JP2008293811A - Gas supply member of fuel cell, and fuel cell - Google Patents

Gas supply member of fuel cell, and fuel cell Download PDF

Info

Publication number
JP2008293811A
JP2008293811A JP2007138517A JP2007138517A JP2008293811A JP 2008293811 A JP2008293811 A JP 2008293811A JP 2007138517 A JP2007138517 A JP 2007138517A JP 2007138517 A JP2007138517 A JP 2007138517A JP 2008293811 A JP2008293811 A JP 2008293811A
Authority
JP
Japan
Prior art keywords
gas
gas supply
supply member
groove
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007138517A
Other languages
Japanese (ja)
Inventor
Kazunori Shibata
和則 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007138517A priority Critical patent/JP2008293811A/en
Publication of JP2008293811A publication Critical patent/JP2008293811A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress, with a simple means, discharge of moisture by gas flow in a porous body forming a gas passage to a fuel cell electrode. <P>SOLUTION: The gas supply member 30 is formed of a porous body and circulates a reaction gas (hydrogen gas, air) supplied from a supply port 41i of a separator 40 toward a discharge port 41o, and diffuses throughout the all surfaces of a gas diffusion member 22 to deliver to it. Then, the gas supply member 30 includes a plurality of lines of cut-out grooves 31 crossing the flow of the gas going from the supply port 41i to the discharge port 41o of gas, and by these cut-out grooves 31, connection of the holes of the gas supply member 30 being the porous body is cut by crossing the gas flow. Thereby, when the gas passes through the cut-out grooves 31, moisture which is being discharged with the gas, is retained in these cut-out grooves 31. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電解質膜の両側に電極を接合した膜電極接合体の電極に反応ガスを拡散させつつ供給する多孔質のガス供給部材と、これを用いた燃料電池に関する。   The present invention relates to a porous gas supply member that supplies a reaction gas while diffusing it to electrodes of a membrane electrode assembly in which electrodes are bonded to both sides of an electrolyte membrane, and a fuel cell using the porous gas supply member.

燃料電池は、膜電極接合体を発電単位とする燃料電池セルを備え、膜電極接合体のそれぞれの電極に、ガス供給部材により反応ガスを拡散供給する。こうしたガス供給部材には、多孔質体が多用されており、この多孔質体の細孔がガス流路とされている(例えば、特許文献1等)。   The fuel cell includes a fuel cell having a membrane electrode assembly as a power generation unit, and diffuses and supplies a reaction gas to each electrode of the membrane electrode assembly by a gas supply member. For such a gas supply member, a porous body is frequently used, and pores of the porous body are used as gas flow paths (for example, Patent Document 1).

特開2006−49105号公報JP 2006-49105 A 特開2006−134582号公報JP 2006-134582 A 特開2005−294119号公報JP 2005-294119 A 特開平8−138696号公報JP-A-8-138696 特開平5−251097号公報Japanese Patent Laid-Open No. 5-251097

これら特許文献では、多孔質体を用いる際の機械強度の確保や、電極反応に伴う生成水の排水性向上等を図るため、種々の提案がなされている。例えば、多孔質体へのガス供給のための部材を採用して強度確保を図ったり、ガスの流れに沿って多孔質体を広狭形成すること、或いは、多孔質体へのガス供給流路形状を工夫すること等により、生成水の排水性の向上が図られている。   In these patent documents, various proposals have been made in order to ensure mechanical strength when using a porous body, improve drainage of generated water accompanying an electrode reaction, and the like. For example, a member for supplying gas to the porous body is used to ensure the strength, the porous body is formed wide and narrow along the gas flow, or the shape of the gas supply flow path to the porous body By devising, etc., the drainage of generated water is improved.

ところで、多孔質体では、ガスの供給側から排出側に向けてガスが流れているので、このガスによる多孔質体の水分、例えば生成水やガス中の水蒸気成分の反応ガスによる持ち出しが問題視されるようになった。高分子電解質膜では、湿潤状態でプロトン伝導性を発揮することから、多孔質体でのガスによる水分持ち出しが過多となると、多孔質体の乾き、延いては電解質膜の湿潤の低下をもたらしかねないので、発電能力の低下が危惧される。この場合、上記した特許文献で提案されているように生成水の排水性が高められると、上記した水分持ち出し方による弊害が顕著となる。   By the way, in the porous body, the gas flows from the gas supply side to the discharge side. Therefore, it is a problem to take out the moisture of the porous body by this gas, for example, the generated water or the reaction gas from the water vapor component in the gas. It came to be. Since the polymer electrolyte membrane exhibits proton conductivity in a wet state, excessive moisture removal due to gas in the porous body may result in drying of the porous body and, consequently, a decrease in the wetness of the electrolyte membrane. Because there is no, there is a concern that the power generation capacity will decline. In this case, when the drainage of the generated water is enhanced as proposed in the above-mentioned patent document, the adverse effects due to the above-described method of taking out the water become remarkable.

本発明は、燃料電池における電極へのガス流路を多孔質体で形成する際の上記した問題点を解決するためになされ、多孔質体でのガス流による水分持ち出しの抑制を図る簡便な手法を提供することをその目的とする。   The present invention is made in order to solve the above-mentioned problems when a gas flow path to an electrode in a fuel cell is formed of a porous body, and is a simple method for suppressing moisture removal due to a gas flow in the porous body The purpose is to provide.

上記した目的の少なくとも一部を達成するために、本発明では、以下の構成を採用した。   In order to achieve at least a part of the above object, the present invention adopts the following configuration.

[適用:ガス供給部材]
電解質膜と該電解質膜の両側に接合した電極とを有する膜電極接合体における前記電極に反応ガスを拡散させつつ供給するガス供給部材であって、
多孔質体から形成され、該多孔質体の孔の繋がりをガス流路とし、
前記孔の繋がりを、前記反応ガスの供給側から排出側に向かう前記反応ガスの流れに交差して分断する孔分断部を備える
ことを要旨とする。
[Application: Gas supply components]
A gas supply member for supplying a reaction gas while diffusing the reaction gas to the electrode in a membrane electrode assembly having an electrolyte membrane and electrodes joined to both sides of the electrolyte membrane,
Formed from a porous body, and the connection of the pores of the porous body as a gas flow path,
The gist of the present invention is to include a hole dividing section that divides the connection of the holes by crossing the flow of the reaction gas from the reaction gas supply side to the discharge side.

上記したガス供給部材では、膜電極接合体における電極に反応ガスを拡散させつつ供給するに当たり、その構成材である多孔質体に孔分断部を備え、この孔分断部により、多孔質体においてガス流路を形成する孔の繋がりを、供給側から排出側に向かう反応ガスの流れ(ガス流)に交差して分断する。よって、供給側から排出側に向かうガス流に沿って反応ガスが下流側に流れる場合、反応ガスは孔分断部を通過して当該孔分断部より下流側に流れる。このため、ガス流に沿って流れる反応ガスが水分をそのガス流に乗せて下流側に流そうとする場合、反応ガスが孔分断部を通過する際に、水分はこの孔分断部に留まり保水されることになる。この結果、多孔質体に孔分断部を設けるという簡便な手法で、多孔質体おける反応ガスによる水分持ち出しを容易に抑制できる。   In the gas supply member described above, when the reaction gas is supplied while diffusing to the electrode in the membrane electrode assembly, the porous body, which is a constituent material, is provided with a hole dividing portion, and this hole dividing portion allows the gas in the porous body. The connection of the holes forming the flow path is divided by intersecting the flow (gas flow) of the reaction gas from the supply side toward the discharge side. Therefore, when the reaction gas flows downstream along the gas flow from the supply side to the discharge side, the reaction gas passes through the hole dividing part and flows downstream from the hole dividing part. For this reason, when the reaction gas flowing along the gas flow tries to flow moisture downstream of the gas flow, when the reaction gas passes through the hole dividing portion, the water stays in the hole dividing portion and retains water. Will be. As a result, it is possible to easily prevent moisture from being taken out by the reaction gas in the porous body by a simple method of providing a pore dividing portion in the porous body.

上記したガス供給部材は、次のような態様とすることができる。例えば、前記孔分断部を設けるに当たり、前記孔分断部による前記繋がりの分断領域が前記供給側ほど広くなるように、孔分断部の設置を前記供給側から前記排出側に掛けて疎密とすることができる。こうすれば、次の利点がある。   The gas supply member described above can be configured as follows. For example, when providing the hole dividing portion, the hole dividing portion is installed from the supply side to the discharge side so that the connection dividing area by the hole dividing portion becomes wider toward the supply side. Can do. This has the following advantages.

多孔質体において反応ガスがその供給側から排出側に向けて流れる際、反応ガスの反応成分(水素や酸素)は膜電極接合体に到達して電気化学反応に供されて消費される。よって、供給側から排出側に向かうにつれてガス流量に差が生じ、排出側では供給側よりガス流量は少なくなる。このため、ガス流量が多い供給側では反応ガスによる水分持ち出し過多となり易いと予想される。しかしながら、上記したように前記孔分断部による前記繋がりの分断領域が前記供給側ほど広くなるように、孔分断部の設置を前記供給側から前記排出側に掛けて疎密とすれば、水分持ち出し過多が予想される供給側では、孔分断部による繋がりの分断領域が広いので、その分、孔分断部での保水の実効性は高まる。よって、水分持ち出し過多が予想される供給側においても、ガスによる水分持ち出しをより確実に、かつ容易に抑制できる。   When the reaction gas flows from the supply side to the discharge side in the porous body, the reaction components (hydrogen and oxygen) of the reaction gas reach the membrane electrode assembly and are consumed for the electrochemical reaction. Therefore, a difference occurs in the gas flow rate from the supply side to the discharge side, and the gas flow rate is smaller on the discharge side than on the supply side. For this reason, it is expected that excessive supply of moisture by the reaction gas tends to occur on the supply side where the gas flow rate is large. However, as described above, if the hole dividing portion is installed from the supply side to the discharge side so that the connection dividing region by the hole dividing portion becomes wider toward the supply side, the moisture is excessively taken out. However, on the supply side where the connection is expected, since the connection dividing region by the hole dividing part is wide, the effectiveness of water retention at the hole dividing part is increased accordingly. Therefore, even on the supply side where excess moisture is expected to be taken out, moisture removal due to gas can be more reliably and easily suppressed.

この場合、孔分断部を前記反応ガスの流れに交差した溝とすることもでき、こうすれば容易に孔分断部を形成できる。そして、孔分断部を溝とするに際しても、直線状の溝に限らず、波状の溝とすることもできる。波状の溝であれば、供給側から排出側に向かうガス流に沿って流れる反応ガスと溝との干渉範囲は広がることから、孔分断部(波状の溝)での保水の実効性はより高まり、水分持ち出しの抑制効果も高まる。この他、孔分断部としての溝は、連続した溝とすることも複数に別れた溝の繋がり(点在)とすることもできるが、連続した溝とすればその形成が容易となる。また、前記孔分断部としての前記溝は、前記供給側ほど溝幅が広い溝とできる他、前記供給側ほど溝数が多くなるように形成することもできる。こうすれば、孔分断部(溝)を供給側から排出側に掛けて容易に疎密にできる。   In this case, the hole dividing portion can be a groove intersecting with the flow of the reaction gas, and thus the hole dividing portion can be easily formed. And when making a hole parting part into a groove | channel, it can also be set as not only a linear groove | channel but a wavy groove | channel. In the case of a wavy groove, the interference range between the reaction gas flowing along the gas flow from the supply side to the discharge side and the groove is widened, so the effectiveness of water retention at the hole dividing portion (the wavy groove) is further increased. In addition, the effect of suppressing moisture removal is increased. In addition, although the groove | channel as a hole parting part can be made into a continuous groove | channel, or it can also be made into the connection (dotted) of the groove | channel divided into plurality, If it makes it a continuous groove | channel, the formation will become easy. Further, the groove as the hole dividing portion can be formed so that the groove width is wider toward the supply side, and the number of grooves is larger toward the supply side. In this way, the hole dividing portion (groove) can be easily made dense by hanging from the supply side to the discharge side.

更に、孔分断部としての前記溝を有底の溝とすれば、多孔質体の一方の面については平面とできる。よって、多孔質体のこの平面の側を膜電極接合体の電極、もしくはこの電極との間に介在する他のガス透過部材(例えば、ガス拡散層やガス拡散部材)に当接させて多孔質体の面当たりを確保した上で、反応ガスを電極のほぼ全面に亘って一様に拡散供給できるので、膜電極接合体での発電にとっても好ましい。   Furthermore, if the groove as the hole dividing portion is a bottomed groove, one surface of the porous body can be a flat surface. Therefore, the porous body is brought into contact with the electrode of the membrane electrode assembly or another gas permeable member (for example, a gas diffusion layer or a gas diffusion member) interposed between the electrode and the porous body. Since the reaction gas can be uniformly diffused and supplied over almost the entire surface of the electrode while ensuring the contact with the surface of the body, it is also preferable for power generation in the membrane electrode assembly.

また、孔分断部を中空部として前記多孔質体に形成したり、前記多孔質体を貫通する貫通孔として形成することもできる。このような形態の孔分断部であっても、上記した保水により水分持ち出しを容易に抑制できる。   Moreover, a hole parting part can also be formed in the said porous body as a hollow part, and can also be formed as a through-hole which penetrates the said porous body. Even in the case of such a hole dividing portion, it is possible to easily suppress moisture removal by the above-described water retention.

上記したガス供給部材は、これを用いた燃料電池としても適用できる。つまり、この燃料電池は、電解質膜と該電解質膜の両側に接合した電極とを有する膜電極接合体を発電単位とする燃料電池セルと、前記電極に反応ガスを拡散させつつ供給するガス供給部材とを備え、このガス供給部材を上記したいずれかのガス供給部材とする。   The gas supply member described above can also be applied as a fuel cell using the gas supply member. That is, this fuel cell includes a fuel cell having a membrane electrode assembly having an electrolyte membrane and electrodes joined to both sides of the electrolyte membrane as a power generation unit, and a gas supply member for supplying a reaction gas while diffusing the reaction gas to the electrode The gas supply member is any one of the gas supply members described above.

以下、本発明の実施の形態を実施例に基づいて説明する。図1は本発明の実施例としての燃料電池を構成する燃料電池セル10の構成を模式的に断面で示す説明図、図2はこの燃料電池セル10を構成するガス供給部材30の概略構成を示す斜視図である。   Hereinafter, embodiments of the present invention will be described based on examples. FIG. 1 is an explanatory view schematically showing in cross section the configuration of a fuel cell 10 constituting a fuel cell as an embodiment of the present invention, and FIG. 2 is a schematic configuration of a gas supply member 30 constituting the fuel cell 10. It is a perspective view shown.

図に示すように、燃料電池セル10は、プロトン伝導性を有する電解質膜の両面に電極を接合させた膜電極接合体(MEA:Membrane Electrode Assembly)20を備え、一方の電極をアノードとし他方の電極をカソードとして、このMEA20を発電単位としている。MEA20の電解質膜は、種々のものが採用でき、固体高分子膜や、電解質として固体酸化物等を用いた電解質膜とすることができる。   As shown in the figure, the fuel cell 10 includes a membrane electrode assembly (MEA) 20 in which electrodes are bonded to both surfaces of an electrolyte membrane having proton conductivity, and one electrode is used as an anode and the other is used as an anode. The MEA 20 is used as a power generation unit using the electrode as a cathode. Various electrolyte membranes of the MEA 20 can be adopted, and can be a solid polymer membrane or an electrolyte membrane using a solid oxide or the like as an electrolyte.

また、燃料電池セル10は、MEA20のそれぞれの電極面側に、反応ガス(アノードであれば水素ガス、カソードであれば酸素)の拡散供給を図るべく、ガス拡散部材22とガス供給部材30とを備える。ガス拡散部材22は、MEA20の両電極にそれぞれ接合し、この電極に反応ガスを拡散させつつ受け渡す。ガス供給部材30は、金属メッシュ、カーボンペーパ等の多孔質材料から形成された多孔質体であり、多孔質体における孔の繋がりをガス流路として、セパレータ40を経て供給された反応ガスをガス拡散部材22に供給する。ガス拡散部材22にあっても多孔質であるが、電極面へのガス拡散を図るため、ガス供給部材30よりも細孔とされている。この場合、ガス拡散部材22とガス供給部材30とを一体として構成して、電極へのガスの拡散供給を図るようにすることもできる。   Further, the fuel battery cell 10 has a gas diffusion member 22 and a gas supply member 30 on each electrode surface side of the MEA 20 in order to diffusely supply a reactive gas (hydrogen gas for an anode and oxygen for a cathode). Is provided. The gas diffusion member 22 is joined to both electrodes of the MEA 20 and delivered while diffusing the reaction gas to the electrodes. The gas supply member 30 is a porous body formed of a porous material such as a metal mesh or carbon paper, and the reaction gas supplied via the separator 40 is gasified using a hole connection in the porous body as a gas flow path. Supply to the diffusing member 22. Although it is porous even in the gas diffusion member 22, the gas diffusion member 22 has finer pores than the gas supply member 30 in order to diffuse gas to the electrode surface. In this case, the gas diffusion member 22 and the gas supply member 30 may be configured as a single unit so that gas can be supplied to the electrodes by diffusion.

ガス供給部材30は、矩形形状に上記したように多孔質体から形成されていると共に、セパレータ40の側に、V字状の有底の切欠溝31を備える。図2に示すように、この切欠溝31は、切削等により複数筋に形成されている。切欠溝31の形成の様子については後述する。   The gas supply member 30 is formed in a rectangular shape from a porous body as described above, and includes a V-shaped bottomed cutout groove 31 on the separator 40 side. As shown in FIG. 2, the notch groove 31 is formed in a plurality of lines by cutting or the like. The manner in which the cutout groove 31 is formed will be described later.

上記した燃料電池セル10は、その両側のセパレータ40で挟持されて複数積層し、燃料電池を構成する。つまり、燃料電池は、燃料電池セル10をセパレータ40を介在させて複数積層させたスタック構造を有する。この場合、燃料電池における燃料電池セル10の積層数は、燃料電池に要求される出力に応じて任意に設定可能である。また、燃料電池セル10は、セル周囲においては、例えばシリコンゴムからなるシールガスケット24にてシールされており、このシールガスケット24は、積層された各燃料電池セルへの反応ガス(水素ガス・空気)や冷却水の図示しない流路を、セパレータ40と協働して形成する。   A plurality of the above-described fuel cells 10 are sandwiched between the separators 40 on both sides to constitute a fuel cell. That is, the fuel cell has a stack structure in which a plurality of fuel cells 10 are stacked with the separators 40 interposed therebetween. In this case, the number of stacked fuel cells 10 in the fuel cell can be arbitrarily set according to the output required for the fuel cell. Further, the fuel cell 10 is sealed around the cell by a seal gasket 24 made of, for example, silicon rubber, and this seal gasket 24 is used to react gas (hydrogen gas / air) to each stacked fuel cell. ) And cooling water (not shown) are formed in cooperation with the separator 40.

燃料電池セル10の両側のセパレータ40は、燃料電池セル10を区分けするのみならず、セルの一方端から他方端への反応ガス供給と冷却水循環に関与する。つまり、セパレータ40は、図における上下の一方端にガスの供給口41iを備え、他方端にガスの排出口41oを備える。図1に示す燃料電池セル10では、図の左方のセパレータ40は、供給口41iから空気を供給して排出口41oから空気を排出する。右方のセパレータ40は、供給口41iから水素ガスを供給して排出口41oから余剰の水素ガスを排出する。よって、図1の燃料電池セル10は、MEA20の左方側の電極をカソードとし、右方側をアノードとする燃料電池であり、図中の下方側の供給口41iから供給された空気を、ガス供給部材30とガス拡散部材22とを経由してMEA20のカソードに供給し、余剰の空気は図中の上方側の排出口41oから排出する。また、図中の上方側の供給口41iから供給された水素ガスを、ガス供給部材30とガス拡散部材22とを経由してMEA20のアノードに供給し、余剰の水素ガスは図中の上方側の排出口41oから排出する。そして、余剰の空気と水素ガスは、セパレータ間のシールガスケット24を経由して隣の燃料電池セル10に供給される。   The separators 40 on both sides of the fuel battery cell 10 not only separate the fuel battery cell 10 but also participate in the reaction gas supply from one end of the cell to the other end and the cooling water circulation. That is, the separator 40 includes a gas supply port 41i at one of the upper and lower ends in the figure, and a gas discharge port 41o at the other end. In the fuel cell 10 shown in FIG. 1, the separator 40 on the left side in the drawing supplies air from the supply port 41 i and discharges air from the discharge port 41 o. The right separator 40 supplies hydrogen gas from the supply port 41i and discharges excess hydrogen gas from the discharge port 41o. Therefore, the fuel cell 10 in FIG. 1 is a fuel cell in which the left electrode of the MEA 20 is a cathode and the right side is an anode, and the air supplied from the lower supply port 41i in the figure is The gas is supplied to the cathode of the MEA 20 via the gas supply member 30 and the gas diffusion member 22, and excess air is discharged from an upper discharge port 41o in the drawing. Further, the hydrogen gas supplied from the upper supply port 41i in the figure is supplied to the anode of the MEA 20 via the gas supply member 30 and the gas diffusion member 22, and the surplus hydrogen gas is on the upper side in the figure. It discharges from the discharge port 41o. The surplus air and hydrogen gas are supplied to the adjacent fuel cell 10 via the seal gasket 24 between the separators.

上記したスタック構造を有する燃料電池は、燃料電池セル10の積層方向において図示しない締結部材によって締結され、セル積層方向に締結荷重が加えられている。この締結荷重により、スタック構造のいずれかの箇所における接触抵抗の増加等による電池性能低下の抑制や、燃料電池の内部を流れるガスおよび冷却水の漏洩防止が図られている。   The fuel cell having the stack structure described above is fastened by a fastening member (not shown) in the stacking direction of the fuel cells 10 and a fastening load is applied in the cell stacking direction. With this fastening load, suppression of cell performance degradation due to an increase in contact resistance at any location of the stack structure and prevention of leakage of gas and cooling water flowing inside the fuel cell are achieved.

次に、ガス供給部材30における切欠溝31の形成の様子について説明する。ガス供給部材30は、セパレータ40とガス拡散部材22との間に位置し、セパレータ40の供給口41iから反応ガス(水素ガス・空気)の供給を受ける。例えば、図1左方側のカソード側のガス供給部材30は、既述したように多孔質体であって孔の繋がりをガス流路としているので、図1における下端側の供給口41iから供給を受けた空気を、図中下方側から上方側の排出口41oに向けて流すと共に、ガス拡散部材22にその全面に亘って拡散させつつ受け渡す。図1右方側のアノード側のガス供給部材30にあっても同様に水素ガスをガス拡散部材22に受け渡す。   Next, how the notch groove 31 is formed in the gas supply member 30 will be described. The gas supply member 30 is located between the separator 40 and the gas diffusion member 22 and receives supply of reaction gas (hydrogen gas / air) from the supply port 41 i of the separator 40. For example, the gas supply member 30 on the cathode side on the left side in FIG. 1 is a porous body and has a hole flow path as described above, and therefore is supplied from the supply port 41i on the lower end side in FIG. The received air flows from the lower side to the upper discharge port 41o in the drawing and is delivered to the gas diffusion member 22 while being diffused over the entire surface. Similarly, in the gas supply member 30 on the anode side on the right side of FIG.

図1における供給口41iから排出口41oに向かう空気の流れは、図2においてガス流として記されており、ガス供給部材30は、このガス流と次の関係を持って切欠溝31を備える。つまり、ガス供給部材30は、複数筋の切欠溝31を形成するに当たり、図1における空気の供給口41iから排出口41oに向かう図2のガス流に交差してそれぞれの切欠溝31を形成する。それぞれの切欠溝31は、ガス供給部材30を切り欠いた溝であることから、多孔質体たるガス供給部材30の孔の繋がりを、図2に示すガス流に交差して分断する。よって、この切欠溝31は本発明における孔分断部に相当する。   The air flow from the supply port 41i to the discharge port 41o in FIG. 1 is shown as a gas flow in FIG. 2, and the gas supply member 30 includes a notch groove 31 having the following relationship with this gas flow. That is, when the gas supply member 30 forms the cutout grooves 31 having a plurality of lines, the gas supply members 30 form the respective cutout grooves 31 so as to intersect the gas flow of FIG. 2 from the air supply port 41i to the discharge port 41o in FIG. . Since each of the cutout grooves 31 is a cutout of the gas supply member 30, the connection of the holes of the gas supply member 30, which is a porous body, is cut across the gas flow shown in FIG. Therefore, this notch groove 31 corresponds to the hole dividing portion in the present invention.

そして、カソード側のガス供給部材30は、図1における空気の供給口41iほど切欠溝31を密に備え、排出口41oの側に向かうほど疎になるように切欠溝31を備える。より具体的に説明すると、切欠溝31は、空気の供給口41i(図1参照)では、狭いピッチで形成され、排出口41o(図1参照)の側に向かうほど広いピッチで形成されている。よって、このガス供給部材30は、切欠溝31による孔の繋がりの分断領域が供給口41iほど広くなるように、供給口41iから排出口41oに掛けて切欠溝31を疎密に備えることになる。アノード側のガス供給部材30にあっても同様である。   The cathode-side gas supply member 30 includes the cutout grooves 31 closer to the air supply port 41i in FIG. 1 and closer to the discharge port 41o. More specifically, the cutout grooves 31 are formed at a narrow pitch at the air supply port 41i (see FIG. 1), and at a wider pitch toward the discharge port 41o (see FIG. 1). . Therefore, the gas supply member 30 is provided with the cutout grooves 31 densely from the supply port 41i to the discharge port 41o so that the cut-off region of the hole connection by the cutout groove 31 is as wide as the supply port 41i. The same applies to the gas supply member 30 on the anode side.

以上説明したガス供給部材30を有する燃料電池セル10では、カソード側のガス供給部材30を介してMEA20の電極(アノード電極)に空気を拡散させつつ供給するに当たり、多孔質体のガス供給部材30に形成した複数筋の切欠溝31により、多孔質体においてガス流路を形成する孔の繋がりを、供給口41iから排出口41oに向かう図2のガス流に交差して分断する。このように切欠溝31がガス供給部材30に存在しても、供給口41iから排出口41oに向かう図2のガス流に沿って空気がガス供給部材30を下流側に流れる場合、空気はそれぞれの切欠溝31を通過して当該溝より下流側に流れる。このガス流に沿って流れる空気は、ガス供給部材30の孔に存在する水分や空気中の水分をそのガス流に乗せて下流側に流そうとする。ところが、空気がそれぞれの切欠溝31を通過する際、切欠溝31では孔の繋がりが分断されていることから、水分はこの切欠溝31に留まり保水されることになる。この結果、多孔質体から形成されたガス供給部材30に複数筋の切欠溝31を設けるという簡便な手法で、多孔質体おける空気による水分持ち出しを容易に抑制できる。アノード側のガス供給部材30においても同様である。このため、MEA20では、不用意に湿潤不足となるような事態が起きなくなるので、発電能力の維持が可能となる。   In the fuel cell 10 having the gas supply member 30 described above, when supplying air while diffusing air to the electrode (anode electrode) of the MEA 20 via the gas supply member 30 on the cathode side, the porous gas supply member 30 is provided. The plurality of cutout grooves 31 formed in the cross section divide the connection of the holes forming the gas flow path in the porous body so as to intersect the gas flow of FIG. 2 from the supply port 41i toward the discharge port 41o. Thus, even if the cutout groove 31 exists in the gas supply member 30, when the air flows downstream through the gas supply member 30 along the gas flow of FIG. 2 from the supply port 41i to the discharge port 41o, It passes through the notch groove 31 and flows downstream from the groove. The air flowing along this gas flow tries to flow downstream by putting moisture existing in the holes of the gas supply member 30 or moisture in the air on the gas flow. However, when the air passes through the respective cutout grooves 31, since the connection of the holes is cut off in the cutout grooves 31, the water remains in the cutout grooves 31 and is retained. As a result, moisture removal due to air in the porous body can be easily suppressed by a simple method of providing a plurality of notched grooves 31 in the gas supply member 30 formed of the porous body. The same applies to the gas supply member 30 on the anode side. For this reason, in MEA20, since the situation which becomes insufficiently wet insufficient does not occur, it becomes possible to maintain the power generation capacity.

また、本実施例では、ガス供給部材30に複数筋の切欠溝31を設けるに当たり、供給口41i側では狭いピッチで切欠溝31を設け、排出口41o側では広いピッチで設けるようにして、切欠溝31を供給口41iの側から排出口41oの側に掛けて疎密とした。このため、ガス供給部材30における複数筋の切欠溝31による多孔質体の孔の繋がりの分断領域は供給口41iの側ほど広くなるので、次の利点がある。   In this embodiment, when the gas supply member 30 is provided with the plurality of cutout grooves 31, the cutout grooves 31 are provided at a narrow pitch on the supply port 41i side and at a wide pitch on the discharge port 41o side. The groove 31 was made dense by hanging from the supply port 41i side to the discharge port 41o side. For this reason, since the dividing area | region of the hole connection of the porous body by the notch groove | channel 31 of the several streaks in the gas supply member 30 becomes large toward the supply port 41i side, there exists the following advantage.

多孔質体のガス供給部材30において、空気が図1の供給口41iの側から排出口41oの側に向けて流れる際、この空気中の酸素は、ガス拡散部材22を経てMEA22の電極(カソード電極)に到達して電気化学反応に供されて消費される。よって、供給口41iの側から排出口41oの側に向かうにつれて空気の流量に差が生じ、排出口41oの側では供給口41iの側より空気流量は少なくなる。このため、流量が多い供給口41iの側では空気の流れによる水分持ち出し過多が起き易いと予想される。しかしながら、水分持ち出し過多が予想される供給口41iの側では、切欠溝31による孔の繋がりの分断領域を広くしたので、その分、切欠溝31での保水の実効性は高まる。よって、水分持ち出し過多が予想される供給口41iの側においても、空気による水分持ち出しをより確実に、かつ容易に抑制できる。アノード側のガス供給部材30においても、同様である。   In the porous gas supply member 30, when air flows from the supply port 41 i side to the discharge port 41 o side in FIG. 1, oxygen in the air passes through the gas diffusion member 22 and the electrode (cathode) of the MEA 22. It reaches the electrode) and is consumed in the electrochemical reaction. Therefore, a difference occurs in the air flow rate from the supply port 41i side to the discharge port 41o side, and the air flow rate is smaller on the discharge port 41o side than on the supply port 41i side. For this reason, it is expected that excessive moisture removal due to the air flow tends to occur on the supply port 41i side where the flow rate is large. However, on the side of the supply port 41i where excess moisture is expected to be taken out, the dividing region of the hole connection by the notch groove 31 is widened, so that the effectiveness of water retention in the notch groove 31 is increased accordingly. Therefore, moisture removal due to air can be more reliably and easily suppressed even on the supply port 41i side where excessive moisture removal is expected. The same applies to the gas supply member 30 on the anode side.

そして、本実施例では、図2に示すガス流に交差するよう複数筋の切欠溝31を直線状に形成するだけでよいので、簡便である。しかも、有底の切欠溝31をセパレータ40の側に形成したので、ガス供給部材30をガス拡散部材22に対して面当たりを確保するよう平面で接合できる。よって、空気や水素ガスをMEA20のそれぞれの電極にほぼ全面に亘って一様に拡散供給できるので、MEA20での発電にとっても好ましい。   In this embodiment, it is simple because a plurality of notched grooves 31 need only be formed in a straight line so as to intersect the gas flow shown in FIG. In addition, since the bottomed notch groove 31 is formed on the separator 40 side, the gas supply member 30 can be joined to the gas diffusion member 22 in a plane so as to ensure surface contact. Therefore, since air and hydrogen gas can be diffused and supplied to the respective electrodes of the MEA 20 over almost the entire surface, it is preferable for power generation in the MEA 20.

次に、他の実施例および変形例について順次説明する。図3は変形例のガス供給部材30Aの概略構成を示す斜視図である。図示するように、このガス供給部材30Aは、V字状の溝に代えて方形の切欠溝31Aを備えている。つまり、切欠溝の溝形状は種々採択できる。図4はまた別の変形例のガス供給部材30Bの概略構成を示す斜視図である。図示するように、このガス供給部材30Bは、複数筋の切欠溝31Bを、その溝幅と形成ピッチを変えて備える。つまり、図1における供給口41iの側では幅広の切欠溝31Bとし、排出口41oの側ほど溝幅を狭くした上で、溝間ピッチも広くされている。図5は他の変形例のガス供給部材30Cの概略構成を平面と側面で示す説明図である。図示すするように、このガス供給部材30Cは、直線状の切欠溝31に代えて波状の有底の切欠溝31Cを備え、それぞれの切欠溝31Cをガス流と交差させている。つまり、切欠溝の溝軌跡は直線状に限らず波状等、種々採択できる。これら変形例のガス供給部材30A、30Bであっても、既述した効果を奏することができる。特に、図5に示す切欠溝31Cでは、切欠溝31Cが波状の溝であるので、ガスの供給側から排出側に向かう図示するガス流に沿って流れる反応ガスと溝との干渉範囲は広がることから、波状の切欠溝31Cでの保水の実効性はより高まり、水分持ち出しの抑制効果も高まり好ましい。   Next, other embodiments and modifications will be described sequentially. FIG. 3 is a perspective view showing a schematic configuration of a gas supply member 30A according to a modification. As shown in the drawing, the gas supply member 30A includes a rectangular cutout groove 31A instead of the V-shaped groove. That is, various groove shapes of the notch grooves can be adopted. FIG. 4 is a perspective view showing a schematic configuration of a gas supply member 30B of another modified example. As shown in the figure, the gas supply member 30B includes a plurality of notched grooves 31B having different groove widths and formation pitches. In other words, the notch groove 31B is wide on the supply port 41i side in FIG. 1, and the groove width is narrower toward the discharge port 41o side, and the groove pitch is wider. FIG. 5 is an explanatory view showing a schematic configuration of a gas supply member 30C according to another modification in a plane and a side. As shown in the figure, the gas supply member 30C includes a wave-shaped bottomed cutout groove 31C instead of the straight cutout groove 31, and each cutout groove 31C intersects the gas flow. In other words, the groove trajectory of the notch groove is not limited to a linear shape, and various types such as a wave shape can be adopted. Even with the gas supply members 30 </ b> A and 30 </ b> B of these modified examples, the above-described effects can be achieved. In particular, in the notch groove 31C shown in FIG. 5, since the notch groove 31C is a wave-like groove, the interference range between the reaction gas and the groove flowing along the gas flow shown from the gas supply side to the discharge side is widened. Therefore, the water retention effectiveness in the wave-shaped notch groove 31C is further enhanced, and the effect of suppressing moisture removal is also increased, which is preferable.

図6は切欠溝を分断した態様の変形例のガス供給部材30Dの概略構成を示す説明図である。図示するように、このガス供給部材30Dは、有底の切欠溝31Dを直線上に並べて備え、これを多列に有する。つまり、切欠溝は連続した溝とできるほか、分断した溝とすることもできる。そして、このガス供給部材30Dでは、隣り合う列における切欠溝31Dをいわゆる千鳥状に設けたので、反応ガスは、図示するガス流に沿って流れる場合、必ず切欠溝31Dを通過するようにできる。この変形例であっても、既述した効果を奏することができる。   FIG. 6 is an explanatory diagram showing a schematic configuration of a gas supply member 30D according to a modification of the aspect in which the cutout groove is divided. As shown in the figure, the gas supply member 30D includes bottomed cutout grooves 31D arranged in a straight line and has a plurality of rows. That is, the cutout groove can be a continuous groove or a divided groove. In the gas supply member 30D, the cutout grooves 31D in the adjacent rows are provided in a so-called staggered manner, so that the reaction gas can always pass through the cutout grooves 31D when flowing along the gas flow shown in the figure. Even in this modification, the effects described above can be achieved.

図7はまた別の変形例のガス供給部材30Eの概略構成を平面視と要部を破断した側面視で示す説明図、図8は図7のガス供給部材30Eの変形例の概略構成を平面視と要部を破断した側面視で示す説明図である。これら変形例のガス供給部材は、有底の切欠溝に代えて、ガス供給部材を厚み方向に貫通する貫通孔を有する。   FIG. 7 is an explanatory view showing a schematic configuration of a gas supply member 30E of another modified example in a plan view and a side view in which the main part is broken, and FIG. 8 is a plan view of the schematic configuration of the modified example of the gas supply member 30E in FIG. It is explanatory drawing shown by the side view which fractured | ruptured the view and the principal part. The gas supply member of these modified examples has a through-hole penetrating the gas supply member in the thickness direction, instead of the bottomed cutout groove.

図7のガス供給部材30Eは、厚み方向に貫通する長方形状の貫通長孔31Eを複数筋に亘って備え、貫通長孔31Eは、ガス供給部材30における切欠溝31の形成ピッチと同様に、供給口41iの側ほど狭いピッチで形成されている。ガス供給部材30は、図1に示すようにガス拡散部材22と接合していることから、貫通長孔31Eにあってもガス拡散部材22で一方端が塞がれた溝として機能すると共に、切欠溝31と同様に、多孔質体たるガス供給部材30Eの孔の繋がりを、図示するガス流に交差して分断する。よって、この貫通長孔31Eは本発明における孔分断部に相当する。図8に示すガス供給部材30Fは、貫通長孔31Fを直線上に並べて多列に備え、隣り合う列における貫通長孔31Fをいわゆる千鳥状に配設している。図9は図8に示すガス供給部材30Fを変形した変形例の概略構成を平面視と要部を破断した側面視で示す説明図である。この図9に示すガス供給部材30Gは、貫通長孔31Fを波形軌跡を分断した形状の貫通長孔31Gを、多列に、および千鳥状に備える。これら変形例にあっても、既述した効果を奏することができる。   The gas supply member 30E in FIG. 7 includes a plurality of rectangular through holes 31E penetrating in the thickness direction, and the through holes 31E are formed in the same manner as the formation pitch of the cutout grooves 31 in the gas supply member 30. A narrower pitch is formed toward the supply port 41i. Since the gas supply member 30 is joined to the gas diffusion member 22 as shown in FIG. 1, it functions as a groove whose one end is closed by the gas diffusion member 22 even in the through long hole 31E. Similarly to the notch groove 31, the hole connection of the gas supply member 30E, which is a porous body, is divided so as to intersect the gas flow shown in the figure. Accordingly, the through long hole 31E corresponds to the hole dividing portion in the present invention. The gas supply member 30F shown in FIG. 8 includes through holes 31F arranged in a straight line in multiple rows, and the through holes 31F in adjacent rows are arranged in a so-called staggered pattern. FIG. 9 is an explanatory view showing a schematic configuration of a modified example in which the gas supply member 30F shown in FIG. The gas supply member 30G shown in FIG. 9 includes through long holes 31G having a shape obtained by dividing the long through holes 31F in a multi-row and zigzag manner. Even in these modifications, the effects described above can be achieved.

図10は貫通孔を有するガス供給部材の他の変形例の概略構成を平面視と要部を破断した側面視で示す説明図である。図示するガス供給部材30Hは、厚み方向に貫通する貫通孔31Hを直線上に並べて多列に備え、隣り合う列における貫通孔31Hをいわゆる千鳥状に配設している。この貫通孔31Hにあってもガス拡散部材22により一方端が塞がれた溝として機能するので、切欠溝31と同様に、多孔質体たるガス供給部材30Hの孔の繋がりを図示するガス流に交差して分断する。よって、この貫通孔31Hにあっても、本発明における孔分断部に相当する。そして、この変形例であっても、既述した効果を奏することができる。   FIG. 10 is an explanatory view showing a schematic configuration of another modified example of the gas supply member having a through hole in a plan view and a side view in which a main part is broken. The illustrated gas supply member 30H has through holes 31H penetrating in the thickness direction arranged in a straight line and provided in multiple rows, and the through holes 31H in adjacent rows are arranged in a so-called staggered pattern. Even in the through hole 31H, it functions as a groove whose one end is closed by the gas diffusion member 22, so that, similarly to the notch groove 31, a gas flow illustrating the connection of the holes of the gas supply member 30H as a porous body. Cross over and divide. Therefore, even if it exists in this through-hole 31H, it is corresponded to the hole parting part in this invention. And even if it is this modification, there can exist the effect mentioned above.

次に、また別の変形例について説明する。この変形例では、ガス供給部材を貫通する貫通孔の形成の様子に特徴がある。図11は燃料電池を構成する他の変形例の燃料電池セル100の構成を模式的に断面で示す説明図、図12はこの燃料電池セル100を構成するガス供給部材130の概略構成を示す斜視図である。図示するように、この燃料電池セル100にあっても、MEA20の両側にガス拡散部材22とガス供給部材130とを接合して備え、セパレータ40にて挟持されている。ガス供給部材130は、既述したガス供給部材30と同様に矩形形状の多孔質体であり、図11や図12に示すように、その矩形の辺方向に沿った貫通孔131を複数列備える。そして、これら貫通孔131の形成の様子は、ガス供給部材30における切欠溝31と同様、図1における反応ガス(空気や水素ガス)の供給口41iの側では狭いピッチで形成され、排出口41oに向かうほど広いピッチで形成されている。   Next, another modification will be described. This modification is characterized by the formation of a through hole that penetrates the gas supply member. FIG. 11 is an explanatory view schematically showing the configuration of a fuel cell 100 according to another modification that constitutes the fuel cell, and FIG. 12 is a perspective view schematically showing the configuration of a gas supply member 130 that constitutes the fuel cell 100. FIG. As shown in the figure, even in the fuel cell 100, the gas diffusion member 22 and the gas supply member 130 are joined to both sides of the MEA 20 and are sandwiched by the separator 40. The gas supply member 130 is a rectangular porous body like the gas supply member 30 described above, and includes a plurality of rows of through-holes 131 along the side of the rectangle as shown in FIGS. 11 and 12. . The through holes 131 are formed at a narrow pitch on the side of the reaction gas (air or hydrogen gas) supply port 41i in FIG. It is formed with a wider pitch toward the.

この貫通孔131は、図1における反応ガス(空気や水素ガス)の供給口41iから排出口41oに向かう図2のガス流に交差していることから、多孔質体たるガス供給部材130の孔の繋がりを、図2に示すガス流に交差して分断する。よって、この貫通孔131にあっても、本発明における孔分断部およびその一形態である中空部に相当するので、この貫通孔131を有するガス供給部材130によっても、既述した効果を奏することができる。   Since this through hole 131 intersects the gas flow of FIG. 2 from the reaction gas (air or hydrogen gas) supply port 41i to the discharge port 41o in FIG. 1, the hole of the gas supply member 130, which is a porous body, is formed. Is cut across the gas flow shown in FIG. Therefore, since the through hole 131 corresponds to the hole dividing portion in the present invention and the hollow portion which is one form thereof, the gas supply member 130 having the through hole 131 also has the effects described above. Can do.

なお、矩形の辺に沿って貫通する貫通孔131を有するガス供給部材130を得るには、次のようにすればよい。図12に示すように、ガス供給部材130を上方パーツ131uと下方パーツ131dに分け、両パーツの接合面に、貫通孔131を分割した半円形溝を形成する。その上で、上下のパーツを接合することで、ガス供給部材130を得ることができる。   In order to obtain the gas supply member 130 having the through hole 131 penetrating along the rectangular side, the following may be performed. As shown in FIG. 12, the gas supply member 130 is divided into an upper part 131u and a lower part 131d, and a semicircular groove in which the through hole 131 is divided is formed on the joint surface of both parts. Then, the gas supply member 130 can be obtained by joining the upper and lower parts.

図13は矩形の辺に沿って貫通孔131Aを有するガス供給部材の変形例を示す説明図である。図示するように、この変形例のガス供給部材130Aは、複数の貫通孔131Aを有するものの、図1における反応ガス(空気や水素ガス)の供給口41iの側では断面積が大きな長孔状の貫通孔131Aを備え、排出口41oに向かうほど断面積が小さくなる貫通孔131Aを備える。この変形例であっても、既述した効果を奏することができる。   FIG. 13 is an explanatory view showing a modification of the gas supply member having a through hole 131A along a rectangular side. As shown in the figure, the gas supply member 130A of this modification has a plurality of through holes 131A, but has a long hole shape with a large cross-sectional area on the side of the supply port 41i for the reaction gas (air or hydrogen gas) in FIG. A through-hole 131A is provided, and a through-hole 131A having a smaller cross-sectional area toward the discharge port 41o is provided. Even in this modification, the effects described above can be achieved.

なお、本発明は上記した実施例や変形例の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様にて実施することが可能である。例えば、供給口41iの側ほど多孔質体のガス供給部材30の孔の繋がりの分断領域を広くするに当たり、切欠溝31の形成ピッチを狭くして本数を増やしたり、切欠溝31の幅を広めたが、有底の切欠溝31の深さを深くすることで上記分断領域を供給口41iの側ほど広くすることもできる。また、波状の切欠溝とするに当たっても、三角波や矩形波が連続した波状切欠溝としたり、三角波や矩形波が分断されたような切欠溝とすることもできる。   The present invention is not limited to the above-described embodiments and modifications, and can be implemented in various modes without departing from the scope of the invention. For example, in order to widen the dividing region of the hole connection of the porous gas supply member 30 toward the supply port 41i side, the formation pitch of the notch grooves 31 is narrowed to increase the number, or the width of the notch grooves 31 is increased. However, by increasing the depth of the bottomed cutout groove 31, the dividing region can be made wider toward the supply port 41i. Further, even when forming a wavy notched groove, it may be a wavy notched groove in which a triangular wave or a rectangular wave is continuous, or a notched groove in which a triangular wave or a rectangular wave is divided.

ガス供給部材30を切欠溝31を設けるに当たり、上記の実施例では、切欠溝31をガス流に直交するように形成したが、切欠溝31を、ガス流に斜めに交差するように形成することもできる。   In providing the notch groove 31 in the gas supply member 30, in the above-described embodiment, the notch groove 31 is formed so as to be orthogonal to the gas flow. However, the notch groove 31 is formed so as to obliquely intersect the gas flow. You can also.

本発明の実施例としての燃料電池を構成する燃料電池セル10の構成を模式的に断面で示す説明図である。It is explanatory drawing which shows typically the structure of the fuel cell 10 which comprises the fuel cell as an Example of this invention in a cross section. この燃料電池セル10を構成するガス供給部材30の概略構成を示す斜視図である。1 is a perspective view showing a schematic configuration of a gas supply member 30 constituting the fuel battery cell 10. 変形例のガス供給部材30Aの概略構成を示す斜視図である。It is a perspective view which shows schematic structure of 30 A of gas supply members of a modification. また別の変形例のガス供給部材30Bの概略構成を示す斜視図である。It is a perspective view showing a schematic structure of gas supply member 30B of another modification. 他の変形例のガス供給部材30Cの概略構成を平面と側面で示す説明図である。It is explanatory drawing which shows the schematic structure of the gas supply member 30C of another modification by the plane and the side. 切欠溝を分断した態様の変形例のガス供給部材30Dの概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of gas supply member 30D of the modification of the aspect which cut off the notch groove. また別の変形例のガス供給部材30Eの概略構成を平面視と要部を破断した側面視で示す説明図である。It is explanatory drawing which shows schematic structure of the gas supply member 30E of another modification by the planar view and the side view which fractured | ruptured the principal part. 図7のガス供給部材30Eの変形例の概略構成を平面視と要部を破断した側面視で示す説明図である。It is explanatory drawing which shows schematic structure of the modification of the gas supply member 30E of FIG. 7 by the planar view and the side view which fractured | ruptured the principal part. 図8に示すガス供給部材30Fを変形した変形例の概略構成を平面視と要部を破断した側面視で示す説明図である。It is explanatory drawing which shows the schematic structure of the modification which deform | transformed the gas supply member 30F shown in FIG. 8 by the planar view and the side view which fractured | ruptured the principal part. 貫通孔を有する他の変形例のガス供給部材30Hの概略構成を平面視と要部を破断した側面視で示す説明図である。It is explanatory drawing which shows schematic structure of the gas supply member 30H of the other modified example which has a through-hole by the planar view and the side view which fractured | ruptured the principal part. 燃料電池を構成する他の変形例の燃料電池セル100の構成を模式的に断面で示す説明図である。It is explanatory drawing which shows typically the structure of the fuel cell 100 of the other modification which comprises a fuel cell in a cross section. この燃料電池セル100を構成するガス供給部材130の概略構成を示す斜視図である。2 is a perspective view showing a schematic configuration of a gas supply member 130 constituting the fuel cell 100. FIG. 矩形の辺に沿って貫通孔131Aを有する変形例のガス供給部材130Aを示す説明図である。It is explanatory drawing which shows 130 A of gas supply members of the modification which has 131 A of through-holes along a rectangular side.

符号の説明Explanation of symbols

10...燃料電池セル
20...膜電極接合体(MEA:Membrane Electrode Assembly)
22...ガス拡散部材
24...シールガスケット
30、30A〜30H...ガス供給部材
31、31A〜31D...切欠溝
31E〜31G...貫通長孔
31H...貫通孔
40...セパレータ
41i...供給口
41o...排出口
100...燃料電池セル
130、130A...ガス供給部材
131、131A...貫通孔
131d...下方パーツ
131u...上方パーツ
10 ... Fuel cell 20 ... Membrane Electrode Assembly (MEA)
22 ... Gas diffusion member 24 ... Seal gasket 30, 30A-30H ... Gas supply member 31, 31A-31D ... Notch groove 31E-31G ... Through-hole 31H ... Through-hole 40 ... Separator 41i ... Supply port 41o ... Discharge port 100 ... Fuel cell 130, 130A ... Gas supply member 131, 131A ... Through hole 131d ... Lower part 131u ... Upper part

Claims (10)

電解質膜と該電解質膜の両側に接合した電極とを有する膜電極接合体における前記電極に反応ガスを拡散させつつ供給するガス供給部材であって、
多孔質体から形成され、該多孔質体の孔の繋がりをガス流路とし、
前記孔の繋がりを、前記反応ガスの供給側から排出側に向かう前記反応ガスの流れに交差して分断する孔分断部を備える
ガス供給部材。
A gas supply member for supplying a reaction gas while diffusing the reaction gas to the electrode in a membrane electrode assembly having an electrolyte membrane and electrodes joined to both sides of the electrolyte membrane,
Formed from a porous body, and the connection of the pores of the porous body as a gas flow path,
A gas supply member comprising: a hole dividing portion that divides the connection of the holes so as to intersect the flow of the reaction gas from the reaction gas supply side to the discharge side.
前記孔分断部は、前記孔分断部による前記繋がりの分断領域が前記供給側ほど広くなるように、前記供給側から前記排出側に掛けて疎密とされている請求項1に記載のガス供給部材。   2. The gas supply member according to claim 1, wherein the hole dividing portion is made dense from the supply side to the discharge side so that a region where the connection is divided by the hole dividing portion becomes wider toward the supply side. . 前記孔分断部は、前記反応ガスの流れに交差した溝として形成されている請求項2に記載のガス供給部材。   The gas supply member according to claim 2, wherein the hole dividing portion is formed as a groove that intersects the flow of the reaction gas. 前記孔分断部としての前記溝は、波状とされている請求項3に記載のガス供給部材。   The gas supply member according to claim 3, wherein the groove serving as the hole dividing portion has a wave shape. 前記孔分断部としての前記溝は、連続して形成されている請求項3または請求項4に記載のガス供給部材。   The gas supply member according to claim 3 or 4, wherein the groove as the hole dividing portion is formed continuously. 請求項3ないし請求項5いずれかに記載のガス供給部材であって、
前記孔分断部としての前記溝は、前記供給側ほど溝幅が広く、または、前記供給側ほど溝数が多く形成されている
ガス供給部材。
A gas supply member according to any one of claims 3 to 5,
The gas supply member, wherein the groove as the hole dividing portion has a groove width wider toward the supply side or a larger number of grooves toward the supply side.
請求項3ないし請求項6いずれかに記載のガス供給部材であって、
前記孔分断部としての前記溝は、有底の溝として形成されている
ガス供給部材。
A gas supply member according to any one of claims 3 to 6,
The groove as the hole dividing portion is formed as a bottomed groove. Gas supply member.
前記孔分断部は、中空部として前記多孔質体に形成されている請求項1に記載のガス供給部材。   The gas supply member according to claim 1, wherein the hole dividing portion is formed in the porous body as a hollow portion. 前記孔分断部は、前記多孔質体を貫通する貫通孔として形成されている請求項1に記載のガス供給部材。   The gas supply member according to claim 1, wherein the hole dividing portion is formed as a through hole penetrating the porous body. 燃料電池であって、
電解質膜と該電解質膜の両側に接合した電極とを有する膜電極接合体を発電単位とする燃料電池セルと、
前記電極に反応ガスを拡散させつつ供給するガス供給部材とを備え、
該ガス供給部材として請求項1ないし請求項9いずれかに記載のガス供給部材を有する
燃料電池。
A fuel cell,
A fuel cell having a membrane electrode assembly having an electrolyte membrane and electrodes joined to both sides of the electrolyte membrane as a power generation unit;
A gas supply member that supplies the electrode while diffusing the reaction gas;
A fuel cell comprising the gas supply member according to any one of claims 1 to 9 as the gas supply member.
JP2007138517A 2007-05-25 2007-05-25 Gas supply member of fuel cell, and fuel cell Pending JP2008293811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007138517A JP2008293811A (en) 2007-05-25 2007-05-25 Gas supply member of fuel cell, and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007138517A JP2008293811A (en) 2007-05-25 2007-05-25 Gas supply member of fuel cell, and fuel cell

Publications (1)

Publication Number Publication Date
JP2008293811A true JP2008293811A (en) 2008-12-04

Family

ID=40168334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007138517A Pending JP2008293811A (en) 2007-05-25 2007-05-25 Gas supply member of fuel cell, and fuel cell

Country Status (1)

Country Link
JP (1) JP2008293811A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011243538A (en) * 2010-05-21 2011-12-01 Toyota Motor Corp Fuel cell
JP2013020843A (en) * 2011-07-12 2013-01-31 Mitsubishi Rayon Co Ltd Gas diffusion electrode and fuel cell using the same
WO2013151016A1 (en) * 2012-04-05 2013-10-10 日産自動車株式会社 Fuel cell
CN110366796A (en) * 2017-09-29 2019-10-22 株式会社Lg化学 The coolant jacket with Non-Uniform Flow path for cooling down battery cell surface and the battery module including the coolant jacket
WO2019207811A1 (en) * 2018-04-28 2019-10-31 株式会社エノモト Fuel cell gas feed diffusion layer, fuel cell separator, and fuel cell stack

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011243538A (en) * 2010-05-21 2011-12-01 Toyota Motor Corp Fuel cell
JP2013020843A (en) * 2011-07-12 2013-01-31 Mitsubishi Rayon Co Ltd Gas diffusion electrode and fuel cell using the same
WO2013151016A1 (en) * 2012-04-05 2013-10-10 日産自動車株式会社 Fuel cell
CN110366796A (en) * 2017-09-29 2019-10-22 株式会社Lg化学 The coolant jacket with Non-Uniform Flow path for cooling down battery cell surface and the battery module including the coolant jacket
WO2019207811A1 (en) * 2018-04-28 2019-10-31 株式会社エノモト Fuel cell gas feed diffusion layer, fuel cell separator, and fuel cell stack
CN111886731A (en) * 2018-04-28 2020-11-03 益能达株式会社 Gas supply diffusion layer for fuel cell, separator for fuel cell, and fuel cell stack
JPWO2019207811A1 (en) * 2018-04-28 2020-12-03 株式会社エノモト Gas supply diffusion layer for fuel cells, separator for fuel cells and fuel cell stack
US11670780B2 (en) 2018-04-28 2023-06-06 Enomoto Co., Ltd. Fuel cell gas supply and diffusion layer, fuel cell separator and fuel cell stack
CN111886731B (en) * 2018-04-28 2023-06-16 益能达株式会社 Gas supply diffusion layer for fuel cell, separator for fuel cell, and fuel cell stack

Similar Documents

Publication Publication Date Title
US8318380B2 (en) Fuel cell and vehicle having fuel cell
US9065090B2 (en) Fuel battery
EP2680354A1 (en) Fuel cell
JP2006260919A (en) Fuel cell
WO2013005300A1 (en) Fuel cell
JP2008293811A (en) Gas supply member of fuel cell, and fuel cell
JP2010021053A (en) Fuel cell system
KR101075518B1 (en) Bipolar plate with nano and micro structures
JP2005322595A (en) Fuel cell
JP2017195053A (en) Gas passage formation plate for fuel cell and fuel cell stack
JP2007018742A (en) Fuel cell
JP2006236841A (en) Fuel cell stack
JP2005093244A (en) Fuel cell
JP2007059330A (en) Solid polymer fuel cell
JP6050158B2 (en) Fuel cell
JP4186762B2 (en) Polymer electrolyte fuel cell
JP2005141979A (en) Fuel cell
JP2007250432A (en) Fuel cell
JP2020107397A (en) Fuel battery cell
JP6403099B2 (en) Fuel cell module
JP5874679B2 (en) Fuel cell
JP2008103197A (en) Fuel cell
JP2005235666A (en) Fuel cell and separator
JP5653873B2 (en) Fuel cell
JP5630408B2 (en) Fuel cell