JP2008294169A - Method and apparatus for high-concentration ozone water preparation and method and apparatus for substrate surface treatment - Google Patents

Method and apparatus for high-concentration ozone water preparation and method and apparatus for substrate surface treatment Download PDF

Info

Publication number
JP2008294169A
JP2008294169A JP2007137289A JP2007137289A JP2008294169A JP 2008294169 A JP2008294169 A JP 2008294169A JP 2007137289 A JP2007137289 A JP 2007137289A JP 2007137289 A JP2007137289 A JP 2007137289A JP 2008294169 A JP2008294169 A JP 2008294169A
Authority
JP
Japan
Prior art keywords
ozone
water
chamber
concentration
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007137289A
Other languages
Japanese (ja)
Inventor
Toshinori Miura
敏徳 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2007137289A priority Critical patent/JP2008294169A/en
Priority to PCT/JP2008/058578 priority patent/WO2008146584A1/en
Priority to TW97118797A priority patent/TW200908133A/en
Publication of JP2008294169A publication Critical patent/JP2008294169A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • C02F1/685Devices for dosing the additives
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/06Pressure conditions
    • C02F2301/063Underpressure, vacuum
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/42Stripping or agents therefor
    • G03F7/422Stripping or agents therefor using liquids only
    • G03F7/423Stripping or agents therefor using liquids only containing mineral acids or salts thereof, containing mineral oxidizing substances, e.g. peroxy compounds

Abstract

<P>PROBLEM TO BE SOLVED: To prepare high-concentration ozone water efficiently, and to remove an organic matter on a substrate without causing any popping phenomenon. <P>SOLUTION: In the method for preparing high-concentration ozone water, ozone gas and water vapor are supplied to a chamber 2. The ozone gas is supplied from an ozone generator 9 for liquefying and separating only ozone from gas containing ozone based on a difference in vapor pressure and then vaporizing it again to generate ultra-high concentration ozone gas. The chamber 2 is heated by a heater 4 to the extent of preventing the water vapor from being liquefied. The ozone gas and water vapor are mixed while the inner pressure of the chamber 2 is being controlled to pressure lower than atmospheric pressure by a vacuum pump 3. Dew is condensed at the bottom of the chamber 2 by cooling to obtain high-concentration ozone water. Then, by dipping a substrate into the high-concentration ozone water, the organic matter, such as resist, on the substrate is removed. Ultrapure water may be supplied to the substrate treated by the high-concentration ozone water for cleaning. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は基板表面上のレジストに例示される有機物を除去するための技術に関する。   The present invention relates to a technique for removing organic substances exemplified in a resist on a substrate surface.

基板上のレジストに例示される有機物を除去する方法には例えば特許文献1に開示された乾式法と湿式法がある。   For example, there are a dry method and a wet method disclosed in Patent Document 1 as a method for removing organic substances exemplified in the resist on the substrate.

乾式法としては酸素プラズマアッシング法が例示されている。この方法は無公害であるが基板の損傷や酸素ガスプラズマを発生させるための装置が高価である等の問題がある。   An oxygen plasma ashing method is exemplified as the dry method. This method is non-polluting, but there are problems such as damage to the substrate and expensive equipment for generating oxygen gas plasma.

湿式法は有機系や無機系の溶剤を剥離溶剤としている。有機系の溶剤は例えばフェノールとハロゲン系溶剤とを主成分とするものが挙げられている。無機系の溶剤としては、硫酸と過酸化水素とを含んだもの、アンモニアと過酸化水素とを含んだもの、フッ酸を含んだもの、塩酸と過酸化水素とを含んだものが例示されている。これらの溶離液は有害であるのでレジスト除去の廃液を無害化させるための設備が必要となる。   In the wet method, an organic or inorganic solvent is used as a peeling solvent. Examples of the organic solvent include those containing phenol and a halogen solvent as main components. Examples of inorganic solvents include those containing sulfuric acid and hydrogen peroxide, those containing ammonia and hydrogen peroxide, those containing hydrofluoric acid, and those containing hydrochloric acid and hydrogen peroxide. Yes. Since these eluents are harmful, equipment for detoxifying the resist removal waste liquid is required.

前記乾式法及び湿式法の問題を解決するために特許文献1に開示されたフォトレジスト除去方法では水またはアルコール若しくはこれらからなる溶媒分子を含有する湿潤オゾンによって基板のレジストの除去と前記基板の洗浄を行なっている。但し、蒸気が基板上に結露した場合にはオゾンによるレジスト分解が妨げられるので基板上が結露しないような条件が望ましいとされている。   In order to solve the problems of the dry method and the wet method, the photoresist removal method disclosed in Patent Document 1 removes the resist on the substrate and cleans the substrate with wet ozone containing water, alcohol, or solvent molecules composed of these. Is doing. However, when vapor condenses on the substrate, the decomposition of the resist by ozone is hindered. Therefore, it is desirable that the substrate does not condense.

また、レジストの除去技術ではないが特許文献2の半導体エッチング方法及び半導体装置の製造方法によると超純水にオゾンガスをバブリングして得られた水蒸気を含んだオゾンガスを酸性またはアルカリ性のガスと共に基板に供給している。この際、前記バブリングするための槽の温度を基板及びこれを保持する台の温度よりも高い温度にすることで基板の表面が結露し、この結露した水蒸気とオゾンガスとアルカリ成分の作用によりGaAs系材料を確実且つ高速にエッチングできるとされている。
特開2001−290287 特開2004−235316
Further, although not a resist removal technique, according to the semiconductor etching method and the semiconductor device manufacturing method of Patent Document 2, ozone gas containing water vapor obtained by bubbling ozone gas into ultrapure water is added to the substrate together with an acidic or alkaline gas. Supply. At this time, the surface of the substrate is condensed by setting the temperature of the bath for bubbling to a temperature higher than the temperature of the substrate and the table for holding the substrate, and the action of the condensed water vapor, ozone gas and alkali component causes the GaAs system. It is said that the material can be etched reliably and at high speed.
JP 2001-290287 A JP 2004-235316 A

オゾン水中のオゾン濃度はオゾンの水に対する溶解度と水に接するガス中のオゾン分圧に依存するため(ヘンリーの法則)、大気圧で100%のオゾンガスと水とが接触したとしてもその濃度は五百数十ppm程度である。一般的にはオゾン濃度10vol%程度のオゾン含有ガス(ほとんどの成分は酸素)を加圧してオゾン分圧を上げてオゾン濃度を高めようとしてもオゾン水のオゾン濃度は百数十ppmに留まる。   Since the ozone concentration in ozone water depends on the solubility of ozone in water and the ozone partial pressure in the gas in contact with water (Henry's law), even if 100% ozone gas and water contact at atmospheric pressure, the concentration is 5 It is about hundreds of ppm. In general, even when an ozone-containing gas (most components are oxygen) having an ozone concentration of about 10 vol% is pressurized to increase the ozone partial pressure to increase the ozone concentration, the ozone concentration of ozone water remains at a few tens of ppm.

さらに、産業用に使われるオゾナイザは無声放電式のものが広く使われているが、オゾン濃度を上げるための窒素を添加する必要があり、これから発生するオゾン含有ガスにはNOXが含まれており、水に溶かすことで硝酸となり、望ましくない効果をもたらすことがある。 Furthermore, although ozonizer used for industry is widely used those silent discharge type, it is necessary to add nitrogen to increase the ozone concentration, the ozone-containing gas generated therefrom contains NO X When dissolved in water, it becomes nitric acid, which may have undesirable effects.

そこで、請求項1の高濃度オゾン水製造方法は、大気圧よりも低圧のもとでオゾンガスと水蒸気とを混合させた後にこのオゾンを含んだ水蒸気を冷却して結露させて高濃度オゾン水を製造する。大気圧よりも低圧のもとでオゾンガスと水蒸気を混合させているので混合比を最適化することで大気圧のもとで生成したオゾン水よりもオゾン濃度が高い高濃度オゾン水を製造できる。また、オゾンガスと水蒸気との混合比を変えることでその濃度を自由に変えることができる。前記オゾンガスはオゾン濃度が数十%以上のものを用いるとよい。本発明では大気圧よりも低圧のもとでオゾンガスと水蒸気とを混合させているので爆発の危険性を回避できる。   Therefore, in the method for producing high-concentration ozone water according to claim 1, ozone gas and water vapor are mixed under a pressure lower than atmospheric pressure, and then the water-containing ozone is cooled and condensed to produce high-concentration ozone water. To manufacture. Since ozone gas and water vapor are mixed under a pressure lower than the atmospheric pressure, high-concentration ozone water having a higher ozone concentration than ozone water generated under the atmospheric pressure can be produced by optimizing the mixing ratio. Further, the concentration can be freely changed by changing the mixing ratio of ozone gas and water vapor. The ozone gas may be one having an ozone concentration of several tens of percent or more. In the present invention, the risk of explosion can be avoided because ozone gas and water vapor are mixed at a pressure lower than atmospheric pressure.

請求項2の高濃度オゾン水製造方法は、請求項1の高濃度オゾン水製造方法において、前記オゾンガスはオゾン含有ガスを蒸気圧の差に基づいてオゾンのみを液化分離した後に再び気化して得られる超高濃度オゾンガスである。この超高濃度オゾンガスが利用されることで効率的に高濃度オゾン水を製造できる。   The method for producing high-concentration ozone water according to claim 2 is the method for producing high-concentration ozone water according to claim 1, wherein the ozone gas is obtained by vaporizing ozone-containing gas again after liquefying and separating only ozone based on the difference in vapor pressure. It is an ultra-high concentration ozone gas. By using this ultra-high concentration ozone gas, high concentration ozone water can be produced efficiently.

請求項3の高濃度オゾン水製造装置は、オゾンガスと水蒸気とが供給されるチャンバと、このチャンバの内圧を大気圧よりも低圧に制御するポンプと、前記チャンバの内側面と天井面とを加熱する加熱手段と、前記チャンバの底面部を冷却する冷却機構とを備え、水蒸気が液化しない程度に前記加熱手段によって前記チャンバが加熱されると共に前記ポンプによって前記チャンバの内圧が大気圧よりも低圧に制御された状態で前記オゾンガスと前記水蒸気とを混合させた後にこのオゾンを含んだ水蒸気を前記冷却機構によって冷却された底面部において結露させる。大気圧よりも低圧のもとでオゾンガスと水蒸気を混合させているので大気圧のもとで生成したオゾン水よりもオゾン濃度が高い高濃度オゾン水を製造できる。また、オゾンガスと水蒸気との混合比を変えることでその濃度を自由に変えることができる。前記オゾンガスはオゾン濃度が数十%以上のものを用いるとよい。本発明では大気圧よりも低圧のもとでオゾンガスと水蒸気とを混合させているので爆発の危険性を回避できる。   The apparatus for producing high-concentration ozone water according to claim 3 heats the chamber to which ozone gas and water vapor are supplied, a pump for controlling the internal pressure of the chamber to be lower than the atmospheric pressure, and the inner surface and the ceiling surface of the chamber. Heating means and a cooling mechanism for cooling the bottom surface of the chamber, the chamber is heated by the heating means to such an extent that water vapor is not liquefied, and the internal pressure of the chamber is lower than atmospheric pressure by the pump. After the ozone gas and the water vapor are mixed in a controlled state, the water vapor containing ozone is condensed on the bottom surface portion cooled by the cooling mechanism. Since ozone gas and water vapor are mixed under a pressure lower than atmospheric pressure, high-concentration ozone water having a higher ozone concentration than ozone water generated under atmospheric pressure can be produced. Further, the concentration can be freely changed by changing the mixing ratio of ozone gas and water vapor. The ozone gas may be one having an ozone concentration of several tens of percent or more. In the present invention, the risk of explosion can be avoided because ozone gas and water vapor are mixed at a pressure lower than atmospheric pressure.

請求項4の高濃度オゾン水製造装置は、請求項3の高濃度オゾン水製造装置において、前記オゾンガスの供給は、オゾン含有ガスを蒸気圧の差に基づいてオゾンのみを液化分離した後に再び気化することで超高濃度オゾンガスを発生するオゾン発生装置により行う。このオゾン発生装置から前記超高濃度オゾンガスが前記チャンバに供されることで効率的に高濃度オゾン水を製造できる。   The high-concentration ozone water production apparatus according to claim 4 is the high-concentration ozone water production apparatus according to claim 3, wherein the supply of the ozone gas is vaporized again after liquefying and separating only ozone from the ozone-containing gas based on the difference in vapor pressure. This is done by an ozone generator that generates ultra-high-concentration ozone gas. High concentration ozone water can be efficiently manufactured by supplying the ultra high concentration ozone gas from the ozone generator to the chamber.

請求項5の高濃度オゾン水製造装置は、請求項3または4に記載の高濃度オゾン水製造装置において、前記冷却機構は前記チャンバの底部に冷媒の流通路を埋設してなる。チャンバの底部は流通路を流通した冷媒によって冷却されているのでオゾンを含んだ水蒸気が前記底部に接触すると前記オゾンを混合させた水蒸気が結露する。   The high-concentration ozone water production apparatus according to claim 5 is the high-concentration ozone water production apparatus according to claim 3 or 4, wherein the cooling mechanism has a refrigerant flow path embedded in the bottom of the chamber. Since the bottom part of the chamber is cooled by the refrigerant flowing through the flow passage, when the water vapor containing ozone comes into contact with the bottom part, the water vapor mixed with the ozone condenses.

請求項6の基板表面処理方法は、大気圧よりも低圧のもとでオゾンガスと水蒸気とを混合させた後にこのオゾンを含んだ水蒸気を冷却して結露させて生成した高濃度オゾン水に基板を浸漬させて基板表面のレジストを含む有機物を除去する。大気圧よりも低圧のもとでオゾンガスと水蒸気を混合されて得られた高濃度オゾン水に基板が浸漬されることで100℃よりも低温で基板表面上の前記有機物が除去される。したがって、高ドーズイオン注入レジストにみられるポッピング現象が生じない。前記オゾンガスはオゾン濃度が数十%以上のものを用いるとよい。本発明では大気圧よりも低圧のもとでオゾンガスと水蒸気とを混合させているので爆発の危険性を回避できる。   The substrate surface treatment method according to claim 6 is a method in which ozone gas and water vapor are mixed under a pressure lower than atmospheric pressure and then the water vapor containing ozone is cooled and condensed to generate high-concentration ozone water. The organic substance including the resist on the substrate surface is removed by immersion. The substrate is immersed in high-concentration ozone water obtained by mixing ozone gas and water vapor at a pressure lower than atmospheric pressure, whereby the organic matter on the substrate surface is removed at a temperature lower than 100 ° C. Therefore, the popping phenomenon seen in the high dose ion implantation resist does not occur. The ozone gas may be one having an ozone concentration of several tens of percent or more. In the present invention, the risk of explosion can be avoided because ozone gas and water vapor are mixed at a pressure lower than atmospheric pressure.

請求項7の基板表面処理方法は、請求項6の基板表面処理方法において、前記オゾンガスはオゾン含有ガスを蒸気圧の差に基づいてオゾンのみを液化分離した後に再び気化して得られる超高濃度オゾンガスである。この超高濃度オゾンガスが利用されることで効率的に高濃度オゾン水が生成されるので効果的に前記有機物を除去できる。   The substrate surface treatment method according to claim 7 is the substrate surface treatment method according to claim 6, wherein the ozone gas is obtained by vaporizing again ozone-containing gas after liquefying and separating only ozone based on the difference in vapor pressure. Ozone gas. By using this ultra-high-concentration ozone gas, high-concentration ozone water is efficiently generated, so that the organic matter can be effectively removed.

請求項8の基板表面処理方法は、請求項6または請求項7の基板表面処理方法において、前記高濃度オゾン水で処理した基板を超純水で洗浄する。前記オゾンガスと水蒸気とで処理された基板の有機物成分は前記オゾンガス及び水蒸気との反応により水溶性の成分(例えばアルデヒドや水酸化物)に酸化分解されている。したがって、基板が超純水で洗浄されることで基板表面の前記水溶性の成分からなる残渣が容易に除去される。   A substrate surface treatment method according to an eighth aspect is the substrate surface treatment method according to the sixth or seventh aspect, wherein the substrate treated with the high-concentration ozone water is washed with ultrapure water. The organic component of the substrate treated with the ozone gas and water vapor is oxidized and decomposed into a water-soluble component (for example, aldehyde or hydroxide) by the reaction with the ozone gas and water vapor. Therefore, the residue which consists of the said water-soluble component of a board | substrate surface is easily removed by wash | cleaning a board | substrate with an ultrapure water.

請求項9の基板表面処理装置は、表面に有機物を有する基板を格納すると共にオゾンガスと水蒸気とが供給されるチャンバと、このチャンバの内圧を大気圧よりも低圧に制御するポンプと、前記チャンバの内側面と天井面とを加熱する加熱手段と、前記チャンバの底面部を冷却する冷却機構とを備え、水蒸気が液化しない程度に前記加熱手段によって前記チャンバが加熱されると共に前記ポンプによって前記チャンバの内圧が大気圧よりも低圧に制御された状態で前記オゾンガスと前記水蒸気とを混合させた後にこのオゾンを含んだ水蒸気を前記冷却機構によって冷却された底面部において結露させて生成させた高濃度オゾン水に前記基板を浸漬させて前記有機物を除去する。大気圧よりも低圧のもとでオゾンガスと水蒸気を混合されて得られた高濃度オゾン水に基板が浸漬されることで100℃よりも低温で基板表面上の有機物が除去される。したがって、高ドーズイオン注入レジストに見られるポッピング現象が生じない。前記オゾンガスはオゾン濃度が数十%以上のものを用いるとよい。本発明では大気圧よりも低圧のもとでオゾンガスと水蒸気とを混合させているので爆発の危険性を回避できる。   A substrate surface processing apparatus according to claim 9 stores a substrate having an organic substance on the surface and is supplied with ozone gas and water vapor, a pump for controlling the internal pressure of the chamber to be lower than atmospheric pressure, A heating unit that heats the inner surface and the ceiling surface; and a cooling mechanism that cools the bottom surface of the chamber. The chamber is heated by the heating unit to the extent that water vapor is not liquefied, and the pump High-concentration ozone generated by mixing the ozone gas and the water vapor in a state where the internal pressure is controlled to be lower than the atmospheric pressure, and then condensing the water vapor containing ozone on the bottom surface cooled by the cooling mechanism The organic substance is removed by immersing the substrate in water. By immersing the substrate in high-concentration ozone water obtained by mixing ozone gas and water vapor at a pressure lower than atmospheric pressure, organic substances on the substrate surface are removed at a temperature lower than 100 ° C. Therefore, the popping phenomenon seen in the high dose ion implantation resist does not occur. The ozone gas may be one having an ozone concentration of several tens of percent or more. In the present invention, the risk of explosion can be avoided because ozone gas and water vapor are mixed at a pressure lower than atmospheric pressure.

請求項10の基板表面処理装置は、請求項9の基板表面処理装置において、前記オゾンガスの供給は、オゾン含有ガスを蒸気圧の差に基づいてオゾンのみを液化分離した後に再び気化することで超高濃度オゾンガスを発生するオゾン発生装置により行う。このオゾン発生装置から前記超高濃度オゾンガスが前記チャンバに供されることで効率的に高濃度オゾン水が生成されるので効果的に有機物を除去できる。   The substrate surface treatment apparatus according to claim 10 is the substrate surface treatment apparatus according to claim 9, wherein the supply of the ozone gas is performed by vaporizing the ozone-containing gas again after liquefying and separating only ozone based on the difference in vapor pressure. This is done with an ozone generator that generates high-concentration ozone gas. Since the ultra-high-concentration ozone gas is supplied from the ozone generator to the chamber, high-concentration ozone water is efficiently generated, so that organic substances can be effectively removed.

請求項11の基板表面処理装置は、請求項9または請求項10の基板表面処理装置において、前記チャンバには前記高濃度オゾン水で処理した基板を洗浄するために超純水が供給される。基板表面上の有機物の残渣が超純水によって洗浄除去される。   The substrate surface treatment apparatus according to an eleventh aspect is the substrate surface treatment apparatus according to the ninth or tenth aspect, wherein ultrapure water is supplied to the chamber for cleaning the substrate treated with the high-concentration ozone water. Organic residue on the substrate surface is removed by washing with ultrapure water.

請求項12の基板表面処理装置は、請求項9から11のいずれかの基板表面処理装置において、前記冷却機構は前記チャンバの底部に冷媒の流通路を埋設してなることを特徴とする。チャンバの底部は流通路を流通した冷媒によって冷却されているのでオゾンを含んだ水蒸気が前記底部に接触すると前記オゾンを混合させた水蒸気が結露する。   A substrate surface treatment apparatus according to a twelfth aspect of the present invention is the substrate surface treatment apparatus according to any one of the ninth to eleventh aspects, wherein the cooling mechanism has a refrigerant flow path embedded in a bottom portion of the chamber. Since the bottom part of the chamber is cooled by the refrigerant flowing through the flow passage, when the water vapor containing ozone comes into contact with the bottom part, the water vapor mixed with the ozone condenses.

以上の基板表面処理方法とその装置は特にG線、I線の光に対して感光性のあるノボラック系のレジストの除去に有効である。   The substrate surface treatment method and apparatus described above are particularly effective for removing novolak resists that are sensitive to G- and I-ray light.

したがって、以上の発明の高濃度オゾン水製造方法とその装置によれば効率的に高濃度オゾン水を製造できる。そして、この高濃度オゾン水に基板を浸漬させることで前記基板上の有機物を除去できる。特に、高ドーズイオン注入レジストにおいてはポッピング現象を起こすことなく除去できる。   Therefore, according to the high concentration ozone water manufacturing method and apparatus of the above invention, high concentration ozone water can be manufactured efficiently. And the organic substance on the said board | substrate can be removed by immersing a board | substrate in this high concentration ozone water. In particular, a high dose ion implantation resist can be removed without causing a popping phenomenon.

図1は発明の実施形態に係る高濃度オゾン水製造装置(以下、オゾン水製造装置と称する)の概略構成を示した断面図である。   FIG. 1 is a cross-sectional view showing a schematic configuration of a high-concentration ozone water production apparatus (hereinafter referred to as an ozone water production apparatus) according to an embodiment of the invention.

オゾン水製造装置1はチャンバ2と真空ポンプ3とヒータ4と冷却機構5とを備える。   The ozone water production apparatus 1 includes a chamber 2, a vacuum pump 3, a heater 4, and a cooling mechanism 5.

チャンバ2はオゾンガス(O3)と水蒸気(H2O)とを導入する。チャンバ2はチャンバ容器20とこれを封止する蓋21とからなる。オゾンガス(O3)及び水蒸気(H2O)は水蒸気が結露しない温度に加熱された配管6を介して導入される。配管6は蓋21に設置されている。蓋21は補助封止部材であるOリング22を介してチャンバ2を封止する。Oリング22としては例えばシリコンゴムのような耐オゾン性の材料からなる封止リングが採用される。また、チャンバ2の底部23には製造された高濃度オゾン水を排出するための配管7が接続されている。配管7はドレインバルブ8を備えている。チャンバ2、蓋21、配管類及びバルブ類はステンレス鋼のようなオゾンガスに対して耐性を有する材料で形成するとよい。特に、低い金属不純物濃度を要求する半導体製造に代表される微細加工分野では内面をテフロン(登録商標)等でコーティングしたものが好ましい。 The chamber 2 introduces ozone gas (O 3 ) and water vapor (H 2 O). The chamber 2 includes a chamber container 20 and a lid 21 that seals the chamber container 20. Ozone gas (O 3 ) and water vapor (H 2 O) are introduced through a pipe 6 heated to a temperature at which water vapor does not condense. The pipe 6 is installed on the lid 21. The lid 21 seals the chamber 2 via an O-ring 22 that is an auxiliary sealing member. As the O-ring 22, a sealing ring made of an ozone resistant material such as silicon rubber is employed. A pipe 7 for discharging the manufactured high-concentration ozone water is connected to the bottom 23 of the chamber 2. The pipe 7 is provided with a drain valve 8. The chamber 2, lid 21, piping and valves may be formed of a material having resistance to ozone gas such as stainless steel. In particular, in the microfabrication field represented by semiconductor manufacturing requiring a low metal impurity concentration, it is preferable to coat the inner surface with Teflon (registered trademark) or the like.

オゾンガスとしては超高濃度オゾンガスが用いられる。超高濃度オゾンガスは例えばオゾン含有ガスを蒸気圧の差に基づいてオゾンのみを液化分離した後に再び気化して得られる。より具体的には特開2001−304756や特開2003−20209の特許文献に開示されたオゾン生成装置から得られたオゾンガスが挙げられる。前記オゾン生成装置はオゾンと他のガス成分(例えば酸素)の蒸気圧の差に基づきオゾンのみを液化分離して超高濃度(オゾン濃度≒100%)のオゾンガスを製造している。特に、特開2003−20209のオゾン供給装置はオゾンのみを液化及び気化させるチャンバを複数備え、これらのチャンバを個別に温度制御することで超高濃度オゾンガスを連続的に供給できるようになっている。そして、この超高濃度オゾンガス連続供給方式に基づく市販のオゾン発生装置としては例えば明電舎製のピュアオゾンジェネレータ(MPOG−HM1A1)が挙げられる。   As the ozone gas, an ultra-high concentration ozone gas is used. The ultra-high concentration ozone gas is obtained, for example, by vaporizing ozone-containing gas again after liquefying and separating only ozone based on the difference in vapor pressure. More specifically, ozone gas obtained from an ozone generator disclosed in Japanese Patent Application Laid-Open Nos. 2001-304756 and 2003-20209 can be given. The ozone generator produces an ultra-high-concentration (ozone concentration≈100%) ozone gas by liquefying and separating only ozone based on the difference in vapor pressure between ozone and other gas components (for example, oxygen). In particular, the ozone supply device disclosed in Japanese Patent Application Laid-Open No. 2003-20209 includes a plurality of chambers that liquefy and vaporize only ozone, and the temperature of these chambers can be individually controlled to continuously supply ultra-high-concentration ozone gas. . And as a commercially available ozone generator based on this super high concentration ozone gas continuous supply system, the pure ozone generator (MPOG-HM1A1) by Meidensha is mentioned, for example.

オゾンガスは前記超高濃度オゾンガスに限定されない。例えばオゾン濃度が数十%以上のオゾンガスが挙げられる。大気圧では14.3〜38vol%のオゾン濃度で持続性分解領域、〜44vol%のオゾン濃度で突燃領域、44vol%〜のオゾン濃度で爆発領域となる(杉光英俊,オゾンの基礎と応用,光琳社,1996,pp.187)。オゾン水製造装置1では大気圧よりも低圧のもとでオゾンガスと水蒸気とを混合させているので爆発の危険性を回避できる。   The ozone gas is not limited to the ultra-high concentration ozone gas. For example, ozone gas having an ozone concentration of several tens% or more can be mentioned. At atmospheric pressure, the ozone concentration ranges from 14.3 to 38 vol% and becomes the persistent decomposition region, the ozone concentration ranges from -44 vol% to the impact region, and the ozone concentration ranges from 44 vol% to the ozone region (Hidetoshi Sugimitsu, Basic and Application of Ozone Kogyosha, 1996, pp. 187). In the ozone water production apparatus 1, since ozone gas and water vapor are mixed under a pressure lower than atmospheric pressure, the risk of explosion can be avoided.

真空ポンプ3はチャンバ2内を減圧させるためのポンプである。チャンバ2と真空ポンプ3とを接続した配管10はバルブ11を備える。バルブ11はチャンバ2内の圧力が所定の値となるようにチャンバ2内の気相を封止する。チャンバ2、配管10及びバルブ11もステンレス鋼のようなオゾンガスに対して耐性を有する材料で構成するとよい。   The vacuum pump 3 is a pump for reducing the pressure in the chamber 2. A pipe 10 connecting the chamber 2 and the vacuum pump 3 includes a valve 11. The valve 11 seals the gas phase in the chamber 2 so that the pressure in the chamber 2 becomes a predetermined value. The chamber 2, the pipe 10 and the valve 11 may be made of a material having resistance to ozone gas such as stainless steel.

ヒータ4は少なくともチャンバ2内に導入された水蒸気が液化しない程度に蓋21、配管6及びチャンバ22の側面を加熱する。ヒータ4は半導体技術に採用されている既知のものを適用すればよい。   The heater 4 heats the side surfaces of the lid 21, the pipe 6, and the chamber 22 so that at least the water vapor introduced into the chamber 2 is not liquefied. What is necessary is just to apply the heater 4 used for the semiconductor technology.

冷却機構5はチャンバ2の底部でオゾンを含んだ水蒸気が結露するように前記底部を冷却する。冷却機構5はチャンバ2の底部23に冷却水に例示される冷媒の流通路24を埋設してなる。流通路24はチャンバ2の底面部をできる限り均等に冷却するように設けられる。   The cooling mechanism 5 cools the bottom so that water vapor containing ozone is condensed at the bottom of the chamber 2. The cooling mechanism 5 is formed by embedding a refrigerant flow passage 24 exemplified by cooling water in the bottom 23 of the chamber 2. The flow passage 24 is provided so as to cool the bottom surface of the chamber 2 as uniformly as possible.

図1及び図3を参照しながらオゾン水製造装置1の動作例について説明する。   An operation example of the ozone water production apparatus 1 will be described with reference to FIGS. 1 and 3.

減圧下のチャンバ2内に超高濃度オゾンガスが封入され、次いで水蒸気が導入される。この際、チャンバ2の内側面及び天井面(蓋21の下面)を水蒸気が液化しない程度に加熱する。例えばチャンバ2の内圧が100hPaである場合には前記内側面及び天井面の温度は図3の飽和蒸気圧曲線に基づき45℃よりも高めの温度例えば100℃に保温される。一方でチャンバ2の底部は埋設されている流通路24を流通している冷却水によって冷却される。例えばチャンバ2の内圧が100hPaである場合には前記底部の温度は前記飽和蒸気圧曲線に基づき例えば45℃以下例えば20〜40℃に冷却される。これによりオゾンが混入した水蒸気はチャンバ2の底面部に結露25として液化する。以上の工程が繰り返し実行されてチャンバ2内にNOXやO2等のO3以外の不純物を含まない高濃度オゾン水26が貯留される。一定量貯留されると超高濃度オゾンガスと水蒸気の供給が停止される。貯留された高濃度オゾン水26はバルブ8によって排出される。 Ultra high-concentration ozone gas is enclosed in the chamber 2 under reduced pressure, and then water vapor is introduced. At this time, the inner surface and the ceiling surface of the chamber 2 (the lower surface of the lid 21) are heated to such an extent that the water vapor is not liquefied. For example, when the internal pressure of the chamber 2 is 100 hPa, the temperatures of the inner surface and the ceiling surface are kept at a temperature higher than 45 ° C., for example, 100 ° C. based on the saturation vapor pressure curve of FIG. On the other hand, the bottom of the chamber 2 is cooled by the cooling water flowing through the embedded flow passage 24. For example, when the internal pressure of the chamber 2 is 100 hPa, the temperature of the bottom is cooled to, for example, 45 ° C. or less, for example, 20 to 40 ° C. based on the saturated vapor pressure curve. As a result, water vapor mixed with ozone liquefies as dew condensation 25 on the bottom surface of the chamber 2. The above steps are repeatedly executed, and high-concentration ozone water 26 that does not contain impurities other than O 3 such as NO x and O 2 is stored in the chamber 2. When a certain amount is stored, the supply of ultra-high concentration ozone gas and water vapor is stopped. The stored high-concentration ozone water 26 is discharged by the valve 8.

図2は発明の実施形態に係る基板表面処理装置の概略構成を示した断面図である。   FIG. 2 is a cross-sectional view showing a schematic configuration of a substrate surface processing apparatus according to an embodiment of the invention.

基板表面処理装置30は基板31表面のレジストを含む有機物を高濃度オゾン水によって除去する。基板表面処理装置30は前記有機物の除去に供される基板31が置かれる保持部32がチャンバ2内の底面部に形成されていること以外はオゾン水製造装置1と同じ構成である。保持部32は基板の形状に応じて前記底面部が刳りぬかれて形成される。   The substrate surface treatment apparatus 30 removes organic substances including the resist on the surface of the substrate 31 with high-concentration ozone water. The substrate surface treatment apparatus 30 has the same configuration as the ozone water production apparatus 1 except that a holding part 32 on which a substrate 31 to be used for the removal of organic substances is placed is formed on the bottom surface part in the chamber 2. The holding portion 32 is formed by scraping the bottom portion according to the shape of the substrate.

図2を参照しながら基板表面処理装置30の動作例について説明する。   An example of the operation of the substrate surface treatment apparatus 30 will be described with reference to FIG.

減圧下のチャンバ2内に超高濃度オゾンガスが封入され、次いで水蒸気が導入される。この際、チャンバ2の内側面及び天井面(蓋21の下面)は図3に示されたように水蒸気が液化しない程度に加熱する。例えばチャンバ2の内圧が120hPa(オゾン分圧90hPa,水蒸気分圧30hPa)である場合には前記内側面及び天井面の温度は図3の飽和蒸気圧曲線に基づき45℃よりも高めの温度例えば100℃に保温される。一方でチャンバ2の底部23は埋設されている流通路24を流通している冷却水(冷媒)によって冷却される。例えばチャンバ2の内圧が120hPa(オゾン分圧90hPa,水蒸気分圧30hPa)である場合には保持部32の温度は前記飽和蒸気圧曲線に基づき45℃以下例えば20〜40℃に冷却される。これによりオゾンが混入した水蒸気がチャンバ2の底面部に結露する。以上の工程が繰り返し実行されてNOXやO2等のO3以外の不純物を含まない高濃度オゾン水26が貯留される。そして、この工程はチャンバ2内の基板31が浸漬されるまで実行される。一定量貯留されると超高濃度オゾンガスと水蒸気の供給が停止される。そして、前記貯留された高濃度オゾン水26はバルブ8によって排出される。高濃度オゾン水によって処理された基板31は超純水によってさらに洗浄される。前記超純水は配管6から導入すればよい。オゾンガスと水蒸気とで処理された基板31の有機物成分はオゾンガス及び水蒸気との反応により水溶性の成分(例えばアルデヒドや水酸化物)に酸化分解されている(社団法人日本化学会編,季刊化学総説,No.7,活性酸素の化学,1990年4月20日発行,pp.36〜37)。したがって、基板31が超純水で洗浄されることで基板31表面の前記水溶性の成分からなる残渣が容易に除去される。また、超純水で洗浄されることで変質したレジストが除去されて薄くできるものと考えられる。 Ultra high-concentration ozone gas is enclosed in the chamber 2 under reduced pressure, and then water vapor is introduced. At this time, the inner surface and the ceiling surface of the chamber 2 (the lower surface of the lid 21) are heated to such an extent that the water vapor is not liquefied as shown in FIG. For example, when the internal pressure of the chamber 2 is 120 hPa (ozone partial pressure 90 hPa, water vapor partial pressure 30 hPa), the temperature of the inner surface and the ceiling surface is a temperature higher than 45 ° C. based on the saturated vapor pressure curve of FIG. Incubated at ℃. On the other hand, the bottom 23 of the chamber 2 is cooled by cooling water (refrigerant) flowing through the embedded flow passage 24. For example, when the internal pressure of the chamber 2 is 120 hPa (ozone partial pressure 90 hPa, water vapor partial pressure 30 hPa), the temperature of the holding unit 32 is cooled to 45 ° C. or lower, for example, 20 to 40 ° C. based on the saturated vapor pressure curve. Thereby, water vapor mixed with ozone is condensed on the bottom surface of the chamber 2. The above steps are repeatedly performed to store high-concentration ozone water 26 that does not contain impurities other than O 3 such as NO x and O 2 . This process is performed until the substrate 31 in the chamber 2 is immersed. When a certain amount is stored, the supply of ultra-high concentration ozone gas and water vapor is stopped. The stored high-concentration ozone water 26 is discharged by the valve 8. The substrate 31 treated with high-concentration ozone water is further cleaned with ultrapure water. The ultrapure water may be introduced from the pipe 6. The organic components of the substrate 31 treated with ozone gas and water vapor are oxidized and decomposed into water-soluble components (eg, aldehydes and hydroxides) by reaction with ozone gas and water vapor (edited by the Chemical Society of Japan, quarterly chemistry review). , No. 7, Chemistry of active oxygen, published April 20, 1990, pp. 36-37). Therefore, the residue made of the water-soluble component on the surface of the substrate 31 is easily removed by cleaning the substrate 31 with ultrapure water. In addition, it is considered that the resist which has deteriorated by being washed with ultrapure water can be removed and thinned.

表1は基板表面処理装置30によって有機物の一例としてレジストを除去した試験例を示す。ノボラック/ジアゾナフトキノン系レジストとして東京応用化学工業製のOFPR−800(G線(436nm)の光に対して感光性を有するレジスト)を有するSi基板をチャンバ2に格納した。チャンバ2の側壁の温度は100℃程度、保持部32の温度は40℃以下(36〜40℃)になるように調整した。次いで、このチャンバ2に超高濃度オゾンガスと水蒸気とを供給して前記基板が浸漬される程度に結露させた。前記超高濃度オゾンガスを供給するオゾン発生装置9には明電舎製のピュアオゾンジェネレータ(MPO−HM1A1)を用いた。オゾン分圧9000Pa及び水蒸気分圧3000Paのもとで前記基板を5分間封止した後に超純水によって洗浄した。処理前と処理後のレジストの膜厚[nm]、処理前と処理後の膜厚[nm]の差及び剥離速度[nm/分]を表1に示した。表1には3つの試料S1〜S2(前記レジストを有する基板)をアッシング処理した結果を開示した。   Table 1 shows a test example in which the resist was removed as an example of the organic substance by the substrate surface treatment apparatus 30. A Si substrate having OFPR-800 (resist having sensitivity to light of G-line (436 nm)) manufactured by Tokyo Applied Chemical Industry as a novolak / diazonaphthoquinone-based resist was stored in the chamber 2. The temperature of the side wall of the chamber 2 was adjusted to about 100 ° C., and the temperature of the holding unit 32 was adjusted to 40 ° C. or less (36 to 40 ° C.). Next, ultra high concentration ozone gas and water vapor were supplied to the chamber 2 to cause condensation to such an extent that the substrate was immersed. A pure ozone generator (MPO-HM1A1) manufactured by Meidensha was used as the ozone generator 9 for supplying the ultra-high concentration ozone gas. The substrate was sealed for 5 minutes under an ozone partial pressure of 9000 Pa and a water vapor partial pressure of 3000 Pa, and then washed with ultrapure water. Table 1 shows the resist film thickness [nm] before and after treatment, the difference between the film thickness [nm] before and after treatment, and the stripping rate [nm / min]. Table 1 discloses the results of ashing the three samples S1 to S2 (substrate having the resist).

Figure 2008294169
Figure 2008294169

表1に示された結果から明らかなように発明に係る基板表面処理方法によれば100℃よりも低温のもとでレジストに例示される有機物を除去できることが確認された。また、いずれの基板においてもポッピング現象が発生しないことも確認された。   As is clear from the results shown in Table 1, it was confirmed that the organic material exemplified in the resist can be removed under a temperature lower than 100 ° C. according to the substrate surface treatment method according to the invention. It was also confirmed that no popping phenomenon occurred in any of the substrates.

発明の実施形態に係る高濃度オゾン水製造装置の概略構成を示した断面図。Sectional drawing which showed schematic structure of the high concentration ozone water manufacturing apparatus which concerns on embodiment of invention. 発明の実施形態に係る基板表面処理装置の概略構成を示した断面図。Sectional drawing which showed schematic structure of the substrate surface processing apparatus which concerns on embodiment of invention. 飽和水蒸気圧曲線。Saturated water vapor pressure curve.

符号の説明Explanation of symbols

1…オゾン水製造装置
2…チャンバ
3…真空ポンプ
4…ヒータ
5…冷却機構、23…底部、24…流通路
25…結露、26…高濃度オゾン水
6,7,10…配管
8,11…バルブ
9…オゾン発生装置
30…基板表面処理装置
31…基板
32…保持部
DESCRIPTION OF SYMBOLS 1 ... Ozone water production apparatus 2 ... Chamber 3 ... Vacuum pump 4 ... Heater 5 ... Cooling mechanism, 23 ... Bottom part, 24 ... Flow path 25 ... Condensation, 26 ... High concentration ozone water 6, 7, 10 ... Pipe 8, 11 ... Valve 9 ... Ozone generator 30 ... Substrate surface treatment device 31 ... Substrate 32 ... Holding part

Claims (12)

大気圧よりも低圧のもとでオゾンガスと水蒸気とを混合させた後にこのオゾンを含んだ水蒸気を冷却して結露させて高濃度オゾン水を製造することを特徴とする高濃度オゾン水製造方法。   A method for producing high-concentration ozone water, comprising mixing ozone gas and water vapor at a pressure lower than atmospheric pressure, and then cooling and condensing the water vapor containing ozone to produce high-concentration ozone water. 前記オゾンガスはオゾン含有ガスを蒸気圧の差に基づいてオゾンのみを液化分離した後に再び気化して得られる超高濃度オゾンガスであることを特徴とする請求項1に記載の高濃度オゾン水製造方法。   2. The method of producing high-concentration ozone water according to claim 1, wherein the ozone gas is an ultra-high-concentration ozone gas obtained by vaporizing ozone-containing gas again after liquefying and separating only ozone based on a difference in vapor pressure. . オゾンガスと水蒸気とが供給されるチャンバと、
このチャンバの内圧を大気圧よりも低圧に制御するポンプと、
前記チャンバの内側面と天井面とを加熱する加熱手段と、
前記チャンバの底面部を冷却する冷却機構と
を備え、
水蒸気が液化しない程度に前記加熱手段によって前記チャンバが加熱されると共に前記ポンプによって前記チャンバの内圧が大気圧よりも低圧に制御された状態で前記オゾンガスと前記水蒸気とを混合させた後にこのオゾンを含んだ水蒸気を前記冷却機構によって冷却された底面部において結露させること
を特徴とする高濃度オゾン水製造装置。
A chamber to which ozone gas and water vapor are supplied;
A pump for controlling the internal pressure of the chamber to be lower than the atmospheric pressure;
Heating means for heating the inner surface and the ceiling surface of the chamber;
A cooling mechanism for cooling the bottom surface of the chamber,
After the chamber is heated by the heating means to the extent that water vapor is not liquefied, and the ozone gas and the water vapor are mixed with the pump while the internal pressure of the chamber is controlled to be lower than atmospheric pressure, the ozone is An apparatus for producing high-concentration ozone water, wherein the contained water vapor is condensed on the bottom surface cooled by the cooling mechanism.
前記オゾンガスの供給は、オゾン含有ガスを蒸気圧の差に基づいてオゾンのみを液化分離した後に再び気化することで超高濃度オゾンガスを発生するオゾン発生装置により行うことを特徴とする請求項3に記載の高濃度オゾン水製造装置。   The ozone gas supply is performed by an ozone generator that generates an ultra-high-concentration ozone gas by liquefying and separating only ozone from the ozone-containing gas based on a difference in vapor pressure and then vaporizing the ozone-containing gas again. The high-concentration ozone water production apparatus described. 前記冷却機構は前記チャンバの底部に冷媒の流通路を埋設してなることを特徴とする請求項3または4に記載の高濃度オゾン水製造装置。   5. The high-concentration ozone water production apparatus according to claim 3, wherein the cooling mechanism has a refrigerant flow passage embedded in a bottom portion of the chamber. 大気圧よりも低圧のもとでオゾンガスと水蒸気とを混合させた後にこのオゾンを含んだ水蒸気を冷却して結露させて生成した高濃度オゾン水に基板を浸漬させて基板表面の有機物を除去することを特徴とする基板表面処理方法。   After mixing ozone gas and water vapor at a pressure lower than atmospheric pressure, the substrate is immersed in high-concentration ozone water generated by cooling and condensing the water vapor containing ozone to remove organic substances on the substrate surface. And a substrate surface treatment method. 前記オゾンガスはオゾン含有ガスを蒸気圧の差に基づいてオゾンのみを液化分離した後に再び気化して得られる超高濃度オゾンガスであることを特徴とする請求項6に記載の基板表面処理方法。   7. The substrate surface treatment method according to claim 6, wherein the ozone gas is an ultra-high-concentration ozone gas obtained by vaporizing ozone-containing gas again after liquefying and separating only ozone based on a difference in vapor pressure. 前記高濃度オゾン水で処理した基板を超純水で洗浄することを特徴とする請求項6または7に記載の基板表面処理方法。   The substrate surface treatment method according to claim 6 or 7, wherein the substrate treated with the high-concentration ozone water is washed with ultrapure water. 表面に有機物を有する基板を格納すると共にオゾンガスと水蒸気とが供給されるチャンバと、
このチャンバの内圧を大気圧よりも低圧に制御するポンプと、
前記チャンバの内側面と天井面とを加熱する加熱手段と、
前記チャンバの底面部を冷却する冷却機構と
を備え、
水蒸気が液化しない程度に前記加熱手段によって前記チャンバが加熱されると共に前記ポンプによって前記チャンバの内圧が大気圧よりも低圧に制御された状態で前記オゾンガスと前記水蒸気とを混合させた後にこのオゾンを含んだ水蒸気を前記冷却機構によって冷却された底面部において結露させて生成させた高濃度オゾン水に前記基板を浸漬させて前記有機物を除去すること
を特徴とする基板表面処理装置。
A chamber for storing a substrate having an organic substance on the surface and supplied with ozone gas and water vapor;
A pump for controlling the internal pressure of the chamber to be lower than the atmospheric pressure;
Heating means for heating the inner surface and the ceiling surface of the chamber;
A cooling mechanism for cooling the bottom surface of the chamber,
After the chamber is heated by the heating means to the extent that water vapor is not liquefied, and the ozone gas and the water vapor are mixed with the pump while the internal pressure of the chamber is controlled to be lower than atmospheric pressure, the ozone is An apparatus for treating a surface of a substrate, comprising: dipping the substrate in high-concentration ozone water generated by condensation of water vapor contained in the bottom surface cooled by the cooling mechanism to remove the organic matter.
前記オゾンガスの供給は、オゾン含有ガスを蒸気圧の差に基づいてオゾンのみを液化分離した後に再び気化することで超高濃度オゾンガスを発生するオゾン発生装置により行うことを特徴とする請求項9に記載の基板表面処理装置。   The ozone gas supply is performed by an ozone generator that generates ultra-high-concentration ozone gas by liquefying and separating only ozone from the ozone-containing gas based on a difference in vapor pressure and then vaporizing again. The substrate surface treatment apparatus as described. 前記チャンバには前記高濃度オゾン水で処理した基板を洗浄するために超純水が供給されることを特徴とする請求項9または10に記載の基板表面処理装置。   11. The substrate surface processing apparatus according to claim 9, wherein ultrapure water is supplied to the chamber to clean the substrate treated with the high-concentration ozone water. 前記冷却機構は前記チャンバの底部に冷媒の流通路を埋設してなることを特徴とする請求項9から11のいずれか1項に記載の基板表面処理装置。   12. The substrate surface processing apparatus according to claim 9, wherein the cooling mechanism has a refrigerant flow path embedded in a bottom portion of the chamber.
JP2007137289A 2007-05-23 2007-05-23 Method and apparatus for high-concentration ozone water preparation and method and apparatus for substrate surface treatment Pending JP2008294169A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007137289A JP2008294169A (en) 2007-05-23 2007-05-23 Method and apparatus for high-concentration ozone water preparation and method and apparatus for substrate surface treatment
PCT/JP2008/058578 WO2008146584A1 (en) 2007-05-23 2008-05-08 Process for producing high-concentration ozone water, apparatus therefor, method of substrate surface treatment and apparatus therefor
TW97118797A TW200908133A (en) 2007-05-23 2008-05-21 Process for producing high-concentration ozone water, apparatus therefor, method of substrate surface treatment and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007137289A JP2008294169A (en) 2007-05-23 2007-05-23 Method and apparatus for high-concentration ozone water preparation and method and apparatus for substrate surface treatment

Publications (1)

Publication Number Publication Date
JP2008294169A true JP2008294169A (en) 2008-12-04

Family

ID=40168594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007137289A Pending JP2008294169A (en) 2007-05-23 2007-05-23 Method and apparatus for high-concentration ozone water preparation and method and apparatus for substrate surface treatment

Country Status (3)

Country Link
JP (1) JP2008294169A (en)
TW (1) TW200908133A (en)
WO (1) WO2008146584A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019054136A (en) * 2017-09-15 2019-04-04 株式会社Screenホールディングス Resist removing method and resist removing device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105336645B (en) * 2014-08-14 2021-04-30 无锡华瑛微电子技术有限公司 Apparatus and method for treating semiconductor wafer surface with ozone-containing fluid

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003188137A (en) * 2001-12-14 2003-07-04 Dainippon Screen Mfg Co Ltd Substrate processing apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003224102A (en) * 2002-01-30 2003-08-08 Tokyo Electron Ltd Substrate treatment equipment and substrate treatment method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003188137A (en) * 2001-12-14 2003-07-04 Dainippon Screen Mfg Co Ltd Substrate processing apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019054136A (en) * 2017-09-15 2019-04-04 株式会社Screenホールディングス Resist removing method and resist removing device
US11342162B2 (en) 2017-09-15 2022-05-24 SCREEN Holdings Co., Ltd. Resist removing method and resist removing apparatus
JP7092478B2 (en) 2017-09-15 2022-06-28 株式会社Screenホールディングス Resist removing method and resist removing device

Also Published As

Publication number Publication date
WO2008146584A1 (en) 2008-12-04
TW200908133A (en) 2009-02-16

Similar Documents

Publication Publication Date Title
US6551409B1 (en) Method for removing organic contaminants from a semiconductor surface
JP5450494B2 (en) Supercritical drying method for semiconductor substrates
US4863561A (en) Method and apparatus for cleaning integrated circuit wafers
JP5843277B2 (en) Method and apparatus for supercritical drying of semiconductor substrate
US6491763B2 (en) Processes for treating electronic components
US6699330B1 (en) Method of removing contamination adhered to surfaces and apparatus used therefor
TW401590B (en) Nitrogen trifluoride-oxygen thermal cleaning process
TWI549169B (en) Supercritical drying method and apparatus for semiconductor substrates
JPH1099806A (en) Method for removing inorganic pollutant by chemical derivation and extraction
US20020066717A1 (en) Apparatus for providing ozonated process fluid and methods for using same
JP2009157355A (en) Resist removal method and its device
JP2002184741A5 (en)
JP2011249454A (en) Supercritical drying method
JP2012009524A (en) Substrate drying method
JP2003206497A (en) Method for cleansing and drying
JP2008294169A (en) Method and apparatus for high-concentration ozone water preparation and method and apparatus for substrate surface treatment
TW404853B (en) Wet processing methods for the manufacture of electronic components using ozonated process fluids
JP2006229002A (en) Manufacturing method of semiconductor device, and semiconductor manufacturing device
JP2011146460A (en) Method for cleaning surface of silicon wafer
US20030093917A1 (en) Apparatus and methods for processing electronic component precursors
JP2004104090A (en) Method and apparatus for removing surface contaminant
JP2007281148A (en) Method for washing base body, method for manufacturing semiconductor device, and washing device
JP2015146435A (en) METHOD FOR CLEANING Ge SUBSTRATE FOR DEVICE, CLEANING WATER SUPPLY DEVICE AND CLEANING DEVICE
WO2015189933A1 (en) METHOD FOR CLEANING Ge SUBSTRATE FOR DEVICE, CLEANING-WATER-SUPPLYING DEVICE, AND CLEANING DEVICE
JP2004079595A (en) Substrate cleaning method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A02 Decision of refusal

Effective date: 20121113

Free format text: JAPANESE INTERMEDIATE CODE: A02