JP2008291147A - Rubber composition for tire - Google Patents

Rubber composition for tire Download PDF

Info

Publication number
JP2008291147A
JP2008291147A JP2007139377A JP2007139377A JP2008291147A JP 2008291147 A JP2008291147 A JP 2008291147A JP 2007139377 A JP2007139377 A JP 2007139377A JP 2007139377 A JP2007139377 A JP 2007139377A JP 2008291147 A JP2008291147 A JP 2008291147A
Authority
JP
Japan
Prior art keywords
weight
rubber
rubber composition
silica
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007139377A
Other languages
Japanese (ja)
Other versions
JP5194560B2 (en
Inventor
Yoshihiro Kameda
慶寛 亀田
Makoto Ashiura
誠 芦浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2007139377A priority Critical patent/JP5194560B2/en
Publication of JP2008291147A publication Critical patent/JP2008291147A/en
Application granted granted Critical
Publication of JP5194560B2 publication Critical patent/JP5194560B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a rubber composition for a pneumatic tire having improved flat spot resistance performance and abrasion resistance performance of a rubber composition comprising a diene-based rubber and a filler such as silica, carbon black etc., and the pneumatic tire using the same. <P>SOLUTION: The rubber composition for tire comprises 100 pts.wt. of a diene-based rubber, 60-120 pts.wt. of a silica-containing reinforcing filler and contains 2-15 wt.% based on the silica weight of a silane coupling agent in which the diene-based rubber comprises ≥10 pts.wt. of mercaptosilyl-modified diene-based rubber. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明はタイヤ用ゴム組成物に関し、更に詳しくはジエン系ゴム及びシリカ、カーボンブラック等の充填剤を含み、耐フラットスポット性能及び耐摩耗性能に優れたタイヤ用ゴム組成物並びにそれを用いた空気入りタイヤに関する。   TECHNICAL FIELD The present invention relates to a rubber composition for tires, and more particularly, a rubber composition for tires which contains a diene rubber and a filler such as silica and carbon black and has excellent flat spot resistance and wear resistance, and air using the same. Related to tires.

近年、空気入りタイヤの補強性充填剤として、シリカを用いることによって、燃費、ウェット性能、転がり抵抗などに優れたゴム組成物が実用化されている。しかしながら、シリカはゴム組成物中における分散性に難点があり、そのため強度や耐摩耗性に問題がある。
かかる問題を解決すべく種々の提案がなされており、例えば特許文献1にはゴムの末端にシリカと相互作用する変性基を修飾することにより、シリカとの相溶性を高め、シリカの分散性を向上させる提案がなされている。
しかしながら、ゴム組成物中のシリカの分散性を高めることは依然として望まれている。
In recent years, a rubber composition excellent in fuel consumption, wet performance, rolling resistance, and the like has been put into practical use by using silica as a reinforcing filler for a pneumatic tire. However, silica has a difficulty in dispersibility in the rubber composition, and therefore has a problem in strength and wear resistance.
Various proposals have been made to solve such problems. For example, Patent Document 1 modifies a modifying group that interacts with silica at the end of rubber, thereby improving compatibility with silica and increasing dispersibility of silica. Proposals for improvement have been made.
However, it remains desirable to increase the dispersibility of silica in rubber compositions.

WO 03/087171号WO 03/087171

従って、本発明の目的は、ジエン系ゴム及びシリカを含む、補強性充填剤を含有するゴム組成物の耐フラットスポット性能及び耐摩耗性能を改良することにある。   Accordingly, an object of the present invention is to improve the flat spot resistance and wear resistance of a rubber composition containing a reinforcing filler, including a diene rubber and silica.

本発明に従えば、ジエン系ゴム100重量部、シリカを含む補強性充填剤60〜120重量部及びシリカ重量に対して2〜15重量%のシランカップリング剤を含んでなり、前記ジエン系ゴムが下記式(I)〜(III)から選ばれる少なくとも1種のジエン系ゴム10重量部以上を含むタイヤ用ゴム組成物。

Figure 2008291147
(式中、R〜Rは、重量平均分子量が1000以上のジエン系重合体部分を示し、Rは炭素数1〜8のアルキル基又は水素を示す。)並びにそれをトレッドに用いた空気入りタイヤが提供される。 According to the present invention, the diene rubber comprises 100 parts by weight of a diene rubber, 60 to 120 parts by weight of a reinforcing filler containing silica, and 2 to 15% by weight of a silane coupling agent based on the weight of silica. Is a rubber composition for tires containing 10 parts by weight or more of at least one diene rubber selected from the following formulas (I) to (III).
Figure 2008291147
(Wherein R 1 to R 6 represent a diene polymer portion having a weight average molecular weight of 1000 or more, R represents an alkyl group having 1 to 8 carbon atoms or hydrogen) and air using the same for a tread Entered tires are provided.

本発明によれば、ジエン系ゴム及びシリカ、カーボンブラック等の充填剤を含有するゴム組成物に特殊なジエン系ゴムを配合することにより、従来のゴム組成物よりシリカ分散性に優れ、耐フラットスポット性能及び耐摩耗性能に優れたタイヤ用ゴム組成物を得ることができる。   According to the present invention, by blending a special diene rubber with a diene rubber and a rubber composition containing a filler such as silica and carbon black, the silica dispersibility is superior to that of a conventional rubber composition, and flat resistance is improved. A rubber composition for tires excellent in spot performance and wear resistance performance can be obtained.

本発明者らは、前記課題を解決すべく研究を進めた結果、前記した特殊な変性ジエン系ゴム(I)、(II)又は(III)をゴム組成物に配合することにより、従来のゴム組成物よりシリカ分散性に優れ、特に耐フラットスポット性能及び耐摩耗性能に優れたタイヤ用ゴム組成物が得られることを見出した。   As a result of researches to solve the above-mentioned problems, the present inventors have blended the above-mentioned special modified diene rubber (I), (II) or (III) into a rubber composition, thereby producing a conventional rubber. It has been found that a rubber composition for a tire is obtained which is superior in silica dispersibility than the composition, and particularly excellent in flat spot resistance and abrasion resistance.

即ち、本発明によれば、例えば天然ゴム(NR)、ポリイソプレンゴム(IR)、ポリブタジエンゴム(BR)、スチレンブタジエン共重合体ゴム(SBR)、ブチルゴム(IIR)、エポキシ化天然ゴムなどのジエン系ゴムが100重量部に対し、シリカを含む補強性充填剤60〜120重量部、好ましくは60〜100重量部及びシリカ重量に対して2〜15重量%、好ましくは4〜12重量%のシランカップリング剤などを配合したゴム組成物であって、前記ジエン系ゴムに前記式(I)〜(III)から選ばれる少なくとも1種の変性ジエン系ゴムを10重量部以上配合する。   That is, according to the present invention, dienes such as natural rubber (NR), polyisoprene rubber (IR), polybutadiene rubber (BR), styrene butadiene copolymer rubber (SBR), butyl rubber (IIR), epoxidized natural rubber, etc. 60 to 120 parts by weight, preferably 60 to 100 parts by weight of a reinforcing filler containing silica, and 2 to 15% by weight, preferably 4 to 12% by weight, of silica based on 100 parts by weight of the rubber A rubber composition containing a coupling agent or the like, wherein 10 parts by weight or more of at least one modified diene rubber selected from the formulas (I) to (III) is added to the diene rubber.

前記式(I)〜(III)において、R〜Rはそれぞれ独立にクロマトグラフィー法で測定した重量平均分子量(Mw)が1000以上の、好ましくは10000以上のジエン系重合体、好ましくはSBR、BR、IRから構成される部分を示し、またRは炭素数1〜8、好ましくは1〜2の最も好ましくは炭素数2のアルキル基又は水素を示す。この変性ジエン系ゴムの配合量が少ないと、所望の効果が無いので好ましくない。 In the formulas (I) to (III), R 1 to R 6 are each a diene polymer having a weight average molecular weight (Mw) measured by a chromatography method of 1000 or more, preferably 10,000 or more, preferably SBR. , BR and IR, and R represents an alkyl group having 1 to 8 carbon atoms, preferably 1 to 2 carbon atoms, and most preferably 2 having 2 carbon atoms. If the amount of the modified diene rubber is too small, there is no desired effect, which is not preferable.

補強性充填剤の配合量が60重量部未満では、補強性が低く、タイヤ用として実用的でなくなるので好ましくない。120重量部を超えると混合性が悪化し、ゴム組成物の物性が低下するので好ましくない。前記補強性充填剤のうちシリカ含量は、50〜100重量部であるのが好ましく、更に好ましくは、55〜100重量部、更に一層好ましくは、60〜95重量部であるのが好ましく、70〜95重量部であるのが更に好ましい。シリカの配合量は基本的には多ければ多いほど良いが、多すぎるとゴムの破断強度を逆に低くしてしまい、耐摩耗性が悪化する傾向にあるので好ましくない。   When the blending amount of the reinforcing filler is less than 60 parts by weight, the reinforcing property is low and it is not practical for tires, which is not preferable. If it exceeds 120 parts by weight, the mixing property is deteriorated and the physical properties of the rubber composition are lowered, which is not preferable. The silica content in the reinforcing filler is preferably 50 to 100 parts by weight, more preferably 55 to 100 parts by weight, still more preferably 60 to 95 parts by weight, and preferably 70 to 95 parts by weight. More preferred is 95 parts by weight. Basically, the larger the amount of silica, the better. However, if the amount is too large, the breaking strength of the rubber is lowered, and the wear resistance tends to deteriorate.

シランカップリング剤の量はシリカに対し、2重量%未満ではシリカ凝集を十分抑えることができず、ゴム組成物の破断強度を落としてしまい好ましくなく、逆に15重量%を超えると混合中にヤケが発生し加工性が悪化するので好ましくない。   If the amount of the silane coupling agent is less than 2% by weight with respect to silica, silica aggregation cannot be sufficiently suppressed, and the breaking strength of the rubber composition is lowered. Discoloration occurs and processability deteriorates, which is not preferable.

前記変性ジエン系ゴムの配合量がジエン系ゴム100重量部中、10重量部未満では所望の改良効果が得にくい。好ましくは15重量部以上、更に好ましくは20重量部以上で、上限は特にないが、コストと物性とのバランスを考慮すれば30重量部であるのが好ましい。   If the amount of the modified diene rubber is less than 10 parts by weight in 100 parts by weight of the diene rubber, it is difficult to obtain a desired improvement effect. Preferably it is 15 parts by weight or more, more preferably 20 parts by weight or more, and there is no particular upper limit, but it is preferably 30 parts by weight considering the balance between cost and physical properties.

前記式(I)〜(III)において、R〜Rはそれぞれ同じであっても異なっても良く、R〜RはそれぞれMwが75,000〜500,000のスチレンブタジエン共重合体であるのが好ましく、1,4結合が5〜20%,1,2結合が40〜72%、スチレン量が12〜45重量%であり、示差熱分析計(DSC)で測定したガラス転移温度が−45℃〜−10℃であるのが好ましい。変性ジエン系ゴムの重量平均分子量が小さいと変性ジエン系ゴムのせん断力が小さく好ましくない。なお、変性ジエン系ゴムの重量平均分子量が高すぎると原料ゴムの粘度が高く、混合性が悪化する。変性SBRの重量平均分子量は、好ましくは100,000〜500,000、更に好ましくは、150,000〜500,000である。スチレン量が12重量%未満ではポリマーの強度が低くなって、せん断力が小さくなるおそれがあり、逆に45重量%を超えると発熱が高くなりすぎてしまいコンプレッションセット値が悪化するおそれがあるので好ましくない。ガラス転移温度が−45℃未満ではグリップ力が低くなるおそれがあり、逆に−10℃より高いと転がり抵抗が悪化するおそれがある。 In the formulas (I) to (III), R 1 to R 6 may be the same or different, and R 1 to R 6 are styrene butadiene copolymers each having Mw of 75,000 to 500,000. The glass transition temperature is preferably 5 to 20% for 1,4 bonds, 40 to 72% for 1,2 bonds, 12 to 45% by weight of styrene, and measured by a differential thermal analyzer (DSC). Is preferably −45 ° C. to −10 ° C. If the weight average molecular weight of the modified diene rubber is small, the shear force of the modified diene rubber is small, which is not preferable. If the weight average molecular weight of the modified diene rubber is too high, the viscosity of the raw rubber is high and the mixing property is deteriorated. The weight average molecular weight of the modified SBR is preferably 100,000 to 500,000, more preferably 150,000 to 500,000. If the amount of styrene is less than 12% by weight, the strength of the polymer may be reduced and the shearing force may be reduced. Conversely, if the amount exceeds 45% by weight, the heat generation becomes too high and the compression set value may deteriorate. It is not preferable. If the glass transition temperature is less than −45 ° C., the gripping power may be lowered. Conversely, if the glass transition temperature is higher than −10 ° C., rolling resistance may be deteriorated.

前記式(I)〜(III)の変性ジエン系ゴムは一般的には以下のようにして製造することができる。炭化水素溶媒中にて、スチレン、ブタジエンをモノマーとして、有機リチウム化合物及びエーテルやアミン等の極性化合物を触媒として、リチウムアニオン重合を行う。反応停止剤として、予め合成したビニルエーテル化合物を適量投入し、重合完了後、回収、洗浄、乾燥することにより得ることができる。   The modified diene rubbers of the above formulas (I) to (III) can generally be produced as follows. Lithium anion polymerization is carried out in a hydrocarbon solvent using styrene and butadiene as monomers and using an organic lithium compound and a polar compound such as ether or amine as a catalyst. As a reaction terminator, an appropriate amount of a pre-synthesized vinyl ether compound is added, and it can be obtained by collecting, washing and drying after completion of polymerization.

本発明に係るゴム組成物には、前記した成分に加えて、シリカやカーボンブラック以外他の補強剤(フィラー)、加硫又は架橋剤、加硫又は架橋促進剤、各種オイル、老化防止剤、可塑剤などのタイヤ用、その他のゴム組成物用に一般的に配合されている各種添加剤を配合することができ、かかる添加剤は一般的な方法で混練して組成物とし、加硫又は架橋するのに使用することができる。これらの添加剤の配合量は本発明の目的に反しない限り、従来の一般的な配合量とすることができる。   In addition to the components described above, the rubber composition according to the present invention includes other reinforcing agents (fillers) other than silica and carbon black, vulcanization or crosslinking agents, vulcanization or crosslinking accelerators, various oils, anti-aging agents, Various additives generally blended for tires such as plasticizers and other rubber compositions can be blended, and such additives are kneaded into a composition by a general method to be vulcanized or Can be used to crosslink. As long as the amount of these additives is not contrary to the object of the present invention, a conventional general amount can be used.

以下、実施例によって本発明を更に説明するが、本発明の範囲をこれらの実施例に限定するものでないことはいうまでもない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further, it cannot be overemphasized that the scope of the present invention is not limited to these Examples.

合成例
合成例に用いた試薬は以下の通りである。
・シクロヘキサン、スチレンは関東化学(株)製のものを、モレキュラーシーブス4Aにより脱水し、窒素バブリングして用いた。
・ブタジエンは、新日本石油化学(株)製、純度99.3%のブタジエンを前記モレキュラーシーブス4Aにより脱水して用いた。
・n−ブチルリチウムは、関東化学(株)製のn−ヘキサン溶液(1.58mol/L)のものを用いた。
・1,1,4,4−テトラメチルエチレンジアミン(TMEDA)は、前記モレキュラーシーブス4Aにより脱水し、窒素バブリングして用いた。
・トルエンは関東化学(株)製の脱水グレード品をそのまま用いた。
・メルカプトシランは東レダウコーニングシリコーン(株)製Z6911をそのまま用いた。
・シクロヘキシルビニルエーテルは日本カーバイド工業(株)製CHVEをそのまま用いた。
Synthesis Examples The reagents used in the synthesis examples are as follows.
Cyclohexane and styrene were manufactured by Kanto Chemical Co., Ltd., dehydrated with molecular sieves 4A, and used after bubbling with nitrogen.
-Butadiene was manufactured by Shin Nippon Petrochemical Co., Ltd., and butadiene having a purity of 99.3% was dehydrated with the molecular sieves 4A.
-The n-butyllithium used was an n-hexane solution (1.58 mol / L) manufactured by Kanto Chemical Co., Inc.
-1,1,4,4-tetramethylethylenediamine (TMEDA) was dehydrated with the molecular sieve 4A and used after bubbling with nitrogen.
-Toluene used the dehydration grade product made from Kanto Chemical Co., Ltd. as it was.
-Z6911 manufactured by Toray Dow Corning Silicone Co., Ltd. was used as the mercaptosilane.
-As cyclohexyl vinyl ether, CHVE manufactured by Nippon Carbide Industry Co., Ltd. was used as it was.

合成例1:SBR−MS01の合成
ブロック化メルカプトシラン(α)の合成法
メルカプトシラン119.2g(0.5mol)とシクロヘキシルビニルエーテル63.1g(0.5mol)を、リン酸エステル触媒存在下、室温で1時間反応させ、メルカプト基をビニルエーテルによりブロックしたブロック化メルカプトシラン(α)を得た。
Synthesis Example 1: Synthesis of SBR-MS01
Synthesis Method of Blocked Mercaptosilane (α) Mercaptosilane ( 119.2 g, 0.5 mol) and cyclohexyl vinyl ether (63.1 g, 0.5 mol) were reacted in the presence of a phosphate ester catalyst at room temperature for 1 hour to form a mercapto group. A blocked mercaptosilane (α) blocked with vinyl ether was obtained.

SBR−MS01の合成
窒素置換された内容量10Lのオートクレーブ反応器に、シクロヘキサン4533g、スチレン167.4g(1.607mol)、ブタジエン634.4g(11.73mol)及びTMEDA1.030mL(7.196mmol)を仕込み、攪拌を開始した。反応容器内の内容物の温度を50℃にした後、n−ブチルリチウム3.883mL(6.915mmol)を添加した。重合転化率が100%に到達した後、ブロック化メルカプトシラン(α)を1.428g(3.920mmol)を添加し、1時間攪拌した。更に、メタノール0.5mLを添加して30分間攪拌した。得られたポリマー溶液に老化防止剤(イルガノックス1520)を少量添加し、減圧濃縮して溶媒を取り除いた。メタノール中でポリマーを凝固、洗浄した後に、乾燥することにより固形状のポリマーを得た。1H−NMRの測定から、得られたポリマーのミクロ構造は、スチレン量22.0wt%、ビニル量64.3%であった。GPC(ポリスチレン換算、溶出液:THF)による測定から、分子量は、Mn347000,Mw471000,Mw/Mn1.36であった。
Synthesis of SBR-MS01 Into an autoclave reactor having a nitrogen content of 10 L, 4533 g of cyclohexane, 167.4 g (1.607 mol) of styrene, 634.4 g (11.73 mol) of butadiene and 1.030 mL (7.196 mmol) of TMEDA were added. Charge and start stirring. After the temperature of the contents in the reaction vessel was 50 ° C., 3.883 mL (6.915 mmol) of n-butyllithium was added. After the polymerization conversion rate reached 100%, 1.428 g (3.920 mmol) of blocked mercaptosilane (α) was added and stirred for 1 hour. Further, 0.5 mL of methanol was added and stirred for 30 minutes. A small amount of an antioxidant (Irganox 1520) was added to the resulting polymer solution, and the solvent was removed by concentration under reduced pressure. The polymer was coagulated and washed in methanol, and then dried to obtain a solid polymer. From the measurement of 1 H-NMR, the microstructure of the polymer obtained was 22.0 wt% styrene and 64.3% vinyl. From the measurement by GPC (polystyrene conversion, eluent: THF), the molecular weight was Mn347000, Mw471000, Mw / Mn1.36.

合成例2Synthesis example 2

ブロック化メルカプトシラン(β)の合成法
メルカプトシラン 238.4g(1.0mol)とシクロヘキシルジビニルエーテル98.2g(0.5mol)をリン酸エステル触媒下、室温で、1時間反応させ、メルカプト基をビニルエーテルによりブロックしたブロック化メルカプトシラン(β)を得た。
Synthesis Method of Blocked Mercaptosilane (β) Mercaptosilane ( 238.4 g, 1.0 mol) and cyclohexyl divinyl ether (98.2 g, 0.5 mol) were reacted at room temperature for 1 hour in the presence of a phosphate ester catalyst to form a mercapto group. A blocked mercaptosilane (β) blocked with vinyl ether was obtained.

SBR−MS02の合成
窒素置換された内容量10Lのオートクレーブ反応器に、シクロヘキサン4533g、スチレン167.4g(1.607mol)、ブタジエン634.4g(11.73mol)及びTMEDA1.030mL(7.196mmol)を仕込み、攪拌を開始した。反応容器内の内容物の温度を50℃にした後、n−ブチルリチウム3.883mL(6.915mmol)を添加した。重合転化率が100%に到達した後、ブロック化メルカプトシラン(β)を1.055g(1.568mmol)を添加し、1時間攪拌した。更に、メタノール0.5mLを添加して30分間攪拌した。得られたポリマー溶液に老化防止剤(イルガノックス1520)を少量添加し、減圧濃縮して溶媒を取り除いた。メタノール中でポリマーを凝固、洗浄した後に、乾燥することにより固形状のポリマーを得た。1H−NMRの測定から、得られたポリマーのミクロ構造は、スチレン量23.2wt%、ビニル量65.7%であった。GPC(ポリスチレン換算、溶出液:THF)による測定から、分子量は、Mn389000,Mw513000,Mw/Mn1.32であった。
Synthesis of SBR-MS02 Into an autoclave reactor with a nitrogen content of 10 L, 4533 g of cyclohexane, 167.4 g (1.607 mol) of styrene, 634.4 g (11.73 mol) of butadiene and 1.030 mL (7.196 mmol) of TMEDA were added. Charge and start stirring. After the temperature of the contents in the reaction vessel was 50 ° C., 3.883 mL (6.915 mmol) of n-butyllithium was added. After the polymerization conversion rate reached 100%, 1.055 g (1.568 mmol) of blocked mercaptosilane (β) was added and stirred for 1 hour. Further, 0.5 mL of methanol was added and stirred for 30 minutes. A small amount of an antioxidant (Irganox 1520) was added to the resulting polymer solution, and the solvent was removed by concentration under reduced pressure. The polymer was coagulated and washed in methanol, and then dried to obtain a solid polymer. From the measurement of 1 H-NMR, the microstructure of the obtained polymer had a styrene content of 23.2 wt% and a vinyl content of 65.7%. From the measurement by GPC (polystyrene conversion, eluent: THF), the molecular weight was Mn389000, Mw513000, Mw / Mn1.32.

Figure 2008291147
Figure 2008291147

実施例1〜4及び比較例1〜2
サンプルの調製
表Iに示す配合において、加硫促進剤と硫黄を除く成分を1.8リットルの密閉型ミキサーで6分間混練し、150℃に達したときに放出してマスターバッチを得た。このマスターバッチに加硫促進剤と硫黄をオープンロールで混練し、ゴム組成物を得た。次に得られたゴム組成物を15×15×0.2cmの金型及びコンプレッション試験用金型(厚さ12.7mm、直径29.0mmの円柱状)、ランボーン摩耗用金型(直径63.5mm、厚さ5mmの円板状)中で160℃で25分間加硫して加硫ゴムシートを調製し、以下に示す試験法で加硫ゴムの物性を測定した。結果は、実施例1では比較例1の値を100として、実施例2〜4では比較例2の値を100として、それぞれ、指数表示した。
Examples 1-4 and Comparative Examples 1-2
Sample preparation In the formulation shown in Table I, the components other than the vulcanization accelerator and sulfur were kneaded for 6 minutes in a 1.8 liter closed mixer and released when the temperature reached 150 ° C to obtain a master batch. A vulcanization accelerator and sulfur were kneaded with this masterbatch with an open roll to obtain a rubber composition. Next, the rubber composition thus obtained was molded into a 15 × 15 × 0.2 cm mold and a compression test mold (thickness 12.7 mm, a cylindrical shape with a diameter of 29.0 mm), a Lambourn wear mold (diameter 63. A vulcanized rubber sheet was prepared by vulcanization at 160 ° C. for 25 minutes in a disk shape having a thickness of 5 mm and a thickness of 5 mm, and the physical properties of the vulcanized rubber were measured by the following test methods. The results are shown as indices in Example 1 with the value of Comparative Example 1 as 100 and in Examples 2 to 4 with the value of Comparative Example 2 as 100.

ゴム物性評価試験法
コンプレッション試験:JIS K6262−1993に従って、70℃×22時間、初期歪25%の条件で測定した。
tanδ(60℃):(株)東洋精機製作所製、粘弾性スペクトロメータを用いて、初期静歪10%、動歪2%、周波数20Hz、雰囲気温度60℃で測定した。
E’(60℃):上記条件にて、貯蔵弾性率E’を測定した。
耐摩耗性:ランボーン摩耗試験機(岩本製作所(株)製)を使して、荷重5kgスリップ率25%の条件にて測定し、試料の摩耗量を計測した。数字が大きいもの程、優れることを示す。
Rubber physical property evaluation test method Compression test: Measured in accordance with JIS K6262-1993 under conditions of 70C x 22 hours and initial strain of 25%.
tan δ (60 ° C.): Measured at an initial static strain of 10%, dynamic strain of 2%, frequency of 20 Hz, and ambient temperature of 60 ° C. using a viscoelastic spectrometer manufactured by Toyo Seiki Seisakusho.
E ′ (60 ° C.): The storage elastic modulus E ′ was measured under the above conditions.
Abrasion resistance: Using a Lambourn abrasion tester (manufactured by Iwamoto Seisakusho Co., Ltd.), the load was measured under the condition of a 5 kg slip rate of 25%, and the amount of wear of the sample was measured. The larger the number, the better.

Figure 2008291147
Figure 2008291147

表I脚注
*1:日本ゼオン(株)製NS116(NMP(N−メチルピロリドン)末端変性SBR)
*2:メルカプトシリル変性SBRMS01(合成例1)
*3:メルカプトシリル変性SBRMS02(合成例2)
*4:日本ゼオン(株)製Nipol1721(37.5重量部油展)
*5:日本ゼオン(株)製NipolBR1220
*6:Rhodia製Zeosil1165MP
*7:東レ・ダウコーニングシリコーン社製Z−6911
*8:東海カーボン(株)製N234級 シーストM
*9:正同化学(株)製酸化亜鉛3種
*10:日本油脂工業(株)製ビーズステアリン酸
*11:フレキシス社製SANTOFLEX 6PPD
*12:大内新興化学工業(株)製サンノック
*13:(株)ジャパンエナジー製プロセスX−140
*14:細井化学工業(株)製油処理硫黄
*15:大内新興化学工業(株)製CZ−G
*16:大内新興化学工業(株)製D−G
Table I footnote * 1: NS116 (NMP (N-methylpyrrolidone) terminal-modified SBR) manufactured by Nippon Zeon Co., Ltd.
* 2: Mercaptosilyl-modified SBRMS01 (Synthesis Example 1)
* 3: Mercaptosilyl-modified SBRMS02 (Synthesis Example 2)
* 4: Nipol 1721 (37.5 parts by weight oil exhibition) manufactured by Nippon Zeon Co., Ltd.
* 5: Nipol BR1220 manufactured by Nippon Zeon Co., Ltd.
* 6: Rhodia Zeosil 1165MP
* 7: Toray Dow Corning Silicone Z-6911
* 8: Tokai Carbon Co., Ltd. N234 grade Seest M
* 9: Three types of zinc oxide manufactured by Shodo Chemical Co., Ltd. * 10: Bead stearic acid manufactured by Nippon Oil & Fats Co., Ltd. * 11: SANTOFLEX 6PPD manufactured by Flexis Corporation
* 12: Sannoch manufactured by Ouchi Shinsei Chemical Co., Ltd. * 13: Process X-140 manufactured by Japan Energy Co., Ltd.
* 14: Hosei Chemical Industries Co., Ltd. oil-treated sulfur * 15: Ouchi Shinsei Chemical Co., Ltd. CZ-G
* 16: DG manufactured by Ouchi Shinsei Chemical Co., Ltd.

表Iに示すように、本発明によれば、耐コンプレッション性がよく、tanδが小さく、E’60℃が高く、シリカ分散に優れたタイヤトレッド用ゴム組成物を得ることができる。   As shown in Table I, according to the present invention, it is possible to obtain a rubber composition for a tire tread having good compression resistance, small tan δ, high E′60 ° C. and excellent silica dispersion.

本発明によれば、ジエン系ゴム及びシリカを含む補強性充填剤を含有するゴム組成物であって、耐フラットスポット性能及び耐摩耗性能に優れたタイヤ用ゴム組成物を得ることができ、空気入りタイヤのトレッド用として使用するのに好適である。   According to the present invention, a rubber composition containing a reinforcing filler containing a diene rubber and silica can be obtained, and a rubber composition for a tire excellent in flat spot resistance and wear resistance can be obtained. It is suitable for use as a tread for entering tires.

Claims (4)

ジエン系ゴム100重量部、シリカを含む補強性充填剤60〜120重量部及びシリカ重量に対して2〜15重量%のシランカップリング剤を含んでなり、前記ジエン系ゴムが下記式(I)〜(III)から選ばれる少なくとも1種のジエン系ゴム10重量部以上を含むタイヤ用ゴム組成物。
Figure 2008291147
(式中、R〜Rは、重量平均分子量が1000以上のジエン系重合体部分を示し、Rは炭素数1〜8のアルキル基又は水素を示す。)
The diene rubber comprises 100 parts by weight of a diene rubber, 60 to 120 parts by weight of a reinforcing filler containing silica, and 2 to 15% by weight of a silane coupling agent based on the weight of silica. A rubber composition for tires containing at least 10 parts by weight of at least one diene rubber selected from (III).
Figure 2008291147
(Wherein, R 1 to R 6 has a weight average molecular weight indicates a diene polymer portion of the 1000 or more, R represents an alkyl group or hydrogen having 1 to 8 carbon atoms.)
前記変性ジエン系ゴムのR〜Rがスチレン−ブタジエン共重合体から構成される請求項1に記載のタイヤ用ゴム組成物。 The tire rubber composition according to claim 1, wherein R 1 to R 6 of the modified diene rubber are composed of a styrene-butadiene copolymer. 前記シリカを含む補強性充填剤のうちのシリカ含量が50〜100重量部である請求項1又は2に記載のタイヤ用ゴム組成物。   The rubber composition for a tire according to claim 1 or 2, wherein a silica content in the reinforcing filler containing silica is 50 to 100 parts by weight. 請求項1〜3のいずれか1項に記載のタイヤ用ゴム組成物をタイヤトレッドに用いた空気入りタイヤ。   A pneumatic tire using the tire rubber composition according to any one of claims 1 to 3 for a tire tread.
JP2007139377A 2007-05-25 2007-05-25 Rubber composition for tire Active JP5194560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007139377A JP5194560B2 (en) 2007-05-25 2007-05-25 Rubber composition for tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007139377A JP5194560B2 (en) 2007-05-25 2007-05-25 Rubber composition for tire

Publications (2)

Publication Number Publication Date
JP2008291147A true JP2008291147A (en) 2008-12-04
JP5194560B2 JP5194560B2 (en) 2013-05-08

Family

ID=40166217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007139377A Active JP5194560B2 (en) 2007-05-25 2007-05-25 Rubber composition for tire

Country Status (1)

Country Link
JP (1) JP5194560B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011122057A (en) * 2009-12-10 2011-06-23 Yokohama Rubber Co Ltd:The Rubber composition for tire
JP2011162625A (en) * 2010-02-08 2011-08-25 Toyo Tire & Rubber Co Ltd Rubber composition for tire tread and pneumatic tire
KR101842086B1 (en) 2011-02-14 2018-03-26 제이에스알 가부시끼가이샤 Rubber composition, method for producing same, and tire

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000344954A (en) * 1999-06-04 2000-12-12 Sumitomo Rubber Ind Ltd Modified diene-based rubber composition
JP2006213777A (en) * 2005-02-01 2006-08-17 Toyo Tire & Rubber Co Ltd Rubber composition for pneumatic tire
WO2007132909A1 (en) * 2006-05-11 2007-11-22 The Yokohama Rubber Co., Ltd. Mercaptosilane (coupling agent) blocked with vinyl ether group, rubber composition using the same, and pneumatic tire
JP2008526577A (en) * 2005-01-14 2008-07-24 株式会社ブリヂストン Tire composition having improved silica reinforcement and vulcanizate thereof
WO2009004918A1 (en) * 2007-07-03 2009-01-08 The Yokohama Rubber Co., Ltd. Sulfur-containing conjugated diolefin copolymer rubber, and rubber composition comprising the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000344954A (en) * 1999-06-04 2000-12-12 Sumitomo Rubber Ind Ltd Modified diene-based rubber composition
JP2008526577A (en) * 2005-01-14 2008-07-24 株式会社ブリヂストン Tire composition having improved silica reinforcement and vulcanizate thereof
JP2006213777A (en) * 2005-02-01 2006-08-17 Toyo Tire & Rubber Co Ltd Rubber composition for pneumatic tire
WO2007132909A1 (en) * 2006-05-11 2007-11-22 The Yokohama Rubber Co., Ltd. Mercaptosilane (coupling agent) blocked with vinyl ether group, rubber composition using the same, and pneumatic tire
WO2009004918A1 (en) * 2007-07-03 2009-01-08 The Yokohama Rubber Co., Ltd. Sulfur-containing conjugated diolefin copolymer rubber, and rubber composition comprising the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011122057A (en) * 2009-12-10 2011-06-23 Yokohama Rubber Co Ltd:The Rubber composition for tire
US8362118B2 (en) 2009-12-10 2013-01-29 The Yokohama Rubber Co., Ltd. Rubber composition for use in tires
JP2011162625A (en) * 2010-02-08 2011-08-25 Toyo Tire & Rubber Co Ltd Rubber composition for tire tread and pneumatic tire
KR101842086B1 (en) 2011-02-14 2018-03-26 제이에스알 가부시끼가이샤 Rubber composition, method for producing same, and tire

Also Published As

Publication number Publication date
JP5194560B2 (en) 2013-05-08

Similar Documents

Publication Publication Date Title
KR101534102B1 (en) End Functional Conjugated Diene Polymer And Method For Preparing The Same
JP5569655B2 (en) Rubber composition for tire, pneumatic tire
JP5515206B2 (en) Method for producing polybutadiene rubber, rubber composition for tire, and tire
WO2019044889A1 (en) Rubber composition for tire
JP4386958B2 (en) Sulfur-containing conjugated diolefin copolymer rubber and rubber composition containing the same
JP5374803B2 (en) Rubber composition for tire tread
KR20170076597A (en) Modified diene polymer, preparation method thereof and modifying agent
JP5205876B2 (en) Rubber composition for tire tread
JP5662231B2 (en) Rubber composition for tire and pneumatic tire
KR101880370B1 (en) Polymer compound, preparation method of modified conjugated diene polymer using the polymer compound and modified conjugated diene polymer
EP3487889B1 (en) A method for producing branched modified rubber and a rubber composition comprising branched modified rubber prepared by the method, and use thereof
JP6213091B2 (en) Rubber composition for undertread
JPH1053671A (en) Rubber composition
JP2018150505A (en) Rubber composition for tire, and pneumatic tire
JP5194560B2 (en) Rubber composition for tire
JP5003011B2 (en) Rubber composition
US20160009834A1 (en) Modified Conjugated Diene Polymer, Method for Producing Same, and Rubber Composition Using Same
JP2019508552A (en) Amine compound, modified conjugated diene polymer containing functional group derived therefrom, and method for producing modified conjugated diene polymer
JP7185645B2 (en) Silane-functionalized poly(farnesene) and rubber compounds containing same
JP2019077832A (en) Rubber composition for studless tires
EP3165565B1 (en) Vulcanized rubber composition and tire using same
JP4687545B2 (en) Modified conjugated diene polymer rubber and rubber composition containing the same
JP2012172000A (en) Rubber composition for tire
JP5937443B2 (en) Rubber composition for tire and pneumatic tire
JP4272289B2 (en) Rubber composition for tire tread

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5194560

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250