JP2008295114A - Electric response fluid pump - Google Patents

Electric response fluid pump Download PDF

Info

Publication number
JP2008295114A
JP2008295114A JP2007134881A JP2007134881A JP2008295114A JP 2008295114 A JP2008295114 A JP 2008295114A JP 2007134881 A JP2007134881 A JP 2007134881A JP 2007134881 A JP2007134881 A JP 2007134881A JP 2008295114 A JP2008295114 A JP 2008295114A
Authority
JP
Japan
Prior art keywords
introduction
discharge
voltage
fluid pump
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007134881A
Other languages
Japanese (ja)
Other versions
JP5085978B2 (en
Inventor
Kazuyuki Mitsui
和幸 三井
Sumitaka Terasaka
澄孝 寺阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2007134881A priority Critical patent/JP5085978B2/en
Publication of JP2008295114A publication Critical patent/JP2008295114A/en
Application granted granted Critical
Publication of JP5085978B2 publication Critical patent/JP5085978B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric response fluid pump producing a practically sufficient pressure. <P>SOLUTION: A boosting unit 10 includes an introduction channel 13 for introducing electric response fluid and having counter walls becoming narrower gradually from the introduction side toward the discharge side, electrodes 15 and 16 provided on the counter walls of the introduction channel 13 while making a predetermined angle, and a narrow channel 14 connected to the discharge side of the introduction channel 13 and boosting the pressure of the conduction channel 13 in the circulation process. A DC power supply 20 applies a DC voltage to the electrodes 15 and 16. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電気応答流体中で発生するEHD(Electro Hydro Dynamics Phenomenon)ポンピング現象を利用した電気応答流体ポンプに関する。   The present invention relates to an electrically responsive fluid pump using an EHD (Electro Hydro Dynamics Phenomenon) pumping phenomenon that occurs in an electrically responsive fluid.

EHDポンピング現象を利用した電気応答流体ポンプとしては、これまでに種々のものが提案されている(例えば、特許文献1,2等)。これらの電気応答流体ポンプは、第1及び第2の電極を、電気応答液体中に所定の間隔を空けて対向配置させた状態で両電極間に数kV〜数十kVの直流電圧を印加し、これにより液体から電離したイオンからなるヘテロチャージ層と電極対との間に生じる引力によって液体が流動することを利用している。この電気応答流体ポンプは、電気応答流体の連続的な流動を利用していることから、脈動の無い低騒音ポンプを実現することができる。
特開2003−284316号公報 特開2005−269809号公報
Various electric response fluid pumps using the EHD pumping phenomenon have been proposed so far (for example, Patent Documents 1 and 2). These electric response fluid pumps apply a DC voltage of several kV to several tens of kV between both electrodes in a state where the first and second electrodes are opposed to each other with a predetermined interval in the electric response liquid. This utilizes the fact that the liquid flows due to the attractive force generated between the heterocharge layer made of ions ionized from the liquid and the electrode pair. Since this electrically responsive fluid pump uses the continuous flow of the electrically responsive fluid, a low noise pump without pulsation can be realized.
JP 2003-284316 A JP 2005-269809 A

しかしながら、上述した従来の電気応答流体ポンプは、実用可能な十分な圧力を得るには至っていないという問題がある。   However, the above-described conventional electrically responsive fluid pump has a problem that it does not reach a practically sufficient pressure.

本発明は、実用可能な十分な圧力が得られる電気応答流体ポンプを提供することを目的とする。   An object of the present invention is to provide an electrically responsive fluid pump that can obtain a practically sufficient pressure.

本発明の第1の形態に係る電気応答流体ポンプは、電気応答流体を導入する導入路、この導入路に設けられ導入側から排出側にかけて間隔が徐々に狭まる電極対、及び前記導入路の排出側に接続されて前記導入路を通過した電気応答流体を通流過程で昇圧させる狭隘路を備えた昇圧ユニットと、前記電極対に電圧を印加する電圧印加手段とを備えたことを特徴とする。   An electrically responsive fluid pump according to a first aspect of the present invention includes an introduction path for introducing an electrically responsive fluid, an electrode pair provided in the introduction path, the interval of which gradually decreases from the introduction side to the discharge side, and discharge of the introduction path And a voltage increasing means for applying a voltage to the electrode pair, and a voltage increasing unit that includes a narrow path that increases the pressure of the electrically responsive fluid that has passed through the introduction path in the course of flow. .

本発明の第2の形態に係る電気応答流体ポンプは、電気応答流体を導入又は排出し対向壁が一方の側から他方の側にかけて徐々に狭まり前記対向壁が狭まっている側同士が対向するように対称的に配置された第1及び第2の導入排出路、この第1及び第2の導入排出路の対向壁にそれぞれ設けられて所定の角度をなして対向する第1及び第2の電極対、及び前記第1及び第2の導入排出路の前記対向壁が狭まっている側に接続されて前記第1又は第2の導入排出路を通過した電気応答流体を通流過程で昇圧させる狭隘路を備えた昇圧ユニットと、前記第1又は第2の電極対に印加する電圧を発生させる電源と、前記第1及び第2の電極対のいずれか一方に前記電圧を印加するスイッチ手段とを備えたことを特徴とする。   The electrically responsive fluid pump according to the second aspect of the present invention introduces or discharges the electrically responsive fluid so that the opposing walls gradually narrow from one side to the other side and the opposing walls are opposed to each other. First and second introduction / discharge passages arranged symmetrically to each other, and first and second electrodes provided on opposing walls of the first and second introduction / discharge passages and facing each other at a predetermined angle. A pair and a narrowing connected to the side where the opposing wall of the first and second introduction / discharge passages is narrowed to increase the pressure of the electrically responsive fluid that has passed through the first or second introduction / discharge passage in the course of flow. A step-up unit having a path; a power source for generating a voltage to be applied to the first or second electrode pair; and a switch means for applying the voltage to one of the first and second electrode pairs. It is characterized by having.

本発明によれば、所定の角度をなして対向する電極対により流体が狭隘路の方へ移動し、狭隘路を流体が通過する過程で流体が十分に昇圧されるので実用可能な十分な圧力を得ることができる。   According to the present invention, the fluid moves toward the narrow path by the electrode pair facing each other at a predetermined angle, and the pressure of the fluid is sufficiently increased in the process of passing the fluid through the narrow path. Can be obtained.

以下、添付の図面を参照して、この発明の実施形態を説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は本発明の第1の実施形態に係るEHDポンプを示す図で、同図(a)は一部を切り欠いた平面図、同図(b)は要部の斜視図、同図(c)は(b)の一部を切り欠いた斜視図である。   1A and 1B are diagrams showing an EHD pump according to a first embodiment of the present invention, in which FIG. 1A is a plan view with a part cut away, FIG. 1B is a perspective view of the main part, and FIG. (c) is the perspective view which notched a part of (b).

このEHDポンプは、昇圧ユニット10と直流電源20とを備えて構成されている。昇圧ユニット10は、一端を液体の導入口11a、他端を液体の排出口11bとした矩形断面を有する筒状の通流管11と、この通流管11の内部に配置されたセル12とを備える。セル12は、導入口11a側の端面が通流管11の側壁に対して所定の角度をなすように斜めに形成されると共に、排出口11b側の端面が通流管11の側壁に対して直角に形成され、長い側面側を通流管11の側壁内面に密接させ、短い側面側と通流管11の側壁内面との間に所定の間隙を形成してなる。そして、通流管11の側壁内面に対して斜めに形成された端面とこれと対向する側壁内面との間に、液体の導入路13が形成され、上記端面とこれに対向する側壁内面とに平板状の電極15,16が設けられている。また、導入路13に続くセル12の短い側面側と通流管11の側壁内面との間の間隙は狭隘路14を形成している。   The EHD pump includes a booster unit 10 and a DC power supply 20. The pressure increasing unit 10 includes a cylindrical flow pipe 11 having a rectangular cross section with one end being a liquid inlet 11a and the other end being a liquid discharge opening 11b, and a cell 12 disposed inside the flow pipe 11; Is provided. The cell 12 is formed obliquely so that the end surface on the inlet 11 a side forms a predetermined angle with respect to the side wall of the flow tube 11, and the end surface on the discharge port 11 b side with respect to the side wall of the flow tube 11. It is formed at a right angle and is brought into close contact with the inner surface of the side wall of the flow tube 11 through the long side surface, and a predetermined gap is formed between the short side surface and the inner surface of the side wall of the flow tube 11. A liquid introduction path 13 is formed between the end surface formed obliquely with respect to the inner surface of the side wall of the flow pipe 11 and the inner surface of the side wall facing the end surface, and the end surface and the inner surface of the side wall facing the end surface are formed. Flat electrodes 15 and 16 are provided. The gap between the short side surface of the cell 12 following the introduction channel 13 and the inner surface of the side wall of the flow pipe 11 forms a narrow channel 14.

このように構成されたEHDポンプによれば、直流電源20から電極15,16に直流電圧を印加することにより、導入路13内の液体から電離したイオンと電極15,16との引力によって液体が導入路13から狭隘路14に向かって移動する。狭隘路14に導入された液体は、昇圧されて排出口11b側から排出される。なお、この実施形態では、電極15,16に直流電圧を印加しているが、電圧の極性によっても流体の流れの方向は変わらないので、電極15,16に直流電圧に代えて交流電圧を印加しても良い。   According to the EHD pump configured as described above, by applying a DC voltage from the DC power supply 20 to the electrodes 15 and 16, the liquid is caused by the attractive force between the ions ionized from the liquid in the introduction path 13 and the electrodes 15 and 16. It moves from the introduction path 13 toward the narrow path 14. The liquid introduced into the narrow path 14 is pressurized and discharged from the discharge port 11b side. In this embodiment, a DC voltage is applied to the electrodes 15 and 16, but since the direction of fluid flow does not change depending on the polarity of the voltage, an AC voltage is applied to the electrodes 15 and 16 instead of the DC voltage. You may do it.

ここで、図2に示すように、電極角度θを75°、狭隘路14の流路長lを10mm、幅wを10mm、間隙gを1mmとし、印加する直流電圧を1〜10V/mmまで変化させ、電気応答流体として、ハイドロフルオロエーテル(住友スリーエム社製のHFE−7200,HFE−7300)、フッ素変成シリコーンオイル、シリコーンオイル及びDBDN(ドデカン二酸ジ−n−ブチル)をそれぞれ使用して電気応答流体の吐出圧力を圧力センサ17によって測定した。印加電圧に対する吐出圧力のグラフを図3に示す。また、同じく印加電圧に対する電流値のグラフを図4に示す。   Here, as shown in FIG. 2, the electrode angle θ is 75 °, the channel length l of the narrow channel 14 is 10 mm, the width w is 10 mm, the gap g is 1 mm, and the applied DC voltage is 1 to 10 V / mm. Using hydrofluoroether (HFE-7200, HFE-7300, manufactured by Sumitomo 3M), fluorine-modified silicone oil, silicone oil, and DBDN (di-n-butyl dodecanedioate) as electrical responsive fluids The discharge pressure of the electrically responsive fluid was measured by the pressure sensor 17. A graph of the discharge pressure against the applied voltage is shown in FIG. Similarly, a graph of the current value with respect to the applied voltage is shown in FIG.

図3から明らかなように、使用した流体全てにおいて、電圧印加に伴い圧力が上昇し、最も高い圧力を示したフッ素変成シリコーンオイルを使用した場合、印加電圧が10kV/mmの時に、圧力は3.5kPaまで上昇した。また、電流値は、最も高い流体でも最大16μAであり、格別高い値ではなかった。   As is clear from FIG. 3, in all the fluids used, the pressure increased with voltage application, and when the fluorine-modified silicone oil showing the highest pressure was used, when the applied voltage was 10 kV / mm, the pressure was 3 It rose to 5 kPa. Further, the current value was 16 μA at maximum even in the highest fluid, and was not a particularly high value.

図5に電極角度θと圧力との関係、図6に電極角度θと電流との関係を示す。昇圧ユニット1の寸法関係は前述の通り、使用した流体はHFE−7200で、印加電圧は、5〜10kV/mmまで1kV/mmずつ変化させた。その結果、図5から明らかなように、電極角度が0°を超えてから圧力が上昇し、90°以上でも高い圧力が得られ、特に60〜75°が望ましいことが分かった。最も高い圧力は、印加電圧10kV/mmのとき電極角度が75°で4kPaであった。また、図6に示すように、電極角度が15〜90゜の範囲では、電流値も低い値に安定していた。   FIG. 5 shows the relationship between the electrode angle θ and the pressure, and FIG. 6 shows the relationship between the electrode angle θ and the current. As described above, the dimensional relationship of the boosting unit 1 was HFE-7200, and the applied voltage was changed by 1 kV / mm from 5 to 10 kV / mm. As a result, as is apparent from FIG. 5, it was found that the pressure increased after the electrode angle exceeded 0 °, and a high pressure was obtained even at 90 ° or more, and in particular, 60 to 75 ° was desirable. The highest pressure was 4 kPa at an electrode angle of 75 ° when the applied voltage was 10 kV / mm. Further, as shown in FIG. 6, the current value was stable at a low value when the electrode angle was in the range of 15 to 90 °.

図7は、狭隘部14の流路長lと圧力の関係を示したグラフである。   FIG. 7 is a graph showing the relationship between the flow path length l of the narrow portion 14 and the pressure.

電極角度θを30°とし、電極への印加電圧が1,2,3,…,9,10kV/mmである場合のそれぞれについて、狭隘路14の間隙gを2mm、幅wを20mm、流路長を1,2,3,4,5,10,15,20,25,30mmと変化させて圧力を測定した。なお、流体としては前述のHFE−7200を使用した。図7から明らかなように、流路長は2mm以上になると安定した圧力が得られ、流路長が長くなっても一定の圧力を維持し、長くなるほど変動要素が少なくなることが分かった。なお、流路長2mm以上というのは、あくまで上述の実験条件下での最適値であって、実験装置のサイズ及び流体の粘度等の流体の特性により変わる値である。   For each of the cases where the electrode angle θ is 30 ° and the voltage applied to the electrodes is 1, 2, 3,..., 9, 10 kV / mm, the gap g of the narrow path 14 is 2 mm, the width w is 20 mm, and the flow path The pressure was measured by changing the length to 1, 2, 3, 4, 5, 10, 15, 20, 25, and 30 mm. In addition, the above-mentioned HFE-7200 was used as a fluid. As is clear from FIG. 7, it was found that when the channel length was 2 mm or more, a stable pressure was obtained, and a constant pressure was maintained even when the channel length was increased, and the variation factor decreased as the channel length increased. The flow path length of 2 mm or more is an optimum value under the above experimental conditions, and is a value that varies depending on the characteristics of the fluid such as the size of the experimental apparatus and the viscosity of the fluid.

図8は、本発明の第2の実施形態に係るEHDポンプを示す図で、同図(a)は一部を切り欠いた平面図、同図(b)は要部の一部を切り欠いた斜視図である。   FIGS. 8A and 8B are diagrams showing an EHD pump according to a second embodiment of the present invention. FIG. 8A is a plan view with a part cut away, and FIG. 8B is a part with a part cut out. FIG.

この実施形態では、昇圧ユニット30を構成する通流管31の内部に配置したセル32が、第1の実施形態におけるセル12を流体の流れの方向に2つ直角端面同士を当接させて対称的に配置させてなるものである。また、通流管31の側壁内面に対して斜めに形成された一方の端面とこれと対向する側壁内面との間に第1の導入排出路33が形成され、斜めに形成された他方の端面とこれと対向する側壁内面との間に第2の導入排出路34が形成されている。これらの導入排出路33,34を形成する端面には平板状の電極35,36が設けられ、これら電極35,36と対向するように、通流管31の側壁内面には、電極35から電極36を覆う1枚の平板状の電極37が設けられている。更に、導入排出路33,34を連絡するセル32の短い側面側と通流管31の側壁内面との間の間隙は狭隘路38を形成している。   In this embodiment, the cell 32 disposed inside the flow pipe 31 constituting the pressure increasing unit 30 is symmetrical with the two cells 12 in the first embodiment in contact with two perpendicular end faces in the direction of fluid flow. It is made to arrange. Further, a first introduction / discharge path 33 is formed between one end surface formed obliquely with respect to the inner surface of the side wall of the flow pipe 31 and the inner surface of the side wall opposed thereto, and the other end surface formed obliquely. And a second introduction / discharge passage 34 is formed between the inner wall and the inner surface of the opposite side wall. Flat electrodes 35 and 36 are provided on the end surfaces forming these introduction and discharge passages 33 and 34, and electrodes 35 to 36 are provided on the inner surface of the side wall of the flow pipe 31 so as to face these electrodes 35 and 36. One flat electrode 37 covering 36 is provided. Further, the gap between the short side surface of the cell 32 connecting the introduction / discharge passages 33 and 34 and the inner surface of the side wall of the flow pipe 31 forms a narrow passage 38.

電極35,36及び電極37には、直流電源20からの直流電圧が切替スイッチ21を介して択一的に印加されるようになっている。   A DC voltage from the DC power supply 20 is alternatively applied to the electrodes 35, 36 and the electrode 37 via the changeover switch 21.

このような構成によれば、切替スイッチ21の切り替えによって流体の通流方向を切り替えることができる。   According to such a configuration, the flow direction of the fluid can be switched by switching the changeover switch 21.

図9は、本発明の第3の実施形態に係るEHDポンプを示す図で、同図(a)は一部を切り欠いた平面図、同図(b)は要部の一部を切り欠いた斜視図である。   FIGS. 9A and 9B are views showing an EHD pump according to a third embodiment of the present invention. FIG. 9A is a plan view with a part cut away, and FIG. FIG.

この実施形態では、昇圧ユニット40を構成する通流管41の内部に配置したセル42が、第2の実施形態におけるセル32を、更に流体の流れの方向と直交する方向に長い側面同士を当接させて対称的に配置させてなるものである。これにより、セル42の流体の流れ方向の両端は、それぞれ鋭角な所定角度をなす2面により形成されており、これら両端のそれぞれの両側の面とこれと対向する通流管41の両側壁内面との間に第1及び第2の導入排出路43,44が形成されている。セル42の両端には、所定角度をなす2面に沿った所定角度をなすV字型の電極45,46が設けられ、これら電極45,46に対向する通流管41の両側壁内面には、平板状の電極47,48がそれぞれ設けられている。更に、セル42の両側面と通流管41との間の間隙は、それぞれ狭隘路49,50が形成されている。   In this embodiment, the cell 42 arranged inside the flow pipe 41 that constitutes the pressure increasing unit 40 has the side surfaces that are long in the direction perpendicular to the direction of the fluid flow. They are arranged in contact and symmetrically. As a result, both ends of the cell 42 in the fluid flow direction are formed by two surfaces each having an acute predetermined angle, and both side surfaces of the both ends and inner surfaces of both side walls of the flow pipe 41 facing the both sides are formed. The first and second introduction / discharge paths 43 and 44 are formed between the two. At both ends of the cell 42, V-shaped electrodes 45, 46 having a predetermined angle along two surfaces forming a predetermined angle are provided, and inner surfaces of both side walls of the flow pipe 41 facing these electrodes 45, 46 are provided. Flat electrodes 47 and 48 are provided, respectively. Further, narrow passages 49 and 50 are formed in the gaps between the both side surfaces of the cell 42 and the flow pipe 41, respectively.

この実施形態においても、電極45,46及び電極47,48には、直流電源20からの直流電圧が切替スイッチ21を介して択一的に印加されるようになっており、これにより流体の通流方向を切り替えることができる。   Also in this embodiment, a direct current voltage from the direct current power source 20 is alternatively applied to the electrodes 45 and 46 and the electrodes 47 and 48 via the changeover switch 21, thereby allowing fluid to flow. The flow direction can be switched.

この実施形態によれば、少ないスペースに狭隘路を2つ設けることができるので、更に昇圧効果を高めることができる。   According to this embodiment, since two narrow paths can be provided in a small space, the boosting effect can be further enhanced.

図10は、本発明の第4の実施形態に係るEHDポンプを示す図である。   FIG. 10 is a diagram showing an EHD pump according to the fourth embodiment of the present invention.

この実施形態は、第1の実施形態の昇圧ユニット10を複数段直列に配置したものである。通流管51の内部には、第1の実施形態におけるセル12が複数段直列に配置されている。各段の電極15には、スイッチ22を介して直流電源20から直流電圧が印加される。電極17は、複数の電極15の全体を覆うように1枚の電極17として形成されている。このように昇圧ユニット10を直列に多段接続することにより、更に高い圧力を得ることができる。   In this embodiment, a plurality of booster units 10 of the first embodiment are arranged in series. Inside the flow pipe 51, the cells 12 in the first embodiment are arranged in a plurality of stages in series. A DC voltage is applied to the electrode 15 of each stage from the DC power supply 20 via the switch 22. The electrode 17 is formed as one electrode 17 so as to cover the whole of the plurality of electrodes 15. In this way, a higher pressure can be obtained by connecting the booster units 10 in series.

図11は、本発明の第5の実施形態に係るEHDポンプを示す図である。   FIG. 11 is a diagram showing an EHD pump according to the fifth embodiment of the present invention.

この実施形態は、第1の実施形態の昇圧ユニット10を複数並列に配置したものである。通流管61の内部には、第1の実施形態におけるセル12が複数並列に配置されている。このように昇圧ユニット10を複数並列に接続することにより、1つの昇圧ユニットよりも流量を高めることができる。   In this embodiment, a plurality of booster units 10 of the first embodiment are arranged in parallel. A plurality of cells 12 in the first embodiment are arranged in parallel inside the flow pipe 61. Thus, by connecting a plurality of boosting units 10 in parallel, the flow rate can be increased as compared with one boosting unit.

図12は、本発明の第6の実施形態に係るEHDポンプを示す図である。   FIG. 12 is a diagram showing an EHD pump according to the sixth embodiment of the present invention.

この実施形態では、圧力を発生する基本原理は変えずに電極の配置を変更している。即ち、この実施形態では、昇圧ユニット70を構成する通流管71の側壁が厚肉部71aと薄肉部71bとを有し、これら厚肉部71aと薄肉部71bとが傾斜面71cを介して接続されたものとなっている。そして、一方の側壁は流体の導入側(又は排出側)を薄肉部71bとし、他方の側壁は流体の排出側(又は導入側)を薄肉部71bとしている。これにより、通流管71の両端に第1及び第2の導入排出路73,74が形成されている。そして厚肉部71a同士が対向する部分に狭隘路75が形成されている。通流管71の両側壁の傾斜面71cには電極76,77が設けられ、これら電極76,77に対向する厚肉部71aには、それぞれ電極78,79が設けられている。   In this embodiment, the arrangement of the electrodes is changed without changing the basic principle of generating pressure. That is, in this embodiment, the side wall of the flow pipe 71 constituting the boosting unit 70 has a thick portion 71a and a thin portion 71b, and the thick portion 71a and the thin portion 71b are interposed via the inclined surface 71c. It is connected. One side wall has a thin portion 71b on the fluid introduction side (or discharge side), and the other side wall has a thin portion 71b on the fluid discharge side (or introduction side). As a result, first and second introduction / discharge paths 73 and 74 are formed at both ends of the flow pipe 71. A narrow path 75 is formed in a portion where the thick portions 71a face each other. Electrodes 76 and 77 are provided on the inclined surfaces 71 c on both side walls of the flow pipe 71, and electrodes 78 and 79 are provided on the thick portion 71 a facing the electrodes 76 and 77, respectively.

図13は、本発明の第7の実施形態に係るEHDポンプを示す図である。   FIG. 13 is a diagram showing an EHD pump according to the seventh embodiment of the present invention.

この実施形態は、第6の実施形態の昇圧ユニット70を複数並列に設けた例である。通流管81の内部には、平行四辺形のセル82が所定間隙を空けて複数並列に配置されており、これらセル82及び通流管81の側壁に第6の実施形態と同様の電極構造が形成されている。   This embodiment is an example in which a plurality of boosting units 70 of the sixth embodiment are provided in parallel. Inside the flow pipe 81, a plurality of parallelogram cells 82 are arranged in parallel with a predetermined gap, and the electrode structure similar to that of the sixth embodiment is provided on the side walls of the cells 82 and the flow pipe 81. Is formed.

この実施形態によっても、ポンプの流量を増加させることができる。   Also according to this embodiment, the flow rate of the pump can be increased.

図14は、本発明の第8の実施形態に係るEHDポンプを示す図である。   FIG. 14 is a diagram showing an EHD pump according to the eighth embodiment of the present invention.

この実施形態は、第6の実施形態の昇圧ユニット70を複数段直列に配置した例である。この実施形態では、通流管91の側壁内面が傾斜面を組み合わせたなだらかなジクザク面になっており、これら側壁内面をずらして対向配置することにより、狭隘路92とその両側の導入排出路93とを形成している。   This embodiment is an example in which a plurality of booster units 70 of the sixth embodiment are arranged in series. In this embodiment, the inner surface of the side wall of the flow pipe 91 is a gentle zigzag surface formed by combining inclined surfaces. By disposing the inner surfaces of the side walls so as to be opposed to each other, the narrow path 92 and the introduction / discharge paths 93 on both sides thereof are arranged. And form.

この実施形態によってもポンプ圧力を高めることができる。   This embodiment can also increase the pump pressure.

図15は、本発明の第9の実施形態に係るEHDポンプを示す図で、同図(a)は一部を切り欠いた平面図、同図(b)は同じく斜視図である。   FIGS. 15A and 15B are views showing an EHD pump according to a ninth embodiment of the present invention, in which FIG. 15A is a partially cutaway plan view, and FIG. 15B is a perspective view.

この実施形態では、図9に示した第3の実施形態の昇圧ユニット40を複数段直列に配置した例である。   This embodiment is an example in which a plurality of booster units 40 of the third embodiment shown in FIG. 9 are arranged in series.

ポンプケース101には、平行に4本の溝102a〜102dが形成され、1段目の溝102aの一端側に導入口(又は排出口)103が設けられ、4段目の溝102dの一端側に排出口(又は導入口)104が設けられている。1段目の溝102aと2段目の溝102bの他端側、並びに3段目の溝102cと4段目の溝102dの他端側がそれぞれU字溝105によって連結され、2段目の溝102bと3段目の溝102cの一端側がU字溝106によって連結されている。これにより、各溝102a〜102dが直列に連結される。これら溝102a〜102dの中に、第3の実施形態におけるセル42が多段に直列に配置されている。   In the pump case 101, four grooves 102a to 102d are formed in parallel, and an introduction port (or discharge port) 103 is provided on one end side of the first stage groove 102a, and one end side of the fourth stage groove 102d. A discharge port (or introduction port) 104 is provided at the top. The other ends of the first-stage groove 102a and the second-stage groove 102b, and the other-end side of the third-stage groove 102c and the fourth-stage groove 102d are connected by a U-shaped groove 105, respectively. One end side of 102 b and the third stage groove 102 c are connected by a U-shaped groove 106. Thereby, each groove | channel 102a-102d is connected in series. In these grooves 102a to 102d, the cells 42 in the third embodiment are arranged in series in multiple stages.

この構造によれば、少ないスペースで、昇圧ユニット40を十分な段数だけ配置して十分な距離を確保することができるので、更に高い圧力を得ることかできる。   According to this structure, a sufficient pressure can be obtained because a sufficient distance can be ensured by arranging a sufficient number of booster units 40 in a small space.

図16は、本発明の第10の実施形態に係るEHDポンプの要部を示す一部切り欠いた斜視図である。   FIG. 16 is a partially cutaway perspective view showing a main part of an EHD pump according to the tenth embodiment of the present invention.

この実施形態では、円筒状の通流管111の内部に円錐と円柱を結合させたセル112を同軸配置して、昇圧ユニット110が形成されている。この昇圧ユニット110には、円筒電極113と円錐電極114とが用いられる。   In this embodiment, a booster unit 110 is formed by coaxially disposing a cell 112 in which a cone and a column are combined inside a cylindrical flow pipe 111. The booster unit 110 uses a cylindrical electrode 113 and a conical electrode 114.

この構成によれば、電極及び周辺形状を円曲面としているので、周方向の利用効率が高まり、より効率的な昇圧が可能になる。なお、セル112の保持は、周方向の一部を通流管111と連結するか、又は軸中心部を延長させて通流管111の一部と連結させるようにすれば良い。   According to this configuration, since the electrode and the peripheral shape are circular curved surfaces, the utilization efficiency in the circumferential direction is increased, and more efficient boosting is possible. The cells 112 may be held by connecting a part of the circumferential direction with the flow pipe 111 or extending the axial center part and connecting with a part of the flow pipe 111.

図17は、本発明の第11の実施形態に係るEHDポンプの要部を示す一部切り欠いた斜視図である。   FIG. 17 is a partially cutaway perspective view showing a main part of an EHD pump according to the eleventh embodiment of the present invention.

この実施形態は、円筒状の通流管121の内部に、図16の実施形態のセル112の下流側にも円錐を結合したセル122を同軸配置して、昇圧ユニット120を双方向型としたものである。   In this embodiment, inside the cylindrical flow pipe 121, a cell 122 having a cone coupled to the downstream side of the cell 112 of the embodiment of FIG. Is.

図18は、このような昇圧ユニット120を複数多段に配置した例、図19は、昇圧ユニット120を複数並列に設けた例である。   FIG. 18 shows an example in which a plurality of such boosting units 120 are arranged in multiple stages, and FIG. 19 shows an example in which a plurality of boosting units 120 are provided in parallel.

また、以上の各実施形態では、電極対がそれぞれ平面状であったが、図20に示すように、電極対の一方を曲面状とすることもできる。   Further, in each of the embodiments described above, each electrode pair is planar, but as shown in FIG. 20, one of the electrode pairs can be curved.

同図(a)は、昇圧ユニット130を構成する通流管131とセル132のうち、セル132の導入口側の面を斜めに傾斜する凸曲面とし、この凸曲面に凸曲面を持つ電極135が設けられ、これに対向する通流管131の側壁内面に電極136が設けられたものである。また、同図(b)は、昇圧ユニット140を構成する通流管141とセル142のうち、セル142の導入口側の面を斜めに傾斜する凹曲面とし、この凹曲面に凹曲面を持つ電極135が設けられ、これに対向する通流管131の側壁内面に電極136が設けられたものである。   In FIG. 5A, among the flow pipe 131 and the cell 132 constituting the pressure increasing unit 130, the surface on the inlet side of the cell 132 is a convex curved surface that is inclined obliquely, and the electrode 135 having a convex curved surface on the convex curved surface. Is provided, and an electrode 136 is provided on the inner surface of the side wall of the flow pipe 131 opposite to this. In FIG. 5B, of the flow-through pipe 141 and the cell 142 constituting the boosting unit 140, the surface on the inlet side of the cell 142 is a concave curved surface that is inclined obliquely, and the concave curved surface has a concave curved surface. The electrode 135 is provided, and the electrode 136 is provided on the inner surface of the side wall of the flow pipe 131 facing the electrode 135.

凸面の場合も凹面の場合も、図21及び図22にそれぞれ示すように、印加電圧に対して十分な圧力を得ることができる。   In both the convex and concave cases, a sufficient pressure can be obtained with respect to the applied voltage, as shown in FIGS.

以上、各種の例を説明したが、このようなポンプは静圧軸受、流体軸受、ロボットアームの動力、密閉空間内の冷却など、種々の用途に応用可能である。   Although various examples have been described above, such a pump can be applied to various uses such as a hydrostatic bearing, a fluid bearing, power of a robot arm, and cooling in a sealed space.

本発明の第1の実施形態に係るEHDポンプを示す図である。It is a figure which shows the EHD pump which concerns on the 1st Embodiment of this invention. 同ポンプの要部の寸法を説明するための図である。It is a figure for demonstrating the dimension of the principal part of the pump. 同ポンプの印加電圧と吐出圧力の関係を示すグラフである。It is a graph which shows the relationship between the applied voltage and discharge pressure of the pump. 同ポンプの印加電圧と電流値の関係を示すグラフである。It is a graph which shows the relationship between the applied voltage and current value of the pump. 同ポンプの電極角度と圧力の関係を示すグラフである。It is a graph which shows the relationship between the electrode angle and pressure of the pump. 同ポンプの電極角度と電流値の関係を示すグラフである。It is a graph which shows the relationship between the electrode angle of the same pump, and an electric current value. 同ポンプの狭隘路の流路長と圧力の関係を示すグラフである。It is a graph which shows the relationship between the flow path length of the narrow path of the pump, and pressure. 本発明の第2の実施形態に係るEHDポンプを示す図である。It is a figure which shows the EHD pump which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係るEHDポンプを示す図である。It is a figure which shows the EHD pump which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係るEHDポンプを示す図である。It is a figure which shows the EHD pump which concerns on the 4th Embodiment of this invention. 本発明の第5の実施形態に係るEHDポンプを示す図である。It is a figure which shows the EHD pump which concerns on the 5th Embodiment of this invention. 本発明の第6の実施形態に係るEHDポンプを示す図である。It is a figure which shows the EHD pump which concerns on the 6th Embodiment of this invention. 本発明の第7の実施形態に係るEHDポンプを示す図である。It is a figure which shows the EHD pump which concerns on the 7th Embodiment of this invention. 本発明の第8の実施形態に係るEHDポンプを示す図である。It is a figure which shows the EHD pump which concerns on the 8th Embodiment of this invention. 本発明の第9の実施形態に係るEHDポンプを示す図である。It is a figure which shows the EHD pump which concerns on the 9th Embodiment of this invention. 本発明の第10の実施形態に係るEHDポンプを示す図である。It is a figure which shows the EHD pump which concerns on the 10th Embodiment of this invention. 本発明の第11の実施形態に係るEHDポンプを示す図である。It is a figure which shows the EHD pump which concerns on the 11th Embodiment of this invention. 本発明の第12の実施形態に係るEHDポンプを示す図である。It is a figure which shows the EHD pump which concerns on the 12th Embodiment of this invention. 本発明の第13の実施形態に係るEHDポンプを示す図である。It is a figure which shows the EHD pump which concerns on the 13th Embodiment of this invention. 本発明の第14の実施形態に係るEHDポンプを示す図である。It is a figure which shows the EHD pump which concerns on the 14th Embodiment of this invention. 図20(a)に示すEHDポンプの印加電圧に対する圧力の関係を示すグラフである。It is a graph which shows the relationship of the pressure with respect to the applied voltage of the EHD pump shown to Fig.20 (a). 図20(b)に示すEHDポンプの印加電圧に対する圧力の関係を示すグラフであるIt is a graph which shows the relationship of the pressure with respect to the applied voltage of the EHD pump shown in FIG.20 (b).

符号の説明Explanation of symbols

10,30,40,70,110,120,130,140…昇圧ユニット、11,31,41,51,61,71,81,91,111,121,131,141…通流管、12,32,42,82,112,122,132,142…セル、13…導入路、14,38,49,50,75,92…狭隘路、15,16,35〜37,45〜48,76〜79,135,136,145,146…電極、20…直流電源、33,34,73,74,93…導入排出路。   10, 30, 40, 70, 110, 120, 130, 140 ... boosting unit, 11, 31, 41, 51, 61, 71, 81, 91, 111, 121, 131, 141 ... flow pipe, 12, 32 , 42, 82, 112, 122, 132, 142 ... cell, 13 ... introduction route, 14, 38, 49, 50, 75, 92 ... narrow path, 15, 16, 35-37, 45-48, 76-79. , 135, 136, 145, 146... Electrodes, 20... DC power supply, 33, 34, 73, 74, 93.

Claims (6)

電気応答流体を導入する導入路、この導入路に設けられ導入側から排出側にかけて間隔が徐々に狭まる電極対、及び前記導入路の排出側に接続されて前記導入路を通過した電気応答流体を通流過程で昇圧させる狭隘路を備えた昇圧ユニットと、
前記電極対に電圧を印加する電圧印加手段と
を備えたことを特徴とする電気応答流体ポンプ。
An introduction path that introduces an electrical response fluid, an electrode pair that is provided in the introduction path and whose interval gradually decreases from the introduction side to the discharge side, and an electrical response fluid that is connected to the discharge side of the introduction path and passes through the introduction path. A boost unit with a narrow path that boosts the pressure in the flow process;
An electrically responsive fluid pump comprising: voltage applying means for applying a voltage to the electrode pair.
電気応答流体を導入又は排出し対向壁が一方の側から他方の側にかけて徐々に狭まり前記対向壁が狭まっている側同士が対向するように対称的に配置された第1及び第2の導入排出路、この第1及び第2の導入排出路の対向壁にそれぞれ設けられて所定の角度をなして対向する第1及び第2の電極対、及び前記第1及び第2の導入排出路の前記対向壁が狭まっている側に接続されて前記第1又は第2の導入排出路を通過した電気応答流体を通流過程で昇圧させる狭隘路を備えた昇圧ユニットと、
前記第1又は第2の電極対に印加する電圧を発生させる電源と、
前記第1及び第2の電極対のいずれか一方に前記電圧を印加するスイッチ手段と
を備えたことを特徴とする電気応答流体ポンプ。
The first and second introduction and discharge are arranged symmetrically so that the opposite walls are gradually narrowed from one side to the other side and the opposite walls are opposed to each other by introducing or discharging the electrically responsive fluid. A first electrode pair and a second electrode pair which are provided on opposing walls of the first and second introduction / discharge paths and are opposed to each other at a predetermined angle, and the first and second introduction / discharge paths A pressure increasing unit provided with a narrow path that is connected to the side on which the opposing wall is narrowed and pressurizes the electrically responsive fluid that has passed through the first or second introduction / discharge path in the course of flow;
A power source for generating a voltage to be applied to the first or second electrode pair;
An electrically responsive fluid pump comprising: switch means for applying the voltage to one of the first and second electrode pairs.
前記昇圧ユニットは、複数直列に設けられていることを特徴とする請求項1又は2記載の電気応答流体ポンプ。   3. The electric response fluid pump according to claim 1, wherein a plurality of the boosting units are provided in series. 前記昇圧ユニットは、複数並列に設けられていることを特徴とする請求項1又は2記載の電気応答流体ポンプ。   3. The electric response fluid pump according to claim 1, wherein a plurality of the boosting units are provided in parallel. 前記電極対のなす角度は、0°より大きく90°以下であることを特徴とする請求項1〜4のいずれか1項記載の電気応答流体ポンプ。   5. The electrically responsive fluid pump according to claim 1, wherein an angle formed by the electrode pair is greater than 0 ° and 90 ° or less. 前記電極対の少なくとも一方が平面又は曲面であることを特徴とする請求項1〜5のいずれか1項記載の電気応答流体ポンプ。   6. The electrically responsive fluid pump according to claim 1, wherein at least one of the electrode pairs is a flat surface or a curved surface.
JP2007134881A 2007-05-22 2007-05-22 Electric response fluid pump Active JP5085978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007134881A JP5085978B2 (en) 2007-05-22 2007-05-22 Electric response fluid pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007134881A JP5085978B2 (en) 2007-05-22 2007-05-22 Electric response fluid pump

Publications (2)

Publication Number Publication Date
JP2008295114A true JP2008295114A (en) 2008-12-04
JP5085978B2 JP5085978B2 (en) 2012-11-28

Family

ID=40169302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007134881A Active JP5085978B2 (en) 2007-05-22 2007-05-22 Electric response fluid pump

Country Status (1)

Country Link
JP (1) JP5085978B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012057872A (en) * 2010-09-09 2012-03-22 Denso Corp Cooling device using ehd fluid
JP2015082940A (en) * 2013-10-24 2015-04-27 株式会社デンソー Fluid pressure feed device
WO2015084238A1 (en) * 2013-12-04 2015-06-11 Apr Technologies Ab Microfluidic device
EP2695849A4 (en) * 2011-04-06 2015-07-01 Postech Acad Ind Found Micropump
JP2016093002A (en) * 2014-11-06 2016-05-23 株式会社デンソー Fluid apparatus
WO2016195570A1 (en) * 2015-06-03 2016-12-08 Apr Technologies Ab Microfluidic array
KR20180106183A (en) * 2017-03-17 2018-10-01 주식회사 미래엔지니어링 Magnetohydrodynamics DC electromagnetic Pump

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7032823B1 (en) 2020-09-24 2022-03-09 三洋金属工業株式会社 Electrical response fluid pump

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6447265A (en) * 1987-08-12 1989-02-21 Toshiba Corp Farady type electromagnetic pump
JPS6447263A (en) * 1987-08-12 1989-02-21 Hitachi Ltd Water pump
JPH01148055A (en) * 1987-12-03 1989-06-09 Sharp Corp Liquid transferring device
JPH01227654A (en) * 1988-03-03 1989-09-11 Toshiba Corp Superconductive electromagnetic pump
JPH01264560A (en) * 1988-04-11 1989-10-20 Sukegawa Electric Co Ltd Faraday type electromagnetic pump with annular path
JPH02133061A (en) * 1988-11-10 1990-05-22 Nec Corp Flow controller
JP2003284316A (en) * 2002-03-25 2003-10-03 Ryoichi Hanaoka Electrohydrodynamic pump

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6447265A (en) * 1987-08-12 1989-02-21 Toshiba Corp Farady type electromagnetic pump
JPS6447263A (en) * 1987-08-12 1989-02-21 Hitachi Ltd Water pump
JPH01148055A (en) * 1987-12-03 1989-06-09 Sharp Corp Liquid transferring device
JPH01227654A (en) * 1988-03-03 1989-09-11 Toshiba Corp Superconductive electromagnetic pump
JPH01264560A (en) * 1988-04-11 1989-10-20 Sukegawa Electric Co Ltd Faraday type electromagnetic pump with annular path
JPH02133061A (en) * 1988-11-10 1990-05-22 Nec Corp Flow controller
JP2003284316A (en) * 2002-03-25 2003-10-03 Ryoichi Hanaoka Electrohydrodynamic pump

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012057872A (en) * 2010-09-09 2012-03-22 Denso Corp Cooling device using ehd fluid
EP2695849A4 (en) * 2011-04-06 2015-07-01 Postech Acad Ind Found Micropump
US9726161B2 (en) 2011-04-06 2017-08-08 Postech Academy-Industry Foundation Micropump
JP2015082940A (en) * 2013-10-24 2015-04-27 株式会社デンソー Fluid pressure feed device
WO2015084238A1 (en) * 2013-12-04 2015-06-11 Apr Technologies Ab Microfluidic device
JP2016093002A (en) * 2014-11-06 2016-05-23 株式会社デンソー Fluid apparatus
WO2016195570A1 (en) * 2015-06-03 2016-12-08 Apr Technologies Ab Microfluidic array
US10943849B2 (en) 2015-06-03 2021-03-09 Apr Technologies Ab Microfluidic array
KR20180106183A (en) * 2017-03-17 2018-10-01 주식회사 미래엔지니어링 Magnetohydrodynamics DC electromagnetic Pump
KR101947144B1 (en) * 2017-03-17 2019-04-29 주식회사 미래엔지니어링 Magnetohydrodynamics DC electromagnetic Pump

Also Published As

Publication number Publication date
JP5085978B2 (en) 2012-11-28

Similar Documents

Publication Publication Date Title
JP5085978B2 (en) Electric response fluid pump
KR100510224B1 (en) Electroactive polymer actuator and diaphragm pump using the same
US8348626B2 (en) Method and apparatus for efficient micropumping
JP2018527716A (en) Separator plate for electrochemical system
US9103331B2 (en) Electro-osmotic pump
EP2953431A1 (en) Plasma generator
US10943849B2 (en) Microfluidic array
US7914262B2 (en) Electrohydrodynamic pump (EHD pump) with electrode arrangement
JP6196913B2 (en) Tube type ozone generator
Steffes et al. Enabling the enhancement of electroosmotic flow over superhydrophobic surfaces by induced charges
US20080175720A1 (en) Contoured electrodes for an electrostatic gas pump
CN1249899C (en) Mini type electroosmosis pump
MD631Y (en) Electrostatic diaphragm pump
JP7032823B1 (en) Electrical response fluid pump
US20080025883A1 (en) Ozone generator
JP6068218B2 (en) Operation method of fuel cell
US20120312689A1 (en) Pump
KR100741790B1 (en) Bipolar plate of fuel cell
Yang et al. Electrokinetic power generation by means of streaming potentials: a mobile-ion-drain method to increase the streaming potentials
US10309386B2 (en) Solid state pump using electro-rheological fluid
RU2385176C1 (en) Electrical purifier of dielectric fluids (and gases) with one-sided arrangement of holes in electrodes
JP2008031002A (en) Ozone generator, ozone generator module, and stack assembly of ozone generators
RU2492934C2 (en) Electric cleaner with different electrode gaps
JP2011144692A (en) Fluid transport device using conductive high polymer
EP1882673A1 (en) Ozone generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5085978

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250