JP2008290026A - Cultivation composition - Google Patents

Cultivation composition Download PDF

Info

Publication number
JP2008290026A
JP2008290026A JP2007139565A JP2007139565A JP2008290026A JP 2008290026 A JP2008290026 A JP 2008290026A JP 2007139565 A JP2007139565 A JP 2007139565A JP 2007139565 A JP2007139565 A JP 2007139565A JP 2008290026 A JP2008290026 A JP 2008290026A
Authority
JP
Japan
Prior art keywords
bacteria
anaerobic
culture
culture composition
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007139565A
Other languages
Japanese (ja)
Other versions
JP5218807B2 (en
Inventor
Kazuhiro Kondo
和博 近藤
Yuka Isezaki
由佳 伊勢崎
Miyuki Yatabe
美由紀 谷田部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2007139565A priority Critical patent/JP5218807B2/en
Publication of JP2008290026A publication Critical patent/JP2008290026A/en
Application granted granted Critical
Publication of JP5218807B2 publication Critical patent/JP5218807B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Processing Of Solid Wastes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cultivation composition which rapidly creates anaerobic conditions and preferentially proliferate bacteria concerning the reductive dechlorination reaction of organochlorine compounds. <P>SOLUTION: The cultivation composition is employed for being added to a substance to be treated for purifying the substance to be treated contaminated by organochlorine compounds with anaerobic bacteria having decomposition activity of the organochlorine compounds, and contains methanol, citric acid and a skim milk powder as main components. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、有機塩素化合物により汚染された被処理物質を前記有機塩素化合物の分解活性を有する嫌気性バクテリアによって浄化するために前記被処理物質に添加する培養組成物に関する。   The present invention relates to a culture composition that is added to a substance to be treated in order to purify the substance to be treated contaminated with an organic chlorine compound by an anaerobic bacterium having an activity of decomposing the organic chlorine compound.

テトラクロロエチレン・トリクロロエチレン・1,1,1-トリクロロエタン・ジクロロエチレンなどの有機塩素化合物による土壌・地下水の汚染が深刻な問題となっている。例えばテトラクロロエチレンはドライクリーニングの溶剤として多量に使用され、トリクロロエチレンは脱脂洗浄剤として半導体産業等で多量に使用されており、これらの物質が揮発性であることや焼却等の適切な処理が行われなかったことにより、汚染が生じた。
これらの有機塩素化合物は、難溶性および難分解性物質である。そのため、土壌等に含まれる塩素化有機化合物等の有機塩素化合物を分解し、汚染された環境を浄化するための環境浄化技術の開発が強く望まれている。
Contamination of soil and groundwater with organochlorine compounds such as tetrachloroethylene, trichlorethylene, 1,1,1-trichloroethane, and dichloroethylene has become a serious problem. For example, tetrachlorethylene is used in a large amount as a solvent for dry cleaning, and trichlorethylene is used in a large amount in the semiconductor industry as a degreasing detergent. These substances are volatile and appropriate treatment such as incineration is not performed. Caused contamination.
These organochlorine compounds are hardly soluble and hardly decomposable substances. Therefore, development of environmental purification technology for decomposing organic chlorinated compounds such as chlorinated organic compounds contained in soil or the like and purifying the contaminated environment is strongly desired.

従来、例えばテトラクロロエチレンによる汚染の浄化技術として、汚染された土壌のばっ気・加熱・固化、或いは、汚染された地下水を吸着・触媒酸化する等の物理・化学的な手法が採用されてきた。
しかし、近年、環境浄化手法の1つとして、微生物を活用することにより、汚染物質を分解・無害化して汚染を除去するバイオレメディエーション技術が根本的な修復技術として期待されている(例えば、特許文献1,2)。バイオレメディエーションは、有害な有機化合物を生物学的に分解し、炭酸ガスやメタン・水・無機塩等の無害な物質に変換する技術である。
Conventionally, as a purification technique for contamination by, for example, tetrachlorethylene, physical / chemical methods such as aeration, heating, solidification of contaminated soil, or adsorption / catalytic oxidation of contaminated groundwater have been employed.
However, in recent years, bioremediation technology that removes contamination by decomposing and detoxifying pollutants by utilizing microorganisms as one of the environmental purification methods is expected as a fundamental repair technology (for example, patent literature) 1, 2). Bioremediation is a technology that biologically decomposes harmful organic compounds and converts them into harmless substances such as carbon dioxide, methane, water, and inorganic salts.

特許文献1は、テトラトリクロロエチレンなどの有機塩素化合物による汚染物の浄化方法を開示しており、還元剤の存在下において、化学反応及び微生物の組み合わせによって還元性脱ハロゲン化が促進される。
特許文献2には、嫌気性バクテリアおよび好気性バクテリアを利用した生物学的修復方法と、その際に使用する添加剤について記載してある。当該添加剤には、嫌気性バクテリアの還元的脱ハロゲン化を促進する物質として電子供与体としてのプロピオン酸塩、および、嫌気状態を造成する物質として乳糖を含む。乳糖は、好気性微生物にとって有効な栄養源となる。
Patent Document 1 discloses a method for purifying contaminants with an organic chlorine compound such as tetratrichloroethylene. In the presence of a reducing agent, reductive dehalogenation is promoted by a combination of a chemical reaction and a microorganism.
Patent Document 2 describes a biological repair method using anaerobic bacteria and aerobic bacteria, and additives used at that time. The additive includes propionate as an electron donor as a substance that promotes reductive dehalogenation of anaerobic bacteria, and lactose as a substance that creates an anaerobic state. Lactose is an effective nutrient source for aerobic microorganisms.

その他、特許文献3には、微生物の働きにより有機塩素化合物を還元的に分解させるため、汚染された土壌等に微生物の栄養源となる添加剤を添加する技術が記載してある。当該添加剤には、有機酸とタンパク質とが含まれる。   In addition, Patent Document 3 describes a technique of adding an additive serving as a nutrient source for microorganisms to contaminated soil or the like in order to reductively decompose organochlorine compounds by the action of microorganisms. Such additives include organic acids and proteins.

また、非特許文献1には、メタノールを電子供与体とする嫌気的微生物脱塩素反応に関与するバクテリアを単離培養し、水素とビタミンB12と酢酸を栄養素として、テトラクロロエチレンの嫌気的微生物脱塩素反応が可能であることが記載してある。   Non-patent document 1 discloses that bacteria involved in an anaerobic microbial dechlorination reaction using methanol as an electron donor are isolated and cultured, and anaerobic microbial dechlorination reaction of tetrachloroethylene using hydrogen, vitamin B12, and acetic acid as nutrients. It is described that is possible.

また、非特許文献2には、テトラクロロエチレン等の有機塩素化合物をジクロロエチレンや塩化ビニルにまで分解する微生物集団を解析したところ、分解に関与するバクテリアとして、乳酸菌の一種が特定されたことが記載してある。   Non-Patent Document 2 describes that when a microbial population that decomposes an organic chlorine compound such as tetrachloroethylene into dichloroethylene or vinyl chloride was analyzed, a kind of lactic acid bacteria was identified as a bacterium involved in the decomposition. is there.

特開2003−71431号公報JP 2003-71431 A 特許3538643号Japanese Patent No. 3538643 特開2006−142140号公報JP 2006-142140 A Xavier et al,"Characterization of an H2-Utilizing Enrichment Culture That Reductively Dechlorinates Tetrachloroethene to Vinyl Chloride and Ethene in the Absence of Methanogenesis and Acetogenesis", Applied and Environmental Microbiology, Nov.1995,Vol.61,p.3928-3933Xavier et al, "Characterization of an H2-Utilizing Enrichment Culture That Reductively Dechlorinates Tetrachloroethene to Vinyl Chloride and Ethene in the Absence of Methanogenesis and Acetogenesis", Applied and Environmental Microbiology, Nov.1995, Vol.61, p.3928-3933 水本正浩,「塩素化エチレンの嫌気分解に関する研究開発」,財団法人バイオインダストリー協会独立行政法人新エネルギー産業技術総合開発機構主催,生分解・処理メカニズムの解析と制御技術の開発事業 平成17年度成果報告会講演要旨集 平成17年9月26日,p24〜26Masahiro Mizumoto, “Research and Development on Anaerobic Decomposition of Chlorinated Ethylene”, Organized by New Energy Industrial Technology Development Organization, Bioindustry Association, Biodegradation / Processing Mechanism Analysis and Control Technology Development Project 2005 Results Abstracts of Lecture Meeting September 26, 2005, p24-26

特許文献1に記載の技術では、還元剤の存在下において、化学反応及び微生物の組み合わせによる還元性脱ハロゲン化を促進しているが、化学反応を用いる浄化技術では反応特異性がないため、対象となる土壌により、予測できない副反応が生じる虞がある。従って、再現性のよい浄化を実施するのは困難である。さらに、現場で還元剤を土壌に混合するには、土木作業が必要であるため、経済的ではない。   In the technique described in Patent Document 1, reductive dehalogenation by a combination of a chemical reaction and a microorganism is promoted in the presence of a reducing agent. However, a purification technique using a chemical reaction has no reaction specificity, so Depending on the soil, there may be an unpredictable side reaction. Therefore, it is difficult to carry out purification with good reproducibility. Furthermore, in order to mix the reducing agent with the soil at the site, civil engineering work is required, which is not economical.

特許文献2に記載の添加剤は、プロピオン酸塩および乳糖を含む。しかし、プロピオン酸塩は、電子供与体としては比較的緩やかに効果が現れるため、汚染土壌を迅速に還元的条件とすることは困難である。また、乳糖を利用できない嫌気性バクテリアが存在する。よって、当該添加剤は、どのような場所でも利用できる添加剤ではない。   The additive described in Patent Document 2 includes propionate and lactose. However, since propionate shows an effect as an electron donor relatively slowly, it is difficult to quickly bring the contaminated soil into a reducing condition. There are also anaerobic bacteria that cannot use lactose. Therefore, the additive is not an additive that can be used anywhere.

特許文献3に記載の添加剤では、タンパク質として酵母エキス・麦芽エキス・肉エキス・ペプトン等を含んでおり、これは微生物を培養する一般的な培地成分と類似するため、例えば汚染地下水浄化に関連する微生物を優先的に増殖させるのは困難である。   In the additive described in Patent Document 3, yeast extract, malt extract, meat extract, peptone, etc. are included as proteins, which are related to the purification of contaminated groundwater, for example, because they are similar to general medium components for culturing microorganisms. It is difficult to preferentially proliferate microorganisms.

非特許文献1に記載の技術では、メタノールを唯一の炭素原としてテトラクロロエチレンの脱塩素反応が可能であることを示している。しかし、例えば地下水は好気的な条件であることが多いため、汚染地下水の浄化に使用するには不適切である。   The technique described in Non-Patent Document 1 shows that dechlorination of tetrachloroethylene is possible using methanol as the only carbon source. However, for example, groundwater is often an aerobic condition and is not suitable for use in the purification of contaminated groundwater.

非特許文献2には、有機塩素化合物の還元的脱塩素反応に関与するバクテリアを優先的に増殖させる手法については記載されていない。   Non-Patent Document 2 does not describe a technique for preferentially growing bacteria involved in the reductive dechlorination reaction of organochlorine compounds.

従って、本発明の目的は、迅速に嫌気的条件を作出し、有機塩素化合物の還元的脱塩素反応に関与するバクテリアを優先的に増殖する培養組成物を提供することにある。   Accordingly, an object of the present invention is to provide a culture composition that quickly creates anaerobic conditions and preferentially grows bacteria involved in the reductive dechlorination reaction of organochlorine compounds.

上記目的を達成するための本発明に係る培養組成物は、有機塩素化合物により汚染された被処理物質を前記有機塩素化合物の分解活性を有する嫌気性バクテリアによって浄化するために前記被処理物質に添加する培養組成物であって、その第一特徴構成は、メタノール・クエン酸・脱脂粉乳を主成分として含む点にある。   In order to achieve the above object, the culture composition according to the present invention is added to the substance to be treated in order to purify the substance to be treated contaminated with the organic chlorine compound by anaerobic bacteria having an activity of decomposing the organic chlorine compound. The first composition of the culture composition is that it contains methanol, citric acid, and nonfat dry milk as the main components.

一般に、培地などのバクテリア培養環境の酸化還元電位がバクテリアの生育に影響を及ぼす。特に嫌気性バクテリアは、バクテリア培養環境の酸化還元電位が低い、即ち嫌気状態である場合に良好に生育する。本構成の培養組成物は、バクテリア培養環境の酸化還元電位を低下させ、嫌気状態とすることができる。   In general, the redox potential of a bacterial culture environment such as a medium affects the growth of bacteria. In particular, anaerobic bacteria grow well when the bacterial culture environment has a low redox potential, that is, in an anaerobic state. The culture composition of this structure can reduce the oxidation-reduction potential of the bacterial culture environment to an anaerobic state.

当該培養組成物は、メタノール・クエン酸・脱脂粉乳を主成分として含む。
メタノールは、バクテリアの増殖環境の酸化還元電位が低下して嫌気状態となったときに、バクテリアが迅速に利用可能な電子供与体となる。従来、プロピオン酸が電子供与体として利用されていたが(特許文献3)、この場合、迅速に還元的環境を作出するのは困難であった。しかし、本構成のようにメタノールを電子供与体とすることで、バクテリアの増殖環境を迅速に還元的環境とすることができる。
The said culture composition contains methanol, a citric acid, and skim milk powder as a main component.
Methanol becomes an electron donor that can be rapidly used by bacteria when the oxidation-reduction potential of the bacterial growth environment decreases and becomes anaerobic. Conventionally, propionic acid has been used as an electron donor (Patent Document 3), but in this case, it has been difficult to quickly create a reducing environment. However, by using methanol as an electron donor as in this configuration, the bacterial growth environment can be rapidly reduced to a reducing environment.

クエン酸は、TCA回路の要素であり、バクテリアの増殖環境を嫌気状態とするために、酸化還元電位の低下に必要な還元エネルギー(NADH)を得ることができる。   Citric acid is an element of the TCA cycle, and in order to make the bacterial growth environment anaerobic, reduction energy (NADH) necessary for lowering the redox potential can be obtained.

脱脂粉乳は、有機塩素化合物の分解に間接的に関与するバクテリア、例えば乳酸菌を増殖させるための栄養素である。   Nonfat dry milk is a nutrient for growing bacteria, such as lactic acid bacteria, indirectly involved in the decomposition of organochlorine compounds.

本構成の培養組成物をバクテリアの培養環境に添加することで、バクテリアの増殖環境の酸化還元電位を低下させて迅速に嫌気状態とし、難分解性の有害物質である有機塩素化合物を還元的脱塩素反応により直接分解することができる嫌気性バクテリア、および、有機塩素化合物の分解に間接的に関与するバクテリアを、他のバクテリアに優先して増殖させることが可能となる。   By adding the culture composition of this configuration to the bacterial culture environment, the oxidation-reduction potential of the bacterial growth environment is lowered to rapidly anaerobic, and organochlorine compounds, which are hardly degradable harmful substances, are reductively removed. Anaerobic bacteria that can be directly degraded by the chlorine reaction and bacteria that are indirectly involved in the degradation of organochlorine compounds can be grown in preference to other bacteria.

そして、培養環境を迅速に嫌気的条件に調整した結果、嫌気性バクテリアの増殖と代謝とを行わせることにより、有機塩素系化合物の分解時間の短縮および分解効率を向上できる状態で被処理物質を浄化することができる。   And as a result of quickly adjusting the culture environment to anaerobic conditions, by allowing the growth and metabolism of anaerobic bacteria, the substance to be treated can be shortened and the decomposition efficiency can be improved. Can be purified.

本発明に係る培養組成物の第二特徴構成は、前記メタノールの濃度を5〜100mM、前記クエン酸の濃度を0.5〜10mM、前記脱脂粉乳の濃度を0.0005〜0.01%とした点にある。   The second characteristic configuration of the culture composition according to the present invention is that the concentration of methanol is 5 to 100 mM, the concentration of citric acid is 0.5 to 10 mM, and the concentration of skim milk powder is 0.0005 to 0.01%. It is in the point.

上記第二特徴構成によれば、培養組成物の各成分を上記濃度範囲とすることで、バクテリア増殖環境の酸化還元電位を、有機塩素化合物を直接分解する嫌気性バクテリアが良好に増殖できるレベルとなるように設定することができる。   According to said 2nd characteristic structure, by making each component of a culture composition into the said density | concentration range, the level at which the anaerobic bacterium which decomposes | disassembles an organic chlorine compound directly can be favorably grown by making the oxidation reduction potential of a bacterial growth environment into Can be set to

以下、本発明の実施例を図面に基づいて説明する。
本発明は、有機塩素化合物により汚染された被処理物質を前記有機塩素化合物の分解活性を有する嫌気性バクテリアによって浄化するために前記被処理物質に添加する培養組成物である。
当該培養組成物は、メタノール・クエン酸・脱脂粉乳を主成分として含む。
Embodiments of the present invention will be described below with reference to the drawings.
This invention is a culture composition added to the said to-be-processed substance in order to purify the to-be-processed substance contaminated with the organochlorine compound with the anaerobic bacteria which have the decomposition activity of the said organochlorine compound.
The said culture composition contains methanol, a citric acid, and skim milk powder as a main component.

本明細書では、被処理物質とは、例えばテトラクロロエチレン等の有機塩素化合物によって汚染された土壌・地下水・汚泥・焼却灰等のことを示す。
当該有機塩素化合物としては、テトラクロロエチレン・トリクロロエチレン・1,1,1-トリクロロエタン・ジクロロエチレンや、ポリ塩化ジベンゾダイオキシン類(PCDD)、ポリ塩化ジベンゾフラン(PCDF)などのダイオキシン類等が例示される。
In this specification, a to-be-processed substance shows the soil, groundwater, sludge, incinerated ash, etc. which were contaminated with organochlorine compounds, such as tetrachloroethylene, for example.
Examples of the organic chlorine compounds include tetrachloroethylene, trichloroethylene, 1,1,1-trichloroethane, dichloroethylene, dioxins such as polychlorinated dibenzodioxins (PCDD) and polychlorinated dibenzofurans (PCDF), and the like.

当該有機塩素化合物の分解能を有する嫌気性バクテリアの代表的な例としては、デハロコッコイデス(Dehalococcoides)属、メタノバクテリウム(Methanobacterium)属、メタノサルシナ(Methanosarcina)属、メタノロブス(Methanolobus)属、アセトバクテリウム(Acetobacterium)属、デスルフォバクテリウム(Desulfobacterium)属、デスルフォモニル(Desulfomonile)属、デハロスピリルム(Dehalospirillum)属、デハロバクター(Dehalobacter)属、デハロバクテリウム(Dehalobacterium)属、クロストリジウム(Clostridium)属等のバクテリアが例示される。   Representative examples of anaerobic bacteria having the ability to resolve organochlorine compounds include the genus Dehalococcoides, Methanobacterium, Methanosarcina, Methanolobus, and Acetobacteria. Bacteria such as genus Acetobacterium, genus Desulfobacterium, genus desulfomonile, genus Dehalospirillum, genus Dehalobacter, genus Dehalobacterium, genus Clostridium Is exemplified.

上述したように、有機塩素化合物の分解微生物集団には、分解に関与するバクテリアとして乳酸菌の一種が存在することが明らかにされている。即ち、当該乳酸菌は有機塩素化合物の分解に間接的に関与すると考えられる。
当該乳酸菌としては、例えばラクトバシラス(Lactobacillus)属、ビフィドバクテリウム(Bifidobacterium)属、ラクトコッカス(Lactococcus)属、ペディオコッカス(Pediococcus)属、リューコノストックLeuconostoc)属等が挙げられる。
As described above, it has been clarified that one type of lactic acid bacterium is present as a bacterium involved in the decomposition in the microbial population that decomposes organic chlorine compounds. That is, it is considered that the lactic acid bacteria are indirectly involved in the decomposition of the organic chlorine compound.
Examples of the lactic acid bacteria include the genus Lactobacillus, the genus Bifidobacterium, the genus Lactococcus, the genus Pediococcus, and the genus Leuconostoc.

その他、有機塩素化合物の分解に間接的に関与すると考えられるバクテリアとしては、緑膿菌が挙げられ、その他のバクテリアとして、シュードモナス属(Pseudomonas sp.)、ブルコデリア属(Burkoderia sp.)、ロドコッカス属(Rhodococcus sp.)等が例示される。   Other bacteria that are considered to be indirectly involved in the degradation of organochlorine compounds include Pseudomonas aeruginosa, and other bacteria include Pseudomonas sp., Burkoderia sp., Rhodococcus sp. Rhodococcus sp.) And the like.

従って、有機塩素化合物の還元的脱塩素反応に直接関与する嫌気性バクテリア、および、有機塩素化合物の分解に間接的に関与する乳酸菌が、有機塩素化合物の還元的脱塩素反応に重要なバクテリアであることが判る。   Therefore, anaerobic bacteria that are directly involved in the reductive dechlorination reaction of organochlorine compounds and lactic acid bacteria that are indirectly involved in the degradation of organochlorine compounds are important bacteria for the reductive dechlorination reaction of organochlorine compounds. I understand that.

本発明の培養組成物は、有機塩素化合物の分解に直接的および間接的に関与するバクテリア群を優先的に増殖させるものである。
一般に、培地などのバクテリア培養環境の酸化還元電位がバクテリアの生育に影響を及ぼす。嫌気性バクテリアは、バクテリア培養環境の酸化還元電位が低い嫌気状態である場合に良好に生育する。本発明の培養組成物は、バクテリア培養環境の酸化還元電位を低下させる。
上述したように、本発明の培養組成物は、メタノール・クエン酸・脱脂粉乳を主成分として含む。
The culture composition of the present invention preferentially grows a group of bacteria that are directly and indirectly involved in the degradation of organochlorine compounds.
In general, the redox potential of a bacterial culture environment such as a medium affects the growth of bacteria. Anaerobic bacteria grow well when they are in an anaerobic state where the redox potential of the bacterial culture environment is low. The culture composition of the present invention reduces the redox potential of the bacterial culture environment.
As described above, the culture composition of the present invention contains methanol, citric acid, and nonfat dry milk as main components.

メタノールは、バクテリアの増殖環境の酸化還元電位が低下して嫌気状態となったときに、バクテリアが迅速に利用可能な電子供与体となる。メタノールを電子供与体とすることで、バクテリアの増殖環境を迅速に還元的環境とすることができる。
また、好気性バクテリア(例えばシュードモナス属(Pseudomonas sp.))・通性嫌気性バクテリア(例えばクレブシエラ属(Klebsiella sp.))・偏性嫌気性バクテリア(例えばクロストリジウム属(Clostridium sp.),メタノサルシナ属(Methanosarcina sp.))は、メタノールによりビタミンB12を産生することが知られている。ビタミンB12は、例えばデハロコッコイデスの生育には必須の栄養素である。従って、当該培養組成物に添加したメタノールは、バクテリアが迅速に利用できる電子供与体としてだけでなく、バクテリアの増殖環境に存在する土壌細菌群に、デハロコッコイデスの必須栄養素を合成させることができる。
Methanol becomes an electron donor that can be rapidly used by bacteria when the oxidation-reduction potential of the bacterial growth environment decreases and becomes anaerobic. By using methanol as an electron donor, the bacterial growth environment can be rapidly reduced to a reducing environment.
In addition, aerobic bacteria (for example, Pseudomonas sp.), Facultative anaerobic bacteria (for example, Klebsiella sp.), Obligate anaerobic bacteria (for example, Clostridium sp., Methanosarcina ( Methanosarcina sp.)) Is known to produce vitamin B12 with methanol. Vitamin B12 is an essential nutrient for the growth of, for example, dehalococcides. Therefore, the methanol added to the culture composition can synthesize the essential nutrients of dehalococcides not only as an electron donor that can be rapidly utilized by bacteria, but also in soil bacteria existing in the bacterial growth environment. it can.

クエン酸は、TCA回路の要素であり、バクテリアの増殖環境を嫌気状態とするために、酸化還元電位の低下に必要な還元エネルギー(NADH)を得ることができる。   Citric acid is an element of the TCA cycle, and in order to make the bacterial growth environment anaerobic, reduction energy (NADH) necessary for lowering the redox potential can be obtained.

脱脂粉乳は、有機塩素化合物の分解に関与するバクテリア、例えば乳酸菌を増殖させるための栄養素である。
脱脂粉乳は、例えば原料乳の乳脂肪分を除去したものから殆ど全ての水分を除去した後、粉末状に乾燥したものである。原料乳は特に制約されるものではないが、牛・ヒトなど各種哺乳動物から得られた乳が用いられる。脱脂粉乳の製造工程は通常の工程であればよい。例えば、原料乳を減圧下で加熱して濃縮し、その後噴霧乾燥する。本発明の培養組成物に使用する脱脂粉乳においては、特定の成分量を調整する必要はない。
脱脂粉乳の組成は、例えば、脱脂粉乳100g中、タンパク質34.0g、脂質1.0g、炭水化物53.3g、灰分7.9g及びビタミンB群2mg、Ca・Na・K・Mg・P等5g程度の無機質を含む。原料乳の種類等によって多少の変動は許容される。
Nonfat dry milk is a nutrient for growing bacteria involved in the decomposition of organochlorine compounds, such as lactic acid bacteria.
Non-fat dry milk is, for example, dried from powdered milk after removing almost all moisture from the raw milk. The raw milk is not particularly limited, but milk obtained from various mammals such as cows and humans is used. The manufacturing process of skim milk powder should just be a normal process. For example, raw milk is concentrated by heating under reduced pressure, and then spray-dried. In skim milk powder used in the culture composition of the present invention, it is not necessary to adjust the amount of specific components.
The composition of skim milk powder is, for example, about 3 g of protein 34.0 g, fat 1.0 g, carbohydrate 53.3 g, ash 7.9 g and vitamin B group 2 mg, Ca, Na, K, Mg, P, etc. Contains minerals. Some variation is allowed depending on the type of raw milk.

本発明の培養組成物を被処理物質に添加することにより、バクテリアの増殖環境の酸化還元電位を低下させて迅速に嫌気状態とし、有機塩素化合物を還元的脱塩素反応により分解することができる嫌気性バクテリア、および、有機塩素化合物の分解に間接的に関与するバクテリアを、他のバクテリアに優先して増殖させることが可能となる。   By adding the culture composition of the present invention to the substance to be treated, the anaerobic state can be rapidly reduced to anaerobic state by reducing the redox potential of the bacterial growth environment, and the organochlorine compound can be decomposed by reductive dechlorination reaction. It is possible to grow bacterial bacteria and bacteria that are indirectly involved in the degradation of organochlorine compounds in preference to other bacteria.

本発明の培養組成物の使用態様としては、被処理物質が汚染地下水等の液体の場合は、培養組成物の各成分を含んだ錠剤或いは液体の態様として使用できる。一方、被処理物質が汚染土壌の場合は、培養組成物の各成分を含んだ液体の態様として使用することができる。上記使用態様は一例であり、これらの態様に限られるものではない。   As a usage mode of the culture composition of the present invention, when the substance to be treated is a liquid such as contaminated groundwater, it can be used as a tablet or a liquid mode containing each component of the culture composition. On the other hand, when a to-be-processed substance is contaminated soil, it can be used as an aspect of the liquid containing each component of a culture composition. The above usage modes are examples, and the present invention is not limited to these modes.

以下の実験により、本発明の培養組成物を用いた場合における、デハロコッコイデス属によるトリクロロエチレンの分解能力について検討した。   The following experiment examined the ability of dehalococcides to decompose trichlorethylene when the culture composition of the present invention was used.

本発明の培養組成物において、各成分の添加の有無および濃度条件を種々変更し、有機塩素化合物であるトリクロロエチレンにより汚染された地下水(被処理物質)に添加して、酸化還元電位を測定した。   In the culture composition of the present invention, the presence or absence of each component and the concentration conditions were variously changed, added to groundwater (substance to be treated) contaminated with trichlorethylene, which is an organic chlorine compound, and the redox potential was measured.

<各成分の添加の有無>
当該汚染地下水を15mLのプラスティックチューブに満たし、さらに、当該培養組成物の3種の成分について、無添加(サンプルNo.1)、単独(サンプルNo.2〜4)、2種混合(サンプルNo.5〜7)、3種混合(サンプルNo.8:本発明の培養組成物)したものを、それぞれ前記汚染地下水に添加した。この状態のチューブを密封して20℃で2週間培養し、酸化還元電位を測定した。結果を表1に示した。尚、脱脂粉乳はスキムミルク粉末(Difco社製)を使用した。
<Presence or absence of addition of each component>
The contaminated groundwater is filled in a 15 mL plastic tube, and the three components of the culture composition are not added (sample No. 1), single (sample No. 2 to 4), or two types (sample No. 1). 5-7) What was mixed 3 types (sample No. 8: culture composition of this invention) was added to the said contaminated groundwater, respectively. The tube in this state was sealed and cultured at 20 ° C. for 2 weeks, and the redox potential was measured. The results are shown in Table 1. In addition, skim milk powder (made by Difco) was used for skim milk powder.

Figure 2008290026
Figure 2008290026

表1の結果より、サンプルNo.1のように、各成分を全く添加しない場合、および、サンプルNo.2〜4のように各成分を単独で添加した場合は、酸化還元電位は、嫌気性バクテリアが成育するのに適する値を示さなかった。一方、サンプルNo.6〜7のように2種混合した培養組成物の場合、および、サンプルNo.8のように3種混合した培養組成物の場合は、酸化還元電位は十分低下し、嫌気性バクテリアが成育するのに適する値を示した。   From the results in Table 1, sample No. No. 1 and the sample No. When each component was added independently like 2-4, the oxidation-reduction potential did not show the value suitable for anaerobic bacteria to grow. On the other hand, sample no. In the case of the culture composition in which two kinds were mixed as in 6 to 7, and In the case of the culture composition in which three kinds were mixed as in 8, the redox potential was sufficiently lowered and showed a value suitable for the growth of anaerobic bacteria.

サンプルNo.1〜4,8について、培養後のバクテリアの存在量を評価するため、PCRを行った。当該PCRでは、有機塩素化合物の分解に間接的に関与するバクテリアとして乳酸菌、および、有機塩素化合物を還元的脱塩素反応により直接分解することができる嫌気性バクテリアとしてデハロコッコイデスの検出を試みた。   Sample No. For 1-4, 8, PCR was performed to evaluate the abundance of the bacteria after culture. In this PCR, we tried to detect lactic acid bacteria as bacteria that are indirectly involved in the degradation of organochlorine compounds, and dehalococcides as anaerobic bacteria that can directly degrade organochlorine compounds by reductive dechlorination. .

乳酸菌の検出において、「Jens et al,"Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella Species in Human Feces by Using Group-Specific PCR Primers and Denaturing Gradient Gel Electrophorisis",APPLIED AND ENVIRONMENTAL MICROBIOLOGY,June 2001,p2578-2585」に記載の情報に基づき、プライマー配列およびPCR増幅条件を設定した。   In the detection of lactic acid bacteria, `` Jens et al, '' Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella Species in Human Feces by Using Group-Specific PCR Primers and Denaturing Gradient Gel Electrophorisis '', APPLIED AND ENVIRONMENTAL MICROBIOLOGY, June 2001, p2578-2585 The primer sequence and PCR amplification conditions were set based on the information described in “1.

プライマーは、乳酸菌の16S rDNAの標的部位に対して設計した特異的プライマー、即ち、フォワードプライマーLac1(配列認識番号1)、リバースプライマーLac2(配列認識番号2)を用いた。   As primers, specific primers designed for the target site of 16S rDNA of lactic acid bacteria, that is, forward primer Lac1 (sequence recognition number 1) and reverse primer Lac2 (sequence recognition number 2) were used.

PCR反応液の組成は、25pmolプライマー(Lac1,Lac2)、0.2mM dNTP、リアクションバッファー、20mMテトラメチルアンモニウムクロリド、25μg BSA、2.5U rTaqポリメラーゼ(アマシャム ファルマシア バイオテック社製)、1μL 鋳型DNA液を混合して、全量を50μLとした。   The composition of the PCR reaction solution was 25 pmol primer (Lac1, Lac2), 0.2 mM dNTP, reaction buffer, 20 mM tetramethylammonium chloride, 25 μg BSA, 2.5 U rTaq polymerase (manufactured by Amersham Pharmacia Biotech), 1 μL template DNA solution To make a total volume of 50 μL.

PCR反応は、GeneAmp2400サーマルサイクラー(パーキンエルマー社製)を用いて行った。PCR増幅条件は、94℃2分の初期変性後、94℃30秒―61℃1分―68℃1分を35サイクル行い、最後に68℃7分の伸長反応を行うように設定した。   The PCR reaction was performed using a GeneAmp2400 thermal cycler (manufactured by PerkinElmer). PCR amplification conditions were set such that after initial denaturation at 94 ° C. for 2 minutes, 35 cycles of 94 ° C. for 30 seconds-61 ° C. for 1 minute-68 ° C. for 1 minute were performed, and finally, an extension reaction was performed at 68 ° C. for 7 minutes.

PCR反応後、1.5%アガロースゲルにてPCR産物の電気泳動を行った。電気泳動終了後、ゲルをエチジウムブロマイドで染色し、乳酸菌由来のPCR産物の有無を評価した(表2)。   After the PCR reaction, the PCR product was electrophoresed on a 1.5% agarose gel. After completion of electrophoresis, the gel was stained with ethidium bromide to evaluate the presence or absence of a PCR product derived from lactic acid bacteria (Table 2).

デハロコッコイデスの検出において、「Theo et al,"Development of a real-time PCR method for quantification of the three genera Deharobacter, Dehalococcoides, and Desulfitobacterium in microbial communities.",Journal of Microbiological Methods, 57(2004)369-378」に記載の情報に基づき、プライマー配列およびPCR増幅条件を設定した。   In the detection of dehalococcides, "Theo et al," Development of a real-time PCR method for quantification of the three genera Deharobacter, Dehalococcoides, and Desulfitobacterium in microbial communities. ", Journal of Microbiological Methods, 57 (2004) 369 -378 ”, primer sequences and PCR amplification conditions were set.

プライマーは、デハロコッコイデスの16S rRNAの標的部位に対して設計した特異的プライマー、即ち、フォワードプライマーDco728F(配列認識番号3)、リバースプライマーDco944R(配列認識番号4)を用いた。
PCR反応液の組成は、QuantiTect SYBR Green PCRマスターミックス5μL(キアゲン社製)、0.8μLプライマー(Dco728F,Dco944R)、2.4μL希釈水、1μL 鋳型DNA液を混合して、全量を10μLとした。
As primers, specific primers designed for the target site of dehalococcides 16S rRNA, ie, forward primer Dco728F (sequence recognition number 3) and reverse primer Dco944R (sequence recognition number 4) were used.
The composition of the PCR reaction solution was 5 μL of QuantiTect SYBR Green PCR Master Mix (manufactured by Qiagen), 0.8 μL primer (Dco728F, Dco944R), 2.4 μL diluted water, 1 μL template DNA solution were mixed to make the total volume 10 μL. .

PCR反応および電気泳動は、PCR増幅条件以外は上述した乳酸菌のPCRによる検出に用いた手法と同様の手法により行った。PCR増幅条件は、94℃15分の初期変性後、94℃30秒―58℃20秒―72℃30秒を50サイクル行うように設定した。
PCR反応および電気泳動終了後、デハロコッコイデス由来のPCR産物の有無を評価した(表2)。
PCR reaction and electrophoresis were performed by the same method as that used for the PCR detection of lactic acid bacteria described above, except for PCR amplification conditions. PCR amplification conditions were set such that after initial denaturation at 94 ° C for 15 minutes, 50 cycles of 94 ° C for 30 seconds-58 ° C for 20 seconds-72 ° C for 30 seconds were performed.
After completion of the PCR reaction and electrophoresis, the presence or absence of a PCR product derived from dehalococcides was evaluated (Table 2).

Figure 2008290026
Figure 2008290026

サンプルNo.3(クエン酸のみ添加)では、デハロコッコイデスは増殖するが、乳酸菌は増殖しない。サンプルNo.2(メタノールのみ添加)、サンプルNo.4(脱脂粉乳のみ添加)では、乳酸菌およびデハロコッコイデスは増殖するが、バクテリアの増殖環境の酸化還元電位(それぞれ+192mV,+28mV)が、メタノール・クエン酸・脱脂粉乳を主成分とする培養組成物(サンプルNo.8)の酸化還元電位(−96mV)に比べて、著しく劣る(表1参照)。   Sample No. At 3 (only citric acid added), dehalococcides grow but lactic acid bacteria do not. Sample No. 2 (only methanol added), sample no. 4 (only skim milk powder added) grows lactic acid bacteria and dehalococcides, but the oxidation-reduction potential of the bacterial growth environment (+192 mV and +28 mV, respectively) is a culture composition mainly composed of methanol, citric acid and skim milk powder. Compared to the oxidation-reduction potential (−96 mV) of the product (sample No. 8) (see Table 1).

<トリクロロエチレンの分解評価>
サンプルNo.1、5〜8について、トリクロロエチレンがどの程度分解されるかを評価した。培養条件において、培養期間を3週間としたこと以外は上述した条件と同様に行った。結果を表4に示した。トリクロロエチレン濃度の測定は、JIS K 0125 5.2の分析方法に従い、ヘッドスペースGC/MS法により行った。
<Degradation evaluation of trichlorethylene>
Sample No. About 1, 5-8, it was evaluated how much trichlorethylene is decomposed | disassembled. The culture conditions were the same as described above except that the culture period was 3 weeks. The results are shown in Table 4. The trichlorethylene concentration was measured by the headspace GC / MS method according to the analysis method of JIS K 0125 5.2.

Figure 2008290026
Figure 2008290026

サンプルNo.6〜7のように、各成分を2種混合して酸化還元電位が十分低下(それぞれ−60mV,−42mV:表1参照)した場合であっても、トリクロロエチレン濃度は、各成分を添加しないサンプルNo.1と略同程度である。そのため、サンプルNo.6,7では、酸化還元電位は十分低下して、嫌気性バクテリア(デハロコッコイデス)が成育するのに適する値を示すのにも関わらず、トリクロロエチレンは殆ど分解されていない。   Sample No. Even if the redox potential is sufficiently lowered by mixing two types of components as in 6 to 7 (−60 mV and −42 mV, respectively, see Table 1), the trichlorethylene concentration is a sample in which each component is not added. No. About the same as 1. Therefore, sample no. In 6 and 7, although the redox potential is sufficiently lowered and shows a value suitable for the growth of anaerobic bacteria (dehalococcides), trichloroethylene is hardly decomposed.

一方、サンプルNo.8のように各成分を3種混合した培養組成物の場合は、他のサンプル(サンプルNo.1,5〜7)に比べて、約20分の1程度にまで減少することが判明した。この場合、酸化還元電位は十分低下して、嫌気性バクテリア(デハロコッコイデス)が成育するのに適する値を示し、かつ、トリクロロエチレンは十分に分解されている。   On the other hand, sample no. In the case of the culture composition in which three kinds of each component were mixed as shown in FIG. 8, it was found that the culture composition was reduced to about 1/20 as compared with the other samples (sample Nos. 1, 5 to 7). In this case, the oxidation-reduction potential is sufficiently lowered to show a value suitable for the growth of anaerobic bacteria (dehalococcides), and trichlorethylene is sufficiently decomposed.

即ち、酸化還元電位の低下、デハロコッコイデスの増殖および有機塩素化合物の分解に影響を与える要因として、例えば他のバクテリアが存在することが示唆される。当該他のバクテリアは、有機塩素化合物の分解に間接的に関与するバクテリアである。   That is, it is suggested that, for example, other bacteria exist as factors affecting the reduction in redox potential, the growth of dehalococcides, and the decomposition of organochlorine compounds. The other bacterium is a bacterium that is indirectly involved in the decomposition of the organochlorine compound.

以上より、メタノール・クエン酸・脱脂粉乳を主成分として含む培養組成物(サンプルNo.8)を使用することにより、トリクロロエチレンは、最終的にはエチレンにまで分解され、被処理物質である汚染地下水は、浄化される。   As described above, by using a culture composition (sample No. 8) containing methanol, citric acid, and nonfat dry milk as main components, trichlorethylene is finally decomposed into ethylene, and contaminated groundwater, which is a substance to be treated. Is purified.

<各成分の濃度条件>
メタノール・クエン酸・脱脂粉乳の各成分を3種混合した培養組成物において、各成分の濃度条件を種々変更して前記汚染地下水に添加し、酸化還元電位を測定した。培養条件は、上述した実験と同様とした。結果を表4に示した。

Figure 2008290026
<Concentration conditions for each component>
In a culture composition in which three components of methanol, citric acid, and nonfat dry milk were mixed, the concentration conditions of each component were variously changed and added to the contaminated groundwater, and the redox potential was measured. The culture conditions were the same as in the experiment described above. The results are shown in Table 4.
Figure 2008290026

表4の結果より、メタノールの濃度が5〜100mM、クエン酸の濃度が0.5〜10mM、脱脂粉乳の濃度が0.0005〜0.01%の場合、嫌気性バクテリアが成育するのに適するのに十分な程度まで酸化還元電位のレベルは低下することが判明した。メタノールの濃度が10〜50mM、クエン酸の濃度が1〜5mM、脱脂粉乳の濃度が0.001〜0.05%の場合は、特に好ましいレベルにまで酸化還元電位のレベルは低下する。   From the results in Table 4, when the concentration of methanol is 5 to 100 mM, the concentration of citric acid is 0.5 to 10 mM, and the concentration of skim milk powder is 0.0005 to 0.01%, it is suitable for anaerobic bacteria to grow. It has been found that the level of redox potential decreases to a sufficient extent. When the concentration of methanol is 10 to 50 mM, the concentration of citric acid is 1 to 5 mM, and the concentration of skim milk powder is 0.001 to 0.05%, the level of the redox potential is lowered to a particularly preferable level.

このように酸化還元電位のレベルが低下すると、バクテリアの増殖環境が嫌気状態となり、有機塩素化合物を還元的脱塩素反応により分解することができる嫌気性バクテリアを、他のバクテリアに優先して増殖させることが可能となる。   Thus, when the level of redox potential decreases, the bacterial growth environment becomes anaerobic, and anaerobic bacteria that can decompose organochlorine compounds by reductive dechlorination are proliferated over other bacteria. It becomes possible.

〔別実施の形態〕
上述した実施形態では、本発明の培養組成物は、有機塩素化合物により汚染された被処理物質を、有機塩素化合物の分解活性を有する嫌気性バクテリアによって浄化するために被処理物質に添加した。
本発明の培養組成物は、このような実施態様に限らず、例えば以下に説明するように、簡便に嫌気培養条件を作出して所望の嫌気性バクテリアを迅速に検出する場合にも利用できる。
[Another embodiment]
In the above-described embodiment, the culture composition of the present invention is added to the material to be treated in order to purify the material to be treated contaminated with the organic chlorine compound by the anaerobic bacteria having the activity of decomposing the organic chlorine compound.
The culture composition of the present invention is not limited to such an embodiment. For example, as described below, the culture composition can be used to easily create anaerobic culture conditions and quickly detect desired anaerobic bacteria.

例えば工場等で使用される工作機械では、切削工具の冷却や切削性、被切削物・機械の温度の上昇防止などの目的で切削油が使用されている。水溶性切削油の場合には、バクテリア等の細菌が発生して悪臭が生じやすい。悪臭の原因となる物質は硫化水素であり、この硫化水素は、嫌気性バクテリアである硫酸還元バクテリアにより、嫌気条件で硫酸イオンが還元されて発生する。   For example, in a machine tool used in a factory or the like, cutting oil is used for the purpose of cooling the cutting tool, cutting performance, and preventing the temperature of the workpiece / machine from rising. In the case of water-soluble cutting oil, bacteria such as bacteria are generated and bad odor is likely to occur. The substance causing bad odor is hydrogen sulfide, and this hydrogen sulfide is generated by sulfate ions being reduced under anaerobic conditions by sulfate-reducing bacteria which are anaerobic bacteria.

硫酸還元バクテリアは、水溶性切削油を希釈する水に含まれる。この希釈水は、通常、殺菌した上水ではなく未殺菌の工業用水や井水である。そのため、悪臭の原因となる硫化水素の発生を未然に防止するためには、当該希釈水に硫酸還元バクテリアが含まれるか否かを検査し、硫酸還元バクテリアが含まれない希釈水を使用する必要がある。   Sulfate-reducing bacteria are contained in the water that dilutes the water-soluble cutting oil. This diluting water is usually not sterilized tap water but unsterilized industrial water or well water. Therefore, in order to prevent the generation of hydrogen sulfide that causes bad odor, it is necessary to check whether the dilution water contains sulfate-reducing bacteria and to use dilution water that does not contain sulfate-reducing bacteria. There is.

希釈水に硫酸還元バクテリアが含まれるか否かを検査するためには、当該希釈水を嫌気培養して硫酸還元バクテリアの検出を試みる。
一般に嫌気培養は、以下の方法が公知である。
酸素存在下では生きられない嫌気性バクテリアを培養するには、培養環境から酸素を除去する必要がある。嫌気培養培地には、培地自体の還元力を高めるために肝臓片を肝臓ブイヨンに加える肝片加肝臓ブイヨン・チオグリコール酸ナトリウム・システインを添加し、SH基の自己酸化によって培地中の酸素を除去するチオグリコレート培地がある。
培養環境から酸素を除去する方法として、物理的に酸素を除去する方法と、化学的に酸素を除去する方法とがある。
物理的に酸素を除去する方法としては、容器内の酸素をポンプによって排出する方法、或いは、厚い培地の底で菌を培養する方法がある。
化学的に酸素を除去する方法としては、化学薬品と水を反応させて水素ガスを発生させ、触媒の働きによって発生した水素ガスと容器内の酸素とを反応させて水にするガスパック法や、金属に酸素を吸収させるスチールウール法、酸素吸収能力の高い細菌とともに培養する方法などが知られている。
In order to test whether the dilution water contains sulfate-reducing bacteria, the dilution water is anaerobically cultured and detection of the sulfate-reducing bacteria is attempted.
In general, the following methods are known for anaerobic culture.
In order to culture anaerobic bacteria that cannot survive in the presence of oxygen, it is necessary to remove oxygen from the culture environment. To anaerobic culture medium, add liver fragment to liver broth to increase the reducing power of the medium itself, liver broth, sodium thioglycolate and cysteine are added, and oxygen in the medium is removed by autooxidation of SH group There is a thioglycolate medium.
As methods for removing oxygen from the culture environment, there are a method of physically removing oxygen and a method of chemically removing oxygen.
As a method of physically removing oxygen, there are a method of discharging oxygen in a container by a pump, or a method of culturing bacteria on the bottom of a thick medium.
As a method of chemically removing oxygen, a gas pack method in which a chemical agent and water are reacted to generate hydrogen gas, and hydrogen gas generated by the action of the catalyst and oxygen in the container are reacted to form water. A steel wool method in which metal absorbs oxygen, a method of culturing with bacteria having high oxygen absorption ability, and the like are known.

しかし、工場等の現場において、上述した嫌気培養を行って希釈水を嫌気培養して硫酸還元バクテリアが含まれるか否かを簡便に判断するのは困難である。   However, it is difficult to easily determine whether or not sulfate-reducing bacteria are contained by performing the above-described anaerobic culture and anaerobically culturing the diluted water at a site such as a factory.

本発明のメタノール・クエン酸・脱脂粉乳を主成分として含む培養組成物を利用すれば、上述した実施形態で示したように、バクテリアの増殖環境の酸化還元電位を低下させて迅速に嫌気状態とし、簡便に嫌気培養することができる。   If the culture composition containing methanol, citric acid, and skim milk powder of the present invention as main components is used, as shown in the above-described embodiment, the oxidation-reduction potential of the bacterial growth environment is lowered to quickly make the anaerobic state. Therefore, anaerobic culture can be easily performed.

<硫酸還元バクテリアの培養>
上述した実施形態に示した培養条件において、汚染地下水に代えて、水溶性切削油を希釈する希釈水(工業用水)を使用したこと以外は、同様の条件で硫酸還元バクテリア(Desulfovibrio sp.)の培養を試みた。使用した培養組成物の成分および濃度も、上述した実施形態で使用したサンプルNo.1〜8と同様とした。この培養条件によって、発生する臭気の有無および沈殿物の色を評価した。結果を表5に示した。
<Culture of sulfate-reducing bacteria>
In the culture conditions shown in the embodiment described above, sulfate-reducing bacteria (Desulfovibrio sp.) Were used under the same conditions except that dilution water (industrial water) for diluting water-soluble cutting oil was used instead of contaminated groundwater. Culture was attempted. The components and concentrations of the culture composition used were also the sample No. used in the above-described embodiment. Same as 1-8. The presence or absence of generated odor and the color of the precipitate were evaluated according to the culture conditions. The results are shown in Table 5.

Figure 2008290026
Figure 2008290026

その結果、サンプルNo.8(本発明の培養組成物)のみで臭気を確認できた。そして沈殿物の色が黒色であることから沈殿物は硫化鉄である。そのため、臭気の成分は硫化水素であるものと認められる。従って、本実施形態の培養条件において硫酸還元バクテリアが培養された。   As a result, sample no. The odor could be confirmed only with 8 (culture composition of the present invention). And since the color of a deposit is black, a deposit is iron sulfide. Therefore, it is recognized that the odor component is hydrogen sulfide. Therefore, sulfate-reducing bacteria were cultured under the culture conditions of this embodiment.

このように、本発明の培養組成物を利用することにより、工場等の現場で簡便に嫌気培養して、所望の嫌気性バクテリアが含まれるか否かを迅速に判断することができる。   As described above, by using the culture composition of the present invention, it is possible to easily determine whether or not a desired anaerobic bacterium is contained by simply performing anaerobic culture at a site such as a factory.

本発明の培養組成物は、有機塩素化合物により汚染された被処理物質を有機塩素化合物の分解活性を有する嫌気性バクテリアによって浄化するために利用できる。   The culture composition of the present invention can be used to purify a substance to be treated contaminated with an organic chlorine compound by an anaerobic bacterium having a decomposition activity of the organic chlorine compound.

Claims (2)

有機塩素化合物により汚染された被処理物質を前記有機塩素化合物の分解活性を有する嫌気性バクテリアによって浄化するために前記被処理物質に添加する培養組成物であって、
メタノール・クエン酸・脱脂粉乳を主成分として含む培養組成物。
A culture composition that is added to the substance to be treated in order to purify the substance to be treated contaminated by the organochlorine compound with an anaerobic bacterium having a decomposition activity of the organochlorine compound,
A culture composition comprising methanol, citric acid and nonfat dry milk as main components.
前記メタノールの濃度が5〜100mM、前記クエン酸の濃度が0.5〜10mM、前記脱脂粉乳の濃度が0.0005〜0.01%である請求項1に記載の培養組成物。   The culture composition according to claim 1, wherein the methanol concentration is 5 to 100 mM, the citric acid concentration is 0.5 to 10 mM, and the skim milk concentration is 0.0005 to 0.01%.
JP2007139565A 2007-05-25 2007-05-25 Culture composition Expired - Fee Related JP5218807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007139565A JP5218807B2 (en) 2007-05-25 2007-05-25 Culture composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007139565A JP5218807B2 (en) 2007-05-25 2007-05-25 Culture composition

Publications (2)

Publication Number Publication Date
JP2008290026A true JP2008290026A (en) 2008-12-04
JP5218807B2 JP5218807B2 (en) 2013-06-26

Family

ID=40165311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007139565A Expired - Fee Related JP5218807B2 (en) 2007-05-25 2007-05-25 Culture composition

Country Status (1)

Country Link
JP (1) JP5218807B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012101201A (en) * 2010-11-12 2012-05-31 Taisei Corp Purification promoting material and purification promoting method
CN103145239A (en) * 2013-03-11 2013-06-12 丽水学院 Quick enriching reaction equipment for anammox
WO2013157556A1 (en) * 2012-04-18 2013-10-24 株式会社Adeka Decomposition accelerator for volatile organic halogen compound
JP2014097013A (en) * 2012-11-14 2014-05-29 Osaka Gas Co Ltd Novel microorganism and method for degrading metal cyano complex

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110026431B (en) * 2019-05-20 2020-12-22 成都科泰技术有限公司 Method for in-situ remediation of cadmium-polluted soil by using microbial nano-material

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07275830A (en) * 1994-04-08 1995-10-24 Keijiro Nakamura Microbiological treatment of vegetable waste and method for utilizing the product
JPH07275333A (en) * 1994-04-12 1995-10-24 Matsushita Electric Ind Co Ltd Deodorant and treatment promoter for raw garbage processor and raw garbage processor
JP2000232876A (en) * 1998-12-15 2000-08-29 Yoshimichi Monma Raw material containing complex effective microorganism
JP2003053321A (en) * 2001-08-10 2003-02-25 Kurita Water Ind Ltd Method of decomposing organic chlorine compound in soil and/or underground water
JP2003053320A (en) * 2001-08-10 2003-02-25 Kurita Water Ind Ltd Biological cleaning method for polluted environment
JP2003071431A (en) * 1997-08-06 2003-03-11 Ebara Corp Method for cleaning thing polluted with halogenated organic compound
JP2003274936A (en) * 2002-03-22 2003-09-30 Osaka Gas Co Ltd Thermophilic protein-degrading microorganism and method for degradation treatment of organic waste
JP2005245344A (en) * 2004-03-05 2005-09-15 Kokusai Kogyo Co Ltd Method for forecasting natural attenuation capacity of polluting material
JP2007028942A (en) * 2005-07-25 2007-02-08 Meiji Milk Prod Co Ltd Selective medium for lactobacteriaceae

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07275830A (en) * 1994-04-08 1995-10-24 Keijiro Nakamura Microbiological treatment of vegetable waste and method for utilizing the product
JPH07275333A (en) * 1994-04-12 1995-10-24 Matsushita Electric Ind Co Ltd Deodorant and treatment promoter for raw garbage processor and raw garbage processor
JP2003071431A (en) * 1997-08-06 2003-03-11 Ebara Corp Method for cleaning thing polluted with halogenated organic compound
JP2000232876A (en) * 1998-12-15 2000-08-29 Yoshimichi Monma Raw material containing complex effective microorganism
JP2003053321A (en) * 2001-08-10 2003-02-25 Kurita Water Ind Ltd Method of decomposing organic chlorine compound in soil and/or underground water
JP2003053320A (en) * 2001-08-10 2003-02-25 Kurita Water Ind Ltd Biological cleaning method for polluted environment
JP2003274936A (en) * 2002-03-22 2003-09-30 Osaka Gas Co Ltd Thermophilic protein-degrading microorganism and method for degradation treatment of organic waste
JP2005245344A (en) * 2004-03-05 2005-09-15 Kokusai Kogyo Co Ltd Method for forecasting natural attenuation capacity of polluting material
JP2007028942A (en) * 2005-07-25 2007-02-08 Meiji Milk Prod Co Ltd Selective medium for lactobacteriaceae

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012101201A (en) * 2010-11-12 2012-05-31 Taisei Corp Purification promoting material and purification promoting method
WO2013157556A1 (en) * 2012-04-18 2013-10-24 株式会社Adeka Decomposition accelerator for volatile organic halogen compound
CN104411370A (en) * 2012-04-18 2015-03-11 株式会社Adeka Decomposition accelerator for volatile organic halogen compound
JPWO2013157556A1 (en) * 2012-04-18 2015-12-21 株式会社Adeka Decomposition accelerator for volatile organic halogen compounds
JP2014097013A (en) * 2012-11-14 2014-05-29 Osaka Gas Co Ltd Novel microorganism and method for degrading metal cyano complex
CN103145239A (en) * 2013-03-11 2013-06-12 丽水学院 Quick enriching reaction equipment for anammox

Also Published As

Publication number Publication date
JP5218807B2 (en) 2013-06-26

Similar Documents

Publication Publication Date Title
Kwon et al. Biodegradation of perfluorooctanesulfonate (PFOS) as an emerging contaminant
Martínez-Pascual et al. Coupling chemical oxidation and biostimulation: effects on the natural attenuation capacity and resilience of the native microbial community in alkylbenzene-polluted soil
Lin et al. Enhancing pentachlorophenol degradation by vermicomposting associated bioremediation
Chen et al. Bioremediation of polychlorinated-p-dioxins/dibenzofurans contaminated soil using simulated compost-amended landfill reactors under hypoxic conditions
JP5218807B2 (en) Culture composition
Chang et al. Anaerobic degradation of tetrabromobisphenol-A in river sediment
Ismaeil et al. Bacteroides sedimenti sp. nov., isolated from a chloroethenes-dechlorinating consortium enriched from river sediment
Hayes et al. Growth kinetics of Hyphomicrobium and Thiobacillus spp. in mixed cultures degrading dimethyl sulfide and methanol
Watsuntorn et al. Hydrogen sulfide oxidation under anoxic conditions by a nitrate-reducing, sulfide-oxidizing bacterium isolated from the Mae Um Long Luang hot spring, Thailand
JPH0292274A (en) Bacterial decomposition of aliphatic chlorine compound and bacterium thereof
JP4021511B2 (en) Purification method for organic chlorine compound contaminants
Wang et al. The influence of anaerobic dechlorination on the aerobic degradation of PCBs in e-waste-contaminated soils in an anaerobic-aerobic two-stage treatment
JP6196137B2 (en) Methods for purifying contaminated soil or water
Nozari et al. Investigation of the effect of co-metabolism on removal of dodecane by microbial consortium from soil in a slurry sequencing bioreactor
JP3834580B2 (en) Additives used to restore contaminated soil, groundwater or sediment
Patil et al. Biostimulation of indigenous communities for the successful dechlorination of tetrachloroethene (perchloroethylene)-contaminated groundwater
JP5303389B2 (en) Soil or groundwater purification agent and purification method
JP2020131136A (en) Anaerobic water flowing system and water flowing anaerobic bio system
TW201631145A (en) Anaerobic bacteria strain for degrading chlorinated organic contaminant and use thereof
JP2005185870A (en) Additive used for restoration of contaminated soil, ground water or bottom deposit
Olubode et al. Biosorption of heavy metals using bacterial isolates from e-waste soil
Xiao et al. Denitrification by Pseudomonas stutzeri coupled with CO2 reduction by Sporomusa ovata with hydrogen as an electron donor assisted by solid-phase humin
JP2005205299A (en) Method for purifying contaminated soil and contaminated water
JP2003251331A (en) Method for biologically restoring polluted soil or underground water, and additive
JP2005270970A (en) Method for decomposing tetrachloroethylene, and dechlorinating microorganism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5218807

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees