JP2008297180A - METHOD FOR GROWING GaN CRYSTAL AND GaN CRYSTAL SUBSTRATE - Google Patents
METHOD FOR GROWING GaN CRYSTAL AND GaN CRYSTAL SUBSTRATE Download PDFInfo
- Publication number
- JP2008297180A JP2008297180A JP2007147322A JP2007147322A JP2008297180A JP 2008297180 A JP2008297180 A JP 2008297180A JP 2007147322 A JP2007147322 A JP 2007147322A JP 2007147322 A JP2007147322 A JP 2007147322A JP 2008297180 A JP2008297180 A JP 2008297180A
- Authority
- JP
- Japan
- Prior art keywords
- crystal
- gan
- region
- crystal region
- growth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
本発明は、GaN結晶の成長方法およびその方法により得られるGaN結晶基板に関する。 The present invention relates to a GaN crystal growth method and a GaN crystal substrate obtained by the method.
GaN結晶は、発光ダイオード、レーザダイオードなどの発光素子、整流器、バイポーラトランジスタ、電界効果トランジスタ、HEMT(高電子移動度トランジスタ)などの電子素子、温度センサ、圧力センサ、放射線センサ、可視−紫外光検出器などの半導体センサ、SAWデバイス(表面弾性波素子)、振動子、共振子、MEMS(微細電子機械システム)部品、圧電アクチュエータなどのデバイスの基板などに広く用いられる。 GaN crystals are light-emitting elements such as light-emitting diodes and laser diodes, electronic elements such as rectifiers, bipolar transistors, field-effect transistors, and HEMTs (high electron mobility transistors), temperature sensors, pressure sensors, radiation sensors, and visible-ultraviolet light detection. Widely used for semiconductor sensors such as ceramics, SAW devices (surface acoustic wave elements), vibrators, resonators, MEMS (micro-electromechanical system) parts, and substrates of devices such as piezoelectric actuators.
かかるGaN結晶については、大型の自立基板の入手が困難である。そのため、サファイア基板、SiC基板などのGaNとは化学組成が異なる異種基板上に、GaN系結晶薄膜を成長させることにより、青色LEDなどの発光素子が製造される。具体的には、異種基板上に500℃程度の低温で低温バッファ層と呼ばれるアモルファス層を成長させる。次いで、1000℃に昇温すると、アモルファス層が結晶化し、この結晶化した低温バッファ層上に結晶を成長させる。結晶成長方法は、エピタキシャル成長が容易な観点から、HVPE(ハイドライド気相成長)法、MOCVD(有機金属化学気相堆積)法、MBE(分子線エピタキシャル)法などの気相法が好ましく用いられ、結晶成長が速い観点からHVPE法がより好ましく用いられる。 For such GaN crystals, it is difficult to obtain a large free-standing substrate. Therefore, a GaN-based crystal thin film is grown on a heterogeneous substrate having a chemical composition different from that of GaN such as a sapphire substrate or a SiC substrate, whereby a light emitting element such as a blue LED is manufactured. Specifically, an amorphous layer called a low-temperature buffer layer is grown on a heterogeneous substrate at a low temperature of about 500 ° C. Next, when the temperature is raised to 1000 ° C., the amorphous layer is crystallized, and crystals are grown on the crystallized low-temperature buffer layer. As the crystal growth method, a vapor phase method such as HVPE (hydride vapor phase epitaxy) method, MOCVD (metal organic chemical vapor deposition) method, MBE (molecular beam epitaxy) method or the like is preferably used from the viewpoint of easy epitaxial growth. From the viewpoint of rapid growth, the HVPE method is more preferably used.
このような異種基板を用いたGaN系結晶薄膜の成長の場合、GaN系結晶薄膜には1×108cm-2以上の密度の転位が存在する。青色LEDなどの電流密度が比較的低い発光素子などにおいては、GaN系結晶薄膜のかかる転位密度は問題とならない。しかし、紫外LEDなどの発光素子、電力用電子デバイスなどの転位の影響が強く低転位化が求められるデバイスにおいては、GaN系結晶薄膜の転位密度の低減が必要とされる。 In the case of growth of a GaN-based crystal thin film using such a heterogeneous substrate, dislocations having a density of 1 × 10 8 cm −2 or more exist in the GaN-based crystal thin film. In a light emitting device having a relatively low current density such as a blue LED, the dislocation density of the GaN-based crystal thin film is not a problem. However, in devices that are strongly affected by dislocations such as light emitting elements such as ultraviolet LEDs and power electronic devices and require low dislocations, it is necessary to reduce the dislocation density of the GaN-based crystal thin film.
このため、GaN系結晶の転位密度を低減する方法が種々検討され、提案されている。たとえば、異種基板上であっても数mm程度の厚い結晶を成長させることにより結晶の転位密度を低減することが知られており、Xueping Xu,他5名,Growth and characterization of low defect GaN by hydride vapor phase epitaxy,J. Crystal Growth,246,(2002),p223-229(以下、非特許文献1という)は、1mm程度の結晶を成長させることにより、1×106cm-2程度に低減できることを開示する。 For this reason, various methods for reducing the dislocation density of GaN-based crystals have been studied and proposed. For example, it is known that the dislocation density of a crystal is reduced by growing a thick crystal of several millimeters even on a different substrate. Xueping Xu and five others, Growth and characterization of low defect GaN by hydride vapor phase epitaxy, J. Crystal Growth, 246, (2002), p223-229 (hereinafter referred to as non-patent document 1) can be reduced to about 1 × 10 6 cm −2 by growing a crystal of about 1 mm. Is disclosed.
また、Akira Usui,他3名,Thick GaN Epitaxial Growth with Low Dislocation Density by Hydride Vapor Phase Epitaxy,Jpn. J. Appl. Ptys.,36,(1997),L899-L902(以下、非特許文献2という)は、開口部を有するマスクを用いて結晶成長の際の転位の伝播方向をコントロールして転位密度の低減を図る方法を開示する。 Akira Usui, 3 others, Thick GaN Epitaxial Growth with Low Dislocation Density by Hydride Vapor Phase Epitaxy, Jpn. J. Appl. Ptys., 36, (1997), L899-L902 Discloses a method for reducing the dislocation density by controlling the propagation direction of dislocations during crystal growth using a mask having openings.
上記の非特許文献1および非特許文献2の方法により、GaN系結晶の転位密度を1×106cm-2程度まで低減することができたが、このようなGaN系結晶を用いた紫外LEDなどの発光素子、電力用電子デバイスなどの特性は、あまり向上しなかった。
我々は、以下の検討により、上記の非特許文献1および非特許文献2の方法により得られたGaN系結晶には、転位以外の多数のマクロ欠陥が形成されていることを見出した。 Based on the following examination, we have found that many macro defects other than dislocations are formed in the GaN-based crystal obtained by the methods of Non-Patent Document 1 and Non-Patent Document 2 described above.
すなわち、GaN系結晶の主表面(たとえば、(0001)Ga面)をアルカリでエッチングすることにより結晶欠陥に由来するピットが形成される。たとえば、GaN結晶の鏡面研磨した(0001)Ga面を液温50℃のKOH水溶液(KOH濃度:2モル/リットル)で数十分間程度エッチングすると、結晶欠陥が存在する部分のみが数μm程度の深さにエッチングされて、表面が荒れた凹部が形成される。 That is, pits derived from crystal defects are formed by etching the main surface (for example, (0001) Ga face) of a GaN-based crystal with alkali. For example, when a mirror-polished (0001) Ga surface of a GaN crystal is etched with a KOH aqueous solution (KOH concentration: 2 mol / liter) at a liquid temperature of 50 ° C. for about several tens of minutes, only the portion where crystal defects exist is about several μm. A recess having a rough surface is formed.
また、GaN結晶の(0001)Ga面をKOH融液、NaOH融液、またはそれらの混合融液をエッチングすると、複数の六角柱状の凹部が形成される。この六角柱の6つの側面はM面となっている。また、この六角柱状の凹部の深さDは、エッチング液の種類、エッチング温度、エッチング時間などのエッチング条件により変化する。 Further, when the (0001) Ga surface of the GaN crystal is etched with KOH melt, NaOH melt, or a mixed melt thereof, a plurality of hexagonal columnar recesses are formed. The six side surfaces of this hexagonal column are M-planes. Further, the depth D of the hexagonal columnar recess varies depending on the etching conditions such as the type of the etching solution, the etching temperature, and the etching time.
ここで、GaN結晶は、[0001]方向(c軸方向)に極性を有する結晶であり、(0001)Ga面に比べて(000−1)N面がエッチングされやすい特性を有する。かかるGaN結晶の特性を考慮すると、上記のようにGa結晶の(0001)Ga面をエッチングしたときに、部分的に複数生じる六角柱状の凹部は、(000−1)N面に由来するものであることがわかる。すなわち、GaN結晶の(0001)Ga面には、部分的に複数の(000−1)N面が現われていることがわかる。このことは、GaN結晶には、主結晶領域と主結晶領域に対して[0001]方向の極性が反転している複数の極性反転結晶領域が形成されていることを示している。 Here, the GaN crystal is a crystal having a polarity in the [0001] direction (c-axis direction), and has a characteristic that the (000-1) N plane is more easily etched than the (0001) Ga plane. Considering the characteristics of the GaN crystal, when the (0001) Ga face of the Ga crystal is etched as described above, a plurality of hexagonal columnar recesses that are partially generated are derived from the (000-1) N face. I know that there is. That is, it can be seen that a plurality of (000-1) N planes appear partially on the (0001) Ga plane of the GaN crystal. This indicates that the GaN crystal has a plurality of polarity-inverted crystal regions in which the polarity in the [0001] direction is inverted with respect to the main crystal region and the main crystal region.
なお、GaN結晶の(0001)Ga面をKOH融液、NaOH融液、またはそれらの混合融液をエッチングすると、複数の六角柱状の凹部の他に、複数の六角錘状の凹部が形成される。かかる六角錘状の凹部は、転位に由来するものであり、凹部の形状の違いにより、極性反転結晶領域に由来する凹部とは明確に区別することができる。 When the (0001) Ga surface of the GaN crystal is etched with KOH melt, NaOH melt, or a mixed melt thereof, a plurality of hexagonal pyramid-shaped recesses are formed in addition to the plurality of hexagonal columnar recesses. . Such hexagonal pyramid-shaped recesses are derived from dislocations, and can be clearly distinguished from the recesses derived from the polarity-reversal crystal region by the difference in the shape of the recesses.
上記検討により、我々は、上記非特許文献1および非特許文献2の方法により製造されるGaN結晶には、転位以外の多数のマクロ欠陥として極性反転結晶領域が形成され、かかるGaN結晶を含むデバイスの特性向上を抑制していることを見いだした。 Based on the above studies, we have found that a GaN crystal manufactured by the methods of Non-Patent Document 1 and Non-Patent Document 2 has a polarity inversion crystal region formed as a large number of macro defects other than dislocations, and a device including such a GaN crystal. It was found that the improvement of the characteristics of is suppressed.
本発明は、上記知見に基づき、極性反転結晶領域の大きさが小さくまたその密度が低いGaN結晶の成長方法およびGaN結晶基板を提供することを目的とする。 Based on the above findings, an object of the present invention is to provide a method for growing a GaN crystal and a GaN crystal substrate having a small polarity-reversed crystal region and a low density.
我々は、GaN基板上におけるGaN結晶の成長について詳細に検討して、GaN基板の主結晶領域上に成長するGaN結晶の第1の結晶領域の成長速度を、GaN基板の極性反転結晶領域上に成長するGaN結晶の第2の結晶領域(これは、第1の結晶領域に対して[0001]方向の極性が反転している極性反転結晶領域である)の成長速度より高くすることにより、GaN基板に特開2004−221480号公報に示すような主面上の凹凸または貫通穴を形成しなくても、第1の結晶領域が極性反転結晶領域である第2の結晶領域を埋め込むように成長させて、第2の結晶領域(極性反転結晶領域)の大きさが小さくまたその密度が低いGaN結晶を製造することを可能とした。 We examine in detail the growth of GaN crystal on the GaN substrate, and the growth rate of the first crystal region of the GaN crystal growing on the main crystal region of the GaN substrate is set on the polarity reversal crystal region of the GaN substrate. By making the growth rate higher than the growth rate of the second crystal region of the growing GaN crystal (this is a polarity reversal crystal region in which the polarity in the [0001] direction is reversed with respect to the first crystal region), The first crystal region grows so as to embed the second crystal region, which is a polarity reversal crystal region, without forming irregularities or through holes on the main surface as shown in JP-A-2004-221480 on the substrate. Thus, a GaN crystal having a small second crystal region (polarity reversal crystal region) and a low density can be produced.
本発明は、主結晶領域と主結晶領域に対して[0001]方向の極性が反転している複数の極性反転結晶領域とを含むGaN基板を準備する工程と、GaN基板の(0001)Ga主面上に、気相法によりGaN結晶を成長させる工程を含むGaN結晶の成長方法であって、GaN結晶は主結晶領域上に成長する第1の結晶領域と各極性反転結晶領域上にそれぞれ成長する複数の第2の結晶領域とを含み、第2の結晶領域は第1の結晶領域に対して、[0001]方向の極性が反転しており、第1の結晶領域は、第2の結晶領域に比べて結晶成長速度が高く、第2の結晶領域を埋め込むように成長することを特徴とするGaN結晶の成長方法である。 The present invention provides a step of preparing a GaN substrate including a main crystal region and a plurality of polarity-inverted crystal regions whose polarities in the [0001] direction are reversed with respect to the main crystal region, A method for growing a GaN crystal including a step of growing a GaN crystal on a surface by a vapor phase method, wherein the GaN crystal grows on a first crystal region and each polarity-inverted crystal region that grow on a main crystal region, respectively. The second crystal region has a polarity reversed in the [0001] direction with respect to the first crystal region, and the first crystal region has the second crystal region A method for growing a GaN crystal characterized in that the crystal growth rate is higher than that of the region, and the second crystal region is grown so as to be embedded.
本発明にかかるGaN結晶の成長方法において、GaN結晶の結晶成長厚さT1mmのときの結晶成長面における1つの第2の結晶領域の面積の平方根をR1μm、GaN結晶の結晶成長高さT2mmのときの結晶成長面におけるその1つの第2の結晶領域の面積の平方根をR2μmとするとき、GaN結晶の成長厚さの増加量(T2−T1)mmに対するその1つの第2の結晶領域の面積の平方根の減少量(R1−R2)μmの比(R1−R2)/(T2−T1)は10μm/mm以上とすることができる。 In the GaN crystal growth method according to the present invention, the square root of the area of one second crystal region on the crystal growth surface when the crystal growth thickness T 1 mm of the GaN crystal is R 1 μm, and the crystal growth height of the GaN crystal is when the square root of the area of one second crystal regions thereof and R 2 [mu] m in a crystal growth surface in the case of the T 2 mm, increase of growth thickness of the GaN crystal (T 2 -T 1) thereof to mm The ratio (R 1 -R 2 ) / (T 2 -T 1 ) of the reduction amount (R 1 -R 2 ) μm of the square root of the area of one second crystal region can be 10 μm / mm or more.
また、本発明にかかるGaN結晶の成長方法において、GaN基板を準備する工程の後、GaN基板の(0001)Ga主面における極性反転結晶領域に凹部を形成する工程をさらに含み、凹部が形成された(0001)Ga面上にGaN結晶を成長させる工程を含むことができる。ここで、凹部形成後の(0001)Ga面は凹部面と凸部面を有し、GaN基板の凹部面におけるGaN結晶の1つの第2の結晶領域の面積の平方根をRSμm、GaN基板の凸部面と同一面内にあるGaN結晶の結晶成長面におけるその1つの第2の結晶領域の面積の平方根をROμmするとき、凹部によるその1つの第2の結晶領域の面積の平方根の減少量(RS−RO)μmを10μm以上とすることができる。また、凸部面からの凹部面の深さDμmを極性反転結晶領域の面積の平方根RSμmの3倍以上とすることができる。 The method for growing a GaN crystal according to the present invention further includes a step of forming a recess in the polarity reversal crystal region in the (0001) Ga main surface of the GaN substrate after the step of preparing the GaN substrate, wherein the recess is formed. And a step of growing a GaN crystal on the (0001) Ga plane. Here, the (0001) Ga surface after the formation of the concave portion has a concave surface and a convex surface, and the square root of the area of one second crystal region of the GaN crystal on the concave surface of the GaN substrate is R S μm, When the square root of the area of the one second crystal region in the crystal growth surface of the GaN crystal lying in the same plane as the convex surface of the second is R O μm, the square root of the area of the one second crystal region due to the concave portion Decrease amount (R S −R O ) μm can be set to 10 μm or more. Further, the depth D μm of the concave surface from the convex surface can be three times or more the square root R S μm of the area of the polarity inversion crystal region.
また、本発明は、上記の成長方法によって得られたGaN結晶基板である。 The present invention is also a GaN crystal substrate obtained by the above growth method.
本発明によれば、極性反転結晶領域の大きさが小さくまたその密度が低いGaN結晶の成長方法およびGaN結晶基板を提供することができる。 According to the present invention, it is possible to provide a GaN crystal growth method and a GaN crystal substrate in which the size of the polarity inversion crystal region is small and the density thereof is low.
(実施形態1)
本発明にかかるGaN結晶の成長方法の一実施形態は、図1および図2を参照して、主結晶領域11と主結晶領域11に対して[0001]方向の極性が反転している複数の極性反転結晶領域12とを含むGaN基板10を準備する工程と、GaN基板11の(0001)Ga主面10g上に、気相法によりGaN結晶20を成長させる工程を含む。ここで、GaN結晶20は主結晶領域11上に成長する第1の結晶領域21と各極性反転結晶領域12上にそれぞれ成長する複数の第2の結晶領域22とを含む。また、第2の結晶領域22は第1の結晶領域21に対して[0001]方向の極性が反転しており、第1の結晶領域21は、第2の結晶領域22に比べて結晶成長速度が高く、第2の結晶領域22を埋め込むように成長する。
(Embodiment 1)
One embodiment of a method for growing a GaN crystal according to the present invention is described with reference to FIGS. 1 and 2. A step of preparing the
本実施形態のGaN結晶の成長方法は、図1および図2(a)を参照して、主結晶領域11と主結晶領域11に対して[0001]方向の極性が反転している複数の極性反転結晶領域12とを含むGaN基板10を準備する工程を含む。主結晶領域11と極性反転結晶領域12とを含むGaN基板10は、一般的に、ELO法またはファセット成長法により成長され、主結晶領域の転位密度が低い。このため、転位密度の低いGaN結晶を成長させることができる。
With reference to FIGS. 1 and 2A, the GaN crystal growth method of the present embodiment has a plurality of polarities in which the polarity in the [0001] direction is reversed with respect to the
GaN基板10の主結晶領域11と極性反転結晶領域12は、化学的な特性が異なるので、たとえばNaOH水溶液でエッチングすれば、光学顕微鏡による観察で容易に識別できる。ここで、GaN基板10において複数の極性反転結晶領域12がランダムに存在し、GaN基板10の(0001)Ga主面に現われる極性反転結晶領域12の形状は不定形である。
Since the
また、本実施形態のGaN結晶の成長方法は、GaN基板11の(0001)Ga主面10g上に、気相法によりGaN結晶20を成長させる工程を含む。
GaN基板10の(0001)Ga主面10gには主結晶領域11の(0001)Ga面11gおよび極性反転結晶領域12の(0001)N面12nが現われ、(000−1)N面10nには主結晶領域11の(000−1)N面11nおよび極性反転結晶領域12の(000−1)Ga面12gが現われる。
The GaN crystal growth method of this embodiment includes a step of growing the GaN
On the (0001) Ga
したがって、GaN基板10の(0001)Ga主面10gの主結晶領域11上に成長するGaN結晶20の第1の結晶領域21は、主結晶領域11の極性を引き継ぐ。また、GaN基板10の(0001)Ga主面10gの極性反転結晶領域12上に成長するGaN結晶20の第2の結晶領域22は、極性反転結晶領域12の極性を引き継ぐ。すなわち、第2の結晶領域22は第1の結晶領域21に対し[0001]方向が反転した極性を有する。したがって、GaN結晶20の結晶成長面20a,20b,20gには、第1の結晶領域21の(0001)Ga面および第2の結晶領域22の(0001)N面が現われる。
Accordingly, the
ここで、本実施形態において用いられる気相法には、特に制限はないが、転位密度を低減するためにエピタキシャル成長が可能である観点から、HVPE法、MOCVD法、MBE法などが好ましい。また、これらの気相法のうち、結晶成長速度が高い観点から、HVPE法が特に好ましい。 Here, the vapor phase method used in the present embodiment is not particularly limited, but HVPE method, MOCVD method, MBE method and the like are preferable from the viewpoint that epitaxial growth is possible to reduce the dislocation density. Of these vapor phase methods, the HVPE method is particularly preferred from the viewpoint of high crystal growth rate.
本実施形態のGaN結晶の成長方法は、第1の結晶領域21が、第2の結晶領域22に比べて結晶成長速度が高く、第2の結晶領域22を埋め込むように成長する。このため、極性反転結晶領域である第2の結晶領域22の大きさが小さくまたその密度が低いGaN結晶20が得られる。かかるGaN結晶を用いることにより特性の高いデバイスが得られる。
In the GaN crystal growth method of this embodiment, the
ここで、第1の結晶領域21の結晶成長速度が第2の結晶領域22の結晶成長速度より高くするには、HVPE法においては、ガリウム原料ガス(GaClガス)分圧が1×103Pa〜1×104Pa、窒素原料ガス(NH3ガス)分圧が5×103Pa〜5×104Pa、結晶成長温度が900℃〜1200℃とするのが好ましい。
Here, in order to make the crystal growth rate of the
本実施形態においては、GaN結晶20の成長において、第1の結晶領域21は第2の結晶領域を埋め込むように成長する。このため、GaN結晶20の成長とともに、極性反転結晶領域である第2の結晶領域22の結晶成長面20a,20b,20gにおける大きさが小さくなる。本願においては、結晶成長面における第2の結晶領域の形状は不定形であるため、その大きさを面積の平方根で定義する。
In the present embodiment, in the growth of the
このとき、図2(b)を参照して、GaN結晶20の結晶成長厚さT1mmのときの結晶成長面20aにおける1つの第2の結晶領域22の面積の平方根をR1μm、GaN結晶20の結晶成長高さT2mmのときの結晶成長面20bにおけるその1つの第2の結晶領域22の面積の平方根をR2μmとするとき、GaN結晶20の成長厚さの増加量(T2−T1)mmに対するその1つの第2の結晶領域22の面積の平方根の減少量(R1−R2)μmの比(R1−R2)/(T2−T1)は10μm/mm以上であることが好ましい。(R1−R2)/(T2−T1)を10μm/mm以上とすることにより、GaN結晶20の結晶成長面20gに現われる第2の結晶領域22の大きさの低減および消滅を効率よく行なうことができる。
At this time, referring to FIG. 2B, the square root of the area of one
ここで、(R1−R2)/(T2−T1)を10μm/mm以上とするには、HVPE法においては、ガリウム原料ガス(GaClガス)分圧が1×103Pa〜5×103Pa、窒素原料ガス(NH3ガス)分圧が1×104Pa〜5×104Pa、結晶成長温度が1000℃〜1100℃とするのがより好ましい。 Here, in order to set (R 1 -R 2 ) / (T 2 -T 1 ) to 10 μm / mm or more, in the HVPE method, the gallium source gas (GaCl gas) partial pressure is 1 × 10 3 Pa to 5 × 10 3 Pa, a nitrogen source gas (NH 3 gas) partial pressure of 1 × 10 4 Pa~5 × 10 4 Pa, the crystal growth temperature is more preferable to be 1000 ° C. C. to 1100 ° C..
(実施形態2)
本発明にかかるGaN結晶の成長方法の他の実施形態は、図3および図4を参照して、実施形態1において、GaN基板10を準備する工程の後、GaN基板10の(0001)Ga主面10gにおける極性反転結晶領域12に凹部12vを形成する工程をさらに含み、凹部11mが形成された(0001)Ga面上にGaN結晶を成長させる工程を含む。
(Embodiment 2)
Another embodiment of the GaN crystal growth method according to the present invention is described with reference to FIGS. 3 and 4 in Embodiment 1, after the step of preparing the
本実施形態のGaN結晶の成長方法は、GaN基板10の(0001)Ga主面10gにおける極性反転結晶領域12に凹部12vが形成されているため、凸部11mを形成する主結晶領域11の側面部にもGaN結晶20の第1の結晶領域21が成長するため、凹部12vがGaN結晶20により埋め込まれる際にも結晶成長面における第2の結晶領域の面積の平方根が小さくなる。
In the GaN crystal growth method of the present embodiment, since the
ここで、図4(a)を参照して、凹部形成後の(0001)Ga面10gは凹部面10qと凸部面10pを有する。また、図4(b)を参照して、GaN基板10の凹部面10qにおけるGaN結晶20の1つの第2の結晶領域22の面積(これは、極性反転結晶領域12の面積に等しい)の平方根をRSμm、GaN基板10の凸部面10pと同一面内にあるGaN結晶20の結晶成長面20zにおけるその1つの第2の結晶領域22の面積の平方根をROとすると、凹部12vの深さDμmに対するその1つの第2の結晶領域22の面積の平方根の減少量(RS−RO)μmの比(RS−RO)/Dは0.333μm/μm以上に高めることができ、結晶を厚く成長させる場合よりも効率よく第2の結晶領域22の大きさを小さくすることができます。
Here, referring to FIG. 4A, the (0001)
ここで、比(RS−RO)/Dは0.333μm/μm以上に高めるためには、HVPE法においては、ガリウム原料ガス(GaClガス)分圧が1×103Pa〜5×103Pa、窒素原料ガス(NH3ガス)分圧が1×104Pa〜5×104Pa、結晶成長温度が1000℃〜1100℃とするのがより好ましい。 Here, in order to increase the ratio (R S −R O ) / D to 0.333 μm / μm or more, in the HVPE method, the partial pressure of gallium source gas (GaCl gas) is 1 × 10 3 Pa to 5 × 10 6. 3 Pa, a nitrogen source gas (NH 3 gas) partial pressure of 1 × 10 4 Pa~5 × 10 4 Pa, the crystal growth temperature is more preferably set to 1000 ° C. C. to 1100 ° C..
また、本実施形態のGaN結晶の成長方法において、凹部12vによる1つの第2の結晶領域22の面積の平方根の減少量(RS−RO)μmは10μm以上であることが好ましい。凹部がGaN結晶により埋め込まれる際に結晶成長面における1つの第2の結晶領域の面積の平方根が10μm以上低減することにより、GaN結晶20の結晶成長面20gに現われる第2の結晶領域22の大きさの低減および消滅を効率よく行なうことができる。
In the GaN crystal growth method of this embodiment, the amount of reduction in the square root (R S −R O ) μm of the area of one
また、本実施形態のGaN結晶の成長方法において、凸部面10pからの凹部面10qの深さDμmは極性反転結晶領域の面積の平方根RSμmの3倍以上であることが好ましい。かかる凹部12vの深さDμmを極性反転結晶領域12の面積の平方根RSμmの3倍以上とすることにより、GaN基板10の凹部12vをGaN結晶20で埋め込む際に、GaN結晶20の結晶成長面における第2の結晶領域22を消滅させることができる。
In the GaN crystal growth method of this embodiment, the depth D μm of the concave surface 10q from the
GaN基板10の(0001)Ga主面10gにおける極性反転結晶領域12に凹部12vを形成する方法には、特に制限はないが、凹部の形成が容易な観点から、酸またはアルカリによるエッチングが好ましく挙げられる。GaN基板10の(0001)Ga主面10gには、主結晶領域11の(0001)Ga面11gおよび極性反転領域12の(000−1)N面12nが現われており、GaN結晶においては(000−1)N面が(0001)Ga面に比べてエッチングされやすいため、(000−1)N面が現われている極性反転領域12が選択的にエッチングされる。ここで、エッチング剤としては、リン酸、水酸化カリウム、水酸化ナトリウムなどが好ましく用いられる。なお、GaN基板の(000−1)N主面10nにおける主結晶領域11は(000−1)N面11nが現われているため容易にエッチングされることから、(000−1)N主面10nにエッチング剤が接触しないように、(000−1)N主面10nを白金板などで覆って保護することが好ましい。
The method for forming the
なお、本実施形態の成長方法においても、実施形態1と同様に、GaN基板の凹部が形成された(0001)Ga主面上にGaN結晶を成長させる工程において、GaN結晶の成長厚さの増加量(T2−T1)mmに対する1つの第2の結晶領域の面積の平方根の減少量(R1−R2)μmの比(R1−R2)/(T2−T1)は10μm/mm以上であることが好ましい。 In the growth method of the present embodiment, as in the first embodiment, the growth thickness of the GaN crystal is increased in the step of growing the GaN crystal on the (0001) Ga main surface in which the concave portion of the GaN substrate is formed. The ratio (R 1 -R 2 ) / (T 2 -T 1 ) of the reduction amount (R 1 -R 2 ) μm of the square root of the area of one second crystal region to the amount (T 2 -T 1 ) mm is It is preferably 10 μm / mm or more.
(実施形態3)
本発明にかかるGaN結晶基板の一実施形態は、実施形態1または実施形態2の成長方法によって成長されたGaN結晶20を加工して得られる。ここで、GaN結晶の加工とは、GaN結晶20を切断して得られた主面を研磨してGaN結晶基板を形成することをいう。たとえば、本実施形態のGaN結晶基板は、図1(c)および図2(c)を参照して、GaN基板10の(0001)Ga面10g上に成長させられたGaN結晶20を、(0001)Ga面10gに平行な複数の面で切断し、その主面を研磨することにより得られる。
(Embodiment 3)
One embodiment of the GaN crystal substrate according to the present invention is obtained by processing the
こうして得られた本実施形態のGaN結晶基板201,202,203,0204,205,206,207,208,209は、図4(c)を参照して、GaN結晶から得られる位置がGaN基板10から離れているほど、すなわちGaN基板からの結晶成長厚さが大きい位置から得られたものほど、極性反転領域22が縮小し消滅する。
The
(実施例1)
まず、直径2インチ(5.08cm)で厚さ400μmのGaN基板について、その(0001)Ga主面を50℃の2規定のKOH水溶液により30分間エッチングして、GaN基板10の(0001)Ga主面10gにおける極性反転結晶領域の個数、密度および大きさ(面積の平方根)を求めた。(0001)Ga面には、352個の極性反転結晶領域が存在し、面積の平方根が100μmを超えるものが53個、200μmを超えるものが4個有り、最大の極性反転結晶領域の面積の平方根は280μmであった。ここで、各極性反転結晶領域12の面積は、光学顕微鏡によって測定した。
Example 1
First, with respect to a GaN substrate having a diameter of 2 inches (5.08 cm) and a thickness of 400 μm, the (0001) Ga main surface is etched with a 2N KOH aqueous solution at 50 ° C. for 30 minutes to obtain (0001) Ga of the
次に、図4(a)を参照して、かかるGaN基板10を、質量比が1:1のKOHおよびNaOHの混合融液を用いて、極性反転結晶領域をエッチングした。エッチング条件は、液温300℃で30分間とした。エッチングの際には、GaN基板の(000−1)N主面に白金板を密着させて、この面がエッチングされるのを防止した。
Next, referring to FIG. 4A, the polarity-reversed crystal region of this
上記の混合融液を用いたエッチングにより、GaN基板の(0001)Ga主面に面積の平方根が20μm〜100μmの六角柱状の凹部が352個形成された。かかる凹部の深さは50μm〜250μmであった。なお、かかる凹部の深さのばらつきは、面積の平方根が小さい極性反転結晶領域に形成される凹部は、エッチング液が奥まで届きにくいことから、その深さが小さくなったことより生じたものである。 Etching using the above mixed melt formed 352 hexagonal columnar recesses having a square root of 20 μm to 100 μm on the (0001) Ga main surface of the GaN substrate. The depth of the recess was 50 μm to 250 μm. In addition, the variation in the depth of the concave portion is caused by the fact that the concave portion formed in the polarity reversal crystal region having a small square root of the area has a reduced depth because the etching solution is difficult to reach deep inside. is there.
次に、図4(b)および(c)を参照して、GaN基板10の六角柱状の凹部が形成された(0001)Ga主面10g上にHVPE法により、厚さ10mmのGaN結晶20を成長させた。Ga融液とHClガスを800℃で反応させて生成したGaClガス(ガリウム原料ガス)とNH3ガス(窒素原料ガス)とを供給して、1000℃でGaN基板上にGaN結晶を成長させた。ここで、GaClガス分圧は2×103Pa、NH3ガス分圧は2×104Paとした。
Next, referring to FIGS. 4B and 4C, a
次に、図4(c)を参照して、厚さ10mmのGaN結晶20から、GaN基板10の(0001)Ga主面10gに平行な複数の面で切断し、それらの主面を研磨することにより、厚さが500μmの10枚のGaN結晶基板201,202,203,204,205,206,207,208,209,210を得た。ここで、GaN基板側から数えてn番目のGaN結晶基板の(0001)Ga主面は、GaN基板の(0001)Ga主面から(1×n)mmの距離にある。
Next, referring to FIG. 4C, the
得られた各GaN結晶基板の(0001)Ga主面上における第2の結晶領域(極性反転結晶領域)の個数および密度ならびに最大の第2の結晶領域(最大極性反転結晶領域)の面積の平方根を表1にまとめた。 The number and density of the second crystal regions (polarity inversion crystal regions) on the (0001) Ga main surface of each GaN crystal substrate obtained, and the square root of the area of the maximum second crystal region (maximum polarity inversion crystal region). Are summarized in Table 1.
表1から明らかなように、本実施例において得られたGaN結晶基板は、GaN結晶においてGaN基板からの結晶成長厚さが大きい位置から得られたものほど、その第2の結晶領域(極性反転結晶領域)の密度および大きさが低減した。 As is apparent from Table 1, the GaN crystal substrate obtained in the present example has a second crystal region (polarity inversion) as the GaN crystal substrate obtained from the position where the crystal growth thickness from the GaN substrate is large. The density and size of the crystalline region) were reduced.
また、本実施例においては、GaN結晶の結晶成長面における第2の結晶領域の面積の平方根は、GaN基板に形成された凹部により80μm減少し、さらに、GaN結晶の成長厚さ1mmに対して20μm減少して、合計100μm減少した。したがって、GaN基板の(0001)Ga面における面積の平方根が100μm以上の極性反転結晶領域が、1枚目のGaN結晶基板201の(0001)Ga面における第2の結晶領域(極性反転結晶領域)として残存することになる。このことは、GaN基板の(0001)Ga主面上に存在する面積の平方根が100μm以上の極性反転結晶領域の個数(53個)と1枚目のGaN結晶基板の(0001)Ga面に存在する第2の結晶領域の個数(51個)がほぼ一致した事実に合致する。
In this example, the square root of the area of the second crystal region on the crystal growth surface of the GaN crystal is reduced by 80 μm due to the recess formed in the GaN substrate, and further, with respect to the growth thickness of 1 mm of the GaN crystal. It decreased by 20 μm and decreased by a total of 100 μm. Therefore, the polarity reversal crystal region having a square root of the area of 100 μm or more on the (0001) Ga surface of the GaN substrate is the second crystal region (polarity reversal crystal region) on the (0001) Ga surface of the first
今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明でなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内のすべての変更が含まれることが意図される。 It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
10 GaN基板、10g,11g (0001)Ga主面、10n,11n (000−1)N主面、10p 凸部面、10q 凹部面、11 主結晶領域、12 極性反転結晶領域、12g (000−1)Ga面、12n (0001)N面、20 GaN結晶、20a,20b,20g,20z 結晶成長面、21 第1の結晶領域、22 第2の結晶領域、201,202,203,204,205,206,207,208,209,210 GaN結晶基板。 10 GaN substrate, 10g, 11g (0001) Ga main surface, 10n, 11n (000-1) N main surface, 10p convex surface, 10q concave surface, 11 main crystal region, 12 polarity inversion crystal region, 12g (000- 1) Ga plane, 12n (0001) N plane, 20 GaN crystal, 20a, 20b, 20g, 20z Crystal growth plane, 21 First crystal region, 22 Second crystal region, 201, 202, 203, 204, 205 , 206, 207, 208, 209, 210 GaN crystal substrate.
Claims (6)
前記GaN基板の(0001)Ga主面上に、気相法によりGaN結晶を成長させる工程を含むGaN結晶の成長方法であって、
前記GaN結晶は、前記主結晶領域上に成長する第1の結晶領域と、各前記極性反転領域上にそれぞれ成長する複数の第2の結晶領域とを含み、
前記第2の結晶領域は、前記第1の結晶領域に対して、[0001]方向の極性が反転しており、
前記第1の結晶領域は、前記第2の結晶領域に比べて結晶成長速度が高く、前記第2の結晶領域を埋め込むように成長することを特徴とするGaN結晶の成長方法。 Preparing a GaN substrate including a main crystal region and a plurality of polarity-inverted crystal regions in which the polarity in the [0001] direction is inverted with respect to the main crystal region;
A method for growing a GaN crystal comprising a step of growing a GaN crystal by a vapor phase method on a (0001) Ga main surface of the GaN substrate,
The GaN crystal includes a first crystal region that grows on the main crystal region, and a plurality of second crystal regions that grow on each of the polarity inversion regions,
The second crystal region has a polarity reversed in the [0001] direction with respect to the first crystal region,
The first crystal region has a crystal growth rate higher than that of the second crystal region, and grows so as to embed the second crystal region.
前記GaN結晶の成長厚さの増加量(T2−T1)mmに対する前記1つの前記第2の結晶領域の面積の平方根の減少量(R1−R2)μmの比(R1−R2)/(T2−T1)は10μm/mm以上であることを特徴とする請求項1に記載のGaN結晶の成長方法。 When the crystal growth thickness of the GaN crystal is T 1 mm, the square root of the area of one second crystal region on the crystal growth surface is R 1 μm, and the crystal when the crystal growth height of the GaN crystal is T 2 mm When the square root of the area of the one second crystal region on the growth surface is R 2 μm,
The ratio (R 1 -R) of the reduction amount (R 1 -R 2 ) μm of the area of the one second crystal region to the increase amount (T 2 -T 1 ) mm of the growth thickness of the GaN crystal. 2) / (T 2 -T 1 ) growth method of a GaN crystal according to claim 1, characterized in that 10 [mu] m / mm or more.
前記凹部が形成された前記(0001)Ga面上に前記GaN結晶を成長させる工程を含む請求項1に記載のGaN結晶の成長方法。 After the step of preparing the GaN substrate, further comprising the step of forming a recess in the polarity reversal crystal region in the (0001) Ga main surface of the GaN substrate,
The method for growing a GaN crystal according to claim 1, comprising a step of growing the GaN crystal on the (0001) Ga surface in which the recess is formed.
前記GaN基板の前記凹部面における前記GaN結晶の1つの前記第2の結晶領域の面積の平方根をRSμm、前記GaN基板の前記凸部面と同一面内にあるGaN結晶の結晶成長面における前記1つの前記第2の結晶領域の面積の平方根をROμmとするとき、
前記凹部による前記1つの前記第2の結晶領域の面積の平方根の減少量(RS−RO)μmは10μm以上であることを特徴とする請求項3に記載のGaN結晶の成長方法。 The (0001) Ga surface after forming the recess has a recess surface and a convex surface,
The square root of the area of one second crystal region of the GaN crystal on the concave surface of the GaN substrate is R S μm, and the crystal growth surface of the GaN crystal is in the same plane as the convex surface of the GaN substrate. When the square root of the area of the one second crystal region is R O μm,
The method for growing a GaN crystal according to claim 3, wherein a reduction amount (R S −R O ) μm of the square root of the area of the one second crystal region due to the recess is 10 μm or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007147322A JP5018247B2 (en) | 2007-06-01 | 2007-06-01 | GaN crystal growth method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007147322A JP5018247B2 (en) | 2007-06-01 | 2007-06-01 | GaN crystal growth method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008297180A true JP2008297180A (en) | 2008-12-11 |
JP5018247B2 JP5018247B2 (en) | 2012-09-05 |
Family
ID=40171040
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007147322A Expired - Fee Related JP5018247B2 (en) | 2007-06-01 | 2007-06-01 | GaN crystal growth method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5018247B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009091163A (en) * | 2007-10-03 | 2009-04-30 | Hitachi Cable Ltd | GaN SINGLE-CRYSTAL SUBSTRATE AND METHOD FOR PRODUCING GaN SINGLE CRYSTAL |
JP2009149483A (en) * | 2007-12-22 | 2009-07-09 | Hitachi Cable Ltd | Nitride semiconductor free-standing substrate and manufacturing process of nitride semiconductor free-standing substrate |
JP2011162439A (en) * | 2011-05-06 | 2011-08-25 | Hitachi Cable Ltd | Nitride semiconductor free-standing substrate and light emitter |
JP2012211037A (en) * | 2011-03-31 | 2012-11-01 | Furukawa Co Ltd | Seed crystal, method for manufacturing gallium nitride-based semiconductor, and method for manufacturing substrate |
JP2014237584A (en) * | 2014-07-14 | 2014-12-18 | 古河機械金属株式会社 | Manufacturing method of seed crystal, gallium nitride semiconductor, and manufacturing method of substrate |
JP2015199663A (en) * | 2015-04-07 | 2015-11-12 | 株式会社サイオクス | Method for manufacturing nitride semiconductor epitaxial substrate and method for manufacturing nitride semiconductor device |
JP2016119429A (en) * | 2014-12-24 | 2016-06-30 | 一般財団法人ファインセラミックスセンター | Nitride-based semiconductor substrate etching method, nitride-based semiconductor film creation method and nitride-based semiconductor substrate |
US9397232B2 (en) | 2011-07-01 | 2016-07-19 | Sumitomo Chemical Company, Limited | Nitride semiconductor epitaxial substrate and nitride semiconductor device |
JP2016222539A (en) * | 2016-07-22 | 2016-12-28 | 住友化学株式会社 | Production method of nitride semiconductor epitaxial substrate, and production method of nitride semiconductor device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003133649A (en) * | 2001-10-29 | 2003-05-09 | Sharp Corp | Nitride semiconductor laser device and method of manufacturing the same, and semiconductor optical device provided therewith |
JP2004221480A (en) * | 2003-01-17 | 2004-08-05 | Sumitomo Electric Ind Ltd | Buried substrate crystal and method of manufacturing the same |
JP2004335646A (en) * | 2003-05-06 | 2004-11-25 | Sumitomo Electric Ind Ltd | GaN SUBSTRATE |
JP2006059973A (en) * | 2004-08-19 | 2006-03-02 | Sharp Corp | Nitride semiconductor light emitting element |
-
2007
- 2007-06-01 JP JP2007147322A patent/JP5018247B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003133649A (en) * | 2001-10-29 | 2003-05-09 | Sharp Corp | Nitride semiconductor laser device and method of manufacturing the same, and semiconductor optical device provided therewith |
JP2004221480A (en) * | 2003-01-17 | 2004-08-05 | Sumitomo Electric Ind Ltd | Buried substrate crystal and method of manufacturing the same |
JP2004335646A (en) * | 2003-05-06 | 2004-11-25 | Sumitomo Electric Ind Ltd | GaN SUBSTRATE |
JP2006059973A (en) * | 2004-08-19 | 2006-03-02 | Sharp Corp | Nitride semiconductor light emitting element |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009091163A (en) * | 2007-10-03 | 2009-04-30 | Hitachi Cable Ltd | GaN SINGLE-CRYSTAL SUBSTRATE AND METHOD FOR PRODUCING GaN SINGLE CRYSTAL |
JP4556983B2 (en) * | 2007-10-03 | 2010-10-06 | 日立電線株式会社 | GaN single crystal substrate |
US8101939B2 (en) | 2007-10-03 | 2012-01-24 | Hitachi Cable, Ltd. | GaN single-crystal substrate and method for producing GaN single crystal |
JP2009149483A (en) * | 2007-12-22 | 2009-07-09 | Hitachi Cable Ltd | Nitride semiconductor free-standing substrate and manufacturing process of nitride semiconductor free-standing substrate |
JP2012211037A (en) * | 2011-03-31 | 2012-11-01 | Furukawa Co Ltd | Seed crystal, method for manufacturing gallium nitride-based semiconductor, and method for manufacturing substrate |
JP2011162439A (en) * | 2011-05-06 | 2011-08-25 | Hitachi Cable Ltd | Nitride semiconductor free-standing substrate and light emitter |
US9397232B2 (en) | 2011-07-01 | 2016-07-19 | Sumitomo Chemical Company, Limited | Nitride semiconductor epitaxial substrate and nitride semiconductor device |
JP2014237584A (en) * | 2014-07-14 | 2014-12-18 | 古河機械金属株式会社 | Manufacturing method of seed crystal, gallium nitride semiconductor, and manufacturing method of substrate |
JP2016119429A (en) * | 2014-12-24 | 2016-06-30 | 一般財団法人ファインセラミックスセンター | Nitride-based semiconductor substrate etching method, nitride-based semiconductor film creation method and nitride-based semiconductor substrate |
JP2015199663A (en) * | 2015-04-07 | 2015-11-12 | 株式会社サイオクス | Method for manufacturing nitride semiconductor epitaxial substrate and method for manufacturing nitride semiconductor device |
JP2016222539A (en) * | 2016-07-22 | 2016-12-28 | 住友化学株式会社 | Production method of nitride semiconductor epitaxial substrate, and production method of nitride semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
JP5018247B2 (en) | 2012-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5018247B2 (en) | GaN crystal growth method | |
JP5332168B2 (en) | Method for producing group III nitride crystal | |
KR100616686B1 (en) | Method for manufacturing nitride-based semiconductor device | |
WO2011108698A1 (en) | Internal reforming substrate for epitaxial growth, internal reforming substrate with multilayer film, semiconductor device, bulk semiconductor substrate, and production methods therefor | |
KR100691159B1 (en) | Method For Manufacturing Gallium Nitride-Based Semiconductor Device | |
JP2007055850A (en) | MANUFACTURING METHOD OF ZnO COMPOUND SEMICONDUCTOR CRYSTAL AND ZnO COMPOUND SEMICONDUCTOR SUBSTRATE | |
US8101939B2 (en) | GaN single-crystal substrate and method for producing GaN single crystal | |
US20140087113A1 (en) | Method of growing group iii nitride crystals | |
JP5765367B2 (en) | GaN crystal | |
TWI413162B (en) | Semiconductor device and method of its manufacture | |
US10161059B2 (en) | Group III nitride bulk crystals and their fabrication method | |
US9518340B2 (en) | Method of growing group III nitride crystals | |
JP2017522721A (en) | Method of manufacturing a semiconductor material including a semipolar group III nitride layer | |
JP5012700B2 (en) | Group III nitride crystal bonded substrate, method of manufacturing the same, and method of manufacturing group III nitride crystal | |
JP2002241198A (en) | GaN SINGLE CRYSTAL SUBSTRATE AND METHOD FOR PRODUCING THE SAME | |
JP4786587B2 (en) | Group III nitride semiconductor and method for manufacturing the same, substrate for manufacturing group III nitride semiconductor | |
JP4904210B2 (en) | Method for manufacturing group III nitride crystal substrate | |
JP2008207974A (en) | Method for manufacturing group iii nitride crystal | |
JP4082409B2 (en) | Manufacturing method of semiconductor device | |
KR101094409B1 (en) | Preparation of single crystalline gallium nitride thick film | |
EP3146093A1 (en) | Group iii nitride bulk crystals and their fabrication method | |
KR20170036055A (en) | Substrates for group nitride crystals and their fabrication method | |
JP2008169075A (en) | Method for producing group iii nitride crystal | |
JP2018504355A (en) | Seed selection and growth method for reduced crack III-nitride bulk crystals | |
JP2002016001A (en) | Method for growing low-defect nitride semiconductor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100113 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110621 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110628 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110824 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120110 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120305 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120515 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120528 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150622 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |