JP2008297569A - Surface-treated copper foil - Google Patents

Surface-treated copper foil Download PDF

Info

Publication number
JP2008297569A
JP2008297569A JP2007141885A JP2007141885A JP2008297569A JP 2008297569 A JP2008297569 A JP 2008297569A JP 2007141885 A JP2007141885 A JP 2007141885A JP 2007141885 A JP2007141885 A JP 2007141885A JP 2008297569 A JP2008297569 A JP 2008297569A
Authority
JP
Japan
Prior art keywords
copper foil
component
treated
zinc
treated copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007141885A
Other languages
Japanese (ja)
Other versions
JP5074822B2 (en
Inventor
Kazufumi Izumida
一史 泉田
Seiji Nagatani
誠治 永谷
Hiroshi Watanabe
渡辺  弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2007141885A priority Critical patent/JP5074822B2/en
Publication of JP2008297569A publication Critical patent/JP2008297569A/en
Application granted granted Critical
Publication of JP5074822B2 publication Critical patent/JP5074822B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface-treated copper foil which does not contain chromium in a surface-treated layer, and is superior in the peel strength of a circuit and a deterioration rate of the chemical resistance of the peel strength after having been formed into a printed circuit board. <P>SOLUTION: The surface-treated copper foil for accomplishing the above object has a surface-treated layer provided on a surface to be laminated of the copper foil which is used for manufacturing a copper-clad laminate by laminating the copper foil with an insulative resin substrate. The surface-treated layer is obtained by the steps of: depositing a zinc component onto the surface to be laminated of the copper foil; depositing a high-melting metal component having a melting point of 1,400&deg;C or higher on the surface; and further depositing a carbon component on the surface. At least the high-melting metal component and the carbon component of the surface-treated copper foil are formed by using a physical vapor deposition method. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本件発明は、表面処理銅箔に関する。特に、表面処理銅箔の表面処理層の形成に物理蒸着法を用いて得られるプリント配線板製造用の表面処理銅箔に関する。   The present invention relates to a surface-treated copper foil. In particular, the present invention relates to a surface-treated copper foil for producing a printed wiring board obtained by using a physical vapor deposition method for forming a surface-treated layer of a surface-treated copper foil.

従来から、銅張積層板からプリント配線板へ加工するプロセスには、溶液によるエッチングプロセスが多く採用されてきた。従って、銅張積層板の段階での絶縁樹脂基板に対する銅箔の密着性、プリント配線板に加工されて以降の回路と絶縁樹脂基板との密着性も良好であることが要求されてきた。   Conventionally, an etching process using a solution has been often employed as a process for processing a copper-clad laminate to a printed wiring board. Accordingly, it has been required that the adhesion of the copper foil to the insulating resin substrate at the stage of the copper-clad laminate and the adhesion between the circuit and the insulating resin substrate after being processed into a printed wiring board are also good.

このような要求を満足させるため、プリント配線板の製造に用いる銅箔の接着面には、種々の表面処理が施され、絶縁樹脂基材との密着性を向上させることが行われてきた。そして、従来のプリント配線板用銅箔の防錆元素、表面改質元素としてクロム成分が、クロムメッキ又はクロメート処理等として広く使用されてきた。特に、クロメート処理は、近年市場にある銅箔の殆どに使用されている。   In order to satisfy such a requirement, various surface treatments have been applied to the adhesive surface of the copper foil used for the production of the printed wiring board to improve the adhesion with the insulating resin substrate. And the chromium component is widely used as chromium plating or chromate treatment etc. as a rust prevention element of the copper foil for conventional printed wiring boards, and a surface modification element. In particular, chromate treatment has been used for most copper foils on the market in recent years.

表面処理成分としてクロム成分を用いたものを例示すると、例えば、特許文献1には、基材との密着性(基材と銅箔との接着強度)、耐湿性、耐薬品性、耐熱性に優れたプリント配線板用銅箔であって、銅箔の片面又は両面に蒸着形成された金属クロム層、例えばスパッタリング法により蒸着形成された金属クロム層を有するプリント配線板用銅箔、並びに銅箔の片面が剥離層を介してキャリア上に保持されており、該銅箔の反対面に蒸着形成された金属クロム層、例えばスパッタリング法により蒸着形成された金属クロム層を有しているプリント配線板用銅箔が開示されている。   For example, Patent Document 1 discloses adhesion to a base material (adhesive strength between the base material and copper foil), moisture resistance, chemical resistance, and heat resistance. An excellent copper foil for printed wiring board, comprising a metal chromium layer deposited on one or both sides of the copper foil, for example, a copper foil for printed wiring board having a metal chromium layer deposited by sputtering, and copper foil A printed wiring board having a metal chromium layer deposited on the opposite surface of the copper foil, for example, a metal chromium layer deposited by sputtering, on one side of Copper foil for use is disclosed.

また、特許文献2には、プリント配線板の製造に用いる銅箔の基材との接着強度を増大させる目的で用いるシランカップリング剤の性能を最大限に引き出した銅箔として、防錆処理として、銅箔表面に亜鉛又は亜鉛合金層を形成し、当該亜鉛又は亜鉛合金層の表面に電解クロメート層を形成し、当該電解クロメート層を乾燥させることなく、当該電解クロメート層の上にシランカップリング剤吸着層を形成し、乾燥させることにより得られるプリント配線板用の表面処理銅箔が開示されている。   Moreover, in patent document 2, as copper foil which pulled out the performance of the silane coupling agent used for the purpose of increasing the adhesive strength with the base material of the copper foil used for manufacture of a printed wiring board, as rust prevention processing , Forming a zinc or zinc alloy layer on the copper foil surface, forming an electrolytic chromate layer on the surface of the zinc or zinc alloy layer, and drying the electrolytic chromate layer on the electrolytic chromate layer without silane coupling The surface-treated copper foil for printed wiring boards obtained by forming and drying an agent adsorption layer is disclosed.

このように表面処理成分として用いるクロム成分は、クロム化合物として存在する場合には酸化数が三価又は六価となる。そして、生物に対する毒性は、六価クロムの方がはるかに高く、また土壌中での移動性も六価クロム化合物の方が大きく、環境負荷の高いものである。   Thus, when the chromium component used as the surface treatment component is present as a chromium compound, the oxidation number is trivalent or hexavalent. The toxicity to living organisms is much higher with hexavalent chromium, and the mobility in soil is greater with hexavalent chromium compounds, which has a higher environmental impact.

このクロムのような人体に対して影響を与えるような有害な物質を含む廃棄物に関しては、その国境を越える移動が、1970年代から世界的に起きてきた。その結果、先進国からの有害廃棄物が開発途上国に放置されて環境汚染が生じるなどの問題が発生してきた。そこで、1980年代に、一定の廃棄物の国境を越える移動等の規制についての国際的な枠組み及び手続等を規定した「有害廃棄物の国境を越える移動及びその処分の規制に関するバーゼル条約」が作成され、我国でも1993年に効力を生じている。   With regard to waste containing harmful substances that have an effect on the human body such as chromium, movement across the border has occurred worldwide since the 1970s. As a result, problems such as environmental pollution caused by leaving hazardous waste from developed countries in developing countries have arisen. Therefore, in the 1980s, the “Basel Convention on the Control of Hazardous Waste Crossing the Border and its Disposal” was created, which stipulates the international framework and procedures for the regulation of the movement of certain waste across the border. In Japan, it became effective in 1993.

近年では、EU(欧州連合)のELV指令では、EU市場で登録される新車について、鉛、6価クロム、水銀、カドミウムの環境負荷物質を2003年07月01日以降使用を禁止する案が採択され、三価クロムの積極使用が提唱されている。また、電気・電子業界では欧州のWEEE(Waste Electrical and Electronic Equipment)指令とRoHS(Restriction on Hazardous Substances)指令が最終合意され、廃電気電子機器に使用される特定有害物質として6価クロム(Cr6+)を初めとする6物質を、分別回収しても環境リスクが残る物質として使用を制限することになり、プリント配線板も、その規制対象物となる。 In recent years, the EU (European Union) ELV Directive adopted a plan to prohibit the use of environmentally hazardous substances such as lead, hexavalent chromium, mercury, and cadmium on or after July 01, 2003 for new vehicles registered in the EU market. The active use of trivalent chromium has been proposed. In the electrical and electronic industry, the European WEEE (Waste Electrical and Electronic Equipment) Directive and the RoHS (Restriction on Hazardous Substitutes) Directive were finally agreed, and hexavalent chromium (Cr 6+ ) And other 6 substances are restricted to use as substances that remain environmental risks even after separate collection, and printed wiring boards are also subject to regulation.

更に、近年の環境問題に対する意識の高まりから、3価クロムを用いても、廃棄処理を間違うと六価クロムに転化したり、分析手法を誤ると六価クロムと判断されるおそれもある。このようなことを考えるに、クロムという成分自体を使用しないプリント配線板用銅箔を用いることが検討されてきた。   Furthermore, due to the recent increase in awareness of environmental problems, even if trivalent chromium is used, there is a risk that it will be converted to hexavalent chromium if the waste treatment is wrong, or that it will be judged to be hexavalent chromium if the analytical method is incorrect. In consideration of such a situation, it has been studied to use a copper foil for a printed wiring board which does not use a component called chromium.

例えば、特許文献3では、少なくとも一面に接着性促進層を有する金属箔であって、該接着性促進層が、少なくとも1つのシランカップリング剤を含有し、クロムが存在しないことによって特徴づけられ、該接着性促進層の下に形成される該金属箔のベース表面が、表面粗さが加えられないこと、または該ベース表面に付着した亜鉛層もしくはクロム層が存在しないことによって特徴づけられる金属箔として、クロムを使用しない銅箔を含む概念が開示されている。その前記金属箔の前記一面と、前記接着性促進層との間に設けられ、該金属層中の金属が、インジウム、錫、ニッケル、コバルト、真鍮、青銅、または2個以上のこれらの金属の混合物からなる群から選択されるもの、また、前記金属箔の前記一面と、前記接着性促進層との間に設けられ、該金属層中の金属が、錫、クロム−亜鉛混合物、ニッケル、モリブデン、アルミニウム、および2個以上のこれらの金属の混合物からなる群から選択される金属箔を開示している。   For example, Patent Document 3 is a metal foil having an adhesion promoting layer on at least one surface, wherein the adhesion promoting layer contains at least one silane coupling agent and is characterized by the absence of chromium, Metal foil characterized by the fact that the base surface of the metal foil formed under the adhesion promoting layer has no surface roughness added or there is no zinc or chromium layer attached to the base surface The concept including the copper foil which does not use chromium is disclosed. Provided between the one surface of the metal foil and the adhesion promoting layer, the metal in the metal layer being indium, tin, nickel, cobalt, brass, bronze, or two or more of these metals One selected from the group consisting of a mixture, and provided between the one surface of the metal foil and the adhesion promoting layer, the metal in the metal layer being tin, chromium-zinc mixture, nickel, molybdenum Discloses a metal foil selected from the group consisting of aluminum, and mixtures of two or more of these metals.

特開2000−340911号公報JP 2000-340911 A 特開2001−177204号公報JP 2001-177204 A 特開平7−170064号公報JP-A-7-170064

一般的に防錆処理層は、大気酸化から銅箔を保護し、長期保存性を確保するために用いる。ところが、この防錆処理層の種類により、基材樹脂との密着性が変化し、特にプリント配線板に加工して以降の回路の引き剥がし強さ、当該引き剥がし強さの耐薬品性劣化率、耐吸湿劣化率等に大きな影響を与える。   In general, the antirust treatment layer is used to protect the copper foil from atmospheric oxidation and to ensure long-term storage. However, the adhesion to the base resin changes depending on the type of the rust-proofing layer, especially the circuit peeling strength after processing into a printed wiring board, the chemical resistance deterioration rate of the peeling strength. It has a great influence on the moisture absorption deterioration rate.

以上のことから、電解銅箔の表面処理層にクロムを用いることなく、プリント配線板に加工して以降の回路の引き剥がし強さ、当該引き剥がし強さの耐薬品性劣化率、耐吸湿劣化率等の基本的要件を満足する表面処理銅箔が望まれてきた。   From the above, without using chromium for the surface treatment layer of the electrolytic copper foil, the peel strength of the circuit after processing into a printed wiring board, the chemical resistance deterioration rate of the peel strength, the moisture absorption deterioration A surface-treated copper foil that satisfies basic requirements such as rate has been desired.

そこで、本件発明者等は、鋭意研究の結果、以下に述べるクロムフリーの表面処理銅箔を用いることで、絶縁樹脂基材と良好な密着性を得ることが出来ることに想到した。以下、本件発明に係る表面処理銅箔に関して説明する。   Accordingly, as a result of intensive studies, the inventors of the present invention have conceived that good adhesion to an insulating resin substrate can be obtained by using a chromium-free surface-treated copper foil described below. Hereinafter, the surface-treated copper foil according to the present invention will be described.

本件発明に係る表面処理銅箔は、絶縁樹脂基材と張り合わせて銅張積層板を製造する際に用いる銅箔の張り合わせ面に表面処理層を設けた表面処理銅箔であって、当該表面処理層は、銅箔の張り合わせ面に亜鉛成分を付着させ、融点1400℃以上の高融点金属成分を付着させ、更に炭素成分を付着させて得られることを特徴とするものである。   The surface-treated copper foil according to the present invention is a surface-treated copper foil in which a surface-treated layer is provided on a laminated surface of a copper foil used when producing a copper-clad laminate by laminating with an insulating resin base material. The layer is obtained by attaching a zinc component to the bonding surface of the copper foil, attaching a refractory metal component having a melting point of 1400 ° C. or higher, and further attaching a carbon component.

そして、本件発明に係る表面処理銅箔において、前記銅箔の張り合わせ面へ付着させる亜鉛成分は、電解法又は物理蒸着法を用いて1nm〜5nmの換算厚さ分を付着させることが好ましい。   And in the surface-treated copper foil which concerns on this invention, it is preferable that the zinc component made to adhere to the bonding surface of the said copper foil makes the equivalent thickness of 1 nm-5 nm adhere using an electrolytic method or a physical vapor deposition method.

また、本件発明に係る表面処理銅箔において、前記銅箔の張り合わせ面へ付着させる融点1400℃以上の高融点金属成分は、物理蒸着法を用いて5nm〜10nmの換算厚さ分を付着させることが好ましい。   Moreover, in the surface-treated copper foil according to the present invention, the refractory metal component having a melting point of 1400 ° C. or higher to be adhered to the bonding surface of the copper foil is deposited by an equivalent thickness of 5 nm to 10 nm using a physical vapor deposition method. Is preferred.

更に、本件発明に係る表面処理銅箔において、前記融点1400℃以上の高融点金属成分は、チタン成分又はニッケル成分のいずれかを用いることが好ましい。   Furthermore, in the surface-treated copper foil according to the present invention, the refractory metal component having a melting point of 1400 ° C. or higher is preferably a titanium component or a nickel component.

そして、本件発明に係る表面処理銅箔において、前記銅箔の張り合わせ面へ付着させる炭素成分は、物理蒸着法を用いて1nm〜5nmの換算厚さ分を付着させることが好ましい。   And in the surface-treated copper foil which concerns on this invention, it is preferable that the carbon component made to adhere to the bonding surface of the said copper foil makes 1 nm-5nm equivalent thickness adhere using a physical vapor deposition method.

本件発明に係る表面処理銅箔において、前記銅箔は、その張り合わせ面に、粗化処理を施すことなく、表面粗さ(Rzjis)が2.0μm以下のものを用いることが好ましい。   In the surface-treated copper foil according to the present invention, it is preferable to use a copper foil having a surface roughness (Rzjis) of 2.0 μm or less without applying a roughening process to the bonded surface.

本件発明に係る表面処理銅箔は、絶縁樹脂基材に対する張り合わせ面として用いる銅箔の表面に、亜鉛成分、融点1400℃以上の高融点金属成分、更に炭素成分、の各成分を順次を付着させて得られるものである。そして、この亜鉛成分、融点1400℃以上の高融点金属成分、炭素成分の各成分の付着を行うに際して、物理蒸着法を積極的に使用している。物理蒸着法を採用することで、電気化学的手法を用いた場合と異なり、同一平面内での膜厚均一性に優れ、組成的なバラツキの無い表面処理層の形成が可能になる。従って、表面処理層の形成を、従来から使用してきた電気化学的手法でなく、物理蒸着法を積極的に用いることで、従来電解銅箔の表面処理とは全く異なる表面処理層の形成が可能になる。本件発明に係る表面処理銅箔を用いることで、銅箔の張り合わせ面に粗化処理を施して絶縁樹脂基材に対するアンカー効果を得なくても、銅張積層板に加工したときの銅箔(12μm厚さ以上)の密着性及びプリント配線板に加工したときの回路の密着性を、実用上支障の無い0.6kgf/cm以上(を基準とした値)の引き剥がし強さとすることが出来る。   In the surface-treated copper foil according to the present invention, each component of a zinc component, a refractory metal component having a melting point of 1400 ° C. or higher, and a carbon component is sequentially attached to the surface of the copper foil used as a bonding surface for the insulating resin substrate. Is obtained. Then, when depositing each component of the zinc component, the high melting point metal component having a melting point of 1400 ° C. or higher, and the carbon component, the physical vapor deposition method is actively used. By employing the physical vapor deposition method, unlike the case of using the electrochemical method, it is possible to form a surface treatment layer having excellent film thickness uniformity in the same plane and having no compositional variation. Therefore, it is possible to form a surface treatment layer that is completely different from the surface treatment of conventional electrolytic copper foil by actively using physical vapor deposition instead of the conventional electrochemical method. become. By using the surface-treated copper foil according to the present invention, the copper foil when processed into a copper-clad laminate without roughening the bonded surface of the copper foil and obtaining an anchor effect on the insulating resin substrate ( 12 μm thickness or more) and circuit adhesion when processed into a printed wiring board can be set to a peel strength of 0.6 kgf / cm or more (value based on) with no practical problem. .

以下、本件発明に係る表面処理銅箔の形態に関して説明する。本件発明に係る表面処理銅箔は、絶縁樹脂基材と張り合わせて銅張積層板を製造する際に用いる銅箔の張り合わせ面に表面処理層を設けた表面処理銅箔である。従って、少なくとも銅箔の張り合わせ面に表面処理層を備えることが必要であるが、表面処理銅箔としての長期保存性を確保するため、その反対面にも防錆効果を得るための表面処理層を設けてもよい。このとき反対面に設ける表面処理層としては、張り合わせ面と同様の表面処理層を設けても構わない。しかし、その反対面の表面処理に防錆効果のみを期待するのであれば、コスト面を考慮して、亜鉛を含んだ無機防錆、ベンゾトリアゾールやイミダゾール等を用いた有機防錆等の使用が可能である。   Hereinafter, the form of the surface-treated copper foil according to the present invention will be described. The surface-treated copper foil according to the present invention is a surface-treated copper foil in which a surface-treated layer is provided on a laminated surface of a copper foil used when a copper-clad laminate is manufactured by laminating with an insulating resin base material. Therefore, it is necessary to provide a surface treatment layer at least on the bonding surface of the copper foil, but in order to ensure long-term storage as the surface treatment copper foil, a surface treatment layer for obtaining a rust prevention effect on the opposite surface May be provided. At this time, as the surface treatment layer provided on the opposite surface, a surface treatment layer similar to the bonded surface may be provided. However, if only the antirust effect is expected for the surface treatment on the opposite side, the use of inorganic rust prevention containing zinc, organic rust prevention using benzotriazole, imidazole, etc. in consideration of cost Is possible.

そして、本件発明に係る表面処理銅箔は、表面処理層を備えていない未処理の銅箔を使用して得られるものである。ここで言う銅箔とは、その製造方法を問わず、電解銅箔、圧延銅箔のいずれの使用も可能である。また、このときの銅箔厚さに関しても、特段の限定はなく、用途に応じて任意の厚さの銅箔の使用が可能である。一般的には、6μm〜300μmの範囲の厚さの銅箔が使用される。そして、6μm未満の厚さの銅箔に関しては、キャリア箔と極薄銅箔とが、接合界面を介して一時的に張り合わされた状態を形成して、キャリア箔に支持された状態の極薄銅箔(キャリア箔付銅箔)としての使用が好ましい。   And the surface treatment copper foil which concerns on this invention is obtained using the untreated copper foil which is not provided with the surface treatment layer. The copper foil referred to here can be any of an electrolytic copper foil and a rolled copper foil regardless of the production method. Moreover, there is no special limitation also about the copper foil thickness at this time, The use of copper foil of arbitrary thickness is possible according to a use. In general, a copper foil having a thickness in the range of 6 μm to 300 μm is used. And about the copper foil of thickness less than 6 micrometers, a carrier foil and an ultra-thin copper foil form the state temporarily bonded together via the joining interface, and the ultra-thin state of the state supported by the carrier foil Use as copper foil (copper foil with carrier foil) is preferred.

以上に述べてきた銅箔の絶縁樹脂基材との張り合わせ面に設ける表面処理層に関して説明する。まず、銅箔の張り合わせ面に亜鉛成分を付着させる。この亜鉛は、無粗化の銅箔と絶縁樹脂基材との密着性の向上に顕著に寄与する。この亜鉛がなければ、表面処理銅箔の絶縁樹脂基材への密着性が得られない。このときの銅箔表面への亜鉛層の付着方法は、電気化学的手法、物理蒸着法のいずれを用いても構わない。例えば、電気化学的に亜鉛付着を行う場合には、当該銅箔を、ピロ燐酸亜鉛メッキ浴、シアン化亜鉛メッキ浴、硫酸亜鉛メッキ浴等の公知の亜鉛メッキ浴に浸漬して、電解してメッキ法で亜鉛付着させることができる。また、物理蒸着法を用いる場合には、例えば、スパッタリング蒸着法を用いる。このとき、ターゲットとして亜鉛ターゲットを用い、到達真空度Puは1×10−4Pa未満、スパッタリング圧PArは0.1Pa、スパッタリング電力30kWの条件等が採用できる。 The surface treatment layer provided on the bonding surface of the copper foil described above with the insulating resin base material will be described. First, a zinc component is adhered to the bonding surface of the copper foil. This zinc significantly contributes to improving the adhesion between the non-roughened copper foil and the insulating resin substrate. Without this zinc, the adhesion of the surface-treated copper foil to the insulating resin substrate cannot be obtained. At this time, either an electrochemical method or a physical vapor deposition method may be used as the method for attaching the zinc layer to the copper foil surface. For example, when performing zinc adhesion electrochemically, the copper foil is immersed in a known zinc plating bath such as a zinc pyrophosphate plating bath, a zinc cyanide plating bath, or a zinc sulfate plating bath, and electrolyzed. Zinc can be deposited by plating. Moreover, when using physical vapor deposition, sputtering vapor deposition is used, for example. At this time, a zinc target is used as a target, and the ultimate vacuum Pu is less than 1 × 10 −4 Pa, the sputtering pressure PAr is 0.1 Pa, and the sputtering power is 30 kW.

そして、このときの亜鉛付着量は、1nm〜5nmの換算厚さ分を付着させことが好ましい。亜鉛付着量が1nm未満の場合には、亜鉛を付着させる効果が得られず、融点1400℃以上の高融点金属成分と炭素成分とのみを付着させた状態となり、その表面処理層を備える表面処理銅箔では絶縁樹脂基材との良好な密着性が得られない。一方、亜鉛付着量が5nmを超える場合には、亜鉛付着量が多くなりすぎて、プリント配線板に加工する際にエッチング液等の溶液が、銅箔回路と絶縁樹脂基材との界面を浸食しやすくなる。即ち、引き剥がし強さの耐薬品性能が劣化する。なお、ここで換算厚さとは、完全にフラットな平面に均一に付着したと考え、算出した厚さのことである。従って、本件発明に係る表面処理銅箔の一定の面積の試料を採取し、表面処理銅箔を酸溶液等に溶解し、この溶液内の亜鉛濃度を発光分光分析装置等で分析し、得られた数値を基に換算厚さを算出できる。   And as for the zinc adhesion amount at this time, it is preferable to adhere the equivalent thickness of 1 nm-5 nm. When the amount of zinc deposited is less than 1 nm, the effect of depositing zinc is not obtained, and only a refractory metal component having a melting point of 1400 ° C. or higher and a carbon component are deposited, and the surface treatment is provided with the surface treatment layer. With copper foil, good adhesion to the insulating resin substrate cannot be obtained. On the other hand, when the amount of zinc adhered exceeds 5 nm, the amount of zinc adhered becomes too large, and a solution such as an etching solution erodes the interface between the copper foil circuit and the insulating resin substrate when processed into a printed wiring board. It becomes easy to do. That is, the chemical resistance performance of the peel strength deteriorates. Here, the converted thickness is a thickness calculated on the assumption that the film is uniformly attached to a completely flat plane. Therefore, a sample of a certain area of the surface-treated copper foil according to the present invention is collected, the surface-treated copper foil is dissolved in an acid solution, etc., and the zinc concentration in this solution is analyzed by an emission spectroscopic analyzer or the like. The converted thickness can be calculated based on the obtained numerical values.

銅箔の表面への亜鉛の付着が終了すると、続いて融点1400℃以上の高融点金属成分を付着させる。このときの融点1400℃以上の高融点金属成分は、物理蒸着法を用いて付着させることが好ましい。亜鉛及び炭素のみの付着の場合には、表面処理銅箔の絶縁樹脂基材への密着状態が、銅張積層板の面内の測定位置によるバラツキが大きくなり、好ましくない。そして、ここで言う融点1400℃以上の高融点金属成分とは、ニッケル、チタン、コバルト、ジルコニウム、タングステンのいずれかを用いることが好ましい。しかしながら、プリント配線板の製造プロセスを考慮し、エッチングで除去する等の種々の条件を考え合わせると、ニッケル又はチタンを用いることがより好ましい。   When the adhesion of zinc to the surface of the copper foil is completed, a refractory metal component having a melting point of 1400 ° C. or higher is subsequently adhered. At this time, the refractory metal component having a melting point of 1400 ° C. or higher is preferably attached by physical vapor deposition. In the case of adhesion of only zinc and carbon, the state of close contact of the surface-treated copper foil with the insulating resin base material is not preferable because variation due to the measurement position within the surface of the copper clad laminate increases. As the high melting point metal component having a melting point of 1400 ° C. or higher, any one of nickel, titanium, cobalt, zirconium, and tungsten is preferably used. However, in consideration of the manufacturing process of the printed wiring board and considering various conditions such as removal by etching, it is more preferable to use nickel or titanium.

そして、この融点1400℃以上の高融点金属成分は、物理蒸着法を用いて亜鉛成分を付着させた銅箔表面に付着させる。このときもスパッタリング蒸着法を用いることが好ましい。このとき、スパッタリング蒸着条件に特段の限定はないが、ニッケルターゲット、チタンターゲット等を用い、到達真空度Puは1×10−4Pa未満、スパッタリング圧PArは0.1Pa〜3.0Pa、スパッタリング電力10kW〜60kW、スパッタ種にはアルゴンイオン(又は窒素イオン)の条件等が採用できる。 The refractory metal component having a melting point of 1400 ° C. or higher is attached to the surface of the copper foil to which the zinc component is attached using physical vapor deposition. Also at this time, it is preferable to use the sputtering deposition method. At this time, the sputtering vapor deposition conditions are not particularly limited, but a nickel target, a titanium target, or the like is used, the ultimate vacuum Pu is less than 1 × 10 −4 Pa, the sputtering pressure PAr is 0.1 Pa to 3.0 Pa, and the sputtering power. The conditions of 10 kW to 60 kW and argon ions (or nitrogen ions) or the like can be adopted as the sputtering type.

そして、このときの融点1400℃以上の高融点金属成分(以下、単に「高融点金属成分」と称する。)は、5nm〜10nmの換算厚さ分を付着させることが好ましい。高融点金属成分付着量が5nm未満の場合には、高融点金属成分を付着させる効果が得られず、表面処理銅箔と絶縁樹脂基材との良好な密着性が得られない。一方、高融点金属成分量が10nmを超える場合には、高融点金属成分付着量が多くなりすぎて、プリント配線板に加工する際にエッチング液等による溶解除去が困難となるため、エッチング時間が長くなり、良好なエッチングファクターを備えるファインピッチ回路の形成が困難となる。なお、高融点金属成分の換算厚さの測定方法は、上述した亜鉛成分の場合と同様である。   At this time, it is preferable that the refractory metal component having a melting point of 1400 ° C. or higher (hereinafter simply referred to as “refractory metal component”) is attached in an equivalent thickness of 5 nm to 10 nm. When the adhesion amount of the refractory metal component is less than 5 nm, the effect of attaching the refractory metal component cannot be obtained, and good adhesion between the surface-treated copper foil and the insulating resin substrate cannot be obtained. On the other hand, when the amount of the refractory metal component exceeds 10 nm, the amount of the refractory metal component attached becomes too large, and it becomes difficult to dissolve and remove with an etching solution or the like when processing the printed wiring board. It becomes long and it becomes difficult to form a fine pitch circuit having a good etching factor. In addition, the measuring method of the conversion thickness of a refractory metal component is the same as that of the case of the zinc component mentioned above.

以上のようにして、銅箔表面に亜鉛成分、高融点金属成分の順で付着させる。その後、その表面に炭素成分を付着させる。このように、亜鉛成分、高融点金属成分と併せて、炭素成分を付着させることで、表面処理銅箔と絶縁樹脂層との密着性が良好になり、しかも、安定化する。そして、この炭素成分の付着は、物理蒸着法を用いて行う。このときの手法に関して特段の限定はないが、スパッタリング蒸着法を用いる場合には、炭素ターゲット材にアルゴンイオン等を衝突させ、銅箔の表面に炭素成分を着地させる。   As described above, the zinc component and the refractory metal component are adhered to the copper foil surface in this order. Thereafter, a carbon component is attached to the surface. Thus, by adhering the carbon component together with the zinc component and the refractory metal component, the adhesion between the surface-treated copper foil and the insulating resin layer is improved and stabilized. The carbon component is attached using a physical vapor deposition method. Although there is no special limitation regarding the method at this time, when using a sputtering vapor deposition method, argon ions etc. are made to collide with a carbon target material, and a carbon component is made to land on the surface of copper foil.

そして、このときの炭素成分は、1nm〜5nmの換算厚さ分を付着させることが好ましい。炭素成分付着量が1nm未満の場合には、炭素を付着させた効果が得られず、亜鉛成分と高融点金属成分とのみを付着させた状態となり、表面処理銅箔と絶縁樹脂基材との良好な密着性が得られない。一方、炭素成分量が5nmを超える場合には、炭素成分付着量が多くなりすぎて、プリント配線板に加工した場合には、銅箔回路の下面に導体抵抗を上昇させる炭素成分が多くなるため好ましくない。なお、炭素成分の換算厚さの測定方法は、本件発明に係る表面処理銅箔の試料片を、ガス分析装置の高温酸素気流中に置き、その気流中の酸素と炭素成分とを反応させ、一酸化炭素及び二酸化炭素ガスに変換して、この一酸化炭素及び二酸化炭素ガス量を測定して、単位面積あたりの炭素成分量を求める、更に単位面積あたりの厚さに換算するものである。   And it is preferable that the carbon component at this time adheres the equivalent thickness of 1 nm-5 nm. When the carbon component adhesion amount is less than 1 nm, the effect of adhering carbon cannot be obtained, and only the zinc component and the refractory metal component are adhered, and the surface-treated copper foil and the insulating resin substrate Good adhesion cannot be obtained. On the other hand, when the carbon component amount exceeds 5 nm, the carbon component adhesion amount increases too much, and when processed into a printed wiring board, the carbon component that increases the conductor resistance increases on the lower surface of the copper foil circuit. It is not preferable. The method for measuring the equivalent thickness of the carbon component is to place the sample piece of the surface-treated copper foil according to the present invention in a high-temperature oxygen stream of a gas analyzer, and react the oxygen and the carbon component in the stream, This is converted into carbon monoxide and carbon dioxide gas, and the amount of carbon monoxide and carbon dioxide gas is measured to obtain the amount of carbon component per unit area, and further converted into the thickness per unit area.

以上に述べてきた表面処理層は、粗化処理を施さずに絶縁樹脂基板に張り合わせる用途の表面処理銅箔に好適である。通常の銅箔は、表面処理を行う前に、粗化処理を表面に施す。銅箔の張り合わせ面に、凹凸形状の粗化処理が存在すると、当該粗化処理の凹凸がプレス加工により、絶縁樹脂基材の内部に食い込みアンカー効果を発揮して、密着性を向上させる。しかし、このような粗化処理が存在すると、エッチング加工して表面処理銅箔のバルク部の溶解が終了しても、絶縁樹脂基材の内部に食い込んだ粗化処理部の除去が出来ていないため、更なるエッチング時間(オーバーエッチングタイム)が必要になる。このオーバーエッチングタイムが長くなるほど、既にエッチングの終了した銅箔回路の溶解も進行するため、銅箔回路のエッチングファクターが劣化する。これに対し、本件発明に係る表面処理銅箔においては、表面処理銅箔の製造に未処理の銅箔を用いても、絶縁樹脂層との良好な密着性を得ることが出来る。そして、その未処理の銅箔の表面粗さ(Rzjis)が2.0μm以下になると、エッチング加工時のオーバーエッチングタイムが飛躍的に短縮化でき、形成した銅箔回路のエッチングファクターを容易に向上させることが可能になる。ここで、表面粗さを未処理の銅箔の張り合わせ面の値として示しているが、本件発明で言う表面処理層を形成しても、触針式の粗度計で測定する限り、表面処理の前後で表面粗さの値が大きく変化することは無いからである。以下、本件発明の内容がより容易に理解できるように、実施例及び比較例を述べる。   The surface-treated layer described above is suitable for a surface-treated copper foil used for bonding to an insulating resin substrate without performing a roughening treatment. Ordinary copper foil is subjected to a roughening treatment on the surface before the surface treatment. When the roughening process of uneven | corrugated shape exists in the bonding surface of copper foil, the unevenness | corrugation of the said roughening process will bite into the inside of an insulating resin base material by press work, and will improve adhesiveness. However, when such a roughening treatment exists, even if the bulk processing of the surface-treated copper foil is finished by etching, the roughening treatment portion that has bite into the insulating resin base material cannot be removed. Therefore, further etching time (overetching time) is required. The longer the overetching time, the more the copper foil circuit that has already been etched is dissolved, and the etching factor of the copper foil circuit deteriorates. On the other hand, in the surface-treated copper foil which concerns on this invention, even if it uses untreated copper foil for manufacture of surface-treated copper foil, favorable adhesiveness with an insulating resin layer can be obtained. And when the surface roughness (Rzjis) of the untreated copper foil is 2.0 μm or less, the over-etching time during the etching process can be drastically shortened, and the etching factor of the formed copper foil circuit can be easily improved. It becomes possible to make it. Here, the surface roughness is shown as the value of the untreated copper foil bonding surface, but even if the surface treatment layer referred to in the present invention is formed, as long as it is measured with a stylus type roughness meter, the surface treatment This is because the value of the surface roughness does not change greatly between before and after. Hereinafter, examples and comparative examples will be described so that the contents of the present invention can be understood more easily.

本実施例においては、張り合わせ面の表面粗さが、Rzjis=1.3μmの35μm厚さの電解銅箔のロールを準備し、亜鉛成分、チタン成分、炭素成分を順次付着させて表面処理銅箔を得て、FR−4基材との密着性の評価を行った。なお、最初に、当該銅箔を酸洗処理して清浄化した。このときの酸洗処理は、硫酸濃度150g/l、液温30℃の希硫酸溶液に、当該銅箔を30秒間浸漬して、表面酸化被膜の除去を行い、水洗後、乾燥した。   In this example, a surface-treated copper foil was prepared by preparing a roll of 35 μm-thick electrolytic copper foil with a surface roughness of Rzjis = 1.3 μm and sequentially attaching a zinc component, a titanium component, and a carbon component. And the adhesion with the FR-4 base material was evaluated. First, the copper foil was cleaned by pickling. In this pickling treatment, the copper foil was immersed in a dilute sulfuric acid solution having a sulfuric acid concentration of 150 g / l and a liquid temperature of 30 ° C. for 30 seconds to remove the surface oxide film, washed with water, and dried.

亜鉛成分の付着: 前記ロール状の銅箔を、液温40℃の硫酸亜鉛浴(硫酸濃度70g/l、亜鉛濃度20g/l)に連続して浸漬した。なお、当該硫酸亜鉛浴では、アノード電極として溶解性アノード(亜鉛板)を用いて亜鉛濃度のバランスを維持した、そして、銅箔自体を、カソード分極して、電流密度15A/dmで短時間電解して、換算厚さ3nm分の亜鉛を、銅箔の張り合わせ面に連続的に付着させ、水洗、乾燥させ、ロール状に巻き取った。 Adhesion of zinc component: The rolled copper foil was continuously immersed in a zinc sulfate bath (sulfuric acid concentration 70 g / l, zinc concentration 20 g / l) at a liquid temperature of 40 ° C. In the zinc sulfate bath, a balance of zinc concentration was maintained by using a soluble anode (zinc plate) as an anode electrode, and the copper foil itself was cathodically polarized at a current density of 15 A / dm 2 for a short time. Electrolysis was performed, and zinc having a converted thickness of 3 nm was continuously adhered to the bonded surface of the copper foil, washed with water, dried, and wound into a roll.

チタン成分の付着: 亜鉛成分を付着させた張り合わせ面へのチタン成分の付着は、スパッタリング装置として日本真空技術株式会社製の巻き取り型スパッタリング装置SPW−155を用い、ターゲットとして300mm×1700mmのサイズのチタンターゲットを用いた。そして、スパッタリング条件として、到達真空度Puは1×10−4Pa未満、スパッタリング圧PArは1Pa、スパッタリング電力30kWの条件を採用することにより、チタン成分の付着を行った。なお、このときのチタン成分の付着量は、換算厚さが5nm(これを「試料1−1」と称する。)と10nm(これを「試料1−2」と称する。)の2種類の厚さとなるように行った。 Adhesion of titanium component: Adhesion of the titanium component to the bonded surface to which the zinc component is adhered uses a winding type sputtering apparatus SPW-155 manufactured by Japan Vacuum Technology Co., Ltd. as a sputtering apparatus, and has a size of 300 mm × 1700 mm as a target. A titanium target was used. And as the sputtering conditions, the ultimate vacuum Pu was less than 1 × 10 −4 Pa, the sputtering pressure PAr was 1 Pa, and the sputtering power was 30 kW, so that the titanium component was adhered. In this case, the amount of the titanium component deposited is two types of thicknesses in which the converted thickness is 5 nm (referred to as “Sample 1-1”) and 10 nm (referred to as “Sample 1-2”). I went to be.

炭素成分の付着: 続いて、亜鉛成分とチタン成分との付着の終了した銅箔の張り合わせ面に炭素成分の付着を行った。スパッタリング装置として日本真空技術株式会社製の巻き取り型スパッタリング装置SPW−155を用い、ターゲットとして300mm×1700mmのサイズの炭素ターゲットを用いた。スパッタリング条件として、到達真空度Puは1×10−4Pa未満、スパッタリング圧PArは1Pa、スパッタリング電力20kWの条件を採用することにより、炭素成分の付着を行った。なお、このときの炭素成分の付着量は、換算厚さが3nm(試料1−1)と10nm(試料1−2)の2種類の厚さとなるように行った。 Adhesion of carbon component: Subsequently, the carbon component was adhered to the bonding surface of the copper foil in which the adhesion of the zinc component and the titanium component was completed. A winding type sputtering apparatus SPW-155 manufactured by Nippon Vacuum Technology Co., Ltd. was used as the sputtering apparatus, and a carbon target having a size of 300 mm × 1700 mm was used as the target. As the sputtering conditions, the ultimate vacuum Pu was less than 1 × 10 −4 Pa, the sputtering pressure PAr was 1 Pa, and the sputtering power was 20 kW. In addition, the carbon component adhesion amount at this time was performed so that the converted thickness had two types of thicknesses of 3 nm (sample 1-1) and 10 nm (sample 1-2).

密着性評価: 以上のようにして得られた2種類の表面処理銅箔を用いて、これをFR−4グレードのプリプレグと180℃×60分の熱間プレス加工を行い、銅張積層板を製造した。そして、エッチング法で0.4mm幅の引き剥がし強さ測定用の直線回路を備えるプリント配線板試験片を作成し、その引き剥がし強度の評価を行った。このときに測定した引き剥がし強さは、常態引き剥がし強さ及び耐塩酸性劣化率である。この耐塩酸性劣化率とは、プリント配線板試験片を、塩酸:水=1:2の割合で混合した60℃の溶液に、90分間浸漬した後、水洗、乾燥後、直ちに引き剥がし強さを測定し、常態の引き剥がし強さからみて、引き剥がし強さが何%の劣化が生じたかを示すものであり、[耐塩酸性劣化率]=[(常態引き剥がし強さ)−(塩酸処理後の引き剥がし強さ)]/[常態引き剥がし強さ]の計算式で算出したものである。この評価結果を、表1に纏めて示す。 Adhesion evaluation: Using the two types of surface-treated copper foils obtained as described above, this was subjected to hot pressing with an FR-4 grade prepreg and 180 ° C. for 60 minutes to obtain a copper-clad laminate. Manufactured. And the printed wiring board test piece provided with the linear circuit for 0.4 mm width peeling strength measurement by the etching method was created, and the peeling strength was evaluated. The peel strength measured at this time is the normal peel strength and the hydrochloric acid resistance deterioration rate. The deterioration rate of hydrochloric acid resistance means that the printed wiring board test piece is immersed in a 60 ° C. solution mixed at a ratio of hydrochloric acid: water = 1: 2 for 90 minutes, washed with water, dried and immediately peeled off. Measured and shows how much the peel strength is deteriorated in terms of the normal peel strength. [Hydrochloric acid resistance deterioration rate] = [(Normal peel strength) − (After treatment with hydrochloric acid) The peel strength is calculated by the following formula:]. The evaluation results are summarized in Table 1.

Figure 2008297569
Figure 2008297569

本実施例においては、実施例1と同様の電解銅箔のロールを準備し、亜鉛成分、ニッケル成分、炭素成分を順次付着させて表面処理銅箔を得て、FR−4基材との密着性の評価を行った。なお、以下の説明においては、実施例1の説明との重複を避けるため、異なる部分のみを説明する。最初に、当該銅箔を実施例1と同様に酸洗処理して清浄化した。   In this example, a roll of electrolytic copper foil similar to that of Example 1 was prepared, and a surface-treated copper foil was obtained by sequentially attaching a zinc component, a nickel component, and a carbon component, and adhesion to the FR-4 substrate. Sexuality evaluation was performed. In the following description, only different parts will be described in order to avoid duplication with the description of the first embodiment. First, the copper foil was cleaned by pickling as in Example 1.

亜鉛成分の付着: 実施例1と同様の方法で、換算厚さ3nm分の亜鉛を、銅箔の張り合わせ面に連続的に付着させ、水洗、乾燥させ、ロール状に巻き取った。 Adhesion of zinc component: In the same manner as in Example 1, zinc having a converted thickness of 3 nm was continuously adhered to the laminated surface of the copper foil, washed with water, dried and wound into a roll.

ニッケル成分の付着: 亜鉛成分を付着させた張り合わせ面へのニッケル成分の付着は、スパッタリング装置として日本真空技術株式会社製の巻き取り型スパッタリング装置SPW−155を用い、ターゲットとして300mm×1700mmのサイズのニッケルターゲットを用いた。そして、スパッタリング条件として、到達真空度Puは1×10−4Pa未満、スパッタリング圧PArは0.1Pa、スパッタリング電力13kWの条件を採用することにより、ニッケル成分の付着を行った。なお、このときのチタン成分の付着量は、換算厚さが2nm(これを「試料2−1」及び「試料2−2」と称する。)と8nm(これを「試料2−3」と称する。)の2種類の厚さで、且つ、3つの試料を準備した。 Adhesion of nickel component: Adhesion of the nickel component to the bonded surface to which the zinc component is adhered uses a winding type sputtering apparatus SPW-155 manufactured by Japan Vacuum Technology Co., Ltd. as a sputtering apparatus, and has a size of 300 mm × 1700 mm as a target. A nickel target was used. And as the sputtering conditions, the ultimate vacuum Pu was less than 1 × 10 −4 Pa, the sputtering pressure PAr was 0.1 Pa, and the sputtering power was 13 kW. At this time, the attached amount of the titanium component has a converted thickness of 2 nm (referred to as “Sample 2-1” and “Sample 2-2”) and 8 nm (referred to as “Sample 2-3”). .)) And three samples were prepared.

炭素成分の付着: 続いて、亜鉛成分とニッケル成分との付着の終了した銅箔の張り合わせ面に、実施例1と同様にして炭素成分の付着を行わせた。このときの炭素成分の付着量は、換算厚さが2nm(試料2−1)、4nm(試料2−2)、4nm(試料2−3)の2種類の厚さで、且つ、3つの試料を準備した。 Adhesion of carbon component: Subsequently, the carbon component was adhered to the bonded surface of the copper foil on which the adhesion of the zinc component and the nickel component was completed in the same manner as in Example 1. At this time, the amount of the carbon component deposited is two types of thicknesses of 2 nm (sample 2-1), 4 nm (sample 2-2), 4 nm (sample 2-3), and three samples. Prepared.

密着性評価: 以上のようにして得られた3種類の表面処理銅箔を用いて、実施例1と同様の方法で銅張積層板を製造し、実施例1と同様のプリント配線板試験片を製造し、引き剥がし強さの評価を行った。この評価結果を、表2に纏めて示す。 Adhesion evaluation: Using the three types of surface-treated copper foils obtained as described above, a copper-clad laminate was produced in the same manner as in Example 1, and the same printed wiring board test piece as in Example 1 was used. And the peel strength was evaluated. The evaluation results are summarized in Table 2.

Figure 2008297569
Figure 2008297569

本件発明に係る表面処理銅箔は、絶縁樹脂基材に対する張り合わせ面として用いる銅箔の表面に、亜鉛成分、融点1400℃以上の高融点金属成分、更に炭素成分、の各成分を、主に物理蒸着法を用いて順次付着させたものである。この構成を採用することにより、表面処理層の形成に電気化学的手法を用いた場合の銅箔と異なり、表面処理層の同一平面内での膜厚均一性に優れ、組成的なバラツキの無い表面処理層の形成が可能になる。その結果、銅張積層板に加工したときの銅箔と絶縁樹脂層との密着性の測定箇所によるバラツキが小さくなる。しかも、本件発明に係る表面処理銅箔は、無粗化の銅箔を良好な密着性を維持して絶縁樹脂基材に張り合わせるために好適の表面処理層を備え、12μm厚さ以上の銅箔で0.6kgf/cm以上の引き剥がし強さを発揮できる。   In the surface-treated copper foil according to the present invention, each component of a zinc component, a refractory metal component having a melting point of 1400 ° C. or higher, and a carbon component is mainly physically applied to the surface of the copper foil used as a bonding surface for the insulating resin substrate. They are sequentially deposited using a vapor deposition method. By adopting this configuration, unlike the copper foil when the electrochemical method is used for forming the surface treatment layer, the surface treatment layer has excellent film thickness uniformity in the same plane and there is no compositional variation. A surface treatment layer can be formed. As a result, variation due to the measurement location of the adhesion between the copper foil and the insulating resin layer when processed into a copper-clad laminate is reduced. Moreover, the surface-treated copper foil according to the present invention includes a surface-treated layer suitable for bonding a non-roughened copper foil to an insulating resin base material while maintaining good adhesion, and has a thickness of 12 μm or more. The peel strength of 0.6 kgf / cm or more can be exhibited with the foil.

Claims (6)

絶縁樹脂基材と張り合わせて銅張積層板を製造する際に用いる銅箔の張り合わせ面に表面処理層を設けた表面処理銅箔であって、
当該表面処理層は、銅箔の張り合わせ面に亜鉛成分を付着させ、融点1400℃以上の高融点金属成分を付着させ、更に炭素成分を付着させて得られることを特徴とする表面処理銅箔。
A surface-treated copper foil provided with a surface treatment layer on the laminated surface of the copper foil used when producing a copper-clad laminate by laminating with an insulating resin base material,
The surface-treated copper foil is obtained by adhering a zinc component to a bonded surface of a copper foil, adhering a refractory metal component having a melting point of 1400 ° C. or higher, and further adhering a carbon component.
前記銅箔の張り合わせ面へ付着させる亜鉛成分は、電解法又は物理蒸着法を用いて1nm〜5nmの換算厚さ分を付着させるものである請求項1に記載の表面処理銅箔。 2. The surface-treated copper foil according to claim 1, wherein the zinc component to be attached to the bonding surface of the copper foil is one to which an equivalent thickness of 1 nm to 5 nm is attached using an electrolytic method or a physical vapor deposition method. 前記銅箔の張り合わせ面へ付着させる融点1400℃以上の高融点金属成分は、物理蒸着法を用いて5nm〜10nmの換算厚さ分を付着させるものである請求項1又は請求項2に記載の表面処理銅箔。 The high-melting-point metal component having a melting point of 1400 ° C or higher to be attached to the bonding surface of the copper foil is to attach an equivalent thickness of 5 nm to 10 nm using a physical vapor deposition method. Surface treated copper foil. 前記融点1400℃以上の高融点金属成分は、チタン成分又はニッケル成分のいずれかである請求項1〜請求項3のいずれかに記載の表面処理銅箔。 The surface-treated copper foil according to any one of claims 1 to 3, wherein the refractory metal component having a melting point of 1400 ° C or higher is either a titanium component or a nickel component. 前記銅箔の張り合わせ面へ付着させる炭素成分は、物理蒸着法を用いて1nm〜5nmの換算厚さ分を付着させるものである請求項1〜請求項4のいずれかに記載の表面処理銅箔。 The surface-treated copper foil according to any one of claims 1 to 4, wherein the carbon component to be adhered to the bonding surface of the copper foil is a deposit having a converted thickness of 1 nm to 5 nm using a physical vapor deposition method. . 前記銅箔の張り合わせ面は、粗化処理を施すことなく、表面粗さ(Rzjis)が2.0μm以下のものを用いる請求項1〜請求項5のいずれかに記載の表面処理銅箔。 The surface-treated copper foil according to any one of claims 1 to 5, wherein the bonding surface of the copper foil is one having a surface roughness (Rzjis) of 2.0 µm or less without being subjected to a roughening treatment.
JP2007141885A 2007-05-29 2007-05-29 Surface treated copper foil Expired - Fee Related JP5074822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007141885A JP5074822B2 (en) 2007-05-29 2007-05-29 Surface treated copper foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007141885A JP5074822B2 (en) 2007-05-29 2007-05-29 Surface treated copper foil

Publications (2)

Publication Number Publication Date
JP2008297569A true JP2008297569A (en) 2008-12-11
JP5074822B2 JP5074822B2 (en) 2012-11-14

Family

ID=40171352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007141885A Expired - Fee Related JP5074822B2 (en) 2007-05-29 2007-05-29 Surface treated copper foil

Country Status (1)

Country Link
JP (1) JP5074822B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011114204A (en) * 2009-11-27 2011-06-09 Jx Nippon Mining & Metals Corp Copper foil for printed wiring board
JP2018517843A (en) * 2015-04-30 2018-07-05 フォン アルデンヌ ゲーエムベーハー Method and coating equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134301A (en) * 2000-09-22 2002-05-10 Ga-Tek Inc Dba Gould Electronics Inc Resistor component element having multilayered resistor material
JP2005344174A (en) * 2004-06-03 2005-12-15 Mitsui Mining & Smelting Co Ltd Surface-treated copper foil, flexible copper-clad laminate manufactured using the same, and film carrier tape

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134301A (en) * 2000-09-22 2002-05-10 Ga-Tek Inc Dba Gould Electronics Inc Resistor component element having multilayered resistor material
JP2005344174A (en) * 2004-06-03 2005-12-15 Mitsui Mining & Smelting Co Ltd Surface-treated copper foil, flexible copper-clad laminate manufactured using the same, and film carrier tape

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011114204A (en) * 2009-11-27 2011-06-09 Jx Nippon Mining & Metals Corp Copper foil for printed wiring board
JP2018517843A (en) * 2015-04-30 2018-07-05 フォン アルデンヌ ゲーエムベーハー Method and coating equipment
US10745797B2 (en) 2015-04-30 2020-08-18 VON ARDENNE Asset GmbH & Co. KG Method and coating arrangement

Also Published As

Publication number Publication date
JP5074822B2 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
JP6297124B2 (en) Copper foil, copper foil with carrier foil and copper clad laminate
JP3973197B2 (en) Electrolytic copper foil with carrier foil and method for producing the same
JPWO2006134868A1 (en) Surface-treated copper foil, method for producing the surface-treated copper foil, and surface-treated copper foil with an ultrathin primer resin layer
TW201424493A (en) Adhesiveless copper clad laminates and printed circuit board having adhesiveless copper clad laminates as base material
JP5406905B2 (en) A method for producing a copper foil for a printed circuit board comprising a fine granular surface that has high peel strength and is environmentally friendly.
TW201942370A (en) Roughened copper foil, copper foil with carrier, copper-clad multi-layer board, and printed wiring board
JP2010201804A (en) Composite metal foil, method for producing the same, and printed wiring board
JP3949871B2 (en) Roughening copper foil and method for producing the same
JP5074822B2 (en) Surface treated copper foil
TWI592066B (en) Carrier copper foil, method for producing the carrier copper foil, copper-clad laminate obtained by using the carrier copper foil, and printed circuit board
JP5255349B2 (en) Surface treated copper foil
JP5728118B1 (en) Surface-treated copper foil, method for producing the surface-treated copper foil, and copper-clad laminate using the surface-treated copper foil
TW201531174A (en) Composite metal foil, composite metal foil containing carrier, and metal clad laminate and printed wiring board using the same
JP5506368B2 (en) Copper foil for environmentally friendly printed wiring boards
JP2014172179A (en) Carrier-provided copper foil, method of producing carrier-provided copper foil, printed wiring board, printed circuit board, copper-clad laminate and method of producing printed wiring board
JP2011014651A (en) Copper foil for printed wiring board
JP2011114204A (en) Copper foil for printed wiring board
JP2005353918A (en) Copper foil for printed-wiring board and manufacturing method thereof
JP5728117B1 (en) Surface-treated copper foil, method for producing the surface-treated copper foil, and copper-clad laminate using the surface-treated copper foil
JP2011012297A (en) Copper foil for printed circuit board
JP2005353919A (en) Surface-roughening treatment method of copper foil for printed-wiring board
JPWO2012066658A1 (en) Copper foil for printed wiring boards
TWI405510B (en) Roughening-treated copper foil and manufacturing method thereof
JP2011009453A (en) Copper foil for printed wiring board
JP2004162143A (en) Method for manufacturing copper foil for printed circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120824

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees