JP2008297133A - Dielectric porcelain and capacitor - Google Patents

Dielectric porcelain and capacitor Download PDF

Info

Publication number
JP2008297133A
JP2008297133A JP2007141784A JP2007141784A JP2008297133A JP 2008297133 A JP2008297133 A JP 2008297133A JP 2007141784 A JP2007141784 A JP 2007141784A JP 2007141784 A JP2007141784 A JP 2007141784A JP 2008297133 A JP2008297133 A JP 2008297133A
Authority
JP
Japan
Prior art keywords
terms
dielectric
dielectric ceramic
mol
dielectric constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007141784A
Other languages
Japanese (ja)
Other versions
JP4931697B2 (en
Inventor
Yasuyo Kamigaki
耕世 神垣
Daisuke Fukuda
大輔 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2007141784A priority Critical patent/JP4931697B2/en
Publication of JP2008297133A publication Critical patent/JP2008297133A/en
Application granted granted Critical
Publication of JP4931697B2 publication Critical patent/JP4931697B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dielectric porcelain exhibiting a high dielectric constant and stable temperature properties in a specific dielectric constant and having reduced spontaneous polarization and to provide a capacitor using it. <P>SOLUTION: The dielectric porcelain comprises crystal grains containing barium titanate as a main ingredient, calcium, magnesium, a rare earth element and manganese and grain boundary phases and contains calcium of 0.1 mole or less in terms of CaO, magnesium of 0.01-0.064 mole in terms of MgO, a rare earth element of 0.0015-0.03 mole in terms of RE<SB>2</SB>O<SB>3</SB>and manganese of 0.0002-0.03 mole in terms of MnO to titanium 1 mole constituting barium titanate. The crystal structure of the dielectric ceramic identified by X-ray diffraction is mainly cubic. The average crystal grain diameter of the crystal grains is 80-200 nm. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、チタン酸バリウムを主成分とする結晶粒子によって形成された誘電体磁器とそれを用いたコンデンサに関する。   The present invention relates to a dielectric ceramic made of crystal particles mainly composed of barium titanate and a capacitor using the dielectric ceramic.

現在、モバイルコンピュータや携帯電話をはじめとするデジタル方式の電子機器の普及が目覚ましく、近い将来、地上デジタル放送が全国に展開されようとしている。地上デジタル放送を担うデジタル方式の電子機器として液晶ディスプレイやプラズマディスプレイなどがあるが、これらデジタル方式の電子機器には多くのLSIが用いられている。   At present, the spread of digital electronic devices such as mobile computers and mobile phones is remarkable, and in the near future digital terrestrial broadcasting is going to be deployed nationwide. There are a liquid crystal display, a plasma display, and the like as digital electronic devices that carry digital terrestrial broadcasting, and many LSIs are used for these digital electronic devices.

そのため、液晶ディスプレイやプラズマディスプレイなど、これらデジタル方式の電子機器を構成する電源回路にはバイパス用のコンデンサが数多く実装されているが、ここで用いられているコンデンサは高い静電容量を必要とする場合には高誘電率の積層セラミックコンデンサ(例えば、特許文献1参照)が採用され、一方、低容量でも温度特性を重視する場合には容量変化率の小さい温度補償型の積層セラミックコンデンサ(例えば、特許文献2参照)が採用されている。
特開2000−58377号公報 特開2001−294481号公報
Therefore, many bypass capacitors are mounted on the power supply circuits that make up these digital electronic devices such as liquid crystal displays and plasma displays, but the capacitors used here require high capacitance. In some cases, a high dielectric constant monolithic ceramic capacitor (for example, see Patent Document 1) is adopted. On the other hand, when temperature characteristics are important even with a low capacitance, a temperature compensation type monolithic ceramic capacitor with a small capacitance change rate (for example, Patent Document 2) is adopted.
JP 2000-58377 A JP 2001-294482 A

しかしながら、特許文献1に開示された高誘電率の積層セラミックコンデンサは、強誘電性を有する誘電体磁器の結晶粒子によって構成されているため比誘電率の温度変化率が大きく、かつ誘電分極を示すヒステリシスが大きいという不具合があった。   However, since the multilayer ceramic capacitor having a high dielectric constant disclosed in Patent Document 1 is composed of crystal grains of dielectric ceramic having ferroelectricity, the temperature change rate of relative permittivity is large and exhibits dielectric polarization. There was a problem of large hysteresis.

また、特許文献1に開示された強誘電性の誘電体磁器を用いて形成されたコンデンサでは、電源回路上において電気誘起歪に起因する “音鳴り”現象を発生させやすいことから、プラズマディスプレイなどに使用する際の障害となっていた。   In addition, a capacitor formed by using a ferroelectric dielectric ceramic disclosed in Patent Document 1 tends to generate a “sounding” phenomenon caused by an electrically induced strain on a power supply circuit. It was an obstacle when using it.

一方、温度補償型の積層セラミックコンデンサは、それを構成する誘電体磁器が、常誘電性であるため誘電分極を示すヒステリシスがなく、強誘電性特有の電気歪が起こらないという利点があるものの、誘電体磁器の比誘電率が低いために蓄電能力が低くバイパスコンデンサとしての性能を満たさないという問題があった。   On the other hand, the temperature-compensated monolithic ceramic capacitor has the advantage that there is no hysteresis showing dielectric polarization because the dielectric ceramic that constitutes it is paraelectric, and no electrical distortion specific to ferroelectricity occurs. Since the dielectric ceramic has a low relative dielectric constant, there is a problem in that the storage capacity is low and the performance as a bypass capacitor is not satisfied.

従って、本発明は、高誘電率かつ安定な比誘電率の温度特性を示し、自発分極の小さい誘電体磁器と、それを用いたコンデンサを提供することを目的とする。   Accordingly, an object of the present invention is to provide a dielectric ceramic that exhibits a temperature characteristic of a high dielectric constant and a stable relative dielectric constant and has a small spontaneous polarization, and a capacitor using the dielectric ceramic.

本発明の誘電体磁器は、チタン酸バリウムを主成分とし、カルシウム、マグネシウム、希土類元素、およびマンガンを含む結晶粒子と粒界相とからなる誘電体磁器であって、前記チタン酸バリウムを構成するチタン1モルに対して、カルシウムをCaO換算で0.1モル以下、マグネシウムをMgO換算で0.01〜0.064モル、希土類元素をRE換算で0.0015〜0.03モル、およびマンガンをMnO換算で0.0002〜0.03モルの範囲でそれぞれ含有してなり、前記誘電体磁器のX線回折により同定される結晶構造が立方晶系を主体とするものであり、かつ前記結晶粒子の平均結晶粒径が80〜200nmであることを特徴とする。 The dielectric ceramic according to the present invention is a dielectric ceramic composed mainly of barium titanate and comprising crystal grains containing calcium, magnesium, rare earth elements, and manganese and a grain boundary phase, and constitutes the barium titanate. With respect to 1 mol of titanium, calcium is 0.1 mol or less in terms of CaO, magnesium is 0.01 to 0.064 mol in terms of MgO, and rare earth elements are 0.0015 to 0.03 mol in terms of RE 2 O 3 , And manganese in a range of 0.0002 to 0.03 mol in terms of MnO, the crystal structure identified by X-ray diffraction of the dielectric ceramic is mainly composed of a cubic system, and The crystal grain has an average crystal grain size of 80 to 200 nm.

また、上記誘電体磁器では、前記カルシウムの含有量がCaO換算で0.025〜0.075モル、前記マグネシウムの含有量がMgO換算で0.01〜0.04モルであって、前記結晶粒子の平均結晶粒径が130〜200nmであることが望ましい。   In the dielectric ceramic, the calcium content is 0.025 to 0.075 mol in terms of CaO, the magnesium content is 0.01 to 0.04 mol in terms of MgO, and the crystal particles It is desirable that the average crystal grain size is 130 to 200 nm.

また、本発明のコンデンサは、上記の誘電体磁器からなる誘電体層と導体層とが積層され構成されていることを特徴とする。   The capacitor according to the present invention is characterized in that a dielectric layer made of the above dielectric ceramic and a conductor layer are laminated.

本発明の誘電体磁器によれば、チタン酸バリウムを主成分とする誘電体磁器中に、カルシウム、マグネシウム、希土類元素およびマンガンを酸化物換算で上記の割合で含有させるとともに、誘電体磁器のX線回折により同定される結晶構造が立方晶系を主体とするものとし、かつ、結晶粒子の平均粒径を80〜200nmとすることにより、従来の強誘電性を有する誘電体磁器よりも比誘電率の温度変化率が小さく、また、従来の常誘電性を有する誘電体磁器に比較して高誘電率であり、かつ安定な比誘電率の温度特性を示すとともに、自発分極の小さい誘電体磁器を得ることができる。   According to the dielectric ceramic of the present invention, the dielectric ceramic mainly composed of barium titanate contains calcium, magnesium, rare earth element and manganese in the above-mentioned ratio in terms of oxides, and X of the dielectric ceramic. The crystal structure identified by the line diffraction is mainly composed of a cubic system, and the average grain size of the crystal grains is set to 80 to 200 nm, so that the dielectric constant is higher than that of a conventional dielectric ceramic having ferroelectricity. Dielectric porcelain having a low rate of change in temperature, a high dielectric constant compared to conventional dielectric ceramics having paraelectric properties, stable temperature characteristics of relative dielectric constant, and low spontaneous polarization Can be obtained.

また、本発明の誘電体磁器において、前記カルシウムの含有量をCaO換算で0.025〜0.075モル、前記マグネシウムの含有量をMgO換算で0.01〜0.04モルとするとともに、前記結晶粒子の平均結晶粒径を130〜200nmとした場合には、比誘電率がより高く、かつ比誘電率の温度特性がより安定で、自発分極のさらに小さい誘電体磁器を得ることができる。   In the dielectric ceramic of the present invention, the calcium content is 0.025 to 0.075 mol in terms of CaO, the magnesium content is 0.01 to 0.04 mol in terms of MgO, and When the average crystal grain size of the crystal particles is 130 to 200 nm, a dielectric ceramic having a higher relative dielectric constant, more stable temperature characteristics of the relative dielectric constant, and smaller spontaneous polarization can be obtained.

また、本発明のコンデンサによれば、誘電体層として、高誘電率かつ安定な比誘電率の温度特性を示し、自発分極の小さい上述の誘電体磁器を適用することにより、従来のコンデンサよりも高容量かつ容量温度特性の安定なコンデンサを形成でき、これを電源回路用として用いたときには、電気誘起歪に起因する “音鳴り”現象の発生を抑制できる。   Further, according to the capacitor of the present invention, the dielectric layer exhibits temperature characteristics of a high dielectric constant and a stable relative dielectric constant, and by applying the above-described dielectric ceramic having a small spontaneous polarization, it is possible to make the dielectric layer more than conventional capacitors. Capacitors with high capacitance and stable capacitance-temperature characteristics can be formed. When this capacitor is used for a power supply circuit, it is possible to suppress the occurrence of a “sounding” phenomenon caused by electrically induced distortion.

本発明の誘電体磁器は、チタン酸バリウムを主成分とし、カルシウム、マグネシウム、希土類元素およびマンガンを含む結晶粒子と粒界相とから実質的に構成されており、誘電体磁器中において、チタン酸バリウムを構成するチタン1モルに対して、カルシウムをCaO換算で0.1モル以下、マグネシウムをMgO換算で0.01〜0.064モル、希土類元素をRE換算で0.0015〜0.03モル、およびマンガンをMnO換算で0.0002〜0.03モルの割合で含有することを特徴とする。 The dielectric porcelain of the present invention is composed essentially of crystal grains containing barium titanate as a main component and containing calcium, magnesium, rare earth elements and manganese, and a grain boundary phase. Calcium is 0.1 mol or less in terms of CaO, magnesium is 0.01 to 0.064 mol in terms of MgO, and rare earth elements are 0.0015 to 0 in terms of RE 2 O 3 with respect to 1 mol of titanium constituting barium. 0.03 mol and manganese are contained at a ratio of 0.0002 to 0.03 mol in terms of MnO.

また、本発明の誘電体磁器は、誘電体磁器のX線回折により同定される結晶構造が立方晶系を主体とするものであり、誘電体磁器を構成する結晶粒子の平均結晶粒径が80〜200nmであることが重要である。   In the dielectric ceramic according to the present invention, the crystal structure identified by X-ray diffraction of the dielectric ceramic is mainly composed of a cubic system, and the average crystal grain size of crystal grains constituting the dielectric ceramic is 80. It is important to be ~ 200 nm.

上記組成および粒径とするとともに、結晶構造を立方晶系を主体とするものにすると、室温における比誘電率を410以上、−55℃〜125℃間における比誘電率の変化率を±10%以内にでき、誘電分極におけるヒステリシスの小さい誘電体磁器を形成できるという利点がある。   When the above composition and particle size are used, and the crystal structure is mainly composed of a cubic system, the relative dielectric constant at room temperature is 410 or more, and the change rate of the relative dielectric constant between −55 ° C. and 125 ° C. is ± 10%. There is an advantage that a dielectric ceramic having a small hysteresis in dielectric polarization can be formed.

このような本発明の誘電体磁器は、その結晶粒子を、チタン酸バリウムにカルシウム、マグネシウム、希土類元素およびマンガンが固溶したものとし、これらの成分が固溶したチタン酸バリウムを主成分とする結晶粒子の平均結晶粒径を80〜200nmとすることで、当該結晶粒子により構成される誘電体磁器の結晶構造を立方晶系を主体としたものにすることができ、これにより正方晶系の結晶構造に起因する強誘電性が低下し、常誘電性を高めることができ、常誘電性が増すことで自発分極を低減できる。   In such a dielectric ceramic of the present invention, the crystal particles are obtained by solidly dissolving barium titanate with calcium, magnesium, rare earth elements and manganese, and these components are mainly composed of barium titanate. By setting the average crystal grain size of the crystal particles to 80 to 200 nm, the crystal structure of the dielectric porcelain constituted by the crystal particles can be mainly composed of a cubic system. Ferroelectricity due to the crystal structure is reduced, paraelectricity can be increased, and spontaneous polarization can be reduced by increasing paraelectricity.

また、結晶粒子の結晶構造を立方晶系を主体とする結晶構造とすることで、−55〜125℃の温度範囲における比誘電率の変化が平坦となり、電界−誘電分極特性におけるヒステリシスが小さくなる。そのため、比誘電率が410以上を有するにもかかわらず比誘電率の変化率の小さな誘電体磁器を得ることができる。   Further, by making the crystal structure of the crystal grains mainly a cubic system, the change in relative dielectric constant in the temperature range of −55 to 125 ° C. becomes flat, and the hysteresis in the electric field-dielectric polarization characteristics becomes small. . Therefore, it is possible to obtain a dielectric ceramic having a small relative dielectric constant change rate despite having a relative dielectric constant of 410 or more.

即ち、本発明の誘電体磁器では、結晶粒子が、チタン酸バリウムにカルシウム、マグネシウム、希土類元素およびマンガンが固溶し、その平均粒径を微細化しかつ結晶構造を立方晶系とすることで比誘電率の温度特性を平坦化できる。   That is, in the dielectric ceramic according to the present invention, the crystal particles are formed by dissolving calcium, magnesium, rare earth elements and manganese in barium titanate, refining the average particle size, and making the crystal structure cubic. The temperature characteristic of dielectric constant can be flattened.

なお、マグネシウム、希土類元素およびマンガンを所定量含むことで相転移現象を変化させ、比誘電率の変化率を示す曲線は−55℃〜125℃の温度範囲において室温を中心に、2つのピークを有したものとなっている。   It should be noted that the phase transition phenomenon is changed by containing a predetermined amount of magnesium, rare earth element and manganese, and the curve showing the change rate of the relative dielectric constant has two peaks centering on room temperature in the temperature range of -55 ° C to 125 ° C. It has become.

即ち、本発明の誘電体磁器では、チタン酸バリウムにおけるバリウムの一部をイオン半径の小さいカルシウムにより置換したものとすることで、相転移点が高温側へ移動し、比誘電率の温度に対する平坦性が向上する。これはカルシウムの導入により、マグネシウム、希土類元素、マンガンの固溶性が高まることにより常誘電相−強誘電相の相転移温度は低温化し、同時に散漫になり比誘電率の温度特性が安定なものになると考えられる。   That is, in the dielectric ceramic according to the present invention, a part of barium in barium titanate is replaced with calcium having a small ionic radius, so that the phase transition point moves to the high temperature side and the relative permittivity is flat with respect to the temperature. Improves. The introduction of calcium increases the solid solubility of magnesium, rare earth elements, and manganese, thereby lowering the phase transition temperature of the paraelectric phase to the ferroelectric phase, and at the same time becoming diffuse and stabilizing the temperature characteristics of the relative permittivity. It is considered to be.

つまり、誘電体磁器を構成する結晶粒子の結晶構造が立方晶系であると、イオン変位による自発分極が抑制され強誘電性を抑制でき、こうして温度に対する比誘電率の変化を示す曲線が−55℃〜125℃の温度範囲において2つのピークを有するものになると考えられる。   That is, when the crystal structure of the crystal grains constituting the dielectric ceramic is cubic, the spontaneous polarization due to ion displacement can be suppressed and the ferroelectricity can be suppressed, and thus a curve indicating the change in relative permittivity with respect to temperature is −55. It is thought that it will have two peaks in the temperature range of deg.

本発明の誘電体磁器では、上述したように、チタン酸バリウムを構成するチタン1モルに対して、カルシウムをCaO換算で0.1モル以下、マグネシウムをMgO換算で0.01〜0.064モル、希土類元素をRE換算で0.0015〜0.03モル、およびマンガンをMnO換算で0.0002〜0.03モルの範囲でそれぞれ含有することが重要である。 In the dielectric ceramic of the present invention, as described above, calcium is 0.1 mol or less in terms of CaO and 0.01 to 0.064 mol in terms of MgO with respect to 1 mol of titanium constituting barium titanate. It is important to contain rare earth elements in the range of 0.0015 to 0.03 mol in terms of RE 2 O 3 and manganese in the range of 0.0002 to 0.03 mol in terms of MnO.

なぜなら、チタン1モルに対するカルシウムの含有量がCaO換算で0.1モルより多いか、マグネシウムがMgO換算で0.064モルより多いか、希土類元素がRE換算で0.03より多い場合には比誘電率が低下するからであり、逆に、マグネシウムがMgO換算で0.01モル少ないか、希土類元素がRE換算で0.0015モルより少ない場合には誘電体磁器の比誘電率の変化率が大きくなるからである。また、マンガンがMnO換算で0.0002モルより少ないと、焼成後の誘電体磁器が還元されてしまい誘電体磁器の絶縁抵抗が低下して機能を有しないものとなり、また、マンガンがMnO換算で0.03モルよりも多くなると比誘電率が低下するといった不具合があるからである。 This is because the content of calcium per 1 mol of titanium is more than 0.1 mol in terms of CaO, magnesium is more than 0.064 mol in terms of MgO, or rare earth elements are more than 0.03 in terms of RE 2 O 3 In contrast, when the relative dielectric constant is decreased, the ratio of the dielectric ceramic is reduced when magnesium is less than 0.01 mol in terms of MgO or rare earth elements are less than 0.0015 mol in terms of RE 2 O 3. This is because the rate of change of the dielectric constant increases. Also, if manganese is less than 0.0002 mol in terms of MnO, the dielectric ceramic after firing is reduced and the insulation resistance of the dielectric ceramic is reduced, so that it has no function, and manganese is in terms of MnO. It is because there exists a malfunction that a dielectric constant will fall when it exceeds 0.03 mol.

また、本発明の誘電体磁器は、上記のような平坦な比誘電率の温度特性を示すためには、誘電体磁器を構成する結晶粒子の平均粒径が80〜200nmであることが重要である。これは結晶粒子の平均結晶粒径が80nmよりも小さい場合には比誘電率が低下し、一方、結晶粒子の平均結晶粒径が200nmよりも大きい場合には、比誘電率の温度係数が大きくなるからである。結晶粒子の平均結晶粒径が200nmよりも大きい場合には誘電体磁器中に、チタン酸バリウムのペロブスカイト型結晶構造の正方晶系の結晶が生成してくる可能性があるためである。   In addition, in the dielectric ceramic of the present invention, it is important that the average particle diameter of crystal grains constituting the dielectric ceramic is 80 to 200 nm in order to exhibit the temperature characteristic of the flat relative dielectric constant as described above. is there. This is because the relative dielectric constant decreases when the average crystal grain size of the crystal particles is smaller than 80 nm, while the temperature coefficient of the relative dielectric constant increases when the average crystal grain size of the crystal particles is larger than 200 nm. Because it becomes. This is because when the average crystal grain size of crystal grains is larger than 200 nm, tetragonal crystals having a perovskite crystal structure of barium titanate may be generated in the dielectric ceramic.

つまり、結晶粒子の平均結晶粒径が大きくなると、誘電体磁器中に強誘電性を示す相が多くなるため比誘電率が高くなるが、比誘電率の温度係数が大きくなり自発分極が現れる。これは誘電体磁器のX線回折により同定される結晶構造において立方晶系とともに正方晶系の相が生成してくることに起因する。このような誘電体磁器を誘電体層とするコンデンサを電源回路上において使用した場合には電歪現象に起因する “音鳴り”現象が発生しやすくなる。   That is, when the average crystal grain size of the crystal grains increases, the dielectric constant increases because the number of phases exhibiting ferroelectricity increases in the dielectric ceramic, but the temperature coefficient of the relative permittivity increases and spontaneous polarization appears. This is due to the formation of tetragonal and tetragonal phases in the crystal structure identified by X-ray diffraction of dielectric ceramics. When a capacitor having such a dielectric ceramic as a dielectric layer is used on a power supply circuit, a “sounding” phenomenon due to an electrostriction phenomenon is likely to occur.

本発明の誘電体磁器において、より好ましい組成および粒径としては、カルシウムの含有量がCaO換算で0.025〜0.075モル、前記マグネシウムの含有量がMgO換算で0.01〜0.04モル、希土類元素をRE換算で0.0015〜0.03モルおよびマンガンがMnO換算で0.0002〜0.03モルであり、結晶粒子の平均結晶粒径が130〜200nmであるものがよく、この範囲の誘電体磁器は、25℃における比誘電率を690以上、−55〜125℃における比誘電率の変化率を±10%以内にすることが可能になる。また、本発明の誘電体磁器では、このような組成および粒径を定めた場合に、25℃における比誘電率が1000より低く、−55〜125℃における比誘電率の変化率が±10%以内である場合には、分極値を0.03μC/cm以下にすることが可能になる。 In the dielectric ceramic according to the present invention, as a more preferable composition and particle size, the calcium content is 0.025 to 0.075 mol in terms of CaO, and the magnesium content is 0.01 to 0.04 in terms of MgO. Mole, rare earth element is 0.0015 to 0.03 mol in terms of RE 2 O 3 and manganese is 0.0002 to 0.03 mol in terms of MnO, and the average grain size of crystal grains is 130 to 200 nm The dielectric ceramic in this range can have a relative dielectric constant of 690 or more at 25 ° C. and a change rate of the relative dielectric constant of −55 to 125 ° C. within ± 10%. In the dielectric ceramic according to the present invention, when such a composition and particle size are determined, the relative dielectric constant at 25 ° C. is lower than 1000, and the change rate of the relative dielectric constant at −55 to 125 ° C. is ± 10%. If it is within the range, the polarization value can be 0.03 μC / cm 2 or less.

また、誘電体磁器の結晶粒子の平均結晶粒径は誘電体磁器の破断面を研磨した後、走査型電子顕微鏡を用いて内部組織の写真を撮り、次いで、その写真に映し出されている結晶粒子の輪郭を画像処理し、各粒子の面積から円の直径を求めて平均化する。   The average grain size of the dielectric ceramic crystal particles is determined by polishing the fracture surface of the dielectric ceramic, taking a picture of the internal structure using a scanning electron microscope, and then displaying the crystal grains shown in the photograph. The contour of the image is processed, and the diameter of the circle is obtained from the area of each particle and averaged.

また、誘電体磁器の結晶構造はCukαを管球とするX線回折を用いて、2θを10〜100°として測定して同定する。この場合、試料は誘電体磁器を粉砕した粉末を用い、チタン酸バリウムのJCPDSデータを基にして、(002)面、(200)面の回折線から立方晶系および正方晶系を評価する。立方晶系は(002)(200)の回折線が分離していないものであり、正方晶系は立方晶系の(002)(200)の回折線の両脇に回折ピークが出現するか、または回折ピークの分離が見られる場合とする。   The crystal structure of the dielectric ceramic is identified by measuring 2θ at 10 to 100 ° using X-ray diffraction using Cukα as a tube. In this case, a powder obtained by pulverizing a dielectric ceramic is used as a sample, and a cubic system and a tetragonal system are evaluated from diffraction lines of (002) plane and (200) plane based on JCPDS data of barium titanate. In the cubic system, (002) (200) diffraction lines are not separated, and in the tetragonal system, diffraction peaks appear on both sides of the cubic (002) (200) diffraction lines, Alternatively, it is assumed that diffraction peaks are separated.

また、本発明において、立方晶系を主体とする結晶構造とは立方晶系のチタン酸バリウムの最も強いピークである(110)面の回折ピーク強度が異相の回折ピーク強度よりも大きい状態をいう。   In the present invention, the crystal structure mainly composed of a cubic system means a state in which the diffraction peak intensity of the (110) plane, which is the strongest peak of cubic barium titanate, is larger than the diffraction peak intensity of a different phase. .

次に、本発明の誘電体磁器の製法について説明する。先ず、素原料粉末として、純度がいずれも99%以上のBaCO粉末と、CaCO粉末、TiO粉末、MgO粉末、Y粉末および炭酸マンガン粉末を用いる。これらの素原料粉末を、チタン酸バリウムを構成するチタン1モルに対して、CaCOを0.10モル以下(ゼロは除く)の割合で、MgOを0.01〜0.064モルの割合で、Yを0.0015〜0.03モルの割合で、MnOを0.0002〜0.03モルの割合で配合する。 Next, a method for manufacturing the dielectric ceramic according to the present invention will be described. First, BaCO 3 powder having a purity of 99% or more, CaCO 3 powder, TiO 2 powder, MgO powder, Y 2 O 3 powder and manganese carbonate powder are used as the raw material powder. These raw material powders are composed of CaCO 3 at a ratio of 0.10 mol or less (excluding zero) and MgO at a ratio of 0.01 to 0.064 mol with respect to 1 mol of titanium constituting barium titanate. Y 2 O 3 is blended in a proportion of 0.0015 to 0.03 mol, and MnO is blended in a proportion of 0.0002 to 0.03 mol.

次に、上記した素原料粉末の混合物を湿式混合し、乾燥させた後、温度900〜1100℃で仮焼し、粉砕する。粉砕後の仮焼粉末の平均粒径は、仮焼粉末の段階で結晶構造を立方晶系が主体とするものにするために、100nm以下とすることが重要である。   Next, the above mixture of raw material powders is wet-mixed and dried, and then calcined at a temperature of 900 to 1100 ° C. and pulverized. It is important that the average particle size of the calcined powder after pulverization is 100 nm or less in order to make the crystal structure mainly composed of a cubic system at the stage of the calcined powder.

仮焼温度を900℃以上とするのは仮焼粉末にチタン酸バリウムを主成分とする立方晶系の結晶相を生成させるためであり、1100℃以下とするのは、次の工程において、焼成時の反応性を維持し、仮焼時における粒径の粗大化を防止するためである。   The calcining temperature is set to 900 ° C. or higher in order to produce a cubic crystal phase mainly composed of barium titanate in the calcined powder, and the temperature is set to 1100 ° C. or lower in the next step. This is to maintain the reactivity at the time and to prevent the particle size from becoming coarse during calcination.

仮焼粉末についても上記したX線回折の方法によって結晶構造を同定する。また、仮焼粉末の平均粒径の測定は仮焼粉末を試料台上に分散させた状態で測定する。つまり、仮焼粉末の結晶構造についてもCukαを管球とするX線回折を用いて、2θを10〜100°として測定して同定する。この場合、試料は仮焼粉末を粉砕した粉末を用い、チタン酸バリウムのJCPDSデータを基にして、上記した誘電体磁器についての評価方法と同様な方法で結晶構造の同定を行う。   The crystal structure of the calcined powder is also identified by the X-ray diffraction method described above. The average particle size of the calcined powder is measured in a state where the calcined powder is dispersed on the sample stage. That is, the crystal structure of the calcined powder is also identified by measuring 2θ at 10 to 100 ° using X-ray diffraction using Cukα as a tube. In this case, a powder obtained by pulverizing the calcined powder is used as the sample, and the crystal structure is identified by the same method as the evaluation method for the dielectric ceramic based on the JCPDS data of barium titanate.

次に、粉砕した仮焼粉末を用いて所定形状に成形し、1050〜1250℃の温度範囲でホットプレス法により焼成して緻密化した誘電体磁器を得る。この場合、ホットプレス法はカーボン型を用い、窒素雰囲気中にて、圧力80〜150MPaの条件で加圧加熱する。   Next, the pulverized calcined powder is molded into a predetermined shape and fired by a hot press method at a temperature range of 1050 to 1250 ° C. to obtain a densified dielectric ceramic. In this case, the hot press method uses a carbon mold and is heated under pressure in a nitrogen atmosphere under a pressure of 80 to 150 MPa.

焼成温度を1050℃とするのは、誘電体磁器の緻密化を図るためであり、一方、1250℃以下とするのは、結晶粒子の粒成長を抑制するとともに、誘電体磁器の過剰な還元を抑制して結晶相の分解を防止するためである。   The firing temperature is set to 1050 ° C. for the purpose of densifying the dielectric ceramic. On the other hand, setting the firing temperature to 1250 ° C. or lower suppresses the grain growth of crystal grains and reduces excessive reduction of the dielectric ceramic. This is to suppress the decomposition of the crystal phase.

このように仮焼粉末として立方晶系の粉末を用いて焼結させることにより、焼結体においても立方晶系の結晶構造を実現することが容易になり、これにより常誘電性に近い比誘電率の温度特性を維持した高誘電率の誘電体磁器を容易に形成できる。   By sintering using a cubic powder as the calcined powder in this way, it becomes easy to realize a cubic crystal structure even in the sintered body, and this makes the dielectric constant close to paraelectricity. Therefore, it is possible to easily form a dielectric ceramic having a high dielectric constant while maintaining the temperature characteristic of the dielectric constant.

図1は、本発明のコンデンサを示す断面模式図である。本発明の誘電体磁器を用いて、以下のようなコンデンサを形成できる。   FIG. 1 is a schematic cross-sectional view showing a capacitor of the present invention. The following capacitor can be formed using the dielectric ceramic of the present invention.

本発明のコンデンサはコンデンサ本体10の端部に外部電極12が設けられている。コンデンサ本体10は誘電体層13と内部電極層である導体層14とが交互に積層され構成されている。ここでの誘電体層13は上述した本発明の誘電体磁器によって形成されることが重要である。導体層14は高積層化しても製造コストを抑制できるという点でNiやCuなどの卑金属が望ましく、特に、本発明のコンデンサを構成する誘電体層13との同時焼成を図るという点でNiがより望ましい。この導体層14の厚みは平均で1μm以下が好ましい。   The capacitor of the present invention is provided with an external electrode 12 at the end of the capacitor body 10. The capacitor body 10 is configured by alternately laminating dielectric layers 13 and conductor layers 14 as internal electrode layers. Here, it is important that the dielectric layer 13 is formed by the above-described dielectric ceramic of the present invention. The conductive layer 14 is preferably a base metal such as Ni or Cu in that the manufacturing cost can be suppressed even if the conductor layer 14 is highly laminated, and in particular, Ni is intended to be simultaneously fired with the dielectric layer 13 constituting the capacitor of the present invention. More desirable. The conductor layer 14 preferably has an average thickness of 1 μm or less.

また、このようなコンデンサを作製する場合には、上記した混合粉末をグリーンシートに成形するとともに、導体層14となる導体ペーストを調製して前記グリーンシートの表面に印刷した後積層し焼成して積層体1を形成する。しかる後、積層体1の端面にさらに導体ペーストを印刷して焼成し、外部電極12を形成することによりコンデンサを得ることができる。こうして得られたコンデンサは、上述の誘電体磁器を誘電体層とすることから、電源回路上において使用した場合には電歪現象に起因する “音鳴り”現象を抑制することができる。   Further, when producing such a capacitor, the above mixed powder is formed into a green sheet, and a conductor paste to be a conductor layer 14 is prepared and printed on the surface of the green sheet, and then laminated and fired. The laminated body 1 is formed. Thereafter, a conductor paste is further printed on the end face of the laminate 1 and fired to form the external electrode 12, whereby a capacitor can be obtained. Since the capacitor thus obtained uses the above-mentioned dielectric ceramic as a dielectric layer, the “sounding” phenomenon caused by the electrostriction phenomenon can be suppressed when used on a power supply circuit.

本発明の誘電体磁器を以下のように作製した。まず、いずれも純度が99.9%のBaCO粉末、CaCO粉末、TiO粉末、MgO粉末、Y、Ho、Dy酸化物粉末、炭酸マンガン粉末を用意し、表1に示す割合で調合し混合粉末を調製した。表1に示す量は前記元素の酸化物換算量に相当する量である。 The dielectric ceramic according to the present invention was produced as follows. First, prepare BaCO 3 powder, CaCO 3 powder, TiO 2 powder, MgO powder, Y 2 O 3 , Ho 2 O 3 , Dy 2 O 3 oxide powder, and manganese carbonate powder each having a purity of 99.9%. The mixed powder was prepared by mixing at the ratio shown in Table 1. The amount shown in Table 1 is an amount corresponding to the oxide equivalent amount of the element.

次に、混合粉末を温度1050℃、2時間にて仮焼し、仮焼粉末を粉砕した。このとき粉砕後の仮焼粉末の平均粒径は50〜150nmの範囲に入るようにした。この後、仮焼粉末を直径12mm、厚さ1mmの形状のペレット状に成形した。   Next, the mixed powder was calcined at a temperature of 1050 ° C. for 2 hours, and the calcined powder was pulverized. At this time, the average particle size of the calcined powder after pulverization was set in the range of 50 to 150 nm. Thereafter, the calcined powder was formed into a pellet having a diameter of 12 mm and a thickness of 1 mm.

次に、各組成のペレットを複数個ずつ焼成した。焼成温度は1050〜1250℃とした。焼成は窒素雰囲気を用いた窒素雰囲気中でホットプレスにて作製した。ホットプレスの圧力は100MPaとし、ホットプレス用治具としてはカーボン型を用いた。焼成後の試料の表面にインジウム・ガリウムの導体膜を印刷した。   Next, a plurality of pellets of each composition were fired. The firing temperature was 1050 to 1250 ° C. Firing was performed by hot pressing in a nitrogen atmosphere using a nitrogen atmosphere. The hot press pressure was 100 MPa, and a carbon mold was used as a hot press jig. An indium gallium conductor film was printed on the surface of the sample after firing.

作製した誘電体磁器であるこれらの試料をLCRメーター4284Aを用いて周波数1.0kHz、入力信号レベル1.0Vにて静電容量を測定し、試料の直径と厚みおよび導体膜の面積から比誘電率を算出した。試料数は各10個とした。   These samples, which are dielectric porcelains, were measured for capacitance using a LCR meter 4284A at a frequency of 1.0 kHz and an input signal level of 1.0 V. From the diameter and thickness of the sample and the area of the conductor film, the dielectric constant was measured. The rate was calculated. The number of samples was 10 each.

また、比誘電率の変化率を−55〜125℃の範囲で測定した。表1における+側最大値は前記温度範囲において、25℃を基準としたときの最も高い比誘電率の割合であり、一方、−側最大値は25℃を基準としたときの最も低い比誘電率の割合である。   Moreover, the change rate of the dielectric constant was measured in the range of −55 to 125 ° C. The maximum value on the + side in Table 1 is the ratio of the highest relative dielectric constant when 25 ° C. is the reference in the temperature range, while the maximum value on the − side is the lowest relative dielectric constant when the 25 ° C. is the reference. It is a percentage of the rate.

誘電体磁器の結晶粒子の平均結晶粒径は得られた誘電体磁器の破断面を研磨した後、走査型電子顕微鏡を用いて内部組織の写真を撮り、次いで、その写真に映し出されている結晶粒子の輪郭を画像処理し、各粒子を円に仮定してその直径を求め平均化して求めた。写真の倍率は約30000倍とし、観察点数は各試料3点とした。仮焼粉末については、走査型電子顕微鏡用の試料台上に仮焼粉末を分散させて同様の方法により求めた。   The average crystal grain size of the dielectric ceramic crystal grains is obtained by polishing the fracture surface of the obtained dielectric ceramic, then taking a picture of the internal structure using a scanning electron microscope, and then the crystals shown in the picture The particle outline was image-processed, and each particle was assumed to be a circle and its diameter was obtained and averaged. The magnification of the photograph was about 30000 times, and the number of observation points was 3 for each sample. The calcined powder was obtained by the same method by dispersing the calcined powder on a sample stage for a scanning electron microscope.

また、誘電体磁器の結晶構造はCukαを管球とするX線回折を用いて、得られた誘電体磁器を一旦粉砕し、2θを10〜100°として測定した。この場合、チタン酸バリウムのJCPDSデータを基にして、(002)面、(200)面の回折線から立方晶系を評価した。立方晶系は(002)面、(200)面の回折線が分離していないものとした。仮焼粉末についても同様の測定を行った。実施例は仮焼粉末および焼成後の誘電体磁器のいずれも立方晶系を主体とするものであった。   The crystal structure of the dielectric ceramic was measured by using X-ray diffraction with Cukα as a tube and once pulverizing the obtained dielectric ceramic and setting 2θ to 10 to 100 °. In this case, the cubic system was evaluated from the diffraction lines of the (002) plane and the (200) plane based on the JCPDS data of barium titanate. In the cubic system, diffraction lines on the (002) plane and (200) plane were not separated. The same measurement was performed on the calcined powder. In the examples, both the calcined powder and the fired dielectric ceramic were mainly composed of a cubic system.

また、得られた誘電体磁器について圧電歪の大きさを誘電分極の測定によって求めた。圧電歪の大きさは、電歪定数と比誘電率及び自発分極の大きさで決まり、特に分極の大きさに左右される為、分極の大きさ(分極値)を圧電歪の大きさの指標とした。この場合、電界強度が2V/μmとなる周波数10Hzの交流電圧を印加した時の電界−分極履歴曲線を測定し、電界−分極履歴曲線における0Vでの電荷量(残留分極)の値で評価した。   Moreover, the magnitude | size of the piezoelectric distortion was calculated | required by the measurement of dielectric polarization about the obtained dielectric ceramic. The magnitude of the piezoelectric strain is determined by the electrostriction constant, the relative permittivity, and the magnitude of the spontaneous polarization, and particularly depends on the magnitude of the polarization. Therefore, the magnitude of the polarization (polarization value) is an index of the magnitude of the piezoelectric strain. It was. In this case, an electric field-polarization history curve was measured when an AC voltage having a frequency of 10 Hz with an electric field strength of 2 V / μm was applied, and the charge amount (residual polarization) at 0 V in the electric field-polarization history curve was evaluated. .

また、得られた焼結体である試料の組成分析はICP分析もしくは原子吸光分析により行った。この場合、得られた誘電体磁器を硼酸と炭酸ナトリウムと混合し溶融させたものを塩酸に溶解させて、まず、原子吸光分析により誘電体磁器に含まれる元素の定性分析を行い、次いで、特定した各元素について標準液を希釈したものを標準試料として、ICP発光分光分析にかけて定量化した。また、各元素の価数を周期表に示される価数として酸素量を求めた。   In addition, the composition analysis of the obtained sintered body sample was performed by ICP analysis or atomic absorption analysis. In this case, the obtained dielectric porcelain mixed with boric acid and sodium carbonate and dissolved in hydrochloric acid is first subjected to qualitative analysis of the elements contained in the dielectric porcelain by atomic absorption spectrometry, and then specified. The diluted standard solution for each element was used as a standard sample and quantified by ICP emission spectroscopic analysis. Further, the amount of oxygen was determined using the valence of each element as the valence shown in the periodic table.

表1に調製組成、仮焼条件および焼成条件を、表2に焼成後の試料における組成、結晶粒子の平均結晶粒径および特性の結果を示した。

Figure 2008297133
Table 1 shows the prepared composition, calcining conditions and firing conditions, and Table 2 shows the composition, average crystal grain size and characteristics of the crystal grains in the sample after firing.
Figure 2008297133

Figure 2008297133
Figure 2008297133

得られた誘電体磁器は還元した試料No.15を除いて評価できる試料であった。表2の結果から明らかなように、本発明の誘電体磁器は25℃における比誘電率が410以上、比誘電率の変化率が−55〜125℃の範囲において±10%以内であった。また、分極値0.1μC/cm以下であり、圧電歪の小さい試料であることが確認された。 The obtained dielectric porcelain is a reduced sample no. It was the sample which can be evaluated except for 15. As is clear from the results in Table 2, the dielectric ceramic of the present invention had a relative dielectric constant of 410 or more at 25 ° C. and a change rate of the relative dielectric constant within −10% within a range of −55 to 125 ° C. Further, it was confirmed that the sample had a polarization value of 0.1 μC / cm 2 or less and a small piezoelectric strain.

また、カルシウムの含有量がCaO換算で0.025〜0.075モル、前記マグネシウムの含有量がMgO換算で0.01〜0.04モル、希土類元素をRE換算で0.0015〜0.03モルおよびマンガンがMnO換算で0.0002〜0.03モルであり、結晶粒子の平均結晶粒径が130〜200nmであるものがよく、この範囲の誘電体磁器は、25℃における比誘電率を690以上、−55〜125℃における比誘電率の変化率を±10%以内であった。この中で、25℃における比誘電率を1000以下、−55〜125℃における比誘電率の変化率が±10%以内である試料は分極値が0.03μC/cm以下であり、さらに圧電歪が小さかった。 The calcium content is 0.025 to 0.075 mol in terms of CaO, the magnesium content is 0.01 to 0.04 mol in terms of MgO, and the rare earth element is 0.0015 to in terms of RE 2 O 3. 0.03 mol and manganese are 0.0002 to 0.03 mol in terms of MnO, and the average crystal grain size of the crystal particles is preferably 130 to 200 nm. The dielectric ceramic in this range has a ratio at 25 ° C. The dielectric constant was 690 or more, and the rate of change of the relative dielectric constant at −55 to 125 ° C. was within ± 10%. Among them, a sample having a relative dielectric constant at 25 ° C. of 1000 or less and a change rate of the relative dielectric constant at −55 to 125 ° C. within ± 10% has a polarization value of 0.03 μC / cm 2 or less, and is further piezoelectric. The distortion was small.

これに対して、結晶粒子の平均粒径が0.20μmより大きい試料では、25℃における比誘電率が1000以上と大きかったが、X線回折において正方晶歪が確認され、比誘電率の変化率が−55〜125℃の範囲において+28%以上と本発明の試料に比較して大きかった。結晶粒子の平均粒径が0.08μmより小さい試料では、25℃における比誘電率が360以下であった。   On the other hand, in the sample having an average grain size larger than 0.20 μm, the relative dielectric constant at 25 ° C. was as large as 1000 or more. However, tetragonal strain was confirmed in X-ray diffraction, and the change in the relative dielectric constant. The rate was + 28% or more in the range of −55 to 125 ° C., which was larger than that of the sample of the present invention. In the sample having an average grain size of smaller than 0.08 μm, the relative dielectric constant at 25 ° C. was 360 or less.

また、カルシウム、マグネシウム、希土類元素、及びマンガンの含有量を本発明の範囲外とした試料においても比誘電率が低いか、比誘電率の温度変化率が大きいものであった。   In addition, even in the samples in which the contents of calcium, magnesium, rare earth elements, and manganese were outside the scope of the present invention, the relative dielectric constant was low or the temperature change rate of the relative dielectric constant was large.

以下、実際例をさらに詳細に説明する。図2は、本発明の誘電体磁器についての比誘電率の(a)温度変化、(b)温度変化率(25℃の値を基準)を示すグラフである。   Hereinafter, actual examples will be described in more detail. FIG. 2 is a graph showing (a) temperature change and (b) temperature change rate (based on a value of 25 ° C.) of the relative dielectric constant of the dielectric ceramic of the present invention.

グラフ中の#10を付した曲線は本発明の誘電体磁器の例である試料No.10、#2を付した曲線は本発明の比較例である試料No.2の場合である。 The curve with # 10 in the graph is Sample No. which is an example of the dielectric ceramic of the present invention. The curves marked with No. 10 and # 2 are sample Nos. Which are comparative examples of the present invention. This is the case of 2.

#10を付した曲線である試料No.10の誘電体磁器では、チタン酸バリウムに、上記した元素を所定量含有させることで、チタン酸バリウムが本来有する室温および125℃付近に存在する相転移ピークは低温側へ移動し散漫化する。さらに結晶粒子の粒径を制御することで材料の基底状態の誘電率が表面化し、誘電率の温度変化において2つの極大を示し、通常見られる単調温度変化とは異なり、平坦な温度特性が得られる。また、相転移が散漫化し、サイズ制御により強誘電性が抑制されることで、常誘電性的な特性を発現しやすくなる。   Sample No. which is a curve marked with # 10. In the dielectric ceramic of No. 10, when the barium titanate contains a predetermined amount of the above-described elements, the phase transition peak originally present at room temperature and around 125 ° C. of barium titanate moves to the low temperature side and becomes diffused. Furthermore, by controlling the grain size of the crystal grains, the dielectric constant in the ground state of the material is surfaced, and shows two maxima in the temperature change of the dielectric constant. Unlike the normal monotonous temperature change, a flat temperature characteristic is obtained. It is done. In addition, the phase transition is diffused and the ferroelectricity is suppressed by size control, so that paraelectric characteristics are easily developed.

本発明において、比誘電率の変化率は希土類元素またはマンガンよりもマグネシウム量に依存するものとされているが、チタン酸バリウムを主成分としマグネシウムを含有する誘電体磁器(非特許文献1参照)のように、BaTiOにおけるTiをMgによって置換しただけでは相転移点の低下と相転移の散漫化は起こらない。本発明では、特に、希土類元素を同時に結晶粒子の内部にまで固溶させることで上記の誘電特性が発現するものと考えられる。 In the present invention, the rate of change of the relative dielectric constant depends on the amount of magnesium rather than the rare earth element or manganese, but a dielectric ceramic containing barium titanate as a main component and containing magnesium (see Non-Patent Document 1). As described above, merely replacing Ti in BaTiO 3 with Mg does not lower the phase transition point and make the phase transition diffuse. In the present invention, in particular, it is considered that the above-mentioned dielectric characteristics are manifested by simultaneously dissolving the rare earth element into the crystal grains.

一方、比較例である試料No.2においては、室温以下に見られるように、基本的な誘電特性は粒成長により大きく変化しないが、高温においては粒成長によりCa含有チタン酸バリウムの相転移の特徴が表面化し、100℃近傍の誘電率が増大し、比誘電率の変化率が大きい誘電体磁器となる。   On the other hand, sample No. which is a comparative example. 2, the fundamental dielectric properties do not change greatly with grain growth as seen at room temperature or below, but at high temperatures, the characteristics of the phase transition of Ca-containing barium titanate are surfaced by grain growth, and are around 100 ° C. As a result, the dielectric constant increases, and the dielectric ceramic has a large change rate of the relative permittivity.

なお、非特許文献1は、トオル・ナガイ(Toru Nagai)、ケンジ・イイジマ(Kenji Iijima)、ハエ・ジン・ワン(Hae Jin Hwang)、ムツオ・サンド(Mutsuo Sando)、トオル・セキノ(
Tohru Sekino)、コウイチ・ニイハラ(koichi Niihara)、イフェクト・オブ・MgO・ドーピング・オン・ザ・フェーズ・トランスフォーメーション・オブ・BaTiO(Effect of MgO Doping on the Phase transformation of BaTiO3) ジャーナル・オブ・アメリカン・セラミックソサエティ(Journal of American Ceramic Society)(2000) 83 [1] p.107−112、である。
Non-Patent Document 1 includes Toru Nagai, Kenji Iijima, Hae Jin Hwang, Mutsuo Sando, Toru Sekino (
Tohru Sekino), Koichi-Niihara (koichi Niihara), EFFECT OF · MgO · doping-on-the-Phase Transformation Of · BaTiO 3 (Effect of MgO Doping on the Phase transformation of BaTiO 3) Journal of American of the Ceramic Society (2000) 83 [1] p. 107-112.

本発明のコンデンサの例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the example of the capacitor | condenser of this invention. 本発明の誘電体磁器についての比誘電率の(a)温度変化、(b)温度変化率(25℃の値を基準)を示すグラフである。It is a graph which shows (a) temperature change of the dielectric constant about the dielectric material ceramic of this invention, and (b) temperature change rate (on the basis of the value of 25 degreeC).

符号の説明Explanation of symbols

13・・誘電体層
14・・導体層
13. ・ Dielectric layer 14 ・ ・ Conductive layer

Claims (3)

チタン酸バリウムを主成分とし、カルシウム、マグネシウム、希土類元素、およびマンガンを含む結晶粒子と粒界相とからなる誘電体磁器であって、前記チタン酸バリウムを構成するチタン1モルに対して、カルシウムをCaO換算で0.1モル以下、マグネシウムをMgO換算で0.01〜0.064モル、希土類元素をRE換算で0.0015〜0.03モル、およびマンガンをMnO換算で0.0002〜0.03モルの範囲でそれぞれ含有してなり、前記誘電体磁器のX線回折により同定される結晶構造が立方晶系を主体とするものであり、かつ前記結晶粒子の平均結晶粒径が80〜200nmであることを特徴とする誘電体磁器。 A dielectric ceramic composed mainly of barium titanate and comprising crystal grains containing calcium, magnesium, rare earth elements, and manganese, and a grain boundary phase, with respect to 1 mole of titanium constituting the barium titanate, Is 0.1 to 0.064 mol in terms of CaO, magnesium is 0.01 to 0.064 mol in terms of MgO, rare earth elements are 0.0015 to 0.03 mol in terms of RE 2 O 3 , and manganese is 0.000 in terms of MnO. The crystal structure is contained in a range of 0002 to 0.03 mol, and the crystal structure identified by X-ray diffraction of the dielectric ceramic is mainly composed of a cubic system, and the average crystal grain size of the crystal grains Is a dielectric porcelain characterized by a thickness of 80 to 200 nm. 前記カルシウムの含有量がCaO換算で0.025〜0.075モル、前記マグネシウムの含有量がMgO換算で0.01〜0.04モルであって、前記結晶粒子の平均結晶粒径が130〜200nmであることを特徴とする請求項1に記載の誘電体磁器。 The calcium content is 0.025 to 0.075 mol in terms of CaO, the magnesium content is 0.01 to 0.04 mol in terms of MgO, and the average grain size of the crystal grains is 130 to The dielectric ceramic according to claim 1, wherein the dielectric ceramic is 200 nm. 請求項1または2に記載の誘電体磁器からなる誘電体層と導体層とが積層され構成されていることを特徴とするコンデンサ。 A capacitor comprising a dielectric layer made of the dielectric ceramic according to claim 1 and a conductor layer.
JP2007141784A 2007-05-29 2007-05-29 Dielectric porcelain and capacitor Active JP4931697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007141784A JP4931697B2 (en) 2007-05-29 2007-05-29 Dielectric porcelain and capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007141784A JP4931697B2 (en) 2007-05-29 2007-05-29 Dielectric porcelain and capacitor

Publications (2)

Publication Number Publication Date
JP2008297133A true JP2008297133A (en) 2008-12-11
JP4931697B2 JP4931697B2 (en) 2012-05-16

Family

ID=40171003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007141784A Active JP4931697B2 (en) 2007-05-29 2007-05-29 Dielectric porcelain and capacitor

Country Status (1)

Country Link
JP (1) JP4931697B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242213A (en) * 2008-03-31 2009-10-22 Tdk Corp Dielectric ceramic composition and electronic component
JPWO2008114619A1 (en) * 2007-03-16 2010-07-01 京セラ株式会社 Dielectric porcelain and capacitor
US20110216471A1 (en) * 2010-03-03 2011-09-08 Murata Manufacturing Co., Ltd. Dielectric ceramic and laminated ceramic capacitor
US8097551B2 (en) * 2006-07-27 2012-01-17 Kyocera Corporation Dielectric ceramic and capacitor
WO2012035935A1 (en) * 2010-09-17 2012-03-22 株式会社村田製作所 Dielectric ceramic, multilayer ceramic capacitor, method for producing the dielectric ceramic, and method for manufacturing the multilayer ceramic capacitor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6081023A (en) * 1983-10-12 1985-05-09 Asahi Chem Ind Co Ltd Barium titanate powder
JP2000058378A (en) * 1998-08-11 2000-02-25 Murata Mfg Co Ltd Laminated ceramic capacitor
JP2000058377A (en) * 1998-08-11 2000-02-25 Murata Mfg Co Ltd Laminated ceramic capacitor
JP2000154057A (en) * 1998-07-29 2000-06-06 Tdk Corp Dielectric porcelain composition and electronic parts
JP2001192264A (en) * 1999-10-19 2001-07-17 Tdk Corp Dielectric porcelain composition and electronic parts
JP2005075700A (en) * 2003-09-02 2005-03-24 Sakai Chem Ind Co Ltd Method for manufacturing composition
JP2006062939A (en) * 2004-08-30 2006-03-09 Tdk Corp Dielectric porcelain composition and electronic parts
JP2006282483A (en) * 2005-04-04 2006-10-19 Tdk Corp Electronic component, dielectric ceramic composition, and method for producing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6081023A (en) * 1983-10-12 1985-05-09 Asahi Chem Ind Co Ltd Barium titanate powder
JP2000154057A (en) * 1998-07-29 2000-06-06 Tdk Corp Dielectric porcelain composition and electronic parts
JP2000058378A (en) * 1998-08-11 2000-02-25 Murata Mfg Co Ltd Laminated ceramic capacitor
JP2000058377A (en) * 1998-08-11 2000-02-25 Murata Mfg Co Ltd Laminated ceramic capacitor
JP2001192264A (en) * 1999-10-19 2001-07-17 Tdk Corp Dielectric porcelain composition and electronic parts
JP2005075700A (en) * 2003-09-02 2005-03-24 Sakai Chem Ind Co Ltd Method for manufacturing composition
JP2006062939A (en) * 2004-08-30 2006-03-09 Tdk Corp Dielectric porcelain composition and electronic parts
JP2006282483A (en) * 2005-04-04 2006-10-19 Tdk Corp Electronic component, dielectric ceramic composition, and method for producing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8097551B2 (en) * 2006-07-27 2012-01-17 Kyocera Corporation Dielectric ceramic and capacitor
JPWO2008114619A1 (en) * 2007-03-16 2010-07-01 京セラ株式会社 Dielectric porcelain and capacitor
JP5185924B2 (en) * 2007-03-16 2013-04-17 京セラ株式会社 Dielectric porcelain and capacitor
JP2009242213A (en) * 2008-03-31 2009-10-22 Tdk Corp Dielectric ceramic composition and electronic component
US20110216471A1 (en) * 2010-03-03 2011-09-08 Murata Manufacturing Co., Ltd. Dielectric ceramic and laminated ceramic capacitor
US8404607B2 (en) * 2010-03-03 2013-03-26 Murata Manufacturing Co., Ltd. Dielectric ceramic and laminated ceramic capacitor
WO2012035935A1 (en) * 2010-09-17 2012-03-22 株式会社村田製作所 Dielectric ceramic, multilayer ceramic capacitor, method for producing the dielectric ceramic, and method for manufacturing the multilayer ceramic capacitor
CN103080044A (en) * 2010-09-17 2013-05-01 株式会社村田制作所 Dielectric ceramic, multilayer ceramic capacitor, method for producing the dielectric ceramic, and method for manufacturing the multilayer ceramic capacitor
JP5733313B2 (en) * 2010-09-17 2015-06-10 株式会社村田製作所 Multilayer ceramic capacitor and manufacturing method thereof
US9061944B2 (en) 2010-09-17 2015-06-23 Murata Manufacturing Co., Ltd. Dielectric ceramic, laminated ceramic capacitor, method for producing the dielectric ceramic, and method for manufacturing the multilayer ceramic capacitor

Also Published As

Publication number Publication date
JP4931697B2 (en) 2012-05-16

Similar Documents

Publication Publication Date Title
JP5069695B2 (en) Dielectric porcelain and capacitor
JP5039039B2 (en) Dielectric porcelain and capacitor
JP5077362B2 (en) Dielectric ceramic and multilayer ceramic capacitor
WO2007026614A1 (en) Dielectric ceramic, process for producing the same, and laminated ceramic capacitor
JP5210300B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP5108779B2 (en) Dielectric porcelain and capacitor
JP5137429B2 (en) Dielectric porcelain and capacitor
JP4552419B2 (en) Dielectric ceramic and multilayer ceramic capacitors
JP5185924B2 (en) Dielectric porcelain and capacitor
JP5204770B2 (en) Dielectric porcelain and capacitor
JP2006287045A (en) Electronic component
JP4931697B2 (en) Dielectric porcelain and capacitor
JP2009051717A (en) Dielectric porcelain and multilayer ceramic capacitor
JP2006287046A (en) Electronic component
JP5142649B2 (en) Dielectric porcelain and capacitor
JP2005187296A (en) Dielectric ceramic composition and multilayer ceramic capacitor
JP5289239B2 (en) Dielectric porcelain and capacitor
JP5142666B2 (en) Dielectric porcelain and capacitor
JP4954135B2 (en) Dielectric ceramic composition, manufacturing method thereof, and dielectric ceramic capacitor
JP2009256162A (en) Dielectric ceramic and capacitor
JP2004210604A (en) Dielectric ceramic and laminated ceramic capacitor
JP5137430B2 (en) Dielectric porcelain and capacitor
WO2022270270A1 (en) Laminated ceramic capacitor
JP5137431B2 (en) Dielectric porcelain and capacitor
JP5142651B2 (en) Dielectric porcelain and capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120214

R150 Certificate of patent or registration of utility model

Ref document number: 4931697

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3