前記2つの圧縮要素における上側に位置する第1圧縮要素の前記電動機側の壁面となりかつ前記回転軸を軸支する主軸受と、前記2つの圧縮要素における下側に位置する第2圧縮要素の前記電動機と逆側の壁面となりかつ前記回転軸を軸支する副軸受と、前記第1圧縮要素および前記第2の圧縮要素の壁面となる仕切板と、前記主軸受側に位置し上側の前記偏心部と一体となった略円柱状の主スラスト軸受と、前記副軸受側に位置し下側の前記偏心部と一体となった略円柱状の副スラスト軸受と、前記密閉容器の底部に溜まった潤滑油を前記回転軸の回転作用で汲み上げて前記偏心部の給油孔に供給する給油ポンプとを備え、前記第1圧縮要素における前記偏心部を、前記第1圧縮要素における前記シリンダの高さ方向の中心に対して、上側に偏心して配置したことにある。   In the fourth aspect of the present invention, an electric motor and an approximately cylindrical eccentric part driven by the electric motor are shifted from each other by 180 ° with respect to the rotation angle in a sealed container enclosing lubricating oil. A rotary shaft having two upper and lower shafts, and two compression elements each having a roller that revolves by an eccentric rotation of the eccentric portion in a substantially cylindrical cylinder, and the electric motor and the compression element are arranged vertically. And a rotary rotary compressor having an oil supply hole that opens on a side surface of the eccentric portion, and serves as a wall surface on the motor side of the first compression element located on the upper side of the two compression elements and supports the rotating shaft. A main bearing, a sub-bearing serving as a wall surface on the opposite side of the electric motor of the second compression element located on the lower side of the two compression elements and supporting the rotating shaft, the first compression element, and the second compression element Wall of compression element Partition plate, a substantially cylindrical main thrust bearing that is located on the main bearing side and integrated with the upper eccentric portion, and a substantially cylindrical main thrust bearing that is located on the auxiliary bearing side and integrated with the lower eccentric portion. A cylinder-shaped sub-thrust bearing, and an oil supply pump that pumps up the lubricating oil accumulated at the bottom of the hermetic container by the rotating action of the rotary shaft and supplies the oil to the oil supply hole of the eccentric part, The eccentric portion is arranged eccentrically upward with respect to the center of the first compression element in the height direction of the cylinder.

係る本発明の第4の態様におけるより好ましい具体的構成例は次の通りである。
(1)前記副スラスト軸受の高さを前記主スラスト軸受の高さよりも高くしたこと。
A more preferable specific configuration example in the fourth aspect of the present invention is as follows.
(1) The height of the auxiliary thrust bearing is made higher than the height of the main thrust bearing.

係る本発明の縦型ロータリ圧縮機によれば、低回転数運転の吐出行程におけるローラと偏心部の局所的な摩擦損失を低減できる。   According to the vertical rotary compressor of the present invention, it is possible to reduce the local friction loss between the roller and the eccentric portion in the discharge stroke in the low rotation speed operation.

以下、本発明の複数の実施例について図を用いて説明する。各実施例の図における同一符号は同一物または相当物を示す。
(第1実施例)
本発明の第1実施例を、図1から図3を用いて説明する。図1は本実施例の縦型ロータリ圧縮機1の縦断面図、図2は図1のA−A断面図、図3は図1の圧縮要素の低回転数運転時の縦断面図である。
Hereinafter, a plurality of embodiments of the present invention will be described with reference to the drawings. The same reference numerals in the drawings of the respective embodiments indicate the same or equivalent.
(First embodiment)
A first embodiment of the present invention will be described with reference to FIGS. 1 is a longitudinal sectional view of a vertical rotary compressor 1 according to the present embodiment, FIG. 2 is a sectional view taken along line AA of FIG. 1, and FIG. 3 is a longitudinal sectional view of the compression element of FIG. .

圧縮機1は内部に潤滑油21を封入した密閉容器13を備える。密閉容器13内の上方には、ステータ7とロータ8を有する電動機14が設けられている。電動機14に連結された回転軸2は偏心部5を備え、主軸受9と副軸受19に軸支されている。圧縮要素20は、端板を備えた主軸受9と、略円筒状のシリンダ10と、偏心部5の外周に嵌め合わされた円筒状のローラ11と、端板を備えた副軸受19とで構成される。電動機14、主軸受9、シリンダ10、副軸受19は、重力方向に対して上から順に配置される。圧縮要素20を形成する主軸受9、シリンダ10および副軸受19は、積層されてボルト等の締結要素(図示せず)で一体化されている。主軸受9、シリンダ10、副軸受19は、鋳物もしくは鉄系の焼結部材を研磨や研削により成型したものである。ローラ11は、上下の内縁に同一寸法の面取りを施してあり、上下方向に対して対称の形状である。   The compressor 1 includes a sealed container 13 in which a lubricating oil 21 is enclosed. An electric motor 14 having a stator 7 and a rotor 8 is provided above the sealed container 13. The rotating shaft 2 connected to the electric motor 14 includes an eccentric portion 5 and is pivotally supported by the main bearing 9 and the auxiliary bearing 19. The compression element 20 includes a main bearing 9 provided with an end plate, a substantially cylindrical cylinder 10, a cylindrical roller 11 fitted to the outer periphery of the eccentric portion 5, and a sub-bearing 19 provided with an end plate. Is done. The electric motor 14, the main bearing 9, the cylinder 10, and the auxiliary bearing 19 are arranged in order from the top in the direction of gravity. The main bearing 9, the cylinder 10 and the auxiliary bearing 19 forming the compression element 20 are stacked and integrated with a fastening element (not shown) such as a bolt. The main bearing 9, the cylinder 10, and the auxiliary bearing 19 are formed by polishing or grinding a cast or iron-based sintered member. The roller 11 has chamfers of the same size on the upper and lower inner edges, and has a symmetrical shape with respect to the vertical direction.

主軸受9は密閉容器13の内壁に溶接によって固定され、シリンダ10や副軸受19等の圧縮要素部品を支持している。なお、主軸受9の代わりに、シリンダ10を密閉容器13の内壁に固定してもかまわない。   The main bearing 9 is fixed to the inner wall of the hermetic container 13 by welding, and supports compression element parts such as the cylinder 10 and the auxiliary bearing 19. In place of the main bearing 9, the cylinder 10 may be fixed to the inner wall of the sealed container 13.

回転軸2には、偏心部5の主軸受側に偏心部5と一体化して成型された略楕円形状の主スラスト軸受22と、偏心部5の副軸受側に偏心部5と一体化して成型された略楕円形状の副スラスト軸受23とを備えている。副スラスト軸受23が副軸受19の端板より反力を受け、自重に対して回転軸2を支持している。回転軸2は、円柱状の鋳物部材を切削と研磨により、主スラスト軸受22、偏心部5、副スラスト軸受23と一体で成型したものである。   The rotary shaft 2 is formed by integrating the eccentric part 5 with the eccentric part 5 on the main bearing side of the eccentric part 5 and forming the eccentric part 5 with the eccentric part 5 on the auxiliary bearing side of the eccentric part 5. The sub-thrust bearing 23 having a substantially elliptical shape is provided. The auxiliary thrust bearing 23 receives a reaction force from the end plate of the auxiliary bearing 19 and supports the rotating shaft 2 against its own weight. The rotating shaft 2 is formed by integrally molding the main casting bearing 22, the eccentric portion 5, and the auxiliary thrust bearing 23 by cutting and polishing a cylindrical casting member.

本実施例では、シリンダ10の高さを約20mmとし、偏心部5の高さLを約12mmとし、さらに偏心部5をシリンダ10の高さ方向の中心に対して偏心量Δ1だけ偏心させている。この偏心量Δ1は約2mmであり、一般の切削による加工公差±0.5mmよりも十分に大きく、シリンダ10の高さの約10%である。それに伴い副スラスト軸受23の高さが約6mmであり、主スラスト軸受22の高さ約2mmよりも高い。   In this embodiment, the height of the cylinder 10 is about 20 mm, the height L of the eccentric portion 5 is about 12 mm, and the eccentric portion 5 is eccentric by an eccentric amount Δ1 with respect to the center of the cylinder 10 in the height direction. Yes. This eccentric amount Δ1 is about 2 mm, which is sufficiently larger than a processing tolerance of ± 0.5 mm by general cutting, and is about 10% of the height of the cylinder 10. Accordingly, the height of the auxiliary thrust bearing 23 is about 6 mm, which is higher than the height of the main thrust bearing 22 is about 2 mm.

回転軸2には、軸心に沿って給油ポンプ4を備えている。給油ポンプ4は、回転軸2の下側の先端に設けた絞り部4aと、回転軸2の軸心を中心に穿設された給油経路4bと、潤滑油21に含まれているガス冷媒を排気するための貫通孔4cとを備えている。給油経路4b、貫通孔4cは、ドリルで加工した略円形状の孔である。   The rotary shaft 2 is provided with an oil supply pump 4 along the axis. The oil pump 4 includes a throttle portion 4 a provided at the lower end of the rotating shaft 2, an oil supply path 4 b drilled around the axis of the rotating shaft 2, and gas refrigerant contained in the lubricating oil 21. And a through-hole 4c for exhausting. The oil supply path 4b and the through hole 4c are substantially circular holes processed by a drill.

偏心部5は、その側面と給油経路4bとを連通するために穿設された給油孔3を備えている。さらに、偏心部5の上下方向に潤滑油21を供給するため、給油孔3と連通した貫通溝12を偏心部5の側面に備えている。貫通溝12は円盤状のカッタやエンドミルにより、切削加工により設けられる。さらに、主軸受9と副軸受19に潤滑油21を供給するために、回転軸2に小径給油孔15を設けている。給油孔3および小径給油孔15は、それぞれドリルで加工した略円形状の孔である。本実施例では給油孔3の孔径が約φ3mm、小径給油孔15の孔径が約φ2mmとした。   The eccentric part 5 is provided with an oil supply hole 3 drilled to communicate the side surface thereof with the oil supply path 4b. Further, a through groove 12 communicating with the oil supply hole 3 is provided on the side surface of the eccentric portion 5 in order to supply the lubricating oil 21 in the vertical direction of the eccentric portion 5. The through groove 12 is provided by cutting with a disk-shaped cutter or end mill. Further, in order to supply the lubricating oil 21 to the main bearing 9 and the auxiliary bearing 19, a small diameter oil supply hole 15 is provided in the rotary shaft 2. The oil supply hole 3 and the small-diameter oil supply hole 15 are substantially circular holes each processed by a drill. In this embodiment, the hole diameter of the oil supply hole 3 is about φ3 mm, and the hole diameter of the small oil supply hole 15 is about φ2 mm.

給油孔3は、図1に示すように、シリンダ10の高さ方向の中心に対して偏心量Δ2だけ偏心させている。本実施例ではシリンダの高さが約20mm、偏心量Δ2が約4mmである。偏心量Δ2は一般の切削による加工公差±0.5mmよりも十分に大きく、シリンダ高さの約20%である。また偏心部5の偏心量Δ1に対して、給油孔3の偏心量Δ2を大きくした。   As shown in FIG. 1, the oil supply hole 3 is eccentric by an eccentric amount Δ2 with respect to the center of the cylinder 10 in the height direction. In this embodiment, the height of the cylinder is about 20 mm, and the amount of eccentricity Δ2 is about 4 mm. The eccentric amount Δ2 is sufficiently larger than the processing tolerance ± 0.5 mm by general cutting, and is about 20% of the cylinder height. Further, the eccentric amount Δ2 of the oil supply hole 3 is made larger than the eccentric amount Δ1 of the eccentric portion 5.

給油ポンプ4は、密閉容器13の底部に溜まった潤滑油21を回転軸2の回転に伴う遠心力で汲み上げて、給油孔3および小径給油孔15に潤滑油21を供給する。主として給油孔3から供給された潤滑油21は、貫通溝12や、ローラ11と偏心部5との隙間を流れ、ローラ11と主軸受9の端板との隙間や、ローラ11と副軸受19の端板との隙間を通って圧縮要素20内へ供給される。   The oil supply pump 4 pumps up the lubricating oil 21 collected at the bottom of the sealed container 13 by the centrifugal force accompanying the rotation of the rotary shaft 2 and supplies the lubricating oil 21 to the oil supply hole 3 and the small diameter oil supply hole 15. The lubricating oil 21 mainly supplied from the oil supply hole 3 flows through the through groove 12 and the gap between the roller 11 and the eccentric portion 5, and the gap between the roller 11 and the end plate of the main bearing 9, the roller 11 and the auxiliary bearing 19. Is supplied into the compression element 20 through a gap with the end plate.

圧縮要素20内の作動空間は、図2に示すように、コイルバネのような付勢力付与手段6に連結された平板状のベーン18により、圧縮空間31と吸込み空間32に分割される。ベーン18は、シリンダ10のスロット溝に嵌め合わされ、偏心部5の偏心運動に合わせて回転するローラ11の外周上を接触しながら進退運動する。作動流体である冷媒ガスは、吸込口25より圧縮要素20内に吸入され、低圧から高圧へと圧縮される。圧縮要素20内の冷媒ガスは、予め設定された圧力になると開口する吐出弁26(図1参照)を通って密閉容器13内に吐出される。吐出された冷媒ガスは、その後、電動機14の隙間や風穴を通り、密閉容器13の上部に設けられた吐出管(図示せず)より圧縮室外に吐出される。   As shown in FIG. 2, the working space in the compression element 20 is divided into a compression space 31 and a suction space 32 by a flat vane 18 connected to a biasing force applying means 6 such as a coil spring. The vane 18 is fitted in the slot groove of the cylinder 10 and moves forward and backward while contacting the outer periphery of the roller 11 rotating according to the eccentric motion of the eccentric portion 5. The refrigerant gas, which is a working fluid, is sucked into the compression element 20 from the suction port 25 and compressed from a low pressure to a high pressure. The refrigerant gas in the compression element 20 is discharged into the sealed container 13 through a discharge valve 26 (see FIG. 1) that opens when a preset pressure is reached. The discharged refrigerant gas is then discharged out of the compression chamber through a discharge pipe (not shown) provided in the upper part of the hermetic container 13 through the gaps and air holes of the electric motor 14.

次に、図3を用いて、本実施例のローラ11の動作について述べる。本実施例では、偏心部5と給油孔3をシリンダ10の高さ方向の中心に対して、それぞれ偏心量Δ1と偏心量Δ2だけ偏心させている。このため、転覆モーメントMが働きローラ11が傾斜した場合、ローラ11の傾斜回転の中心から転覆モーメントMとつりあう局所荷重Fの作用点Qまでの距離が(L/2+Δ1)となり、図7の従来技術に対して偏心量Δ1だけ長くなる。局所荷重Fは距離(L/2+Δ1)が増大するに伴い減少するから、本実施例によれば、局所荷重Fに伴うローラ11と偏心部5の局所的な摩擦損失を低減することができる。本実施例では偏心部の高さLが12mm、偏心部5の偏心量Δ1が2mmなので、局所荷重Fを従来技術に対して約25%低減できる。   Next, the operation of the roller 11 of this embodiment will be described with reference to FIG. In the present embodiment, the eccentric portion 5 and the oil supply hole 3 are eccentric with respect to the center in the height direction of the cylinder 10 by an eccentric amount Δ1 and an eccentric amount Δ2, respectively. Therefore, when the rollover moment M acts and the roller 11 is tilted, the distance from the center of tilting rotation of the roller 11 to the point Q of the local load F that balances with the rollover moment M becomes (L / 2 + Δ1), which is the conventional example of FIG. It is longer than the technology by the amount of eccentricity Δ1. Since the local load F decreases as the distance (L / 2 + Δ1) increases, according to this embodiment, the local friction loss between the roller 11 and the eccentric portion 5 due to the local load F can be reduced. In this embodiment, since the height L of the eccentric portion is 12 mm and the eccentric amount Δ1 of the eccentric portion 5 is 2 mm, the local load F can be reduced by about 25% with respect to the prior art.

同時に給油孔3も偏心量Δ2だけ偏心しているため、給油孔3が図7の従来技術よりも局所荷重Fの作用点Qに近い。このため、作用点Qへ潤滑油21を供給しやすくなり、作用点Qでのローラ11と偏心部5の局所的な固体接触を緩和して、摩擦損失を低減できる。   At the same time, the oil supply hole 3 is also eccentric by the amount of eccentricity Δ2, so the oil supply hole 3 is closer to the operating point Q of the local load F than in the prior art of FIG. For this reason, it becomes easy to supply the lubricating oil 21 to the point of action Q, and the local solid contact between the roller 11 and the eccentric part 5 at the point of action Q can be relaxed, and the friction loss can be reduced.

また、本実施例では、偏心部5の高さL、すなわち偏心部5の摺動面積を図7の従来技術と比べて拡大していないので、高回転数運転の定格条件等のローラ11が傾斜しない場合における付加的な摩擦損失の増大に繋がることはない。
(第2実施例)
次に、本発明の第2実施例について図4を用いて説明する。この第2本実施例は、次に述べる点で第1実施例と相違するものであり、その他の点については第1実施例と基本的には同一であるので、重複する説明を省略する。
Further, in this embodiment, the height L of the eccentric portion 5, that is, the sliding area of the eccentric portion 5 is not enlarged as compared with the prior art of FIG. It does not lead to an increase in additional friction loss when it is not inclined.
(Second embodiment)
Next, a second embodiment of the present invention will be described with reference to FIG. The second embodiment is different from the first embodiment in the following points, and the other points are basically the same as those in the first embodiment, so that the duplicated explanation is omitted.

第2実施例では、偏心部5の上下の外縁部にそれぞれ上テーパ16、下テーパ17を設けている。下テーパはC0.1〜0.5mm、上テーパ16は下テーパ17よりも大きくC0.8〜1.2mmとした。   In the second embodiment, an upper taper 16 and a lower taper 17 are provided on the upper and lower outer edge portions of the eccentric portion 5, respectively. The lower taper was C0.1 to 0.5 mm, and the upper taper 16 was larger than the lower taper 17 to C0.8 to 1.2 mm.

第2実施例では上テーパ16を大きく設けているため、ローラ11と上テーパ16のくさび効果により、局所荷重Fの作用点Qに対して潤滑油21の給油性が向上する。また作用点Qの近傍の上テーパ16では、ローラ11に対して油膜反力が働くから、作用点Qへの局所荷重Fを分散して、この部位での固体接触を緩和することができる。   In the second embodiment, since the upper taper 16 is provided large, the wedge effect of the roller 11 and the upper taper 16 improves the lubricity of the lubricating oil 21 with respect to the action point Q of the local load F. In addition, since the oil film reaction force acts on the roller 11 at the upper taper 16 in the vicinity of the action point Q, the local load F applied to the action point Q can be dispersed and the solid contact at this part can be relaxed.

一方、局所荷重が生じにくい偏心部5の下側のテーパ17は、テーパ16よりも小さく、必要以上の潤滑油21の供給と、偏心部5の摺動面積の縮小を抑えている。すなわち、第2実施例は、第1実施例1よりもローラ11の傾斜に伴うローラ11と偏心部5の局所的な固体接触の状態を改善でき、この部位での摩擦損失を低減することができる。
(第3実施例)
次に、本発明の第3実施例について図5を用いて説明する。この第3本実施例は、次に述べる点で第1実施例と相違するものであり、その他の点については第1実施例と基本的には同一であるので、重複する説明を省略する。
On the other hand, the taper 17 on the lower side of the eccentric portion 5 where local load is less likely to occur is smaller than the taper 16 and suppresses the supply of the lubricating oil 21 more than necessary and the reduction of the sliding area of the eccentric portion 5. That is, the second embodiment can improve the state of local solid contact between the roller 11 and the eccentric portion 5 due to the inclination of the roller 11 as compared with the first embodiment 1, and can reduce the friction loss at this portion. it can.
(Third embodiment)
Next, a third embodiment of the present invention will be described with reference to FIG. The third embodiment is different from the first embodiment in the following points, and the other points are basically the same as those in the first embodiment, and therefore, redundant description is omitted.

第3実施例では、図5に示すように、2つの圧縮要素20a、20bを有する縦型2シリンダロータリ圧縮機1である。この第3実施例の圧縮機1では、電動機14に連結された回転軸2は、上下に2つの偏心部5a、5bを備え、偏心部5a、5bの上下の位置で主軸受9と副軸受19により軸支されている。その回転軸2に対して電動機14側から順に、主軸受9、第1圧縮要素20a、仕切板24、第2圧縮要素20bおよび副軸受19が積層され、それぞれ上下からボルト等の締結要素(図示せず)で一体化されている。   In the third embodiment, as shown in FIG. 5, a vertical two-cylinder rotary compressor 1 having two compression elements 20a and 20b is provided. In the compressor 1 of the third embodiment, the rotary shaft 2 connected to the electric motor 14 includes two eccentric parts 5a and 5b on the upper and lower sides, and the main bearing 9 and the auxiliary bearing at the upper and lower positions of the eccentric parts 5a and 5b. 19 is pivotally supported. The main bearing 9, the first compression element 20a, the partition plate 24, the second compression element 20b, and the auxiliary bearing 19 are laminated in order from the motor 14 side with respect to the rotating shaft 2, and fastening elements such as bolts (see FIG. (Not shown).

上側に位置する第1圧縮要素20aは、主軸受9の端板と、シリンダ10aと、偏心部5aの外周に嵌め合わされた円筒状のローラ11aと、仕切板24とで作動空間を形成する。下側に位置する第2圧縮要素20bは、副軸受19の端板と、シリンダ10bと、偏心部5bの外周に嵌め合わされた円筒状のローラ11bと、仕切板24とで作動空間を形成する。これらの作動空間は、第1実施例の図2と同様に、コイルバネのような付勢力付与手段6に連結された平板状のベーン18が、偏心部5a、5bの偏心運動に合わせて回転するローラ11a、11bの外周上を接触しながら進退運動することにより、それぞれ圧縮空間と吸込み空間とに分割される。   The first compression element 20a located on the upper side forms an operating space with the end plate of the main bearing 9, the cylinder 10a, the cylindrical roller 11a fitted to the outer periphery of the eccentric portion 5a, and the partition plate 24. The second compression element 20b located on the lower side forms an operating space with the end plate of the auxiliary bearing 19, the cylinder 10b, the cylindrical roller 11b fitted to the outer periphery of the eccentric portion 5b, and the partition plate 24. . In these operating spaces, as in FIG. 2 of the first embodiment, a flat vane 18 connected to the biasing force applying means 6 such as a coil spring rotates in accordance with the eccentric motion of the eccentric portions 5a and 5b. By moving forward and backward while contacting the outer periphery of the rollers 11a and 11b, the space is divided into a compression space and a suction space, respectively.

主軸受9は密閉容器13の内壁に溶接によって固定され、シリンダ10や副軸受19等のポンプ部品を支持している。なお、主軸受9の代わりに、シリンダ10aもしくはシリンダ10bを密閉容器13の内壁に固定してもかまわない。   The main bearing 9 is fixed to the inner wall of the sealed container 13 by welding, and supports pump parts such as the cylinder 10 and the auxiliary bearing 19. In place of the main bearing 9, the cylinder 10 a or the cylinder 10 b may be fixed to the inner wall of the sealed container 13.

回転軸2には、偏心部5aの主軸受側に偏心部5aと一体化して成型された略楕円形状の主スラスト軸受22と、偏心部5bの副軸受側に偏心部5bと一体化して成型された略楕円形状の副スラスト軸受23を備えている。副スラスト軸受23が副軸受19の端板より反力を受け、自重に対して回転軸2を支持している。   The rotary shaft 2 is molded with a substantially elliptical main thrust bearing 22 formed integrally with the eccentric portion 5a on the main bearing side of the eccentric portion 5a, and with the eccentric portion 5b formed on the auxiliary bearing side of the eccentric portion 5b. The sub-thrust bearing 23 having a substantially elliptical shape is provided. The auxiliary thrust bearing 23 receives a reaction force from the end plate of the auxiliary bearing 19 and supports the rotating shaft 2 against its own weight.

シリンダ20aとシリンダ20bは、加工治具やベーン18、付勢力付与手段6を共有するため、同じ高さ、同じ内径寸法としている。また、ローラ11aとローラ11bも、同一形状であり、互換性がある。偏心部5aと偏心部5bは、外径と高さが同じである。また、貫通溝12aと貫通溝12b、給油孔3aと給油孔3bも、加工性を考慮して同一の形状としている。   Since the cylinder 20a and the cylinder 20b share the processing jig, the vane 18, and the urging force applying means 6, they have the same height and the same inner diameter. Also, the roller 11a and the roller 11b have the same shape and are compatible. The eccentric part 5a and the eccentric part 5b have the same outer diameter and height. Further, the through groove 12a and the through groove 12b, and the oil supply hole 3a and the oil supply hole 3b have the same shape in consideration of workability.

仕切板24は、略円板状の鋳物もしくは鉄系の焼結部材である。この仕切板24は、組立て時に偏心部5aを通過させる内孔27が形成される。   The partition plate 24 is a substantially disk-shaped casting or an iron-based sintered member. The partition plate 24 is formed with an inner hole 27 through which the eccentric portion 5a passes when assembled.

圧縮要素20は、偏心部5が偏心回転することでローラ11を駆動する。図4に示すように偏心部5aと偏心部5bは位相が180°異なり、第1圧縮要素20aと第2圧縮要素20bの圧縮過程の位相差は180°である。すなわち、2つの圧縮要素20a、20bの圧縮過程は逆位相となっている。   The compression element 20 drives the roller 11 when the eccentric part 5 rotates eccentrically. As shown in FIG. 4, the eccentric portion 5a and the eccentric portion 5b have a phase difference of 180 °, and the phase difference in the compression process of the first compression element 20a and the second compression element 20b is 180 °. That is, the compression processes of the two compression elements 20a and 20b are in opposite phases.

ただし、上側に位置する第1圧縮要素20aを構成する偏心部5aと給油孔3aは、実施例1の図1と同様に、シリンダ10aの高さ方向の中心に対して、それぞれΔ1、Δ2だけ偏心して配置されている。一方、下側に位置する第2圧要素20bを構成する偏心部5bと給油孔3bは、従来例の図6と同様に、シリンダ10bの高さ方向の中心と同じ位置に配置されている。   However, the eccentric portion 5a and the oil supply hole 3a constituting the first compression element 20a located on the upper side are respectively Δ1 and Δ2 with respect to the center in the height direction of the cylinder 10a, as in FIG. 1 of the first embodiment. It is arranged eccentrically. On the other hand, the eccentric portion 5b and the oil supply hole 3b constituting the second pressure element 20b positioned on the lower side are arranged at the same position as the center in the height direction of the cylinder 10b, as in FIG.

作動流体である冷媒ガスは、それぞれシリンダ10a、10bの吸入口より吸入され、ローラ11a、11bが偏心回転することにより低圧から高圧へと圧縮される。各圧縮要素20a、20bの冷媒ガスは、予め設定された圧力になると開口する吐出弁26a、26bを通って、吐出される。第1圧縮要素20aから吐出された冷媒ガスは、密閉容器13内に吐出される。第2圧縮要素20bから吐出された冷媒ガスは、副軸受19、シリンダ10b、仕切板24、シリンダ10a、主軸受9のそれぞれに設けられた連通孔(図示せず)を通って、密閉容器13に吐出される。密閉容器13内に吐出された冷媒ガスは、密閉容器13の上部に設けられた吐出管(図示せず)より圧縮室外に吐出される。また、副軸受19には、第2圧縮要素20bから吐出された冷媒ガスと、密閉容器13に吐出された冷媒ガスを隔離するカバー28を備えている。   Refrigerant gas, which is a working fluid, is sucked from the suction ports of the cylinders 10a and 10b, respectively, and is compressed from low pressure to high pressure as the rollers 11a and 11b rotate eccentrically. The refrigerant gas of each compression element 20a, 20b is discharged through discharge valves 26a, 26b that open when a preset pressure is reached. The refrigerant gas discharged from the first compression element 20 a is discharged into the sealed container 13. The refrigerant gas discharged from the second compression element 20b passes through communication holes (not shown) provided in each of the auxiliary bearing 19, the cylinder 10b, the partition plate 24, the cylinder 10a, and the main bearing 9, and then the sealed container 13. Discharged. The refrigerant gas discharged into the sealed container 13 is discharged out of the compression chamber through a discharge pipe (not shown) provided at the upper part of the sealed container 13. The auxiliary bearing 19 includes a cover 28 that isolates the refrigerant gas discharged from the second compression element 20 b and the refrigerant gas discharged to the sealed container 13.

縦型2シリンダロータリ圧縮機では、2つの圧縮要素20を備えるため、ポンプ部分の高さが高くなる。潤滑油21は密閉容器13内の底部に溜まっているため、給油ポンプ4の揚程が大きくなり、上側に位置する第1圧縮要素20aへの給油が難しくなる。特に低回転数で運転した場合、給油ポンプ4の遠心力が小さく、この傾向が顕著である。したがって、ローラ11の傾斜に伴うローラ11と偏心部5との局所的な固体接触は、第1圧縮要素20aにおいて頻度が高く発生し、圧縮機入力を増大する。   In the vertical two-cylinder rotary compressor, since the two compression elements 20 are provided, the height of the pump portion is increased. Since the lubricating oil 21 is accumulated at the bottom in the sealed container 13, the lift of the oil supply pump 4 becomes large, and it becomes difficult to supply oil to the first compression element 20a located on the upper side. In particular, when operated at a low rotational speed, the centrifugal force of the oil supply pump 4 is small, and this tendency is remarkable. Therefore, local solid contact between the roller 11 and the eccentric portion 5 accompanying the inclination of the roller 11 occurs frequently in the first compression element 20a, and increases the compressor input.

第3実施例によれば、第1圧縮要素20aにおいて、第1実施例と同じ構造を用いている。したがって、第1圧縮要素20aにおけるローラ11aと偏心部5aとの局所的な固体接触を改善でき、圧縮機入力を低減することができる。   According to the third embodiment, the same structure as that of the first embodiment is used in the first compression element 20a. Accordingly, local solid contact between the roller 11a and the eccentric portion 5a in the first compression element 20a can be improved, and the compressor input can be reduced.

本発明の第1実施例の縦型ロータリ圧縮機の縦断面図。1 is a longitudinal sectional view of a vertical rotary compressor according to a first embodiment of the present invention. 図1のA−A断面図。AA sectional drawing of FIG. 図1の圧縮要素の低回転数運転時の縦断面図。The longitudinal cross-sectional view at the time of the low rotation speed operation | movement of the compression element of FIG. 本発明の第2実施例の圧縮要素の縦断面図。The longitudinal cross-sectional view of the compression element of 2nd Example of this invention. 本発明の第3実施例の縦型2シリンダロータリ圧縮機の縦断面図。The longitudinal cross-sectional view of the vertical 2 cylinder rotary compressor of 3rd Example of this invention. 従来技術の縦型ロータリ圧縮機の圧縮要素の縦断面図。The longitudinal cross-sectional view of the compression element of the vertical rotary compressor of a prior art. 図6の圧縮要素の低回転数運転時の縦断面図。FIG. 7 is a longitudinal sectional view of the compression element of FIG. 6 during low speed operation.

符号の説明Explanation of symbols

1…圧縮機、2…回転軸、3…給油孔、4…給油ポンプ、4a…絞り部、4b…給油経路、4c…貫通孔、5…偏心部、6…付勢力付与手段、ステータ7、8…ロータ、9…主軸受、10…シリンダ、11…ローラ、12…貫通溝、13…密閉容器、14…電動機、15…小径給油孔、16…上テーパ、17…下テーパ、18…ベーン、19…副軸受、20…圧縮要素、21…潤滑油、22…主スラスト軸受、23…副スラスト軸受、24…仕切板、25…吸込口、26…吐出弁。   DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Rotating shaft, 3 ... Oil supply hole, 4 ... Oil supply pump, 4a ... Restriction part, 4b ... Oil supply path, 4c ... Through-hole, 5 ... Eccentric part, 6 ... Energizing force provision means, Stator 7, DESCRIPTION OF SYMBOLS 8 ... Rotor, 9 ... Main bearing, 10 ... Cylinder, 11 ... Roller, 12 ... Through groove, 13 ... Sealed container, 14 ... Electric motor, 15 ... Small diameter oil supply hole, 16 ... Upper taper, 17 ... Lower taper, 18 ... Vane , 19 ... sub bearing, 20 ... compression element, 21 ... lubricating oil, 22 ... main thrust bearing, 23 ... sub thrust bearing, 24 ... partition plate, 25 ... suction port, 26 ... discharge valve.

Claims (10)

潤滑油を封入してある密閉容器内に、電動機と、その電動機で駆動され略円柱状の偏心部を有する回転軸と、前記偏心部の偏心回転により公転運動するローラを略円筒状のシリンダ内に備えた圧縮要素とを備え、前記電動機と前記圧縮要素とを上下に配置すると共に前記偏心部の側面に開口する給油孔を有する縦型ロータリ圧縮機であって、
前記電動機側の前記圧縮要素の壁面となりかつ前記回転軸を軸支する主軸受と、
前記電動機と逆側の前記圧縮要素の壁面となりかつ前記回転軸を軸支する副軸受と、
前記主軸受側に位置し前記偏心部と一体となった略円柱状の主スラスト軸受と、
前記副軸受側に位置し前記偏心部と一体となった略円柱状の副スラスト軸受と、
前記密閉容器の底部に溜まった潤滑油を前記回転軸の回転作用で汲み上げて前記偏心部の給油孔に供給する給油ポンプとを備え、
前記偏心部の給油孔を、前記シリンダの高さ方向の中心に対して、上側に偏心して配置したことを特徴とする縦型ロータリ圧縮機。
An electric motor, a rotary shaft driven by the electric motor and having a substantially cylindrical eccentric portion, and a roller that revolves by the eccentric rotation of the eccentric portion are contained in a sealed cylinder in which lubricating oil is sealed. A vertical rotary compressor that has an oil supply hole that is disposed on the upper and lower sides of the electric motor and the compression element and that opens on a side surface of the eccentric part.
A main bearing that becomes a wall surface of the compression element on the electric motor side and supports the rotating shaft;
A sub-bearing that becomes the wall surface of the compression element opposite to the electric motor and supports the rotating shaft;
A substantially cylindrical main thrust bearing located on the main bearing side and integrated with the eccentric portion;
A substantially cylindrical sub-thrust bearing located on the sub-bearing side and integrated with the eccentric portion;
An oil supply pump that pumps up the lubricating oil accumulated at the bottom of the sealed container by the rotating action of the rotating shaft and supplies the oil to the oil supply hole of the eccentric part,
A vertical rotary compressor characterized in that an oil supply hole of the eccentric portion is eccentrically arranged on the upper side with respect to a center in a height direction of the cylinder.
請求項1において、前記偏心部を、前記シリンダの高さ方向の中心に対して、上側に偏心して配置したことを特徴とする縦型ロータリ圧縮機。   The vertical rotary compressor according to claim 1, wherein the eccentric portion is eccentrically arranged on an upper side with respect to a center in a height direction of the cylinder. 請求項2において、前記偏心部の給油孔の上側への偏心量を前記偏心部の上側への偏心量より大きくしたことを特徴とする縦型ロータリ圧縮機。   3. The vertical rotary compressor according to claim 2, wherein an eccentric amount of the eccentric portion to the upper side of the oil supply hole is larger than an eccentric amount of the eccentric portion to the upper side. 請求項1において、前記偏心部の上下の外縁部にそれぞれテーパを設け、上側の前記テーパを下側の前記テーパよりも大きくしたことを特徴とする縦型ロータリ圧縮機。   2. The vertical rotary compressor according to claim 1, wherein a taper is provided on each of upper and lower outer edge portions of the eccentric portion, and the upper taper is larger than the lower taper. 潤滑油を封入してある密閉容器内に、電動機と、その電動機で駆動され略円柱状の偏心部を有する回転軸と、前記偏心部の偏心回転により公転運動するローラを略円筒状のシリンダ内に備えた圧縮要素とを備え、前記電動機と前記圧縮要素とを上下に配置すると共に前記偏心部の側面に開口する給油孔を有する縦型ロータリ圧縮機であって、
前記電動機側の前記圧縮要素の壁面となりかつ前記回転軸を軸支する主軸受と、
前記電動機と逆側の前記圧縮要素の壁面となりかつ前記回転軸を軸支する副軸受と、
前記主軸受側に位置し前記偏心部と一体となった略円柱状の主スラスト軸受と、
前記副軸受側に位置し前記偏心部と一体となった略円柱状の副スラスト軸受と、
前記密閉容器の底部に溜まった潤滑油を前記回転軸の回転作用で汲み上げて前記偏心部の給油孔に供給する給油ポンプとを備え、
前記偏心部を、前記シリンダの高さ方向の中心に対して、上側に偏心して配置したことを特徴とする縦型ロータリ圧縮機。
An electric motor, a rotary shaft driven by the electric motor and having a substantially cylindrical eccentric portion, and a roller that revolves by the eccentric rotation of the eccentric portion are contained in a sealed cylinder in which lubricating oil is sealed. A vertical rotary compressor that has an oil supply hole that is disposed on the upper and lower sides of the electric motor and the compression element and that opens on a side surface of the eccentric part.
A main bearing that becomes a wall surface of the compression element on the electric motor side and supports the rotating shaft;
A sub-bearing that becomes the wall surface of the compression element opposite to the electric motor and supports the rotating shaft;
A substantially cylindrical main thrust bearing located on the main bearing side and integrated with the eccentric portion;
A substantially cylindrical sub-thrust bearing located on the sub-bearing side and integrated with the eccentric portion;
An oil supply pump that pumps up the lubricating oil accumulated at the bottom of the sealed container by the rotating action of the rotating shaft and supplies the oil to the oil supply hole of the eccentric part,
A vertical rotary compressor characterized in that the eccentric portion is eccentrically arranged on the upper side with respect to the center in the height direction of the cylinder.
請求項5において、前記副スラスト軸受の高さを前記主スラスト軸受の高さよりも高くしたことを特徴とする縦型ロータリ圧縮機。   6. The vertical rotary compressor according to claim 5, wherein the height of the auxiliary thrust bearing is higher than the height of the main thrust bearing. 潤滑油を封入してある密閉容器内に、電動機と、その電動機で駆動され略円柱状の偏心部を回転角に対して互いに180゜ずれた位置で上下に2つ有する回転軸と、前記偏心部の偏心回転により公転運動するローラを略円筒状のシリンダ内に備えた2つの圧縮要素とを備え、前記電動機と前記圧縮要素とを上下に配置すると共に前記偏心部の側面に開口する給油孔を有する縦型ロータリ圧縮機であって、
前記2つの圧縮要素における上側に位置する第1圧縮要素の前記電動機側の壁面となりかつ前記回転軸を軸支する主軸受と、
前記2つの圧縮要素における下側に位置する第2圧縮要素の前記電動機と逆側の壁面となりかつ前記回転軸を軸支する副軸受と、
前記第1圧縮要素および前記第2の圧縮要素の壁面となる仕切板と、
前記主軸受側に位置し上側の前記偏心部と一体となった略円柱状の主スラスト軸受と、
前記副軸受側に位置し下側の前記偏心部と一体となった略円柱状の副スラスト軸受と、
前記密閉容器の底部に溜まった潤滑油を前記回転軸の回転作用で汲み上げて前記偏心部の給油孔に供給する給油ポンプとを備え、
前記第1圧縮要素における前記偏心部の給油孔を、前記第1圧縮要素における前記シリンダの高さ方向の中心に対して、上側に偏心して配置したことを特徴とする縦型ロータリ圧縮機。
An electric motor, a rotary shaft that is driven by the electric motor and has two substantially cylindrical eccentric parts at the top and bottom at positions shifted from each other by 180 ° with respect to the rotation angle, and the eccentric An oil supply hole provided with two compression elements provided in a substantially cylindrical cylinder with a roller that revolves by eccentric rotation of the part, and wherein the electric motor and the compression element are arranged vertically and open on a side surface of the eccentric part A vertical rotary compressor having
A main bearing serving as a wall surface on the motor side of the first compression element located on the upper side of the two compression elements and supporting the rotary shaft;
A secondary bearing which is a wall surface on the opposite side of the electric motor of the second compression element located on the lower side of the two compression elements and supports the rotating shaft;
A partition plate serving as wall surfaces of the first compression element and the second compression element;
A substantially cylindrical main thrust bearing located on the main bearing side and integrated with the upper eccentric portion;
A substantially cylindrical sub-thrust bearing located on the sub-bearing side and integrated with the lower eccentric portion;
An oil supply pump that pumps up the lubricating oil accumulated at the bottom of the sealed container by the rotating action of the rotating shaft and supplies the oil to the oil supply hole of the eccentric part,
The vertical rotary compressor characterized in that an oil supply hole of the eccentric portion in the first compression element is eccentrically arranged upward with respect to a center in the height direction of the cylinder in the first compression element.
請求項7において、前記第1圧縮要素における前記偏心部を、前記第1圧縮要素における前記シリンダの高さ方向の中心に対して、上側に偏心して配置したことを特徴とする縦型ロータリ圧縮機。   8. The vertical rotary compressor according to claim 7, wherein the eccentric portion of the first compression element is arranged eccentrically upward with respect to the center of the first compression element in the height direction of the cylinder. . 潤滑油を封入してある密閉容器内に、電動機と、その電動機で駆動され略円柱状の偏心部を回転角に対して互いに180゜ずれた位置で上下に2つ有する回転軸と、前記偏心部の偏心回転により公転運動するローラを略円筒状のシリンダ内に備えた2つの圧縮要素とを備え、前記電動機と前記圧縮要素とを上下に配置すると共に前記偏心部の側面に開口する給油孔を有する縦型ロータリ圧縮機であって、
前記2つの圧縮要素における上側に位置する第1圧縮要素の前記電動機側の壁面となりかつ前記回転軸を軸支する主軸受と、
前記2つの圧縮要素における下側に位置する第2圧縮要素の前記電動機と逆側の壁面となりかつ前記回転軸を軸支する副軸受と、
前記第1圧縮要素および前記第2の圧縮要素の壁面となる仕切板と、
前記主軸受側に位置し上側の前記偏心部と一体となった略円柱状の主スラスト軸受と、
前記副軸受側に位置し下側の前記偏心部と一体となった略円柱状の副スラスト軸受と、
前記密閉容器の底部に溜まった潤滑油を前記回転軸の回転作用で汲み上げて前記偏心部の給油孔に供給する給油ポンプとを備え、
前記第1圧縮要素における前記偏心部を、前記第1圧縮要素における前記シリンダの高さ方向の中心に対して、上側に偏心して配置したことを特徴とする縦型ロータリ圧縮機。
An electric motor, a rotary shaft that is driven by the electric motor and has two substantially cylindrical eccentric parts at the top and bottom at positions shifted from each other by 180 ° with respect to the rotation angle, and the eccentric An oil supply hole provided with two compression elements provided in a substantially cylindrical cylinder with a roller that revolves by eccentric rotation of the part, and wherein the electric motor and the compression element are arranged vertically and open on a side surface of the eccentric part A vertical rotary compressor having
A main bearing serving as a wall surface on the motor side of the first compression element located on the upper side of the two compression elements and supporting the rotary shaft;
A secondary bearing which is a wall surface on the opposite side of the electric motor of the second compression element located on the lower side of the two compression elements and supports the rotating shaft;
A partition plate serving as wall surfaces of the first compression element and the second compression element;
A substantially cylindrical main thrust bearing located on the main bearing side and integrated with the upper eccentric portion;
A substantially cylindrical sub-thrust bearing located on the sub-bearing side and integrated with the lower eccentric portion;
An oil supply pump that pumps up the lubricating oil accumulated at the bottom of the sealed container by the rotating action of the rotating shaft and supplies the oil to the oil supply hole of the eccentric part,
A vertical rotary compressor characterized in that the eccentric portion of the first compression element is arranged eccentrically upward with respect to the center of the cylinder in the height direction of the first compression element.
請求項9において、前記副スラスト軸受の高さを前記主スラスト軸受の高さよりも高くしたことを特徴とする縦型ロータリ圧縮機。   The vertical rotary compressor according to claim 9, wherein the height of the auxiliary thrust bearing is higher than the height of the main thrust bearing.
JP2007147977A 2007-06-04 2007-06-04 Vertical type rotary compressor Withdrawn JP2008298037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007147977A JP2008298037A (en) 2007-06-04 2007-06-04 Vertical type rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007147977A JP2008298037A (en) 2007-06-04 2007-06-04 Vertical type rotary compressor

Publications (1)

Publication Number Publication Date
JP2008298037A true JP2008298037A (en) 2008-12-11

Family

ID=40171768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007147977A Withdrawn JP2008298037A (en) 2007-06-04 2007-06-04 Vertical type rotary compressor

Country Status (1)

Country Link
JP (1) JP2008298037A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013181420A (en) * 2012-02-29 2013-09-12 Fujitsu General Ltd Rotary compressor
KR101528646B1 (en) * 2009-04-09 2015-06-12 엘지전자 주식회사 2-stage rotary compressor
JP2016089625A (en) * 2014-10-29 2016-05-23 日立アプライアンス株式会社 Rotary compressor
JP2016160789A (en) * 2015-02-27 2016-09-05 東芝キヤリア株式会社 Rotary compressor and refrigerating cycle device
JP2017524870A (en) * 2014-08-14 2017-08-31 ベーエスハー ハウスゲレーテ ゲゼルシャフト ミット ベシュレンクテル ハフツングBSH Hausgeraete GmbH Rotary compressor, heat pump, and household equipment
JP2017150425A (en) * 2016-02-26 2017-08-31 パナソニックIpマネジメント株式会社 Two-cylinder type sealed compressor
KR101983495B1 (en) * 2018-01-30 2019-08-28 엘지전자 주식회사 A Rotary Compressor Having A Groove For Lubricating The Eccentric Part
JPWO2021020017A1 (en) * 2019-07-31 2021-02-04
CN112576502A (en) * 2020-12-03 2021-03-30 珠海格力节能环保制冷技术研究中心有限公司 Pump body assembly, compressor and air conditioner with same
JP7228730B1 (en) 2022-06-10 2023-02-24 日立ジョンソンコントロールズ空調株式会社 Rotary compressor and air conditioner

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101528646B1 (en) * 2009-04-09 2015-06-12 엘지전자 주식회사 2-stage rotary compressor
JP2013181420A (en) * 2012-02-29 2013-09-12 Fujitsu General Ltd Rotary compressor
JP2017524870A (en) * 2014-08-14 2017-08-31 ベーエスハー ハウスゲレーテ ゲゼルシャフト ミット ベシュレンクテル ハフツングBSH Hausgeraete GmbH Rotary compressor, heat pump, and household equipment
JP2016089625A (en) * 2014-10-29 2016-05-23 日立アプライアンス株式会社 Rotary compressor
JP2016160789A (en) * 2015-02-27 2016-09-05 東芝キヤリア株式会社 Rotary compressor and refrigerating cycle device
JP2017150425A (en) * 2016-02-26 2017-08-31 パナソニックIpマネジメント株式会社 Two-cylinder type sealed compressor
CN107131128A (en) * 2016-02-26 2017-09-05 松下知识产权经营株式会社 Double cylinder type closed compressors
EP3214312A1 (en) * 2016-02-26 2017-09-06 Panasonic Intellectual Property Management Co., Ltd. Two-cylinder hermetic compressor
US10233928B2 (en) 2016-02-26 2019-03-19 Panasonic Intellectual Property Management Co., Ltd. Two-cylinder hermetic compressor
US10982675B2 (en) 2018-01-30 2021-04-20 Lg Electronics Inc. Rotary compressor with groove for supplying oil
KR101983495B1 (en) * 2018-01-30 2019-08-28 엘지전자 주식회사 A Rotary Compressor Having A Groove For Lubricating The Eccentric Part
JPWO2021020017A1 (en) * 2019-07-31 2021-02-04
WO2021020017A1 (en) * 2019-07-31 2021-02-04 東芝キヤリア株式会社 Multi-stage rotary compressor, and refrigeration cycle device
CN114174683A (en) * 2019-07-31 2022-03-11 东芝开利株式会社 Multistage rotary compressor and refrigeration cycle device
JP7232914B2 (en) 2019-07-31 2023-03-03 東芝キヤリア株式会社 Multi-stage rotary compressor and refrigeration cycle device
CN114174683B (en) * 2019-07-31 2024-02-13 东芝开利株式会社 Multistage rotary compressor and refrigeration cycle device
CN112576502A (en) * 2020-12-03 2021-03-30 珠海格力节能环保制冷技术研究中心有限公司 Pump body assembly, compressor and air conditioner with same
CN112576502B (en) * 2020-12-03 2022-05-17 珠海格力节能环保制冷技术研究中心有限公司 Pump body assembly, compressor and air conditioner with same
JP7228730B1 (en) 2022-06-10 2023-02-24 日立ジョンソンコントロールズ空調株式会社 Rotary compressor and air conditioner
JP2023180875A (en) * 2022-06-10 2023-12-21 日立ジョンソンコントロールズ空調株式会社 Rotary compressor and air conditioner

Similar Documents

Publication Publication Date Title
JP2008298037A (en) Vertical type rotary compressor
EP2050966B1 (en) Compressor
US20080304994A1 (en) Scroll Fluid Machine
KR101947305B1 (en) Scroll compressor
WO2012001966A1 (en) Rotary compressor
JP6463465B2 (en) Scroll compressor
JP2017166366A (en) Scroll compressor
KR20140142046A (en) Scroll compressor
WO2016046877A1 (en) Scroll compressor
JP6134903B2 (en) Positive displacement compressor
JP5984333B2 (en) Rotary compressor
JP2008121481A (en) Scroll fluid machine
JP2008050986A (en) Hermetic scroll compressor
WO2015177851A1 (en) Scroll compressor
KR20010014606A (en) Positive displacement fluid machine
WO2015155802A1 (en) Scroll compressor
CN110168225A (en) Compressor
JP6049270B2 (en) Rotary compressor
JP2007146705A (en) Scroll compressor
WO2018198811A1 (en) Rolling-cylinder-type displacement compressor
JP2003184774A (en) Compressor
JP6017023B2 (en) Vane type compressor
JP5331650B2 (en) Scroll compressor
JP5278228B2 (en) Scroll compressor
JP7138807B2 (en) scroll compressor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100907