JP2008294101A - Gas injection means of laser treatment equipment - Google Patents

Gas injection means of laser treatment equipment Download PDF

Info

Publication number
JP2008294101A
JP2008294101A JP2007136156A JP2007136156A JP2008294101A JP 2008294101 A JP2008294101 A JP 2008294101A JP 2007136156 A JP2007136156 A JP 2007136156A JP 2007136156 A JP2007136156 A JP 2007136156A JP 2008294101 A JP2008294101 A JP 2008294101A
Authority
JP
Japan
Prior art keywords
gas
gas flow
flow path
gas injection
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007136156A
Other languages
Japanese (ja)
Other versions
JP4947646B2 (en
Inventor
Osamu Kato
修 加藤
Yoshiki Sawai
美喜 澤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2007136156A priority Critical patent/JP4947646B2/en
Priority to KR1020087029133A priority patent/KR101155370B1/en
Priority to PCT/JP2008/058836 priority patent/WO2008143083A1/en
Publication of JP2008294101A publication Critical patent/JP2008294101A/en
Application granted granted Critical
Publication of JP4947646B2 publication Critical patent/JP4947646B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1462Nozzles; Features related to nozzles
    • B23K26/1464Supply to, or discharge from, nozzles of media, e.g. gas, powder, wire
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02678Beam shaping, e.g. using a mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02686Pulsed laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02691Scanning of a beam

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Mechanical Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To excellently form the gas atmosphere of a laser irradiation portion for a subject to be treated in laser treatment equipment. <P>SOLUTION: There is provided a gas injection means which is provided on laser treatment equipment for irradiating a subject to be treated (an amorphous semiconductor thin film 2) with laser light 6 and treating the subject to be treated and which injects gas which forms an irradiation atmosphere in the vicinity of the laser light irradiation portion of the subject to be treated. The injection means includes a portion for introducing the gas (a gas supply pipe 12), a gas injection port 15 for injecting the gas toward the subject to be treated, and a gas flow path 13 which reaches the gas injection port from the portion for introducing the gas. An even flow surface for evening a gas flow in a direction intersecting with the direction of gas flow by disturbing a gas flow facing the direction of gas flow is provided on the gas flow path. Thus, an even irradiation atmosphere can be formed in the vicinity of the laser light irradiation portion of the subject to be treated, and even and high-quality treatment by use of irradiation with laser light can be performed. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、被処理体である非晶質半導体膜にレーザ照射することにより多結晶半導体膜を製造するなどのレーザ処理を行うレーザ処理装置に備えられるガス噴射手段に関するものである。 The present invention relates to a gas injection means provided in a laser processing apparatus for performing laser processing such as manufacturing a polycrystalline semiconductor film by irradiating an amorphous semiconductor film as an object to be processed with laser.

従来、レーザによるアモルファスシリコン膜の結晶化装置において、大気の影響を除去して結晶化に最適な雰囲気を制御するために、処理室を一度真空引きした後に処理用のガスを導入する代わりに照射雰囲気のみ制御する方法として、次に説明するものが知られている。   Conventionally, in an amorphous silicon film crystallization apparatus using a laser, in order to remove the influence of the atmosphere and control the optimum atmosphere for crystallization, irradiation is performed instead of introducing a processing gas after evacuating the processing chamber once. The following method is known as a method for controlling only the atmosphere.

(イ)窒素ガスを噴射してレーザ照射部分近傍のみを窒素雰囲気とする窒素ガス噴射手段を具備し、該前記窒素ガス噴射手段は、前記レーザ光が通過するスリットと、そのスリットの周辺部に設けられた複数の窒素ガス噴出口と、それら複数の窒素ガス噴出口の周りに設けられたラビリンスシール部とを有する板状ノズルを含むことを特徴とするレーザアニール処理装置(特許文献1参照)。 (A) Nitrogen gas injection means for injecting nitrogen gas to make the nitrogen atmosphere only in the vicinity of the laser irradiation portion, the nitrogen gas injection means is provided in a slit through which the laser beam passes and a peripheral portion of the slit A laser annealing treatment apparatus including a plate-like nozzle having a plurality of nitrogen gas outlets provided and a labyrinth seal portion provided around the plurality of nitrogen gas outlets (see Patent Document 1) .

(ロ)絶縁基板上に形成された非晶質の半導体膜をレーザアニール法によって結晶化する多結晶半導体膜の製造装置において、レーザビームを非晶質半導体膜に照射するときに、ビーム照射される基板の表面の雰囲気を制御できる局所シールドをレーザビーム周囲に備えていることを特徴とする多結晶半導体膜の製造装置(特許文献2参照)。
この製造装置の概略を図8に基づいて説明をすると、レーザ光源5から出力されるレーザ光6を光学系7を通してガス噴射筒50に導入し、ガス噴射筒50の下端に設けたガス噴射口52を通して基板1上に形成された非晶質半導体膜2に照射する。ガス噴射筒50には、ガス導入管51を接続し、ガス導入管51を通してガス噴射筒50内に導入される窒素ガスを前記ガス噴射口52より非晶質半導体膜2のレーザ光照射部分近傍に噴射する。
特開2000−349041号公報 特開2002−93738号公報
(B) In an apparatus for manufacturing a polycrystalline semiconductor film in which an amorphous semiconductor film formed on an insulating substrate is crystallized by laser annealing, the amorphous semiconductor film is irradiated with a laser beam. An apparatus for manufacturing a polycrystalline semiconductor film, comprising a local shield that can control the atmosphere of the surface of a substrate to be surrounded by a laser beam (see Patent Document 2).
The outline of this manufacturing apparatus will be described with reference to FIG. 8. The laser beam 6 output from the laser light source 5 is introduced into the gas injection cylinder 50 through the optical system 7, and the gas injection port provided at the lower end of the gas injection cylinder 50. The amorphous semiconductor film 2 formed on the substrate 1 is irradiated through 52. A gas introduction pipe 51 is connected to the gas injection cylinder 50, and nitrogen gas introduced into the gas injection cylinder 50 through the gas introduction pipe 51 is supplied to the vicinity of the laser light irradiation portion of the amorphous semiconductor film 2 from the gas injection port 52. To spray.
JP 2000-349041 A JP 2002-93738 A

従来のレーザアニール処理装置は以上のように構成されているので、窒素ガスの流れが噴射口の長手方向において不均一となりやすく、また、窒素ガス流速も不均一となるため、レーザー照射後の多結晶半導体膜が均一に形成できないという問題がある。   Since the conventional laser annealing apparatus is configured as described above, the flow of nitrogen gas tends to be non-uniform in the longitudinal direction of the injection port, and the nitrogen gas flow rate is also non-uniform. There is a problem that a crystalline semiconductor film cannot be formed uniformly.

この発明は上記のような従来の課題を解決するためになされたもので、雰囲気ガスの流れを均すことでガス噴射口から均等にガスを噴射してレーザ光噴射部近傍の雰囲気を均等にしてレーザ処理を良好に行うことを可能にするレーザ処理装置のガス噴射手段を提供することを目的とする。   The present invention has been made to solve the above-described conventional problems. By equalizing the flow of the atmospheric gas, the gas is uniformly injected from the gas injection port to make the atmosphere in the vicinity of the laser light injection unit uniform. It is an object of the present invention to provide a gas jetting means for a laser processing apparatus that can perform laser processing satisfactorily.

すなわち、本発明のレーザ処理装置のガス噴射手段のうち、第1の本発明は、被処理体にレーザ光を照射して前記被処理体の処理を行うレーザ処理装置に備えられ、照射雰囲気を形成するガスを前記被処理体の前記レーザ光照射部分近傍に噴射する噴射手段であって、該噴射手段は、前記ガスの導入部と、前記ガスが前記被処理体に向けて噴射されるガス噴射口と、前記ガス導入部から前記ガス噴射口に至るガス流路を有しており、該ガス流路に、ガスの流れ方向に対面してガス流を乱すことでガスの流れ方向と交差する方向におけるガス流を均す均流面が設けられていることを特徴とする。   That is, of the gas jetting means of the laser processing apparatus of the present invention, the first aspect of the present invention is provided in a laser processing apparatus for irradiating a target object with laser light and processing the target target object, Injecting means for injecting a gas to be formed in the vicinity of the laser light irradiation portion of the object to be processed, the injecting means including the gas introduction part and the gas to be injected toward the object to be processed A gas passage extending from the gas inlet to the gas injection port, and intersecting the gas flow direction by perturbing the gas flow facing the gas flow direction; A flow-equalizing surface for leveling the gas flow in the direction is provided.

第1の本発明によれば、ガス導入部から導入されてガス流路を流れる雰囲気ガスは、ガス流路に設けられた均流面に当たり、乱流を生じて流れ方向と交差する方向にも流れが生じ、この交差する方向でのガス流が均されてガス流量、ガス流速が均等化される。この均流面はガスの流れ方向において少なくとも2度以上繰り返し現れることでガス流速の均等化が図られる。例えば、ガスの流れがガス噴射口直前で向きを変えるような構造ではガス流の均流化作用を得ることは難しい。このガス流が最終的にガス噴射口から噴射されることで、ガスの流れが偏ることなくレーザ光照射部分付近で均等な照射雰囲気を形成することができる。なお、均流面が設けられているガス流路は流路断面積が小さいのが望ましく、従来のガス噴射筒では流路断面積が大きすぎて十分な作用を得ることが難しく、このガス噴射筒の上流側で流路断面積が小さいガス流路に均流面を設けるのが望ましい。   According to the first aspect of the present invention, the atmospheric gas introduced from the gas introduction part and flowing through the gas flow path hits the current-equalizing surface provided in the gas flow path, and also generates a turbulent flow and intersects the flow direction. A flow is generated, and the gas flow in the intersecting direction is leveled to equalize the gas flow rate and the gas flow rate. The flow uniform surface appears repeatedly at least twice or more in the gas flow direction, thereby equalizing the gas flow velocity. For example, in a structure in which the gas flow changes its direction immediately before the gas injection port, it is difficult to obtain a gas flow leveling action. By finally injecting this gas flow from the gas injection port, a uniform irradiation atmosphere can be formed in the vicinity of the laser light irradiation portion without the gas flow being biased. In addition, it is desirable that the gas flow path provided with the current leveling surface has a small flow path cross-sectional area, and it is difficult to obtain a sufficient effect in the conventional gas injection cylinder because the flow path cross-sectional area is too large. It is desirable to provide a current leveling surface in a gas flow path having a small flow path cross-sectional area upstream of the cylinder.

第2のレーザ処理装置のガス噴射手段の本発明は、前記第1の本発明において、前記レーザ光がラインビーム形状を有しており、前記噴射口は、該レーザ光が通過する長尺な形状を有していることを特徴とする。   The gas injection means of the second laser processing apparatus according to the present invention is the first invention, wherein the laser beam has a line beam shape, and the injection port is a long passage through which the laser beam passes. It has a shape.

第3のレーザ処理装置のガス噴射手段の本発明は、前記第1または第2の本発明において、前記均流面は、前記ガス流路に設けた1または複数枚の邪魔板により形成されていることを特徴とする。   According to the present invention of the gas injection means of the third laser processing apparatus, in the first or second aspect of the present invention, the current leveling surface is formed by one or a plurality of baffle plates provided in the gas flow path. It is characterized by being.

第4のレーザ処理装置のガス噴射手段の本発明は、前記第1〜第3のいずれかの本発明において、前記均流面は、ガス流路内の湾曲面または屈曲面によって形成されていることを特徴とする。   According to the present invention of the gas injection means of the fourth laser processing apparatus, in any one of the first to third aspects of the present invention, the current leveling surface is formed by a curved surface or a bent surface in the gas flow path. It is characterized by that.

第4の本発明では、均流面としての作用を確実に得るために湾曲面は小さい曲率を有するのが望ましく、屈曲面も小さな角度が望ましい。   In the fourth aspect of the present invention, it is desirable that the curved surface has a small curvature in order to reliably obtain an action as a current leveling surface, and it is desirable that the bent surface also has a small angle.

第5のレーザ処理装置のガス噴射手段の本発明は、前記第1〜第4のいずれかの本発明において、前記ガス導入部にガス流路と区画する区画壁が設けられており、該区画壁に前記ガス流路内のガス流と交差する方向に沿って複数のガス通過部が間隔を置いて形成されていることを特徴とする。   According to the present invention of the gas injection means of the fifth laser processing apparatus, in any one of the first to fourth aspects of the present invention, a partition wall for partitioning from the gas flow path is provided in the gas introduction part. A plurality of gas passage portions are formed on the wall at intervals along a direction intersecting with the gas flow in the gas flow path.

第5の発明によれば、ガス流路に区画壁のガス通過部を通してガスが導入されるので、前記ガス流と交差する方向で導入されるガスの流量、流速の均等化を図ることができる。   According to the fifth invention, since the gas is introduced into the gas flow path through the gas passage portion of the partition wall, it is possible to equalize the flow rate and flow velocity of the gas introduced in the direction crossing the gas flow. .

第6のレーザ処理装置のガス噴射手段の本発明は、第5の本発明において、前記ガス導入部に前記区画壁を一部室壁とするガス導入室が設けられていることを特徴とする。   The present invention of the gas injection means of the sixth laser processing apparatus according to the fifth aspect of the present invention is characterized in that a gas introduction chamber having the partition wall as a partial chamber wall is provided in the gas introduction portion.

第6の発明によれば、ガス導入室に収容されたガスが前記ガス通過部を通してガス流路へと導入されるので、前記均等化が一層効果的になる。   According to the sixth aspect, since the gas stored in the gas introduction chamber is introduced into the gas flow path through the gas passage portion, the equalization becomes more effective.

第7のレーザ処理装置のガス噴射手段の本発明は、第6の本発明において、前記ガス導入室に、前記ガス流路内のガス流と交差する方向に沿ってガス導入管が配置されており、該ガス導入管に長手方向に沿って通気スリットまたは間隔をおいて複数の通気孔が設けられているとともに、該ガス導入管内に外部からガスが導入されるように構成されていることを特徴とする。   According to the seventh aspect of the present invention of the seventh laser processing apparatus, in the sixth aspect of the present invention, a gas introduction pipe is disposed in the gas introduction chamber along a direction intersecting with the gas flow in the gas flow path. The gas introduction pipe is provided with a plurality of ventilation slits or intervals along the longitudinal direction, and the gas introduction pipe is configured to introduce gas from the outside. Features.

第7の本発明によれば、ガス導入室にガス導入管を通して前記交差方向に均等にガスを導入することができ、前記均等化がより一層効果的になされる。なお、通気スリット、または通気孔のガス噴射方向は、前記ガス通過部に向いていないのが望ましく、さらにガス通過部と反対の側にガスを噴射するように構成されているのが一層望ましい。   According to the seventh aspect of the present invention, the gas can be uniformly introduced in the intersecting direction through the gas introduction pipe into the gas introduction chamber, and the equalization is further effectively performed. The gas injection direction of the ventilation slit or the ventilation hole is preferably not directed to the gas passage part, and more preferably configured to inject gas to the side opposite to the gas passage part.

以上説明したように、本発明のレーザ処理装置のガス噴射手段によれば、被処理体にレーザ光を照射して前記被処理体の処理を行うレーザ処理装置に備えられ、照射雰囲気を形成するガスを前記被処理体の前記レーザ光照射部分近傍に噴射する噴射手段であって、該噴射手段は、前記ガスの導入部と、前記ガスが前記被処理体に向けて噴射されるガス噴射口と、前記ガス導入部から前記ガス噴射口に至るガス流路を有しており、該ガス流路に、ガスの流れ方向に対面してガス流を乱すことでガスの流れ方向と交差する方向におけるガス流を均す均流面が設けられているので、ガスの流れ方向交差する方向でガスの流量、流速を均等化することができ、被処理体のレーザ光照射部付近に均等な照射雰囲気を形成することができ、レーザ光の照射による処理を均等かつ良質に行うことを可能にする。   As described above, according to the gas jetting means of the laser processing apparatus of the present invention, it is provided in the laser processing apparatus that performs processing of the object to be processed by irradiating the object to be processed with laser light, and forms an irradiation atmosphere. Injecting means for injecting gas in the vicinity of the laser light irradiation portion of the object to be processed, the injecting means including the gas introduction part and the gas injection port for injecting the gas toward the object to be processed And a gas flow path from the gas introduction part to the gas injection port, and a direction crossing the gas flow direction by turbulent gas flow facing the gas flow direction in the gas flow path Since a uniform flow surface is provided to equalize the gas flow at the gas flow rate, the gas flow rate and flow velocity can be equalized in the direction intersecting the gas flow direction, and even irradiation is performed near the laser light irradiation part of the object to be processed. Atmosphere can be formed and laser light irradiation It makes it possible to perform by processing uniformly and good quality.

(実施形態1)
以下に、本発明の一実施形態の噴射手段を備えるレーザアニール処理装置を図1、2に基づいて説明する。
図1に示すように、平面方向軸(X及びY)を有する試料台3が図示左右方向に移動可能に設置されており、該試料台3の上方に長尺なガス噴射筒10が配置されている。該ガス噴射筒10の上方にガラスなどにより構成されるレーザ光導入窓11が設けられて封止されている。該レーザ光導入窓11には、レーザ光源5より出力されたレーザ光6が光学系7を経て入射され、ガス噴射筒10の下端に形成された長尺なガス噴射口15を通して下方に出射されるように構成されている。
(Embodiment 1)
Hereinafter, a laser annealing treatment apparatus including an ejection unit according to an embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 1, a sample stage 3 having a plane direction axis (X and Y) is installed so as to be movable in the horizontal direction in the figure, and a long gas injection cylinder 10 is arranged above the sample stage 3. ing. A laser beam introduction window 11 made of glass or the like is provided above the gas injection cylinder 10 and sealed. Laser light 6 output from the laser light source 5 enters the laser light introduction window 11 through the optical system 7 and is emitted downward through a long gas injection port 15 formed at the lower end of the gas injection cylinder 10. It is comprised so that.

ガス噴射筒10は、側面にガス供給管12が接続されており、該側面の内側にガス流路13が確保されている。該ガス流路13には、取付位置が交互に上下に変わり、他端側がレーザ照射筒10の上面または下面と隙間を有する3枚の邪魔板14a、14b、14cが間隔を置いて垂直に取り付けられており、最下流の邪魔板14cと他端側のガス噴射筒縦内面との間に確保された空間を前記レーザ光6が通過するとともに、ガス流路13を流れたガスが流入して下方のガス噴射口15へと導かれるように構成されている。   A gas supply pipe 12 is connected to the side surface of the gas injection cylinder 10, and a gas flow path 13 is secured inside the side surface. Three baffle plates 14a, 14b, 14c having a gap between the gas flow path 13 and the upper and lower surfaces of the laser irradiation cylinder 10 on the other end side are vertically attached at intervals. The laser beam 6 passes through the space secured between the most downstream baffle plate 14c and the gas injection cylinder vertical inner surface at the other end, and the gas flowing through the gas flow path 13 flows in. It is configured to be led to the lower gas injection port 15.

次に、上記レーザアニール処理装置の動作について説明する。
試料台3に被処理体として、基板1上に形成された非晶質半導体薄膜2を設置する。レーザ光源5からは、パルス状に発振されたレーザ光6(例えば波長308nm、パルス幅30nsのエキシマレーザ光)が光学系7を通過して線条となったビーム(ラインビーム)となり、レーザ光導入窓11およびガス噴射口15を通して非晶質半導体薄膜2の照射面に照射される。
Next, the operation of the laser annealing apparatus will be described.
An amorphous semiconductor thin film 2 formed on the substrate 1 is placed on the sample stage 3 as an object to be processed. From the laser light source 5, laser light 6 oscillated in a pulsed manner (for example, excimer laser light having a wavelength of 308 nm and a pulse width of 30 ns) passes through the optical system 7 to form a linear beam (line beam). The irradiation surface of the amorphous semiconductor thin film 2 is irradiated through the introduction window 11 and the gas injection port 15.

また、これに先立ってガス供給管12より雰囲気ガスとして窒素ガスがガス噴射筒10内に導入され、ガス流路13を流れる。この際に側方から横方向に流れるガス流に対し、邪魔板14aの外側面が対面するので、ガスが邪魔板14aに衝突し、乱流状態になってガス噴射筒10の長手方向にガスの一部が流れてガス流が均される。すなわち邪魔板14aの外側面は均流面として作用する。邪魔板14aに衝突したガス流は邪魔板14aの外側面に沿って上昇し、ガス噴射筒10の上側内面に衝突し、再度乱流状態になってガス噴射筒10の長手方向にガスの一部が流れてガス流が均される。すなわちガス噴射筒10の上側内面は均流面として作用する。ガス噴射筒10の上側内面に衝突したガス流は、該上側内面にそって内側に移動し、さらに邪魔板14bの外側面に衝突し、方向を変えてガス噴射筒10の下側内面に衝突し、さらに方向を変えて邪魔板14cの外側面に衝突し、方向を変えてガス噴射筒10の上側内面に衝突し、その後、方向を変えて邪魔板14cの内側の空間へと流れる。上記邪魔板14b、14c、ガス噴射筒10の上側内面、下側内面との衝突においてもガス流は乱流状態になってガス噴射筒10の長手方向にガスの一部が流れてガス流が均される。したがって、これら邪魔板14b、14c、ガス噴射筒10の上側内面、下側内面も均流面として作用する。   Prior to this, nitrogen gas is introduced into the gas injection cylinder 10 from the gas supply pipe 12 as an atmospheric gas and flows through the gas flow path 13. At this time, since the outer surface of the baffle plate 14a faces the gas flow flowing in the lateral direction from the side, the gas collides with the baffle plate 14a and becomes a turbulent state, causing the gas to flow in the longitudinal direction of the gas injection cylinder 10. Part of the gas flows and the gas flow is leveled. That is, the outer surface of the baffle plate 14a acts as a current leveling surface. The gas flow that has collided with the baffle plate 14a rises along the outer surface of the baffle plate 14a, collides with the upper inner surface of the gas injection cylinder 10 and becomes a turbulent state again. The part flows and the gas flow is leveled. That is, the upper inner surface of the gas injection cylinder 10 acts as a current leveling surface. The gas flow that collides with the upper inner surface of the gas injection cylinder 10 moves inward along the upper inner surface, further collides with the outer surface of the baffle plate 14b, changes its direction, and collides with the lower inner surface of the gas injection cylinder 10. Further, the direction is changed to collide with the outer surface of the baffle plate 14c, the direction is changed to collide with the upper inner surface of the gas injection cylinder 10, and then the direction is changed to flow into the space inside the baffle plate 14c. Even in the collision with the baffle plates 14b and 14c and the upper inner surface and the lower inner surface of the gas injection cylinder 10, the gas flow becomes a turbulent state, and a part of the gas flows in the longitudinal direction of the gas injection cylinder 10 to generate the gas flow. Leveled. Therefore, the baffle plates 14b and 14c and the upper inner surface and the lower inner surface of the gas injection cylinder 10 also function as a current leveling surface.

上記のようにして繰り返し均流がなされたガス流は、邪魔板14cの内側の空間を下降して、ガス噴射口15より非晶質半導体膜2のレーザ光照射部分近傍に照射される。
このガス流は、上記均流によって前記長手方向においてガス流量、ガス流速が均等化されており、レーザ光照射部分近傍で均等な照射雰囲気を形成する。
The gas flow that has been uniformly flowed as described above descends the space inside the baffle plate 14 c and is irradiated from the gas injection port 15 to the vicinity of the laser light irradiation portion of the amorphous semiconductor film 2.
This gas flow has a uniform gas flow rate and gas flow velocity in the longitudinal direction due to the above-described uniform flow, and forms a uniform irradiation atmosphere in the vicinity of the laser light irradiation portion.

非晶質半導体薄膜2は、前記レーザ光6のパルスに合わせて(1ヶ所あたり20パルス照射)移動する試料台3によって設定した照射開始位置に移動させた後、一定の速度にて移動しながらレーザ光6を照射することによってレーザ光6が走査されて照射面が移動し、この移動する照射面によって非晶質半導体薄膜2の任意の領域が結晶化される。この際に、非晶質半導体薄膜2の照射面近傍は、上記のようにガスが噴射されており、酸素を効果的に除外して均等で良好なガス雰囲気が形成されている。このガス雰囲気によって酸素が十分に除外されていることによりレーザアニールを良好に行うことができる。   The amorphous semiconductor thin film 2 is moved at a constant speed after being moved to the irradiation start position set by the sample stage 3 which moves in accordance with the pulse of the laser beam 6 (20 pulses irradiation per place). By irradiating the laser beam 6, the laser beam 6 is scanned to move the irradiation surface, and an arbitrary region of the amorphous semiconductor thin film 2 is crystallized by the moving irradiation surface. At this time, in the vicinity of the irradiation surface of the amorphous semiconductor thin film 2, the gas is injected as described above, and oxygen is effectively excluded to form a uniform and good gas atmosphere. Laser annealing can be performed satisfactorily because oxygen is sufficiently excluded by this gas atmosphere.

(実施形態2)
上記実施形態では、ガス流路に邪魔板を設置することで均流面を設けたが、本発明としては均流面を設ける方法は特に限定をされるものではない。
図3は、ガス噴射筒100のガス流路をガス噴射口105の長手方向に沿って扁平な流路断面積形状にするとともに、該ガス流路103を複数回屈曲させつつガス噴射口105の上方に伸張させたものである。なお、図中101はレーザ光導入窓、102はガス供給管を示すものである。
ガス供給管102からガス流路103に導入されたガスは、ガス流路が屈曲する屈曲部103a〜103dに至る毎に、屈曲部の屈曲面に衝突して乱流を生じ、前記したガスの均流がなされる。すなわち、ガス流路103の屈曲部103a〜103dの下流近傍のガス流路内面が均流面として作用している。
(Embodiment 2)
In the above embodiment, the current leveling surface is provided by installing a baffle plate in the gas flow path. However, the method for providing the current leveling surface is not particularly limited in the present invention.
FIG. 3 shows that the gas flow path of the gas injection cylinder 100 has a flat flow path cross-sectional area along the longitudinal direction of the gas injection port 105 and the gas injection port 105 It is extended upward. In the figure, reference numeral 101 denotes a laser beam introduction window, and 102 denotes a gas supply pipe.
The gas introduced from the gas supply pipe 102 into the gas flow path 103 collides with the bent surface of the bent portion every time it reaches the bent portions 103a to 103d where the gas flow path bends to generate a turbulent flow. A uniform flow is made. That is, the inner surface of the gas flow path in the vicinity of the downstream side of the bent portions 103a to 103d of the gas flow path 103 acts as a current leveling surface.

(実施形態3)
また、均流面は、ガス流路に湾曲部を設けて蛇行させることで、湾曲部内面を均流面にしてガスの均流を図ることも可能である。
図4は、ガス噴射筒110のガス流路をガス噴射口115の長手方向に沿って扁平な流路断面積形状にするとともに、該ガス流路113を蛇行させて小さな曲率の湾曲部113a〜113dを複数設けたものである。なお、図中111はレーザ光導入窓、112はガス供給管を示すものである。
ガス流路113を流れるガス流は、湾曲部113a〜113dに至る毎に湾曲部内面に衝突し、前記した均流作用を受ける。すなわち、ガス流路113の湾曲部113a〜113dの内面が均流面として作用している。
(Embodiment 3)
Further, the flow equalizing surface can be provided with a curved portion in the gas flow path and meandering, whereby the inner surface of the curved portion can be used as a flow uniforming surface to equalize the gas flow.
FIG. 4 shows that the gas flow path of the gas injection cylinder 110 has a flat flow path cross-sectional area along the longitudinal direction of the gas injection port 115, and the gas flow path 113 meanders to form a curved portion 113a to a small curvature. A plurality of 113d are provided. In the figure, reference numeral 111 denotes a laser beam introduction window, and 112 denotes a gas supply pipe.
The gas flow flowing through the gas flow path 113 collides with the inner surface of the curved portion every time it reaches the curved portions 113a to 113d, and is subjected to the above-described flow equalizing action. In other words, the inner surfaces of the curved portions 113a to 113d of the gas flow path 113 act as current leveling surfaces.

(実施形態4)
上記各実施形態では、均流面について詳細に説明をしたが、ガス導入部の構造を工夫することでさらに均流作用を増大させることができる。なお、以下の実施形態では、均流面を有するガス流路の説明については省略をして、ガス導入部を詳細に説明する。
図5では、ガス噴射口125を有するガス噴射筒120に、ガス導入部側においてガス流路と区画する区画壁20が設けられ、該区画壁20にガス噴射口125の長手方向において、間隔を有するようにガス通過部としてガス通過孔20a…20aが複数形成されており、該区画壁20を室壁の一部にしてガスの導入側がガス導入室21とされている。
(Embodiment 4)
In each of the embodiments described above, the current leveling surface has been described in detail, but the current leveling effect can be further increased by devising the structure of the gas introduction part. In the following embodiments, the description of the gas flow path having a current leveling surface will be omitted, and the gas introduction part will be described in detail.
In FIG. 5, a gas injection cylinder 120 having a gas injection port 125 is provided with a partition wall 20 that is partitioned from a gas flow path on the gas introduction side, and the partition wall 20 is spaced apart in the longitudinal direction of the gas injection port 125. As shown, a plurality of gas passage holes 20a... 20a are formed as gas passage portions. The partition wall 20 is a part of the chamber wall and the gas introduction side is a gas introduction chamber 21.

この実施形態では、ガス導入室21に導入されたガスが導入室内で拡散し、それぞれのガス通過孔20a…20aを通してガス流路へ送られる。このガスの流れによって、ガス流路に送られるガス流は、ガス噴射口125の長手方向においてガス流量、ガス流速の均等化が図られており、さらにガス流路において前記した均流面による作用を得ることでガス流の均等化を一層図ることが可能になる。   In this embodiment, the gas introduced into the gas introduction chamber 21 diffuses in the introduction chamber and is sent to the gas flow path through the respective gas passage holes 20a. By this gas flow, the gas flow sent to the gas flow path is equalized in the gas flow rate and gas flow velocity in the longitudinal direction of the gas injection port 125, and further, the action by the above-mentioned current leveling surface in the gas flow path. This makes it possible to further equalize the gas flow.

(実施形態5)
上記実施形態では、区画壁の上流側にガス導入室を設けてガス流の均等化を図ったが、図6に示すように、ガス噴射口135を有するガス噴射筒130に区画壁23を設け、該区画壁23にガス通過部として設けたガス通過孔23a〜23fにそれぞれガス供給管を接続する。各ガス供給管にそれぞれ流量制御弁22a〜22fを設けて各ガス供給管を流れるガスの流量を均一に制御することで、ガス流路に前記長手方向に沿ってガスを均等に送り出すことができる。また、ガス流路に送り出されたガス流が前記長手方向で偏りが生じやすい場合には、各流量制御弁22a〜22fを個別に調整することで各ガス供給管の流量を同一に調整するのではなく、ガス流路における流れを偏りのないものにしてガス流の均等化を図るようにしてもよい。
(Embodiment 5)
In the above embodiment, the gas introduction chamber is provided on the upstream side of the partition wall to equalize the gas flow. However, as shown in FIG. 6, the partition wall 23 is provided in the gas injection cylinder 130 having the gas injection port 135. The gas supply pipes are respectively connected to gas passage holes 23 a to 23 f provided as gas passage portions in the partition wall 23. By providing the flow rate control valves 22a to 22f in each gas supply pipe and controlling the flow rate of the gas flowing through each gas supply pipe uniformly, the gas can be sent out uniformly along the longitudinal direction to the gas flow path. . Further, when the gas flow sent to the gas flow path is likely to be biased in the longitudinal direction, the flow rate of each gas supply pipe is adjusted to be the same by individually adjusting the flow rate control valves 22a to 22f. Instead, the gas flow may be made uniform so that the gas flow is equalized.

(実施形態6)
また、図7に示すように、ガス噴射口145を有するガス噴射筒140に前記実施形態で説明したガス導入室21を設け、このガス導入室21に、ガス供給管24を配置し、このガス供給管24に前記長手方向に沿ってガスが流出するようにガス通気孔24a…24aを間隔を置いて形成する。なお、ガス通気孔に変えて前記長手方向に沿ったスリットを設けることも可能である。
なお、ガス通気孔24a…24aやスリットでは、送り出されるガスが直接に前記ガス通過孔20a…20aに向けて移動しないように、前記ガス通過孔20a…20aに向かないように前記ガス通気口24aやスリットを形成し、好適には通過孔20a…20aに背を向けるように通気孔またはスリットを形成する。これによりガス供給管24から送り出されるガスは、ガス導入室21内で前記長手方向に拡散した後、前記ガス通過孔20a…20aを通過してガス流路に送出されるので、前記長手方向におけるガス流の均等化が一層なされる。
(Embodiment 6)
Further, as shown in FIG. 7, the gas injection chamber 21 described in the above embodiment is provided in the gas injection cylinder 140 having the gas injection port 145, and the gas supply pipe 24 is arranged in the gas introduction chamber 21, and this gas Gas vent holes 24a... 24a are formed at intervals in the supply pipe 24 so that gas flows out along the longitudinal direction. It is also possible to provide a slit along the longitudinal direction instead of the gas vent.
In the gas vent holes 24a... 24a and the slits, the gas vent holes 24a are arranged not to face the gas passage holes 20a... 20a so that the delivered gas does not move directly toward the gas passage holes 20a. Or a slit, and preferably a vent or slit is formed so that the back faces the passage holes 20a. As a result, the gas delivered from the gas supply pipe 24 diffuses in the longitudinal direction in the gas introduction chamber 21, and then passes through the gas passage holes 20a. Further equalization of the gas flow is achieved.

以上、本発明について上記各実施形態に基づいて説明を行ったが、本発明は、上記実施形態の説明に限定をされるものではなく、本発明の範囲を逸脱しない範囲で当然に適宜の変更が可能である。   Although the present invention has been described based on the above-described embodiments, the present invention is not limited to the description of the above-described embodiments, and may be appropriately modified without departing from the scope of the present invention. Is possible.

本発明の一実施形態の噴射手段を備えるレーザアニール処理装置を示す概略図である。It is the schematic which shows a laser annealing treatment apparatus provided with the injection means of one Embodiment of this invention. 同じく、噴射手段を示す一部を断面した斜視図である。Similarly, it is the perspective view which cut a part showing injection means. 本発明の他の実施形態の噴射手段を備えるレーザ処理装置を示す概略図である。It is the schematic which shows a laser processing apparatus provided with the injection means of other embodiment of this invention. 本発明のさらに他の実施形態の噴射手段を備えるレーザ処理装置を示す概略図である。It is the schematic which shows a laser processing apparatus provided with the injection means of other embodiment of this invention. 本発明の他の実施形態の噴射手段を示す断面図である。It is sectional drawing which shows the injection means of other embodiment of this invention. 同じく、さらに他の実施形態の噴射手段を示す断面図である。Similarly, it is sectional drawing which shows the injection means of other embodiment. 同じく、さらに他の実施形態の噴射手段を示す断面図である。Similarly, it is sectional drawing which shows the injection means of other embodiment. 従来の噴射手段を備えるレーザアニール処理装置を示す概略図である。It is the schematic which shows the laser annealing processing apparatus provided with the conventional injection means.

符号の説明Explanation of symbols

1 基板
2 非晶質半導体薄膜
3 試料台
5 レーザ光源
6 レーザ光
10 ガス噴射筒
12 ガス供給管
13 ガス流路
14a、14b、14c 邪魔板
15 ガス噴射口
20 区画壁
20a ガス通過孔
21 ガス導入室
22a…22f 流量制御弁
23a…23f ガス通過孔
24 ガス供給管
24a ガス通気孔
100、110、120、130、140 ガス噴射筒
102、112 ガス供給管
103、113 ガス流路
103a、103b、103c、103d 屈曲部
105、115 ガス噴射口
113a、113b、113c、113d 湾曲部
DESCRIPTION OF SYMBOLS 1 Substrate 2 Amorphous semiconductor thin film 3 Sample stage 5 Laser light source 6 Laser light 10 Gas injection cylinder 12 Gas supply pipe 13 Gas flow path 14a, 14b, 14c Baffle plate 15 Gas injection port 20 Partition wall 20a Gas passage hole 21 Gas introduction Chamber 22a ... 22f Flow control valve 23a ... 23f Gas passage hole 24 Gas supply pipe 24a Gas vent holes 100, 110, 120, 130, 140 Gas injection cylinders 102, 112 Gas supply pipes 103, 113 Gas flow paths 103a, 103b, 103c , 103d Bent part 105, 115 Gas injection port 113a, 113b, 113c, 113d Curved part

Claims (7)

被処理体にレーザ光を照射して前記被処理体の処理を行うレーザ処理装置に備えられて照射雰囲気を形成するガスを前記被処理体の前記レーザ光照射部分近傍に噴射するガス噴射手段であって、該噴射手段は、前記ガスの導入部と、前記ガスが前記被処理体に向けて噴射されるガス噴射口と、前記ガス導入部から前記ガス噴射口に至るガス流路を有しており、該ガス流路に、ガスの流れ方向に対面してガス流を乱すことでガスの流れ方向と交差する方向におけるガス流を均す均流面が設けられていることを特徴とするレーザ処理装置のガス噴射手段。    Gas injection means for irradiating a laser beam on the object to be processed to inject a gas forming an irradiation atmosphere in the vicinity of the laser light irradiation portion of the object to be processed. The injecting means has an introduction part of the gas, a gas injection port through which the gas is injected toward the object to be processed, and a gas flow path from the gas introduction part to the gas injection port. The gas flow path is provided with a flow equalizing surface that equalizes the gas flow in a direction intersecting with the gas flow direction by disturbing the gas flow facing the gas flow direction. Gas injection means for a laser processing apparatus. 前記レーザ光がラインビーム形状を有しており、前記噴射口は、該レーザ光が通過する長尺な形状を有していることを特徴とする請求項1記載のレーザ処理装置のガス噴射手段。   2. The gas jetting means of a laser processing apparatus according to claim 1, wherein the laser beam has a line beam shape, and the jet port has a long shape through which the laser beam passes. . 前記均流面は、前記ガス流路に設けた1または複数枚の邪魔板により形成されていることを特徴とする請求項1または2に記載のレーザ処理装置のガス噴射手段。   The gas jetting means of the laser processing apparatus according to claim 1, wherein the current leveling surface is formed by one or a plurality of baffle plates provided in the gas flow path. 前記均流面は、ガス流路内の湾曲面または屈曲面によって形成されていることを特徴とする請求項1〜3のいずれかに記載のレーザ処理装置のガス噴射手段。   The gas jetting means of a laser processing apparatus according to any one of claims 1 to 3, wherein the current leveling surface is formed by a curved surface or a bent surface in a gas flow path. 前記ガス導入部にガス流路と区画する区画壁が設けられており、該区画壁に前記ガス流路内のガス流と交差する方向に沿って複数のガス通過部が間隔を置いて形成されていることを特徴とする請求項1〜4のいずれかに記載のレーザ処理装置のガス噴射手段。   The gas introduction part is provided with a partition wall that partitions from the gas flow path, and a plurality of gas passage parts are formed at intervals along the direction intersecting the gas flow in the gas flow path. The gas injection means of the laser processing apparatus according to claim 1, wherein the gas injection means is provided. 前記ガス導入部に前記区画壁を一部室壁とするガス導入室が設けられていることを特徴とする請求項5記載のレーザ処理装置のガス噴射手段。   6. The gas injection means of a laser processing apparatus according to claim 5, wherein a gas introduction chamber having the partition wall as a partial chamber wall is provided in the gas introduction portion. 前記ガス導入室に、前記ガス流路内のガス流と交差する方向に沿ってガス導入管が配置されており、該ガス導入管に長手方向に沿って通気スリットまたは間隔をおいて複数の通気孔が設けられているとともに、該ガス導入管内に外部からガスが導入されるように構成されていることを特徴とする請求項6記載のレーザ処理装置のガス噴射手段。   A gas introduction pipe is disposed in the gas introduction chamber along a direction crossing the gas flow in the gas flow path, and a plurality of ventilation slits or intervals are provided in the gas introduction pipe along the longitudinal direction. 7. The gas injection means of a laser processing apparatus according to claim 6, wherein pores are provided and gas is introduced from the outside into the gas introduction pipe.
JP2007136156A 2007-05-23 2007-05-23 Gas injection means for laser processing apparatus Active JP4947646B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007136156A JP4947646B2 (en) 2007-05-23 2007-05-23 Gas injection means for laser processing apparatus
KR1020087029133A KR101155370B1 (en) 2007-05-23 2008-05-14 Gas injection mean for use with laser processing apparatus
PCT/JP2008/058836 WO2008143083A1 (en) 2007-05-23 2008-05-14 Gas injection means for laser processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007136156A JP4947646B2 (en) 2007-05-23 2007-05-23 Gas injection means for laser processing apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011252367A Division JP5610486B2 (en) 2011-11-18 2011-11-18 Gas injection means for laser processing apparatus

Publications (2)

Publication Number Publication Date
JP2008294101A true JP2008294101A (en) 2008-12-04
JP4947646B2 JP4947646B2 (en) 2012-06-06

Family

ID=40031792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007136156A Active JP4947646B2 (en) 2007-05-23 2007-05-23 Gas injection means for laser processing apparatus

Country Status (3)

Country Link
JP (1) JP4947646B2 (en)
KR (1) KR101155370B1 (en)
WO (1) WO2008143083A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011071463A (en) * 2009-09-22 2011-04-07 Samsung Mobile Display Co Ltd Laser crystallization apparatus
WO2011118467A1 (en) * 2010-03-25 2011-09-29 株式会社日本製鋼所 Atmosphere stabilizing method and laser processing device
KR101706736B1 (en) * 2015-08-13 2017-02-15 세메스 주식회사 Apparatus for treating a substrate

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101368343B1 (en) * 2011-10-19 2014-03-03 주식회사 테스 Injector and injector assembly
KR101403459B1 (en) * 2012-11-13 2014-06-03 삼성디스플레이 주식회사 Apparatus for thermal laser process
KR101777688B1 (en) * 2013-10-21 2017-09-27 에이피시스템 주식회사 treatment equipment
KR101708412B1 (en) * 2013-10-21 2017-03-09 에이피시스템 주식회사 treatment equipment
KR101777761B1 (en) * 2013-10-21 2017-09-13 에이피시스템 주식회사 treatment equipment
KR101856653B1 (en) * 2016-10-17 2018-06-20 주식회사 이오테크닉스 Module for using the pressure of air masses to fix the mask

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH118205A (en) * 1997-04-25 1999-01-12 Sharp Corp Manufacture of semiconductor device and laser beam irradiation device
JP2004152823A (en) * 2002-10-29 2004-05-27 Shimada Phys & Chem Ind Co Ltd Nozzle for laser annealing device and laser annealing device using the same
JP2007288128A (en) * 2006-03-23 2007-11-01 Ihi Corp Laser annealing device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005166768A (en) * 2003-12-01 2005-06-23 Advanced Display Inc Laser annealing device and method of manufacturing thin film transistor
JP2006108271A (en) * 2004-10-04 2006-04-20 Ulvac Japan Ltd Method and device for converting amorphous silicon film into polysilicon film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH118205A (en) * 1997-04-25 1999-01-12 Sharp Corp Manufacture of semiconductor device and laser beam irradiation device
JP2004152823A (en) * 2002-10-29 2004-05-27 Shimada Phys & Chem Ind Co Ltd Nozzle for laser annealing device and laser annealing device using the same
JP2007288128A (en) * 2006-03-23 2007-11-01 Ihi Corp Laser annealing device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011071463A (en) * 2009-09-22 2011-04-07 Samsung Mobile Display Co Ltd Laser crystallization apparatus
WO2011118467A1 (en) * 2010-03-25 2011-09-29 株式会社日本製鋼所 Atmosphere stabilizing method and laser processing device
JP2011204816A (en) * 2010-03-25 2011-10-13 Japan Steel Works Ltd:The Atmosphere stabilization method and laser treatment device
CN102549719A (en) * 2010-03-25 2012-07-04 株式会社日本制钢所 Atmosphere stabilizing method and laser processing device
TWI422453B (en) * 2010-03-25 2014-01-11 Japan Steel Works Ltd Atmosphere stabilization method and laser processing device
KR101706736B1 (en) * 2015-08-13 2017-02-15 세메스 주식회사 Apparatus for treating a substrate

Also Published As

Publication number Publication date
WO2008143083A1 (en) 2008-11-27
JP4947646B2 (en) 2012-06-06
KR20090042879A (en) 2009-05-04
KR101155370B1 (en) 2012-06-19

Similar Documents

Publication Publication Date Title
JP4947646B2 (en) Gas injection means for laser processing apparatus
CN107791517B (en) Method and device for generatively producing three-dimensional objects
JP7105187B2 (en) LASER PROCESSING APPARATUS AND LASER PROCESSING METHOD
US11167353B2 (en) Homogeneous suction during additive manufacturing
JP5408678B2 (en) Laser processing equipment
JP5610486B2 (en) Gas injection means for laser processing apparatus
US11355364B2 (en) Laser treatment device rectifier device and laser treatment device
KR101744365B1 (en) Laser processing apparatus
JP6167055B2 (en) Laser nozzle, laser processing apparatus, and laser processing method
JP4618515B2 (en) Laser annealing equipment
US20230098828A1 (en) Manufacturing device with large-area sinking gas stream
JP2017509578A5 (en)
KR101089625B1 (en) Laser annealing apparatus having oxygen partial degassing module
KR101403459B1 (en) Apparatus for thermal laser process
JP4556618B2 (en) Laser processing equipment
CN102683143B (en) Slit electrode and charged particle beam generation device having slit electrode
KR101777688B1 (en) treatment equipment
JP5083708B2 (en) Laser annealing equipment
JP2006332244A (en) Substrate processing apparatus and substrate processing method
JPWO2004097913A1 (en) Vacuum film forming apparatus, vacuum film forming method, and solar cell material
JP7437187B2 (en) Levitation conveyance device and laser processing device
CN115138873A (en) Multi-laser scanning printing system and multi-laser synchronous coupling scanning printing method
KR101864905B1 (en) Air nozzle for laser device
JP2007224432A (en) Horizontal thermal treatment apparatus and thermal treatment method
JP2004152823A (en) Nozzle for laser annealing device and laser annealing device using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120229

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120301

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4947646

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250