JP2008289308A - Overcurrent detection circuit and electronic device using the same - Google Patents

Overcurrent detection circuit and electronic device using the same Download PDF

Info

Publication number
JP2008289308A
JP2008289308A JP2007133624A JP2007133624A JP2008289308A JP 2008289308 A JP2008289308 A JP 2008289308A JP 2007133624 A JP2007133624 A JP 2007133624A JP 2007133624 A JP2007133624 A JP 2007133624A JP 2008289308 A JP2008289308 A JP 2008289308A
Authority
JP
Japan
Prior art keywords
power supply
supply circuit
circuit
load
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007133624A
Other languages
Japanese (ja)
Inventor
Hiroshi Kamee
宏 亀江
Toshihisa Sato
俊久 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007133624A priority Critical patent/JP2008289308A/en
Publication of JP2008289308A publication Critical patent/JP2008289308A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Power Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power supply circuit optimizing an overcurrent detection threshold in accordance with a load by switching the overcurrent detection threshold from a load-side in accordance with a structure of the load such as a type of the load or the number of loads without changing a DC power supply circuit in an overcurrent protection function of the DC power supply circuit. <P>SOLUTION: A switch element 37, a resistor R3c and a resistor R3b are arranged inside the DC power supply circuit 3. Wiring of a point B is taken to outside the DC power supply circuit 3, and it is connected to A of a load 4. Thus, voltage Vc obtained by feeding back a difference between both end potentials of the current detection resistor R1 can be varied from A of the load 4. Consequently, the overcurrent detection threshold of the DC power supply circuit 3 can be varied from the load-side. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、直流電源回路の過電流検出及び過電流保護に関するものである。   The present invention relates to overcurrent detection and overcurrent protection of a DC power supply circuit.

一般に、直流電源回路の出力過電流保護方法の1つとして、出力部に電流検出用抵抗器を設け、この抵抗器で電流値を電圧値として検出し、この検出電圧と電源回路内であらかじめ設定された閾値電圧とを比較して、前記検出電圧がこの閾値電圧を超えるとスイッチング動作を制御または停止させることにより過電流検出および過電流保護を行う方法が知られている。この代表例を図4に示す。また、この方法を用いた電源装置の代表例としては、非特許文献1のDC−DCコンバータがある。   In general, as one of the methods for protecting the output overcurrent of a DC power supply circuit, a current detection resistor is provided at the output section, the current value is detected as a voltage value by this resistor, and this detection voltage and the power supply circuit are set in advance. A method is known in which overcurrent detection and overcurrent protection are performed by controlling or stopping a switching operation when the detected voltage exceeds the threshold voltage by comparing the detected threshold voltage. A typical example is shown in FIG. A typical example of a power supply device using this method is the DC-DC converter disclosed in Non-Patent Document 1.

これらの電源回路あるいはDC−DCコンバータでは、電源回路内あるいはDC−DCコンバータ内で閾値が設定および固定されており、それゆえ過電流検出値は、負荷によらず電源回路あるいはDC−DCコンバータで固定値である。   In these power supply circuits or DC-DC converters, threshold values are set and fixed in the power supply circuit or in the DC-DC converter. Therefore, the overcurrent detection value is determined by the power supply circuit or DC-DC converter regardless of the load. It is a fixed value.

また、過電流検出時のスイッチング制御に特徴を持つ電源装置の過電流制御回路として特許文献1があるが、これも電源装置側で過電流検出値が固定値であることは同様である。   Patent Document 1 discloses an overcurrent control circuit for a power supply device that is characterized by switching control at the time of overcurrent detection. Similarly, the overcurrent detection value on the power supply device side is a fixed value.

特開平6−86454号公報JP-A-6-86454 C&Dテクノロジーズ株式会社 「DC−DCコンバータ・アプリケーションノート AN−001−PS」C & D Technologies Inc. “DC-DC Converter Application Note AN-001-PS”

ところが、このような、電源回路内で過電流検出閾値が固定された電源回路あるいは電源装置を、例えばコンピュータなどの電子装置に使用する場合、一般にコンピュータなどの電子装置はCPUなど負荷の種類および数などの構成が数多く用意されており、一種類の電源装置およびシャーシなどのハードウェアでそれら複数の負荷構成をサポートするため、負荷構成によっては電源の過電流検出値および出力電流能力が負荷に対して過剰になってしまう場合があり、過電流保護機能としての最適化ができない。   However, when such a power supply circuit or power supply device having a fixed overcurrent detection threshold in the power supply circuit is used for an electronic device such as a computer, the electronic device such as a computer generally has a kind and number of loads such as a CPU. In order to support these multiple load configurations with a single type of power supply and hardware such as a chassis, the overcurrent detection value and output current capability of the power supply may vary depending on the load depending on the load configuration. In some cases, the overcurrent protection function cannot be optimized.

また、マイクロコンピュータなどを用いて検出値の可変機能を実現することも考えられるが、保護機能の一部にソフトウェアが介在するため、ハードワイアによる、より強固な保護機能の追加が求められる場合がある。   In addition, it is conceivable to realize a variable function of the detection value using a microcomputer or the like, but since software is part of the protection function, it may be necessary to add a stronger protection function by hardware. is there.

一方で、電源装置を負荷構成毎に最適化した場合は、用意する電源装置の種類が増え、コストおよび運用面などで不利である。   On the other hand, when the power supply device is optimized for each load configuration, the types of power supply devices to be prepared increase, which is disadvantageous in terms of cost and operation.

本発明は、電源回路の直流出力部に、直流出力電流を検出する電流検出抵抗器と、この電流検出抵抗器に電流が流れることにより発生する電位差を増幅する増幅回路と、この増幅回路の出力電圧を分圧する分圧回路と、この分圧された電圧が基準電圧を超えたことを検出する検出回路と、この検出回路の出力によりスイッチング動作を制御または停止させることによる直流出力の過電流保護機能を備えた回路において、前記分圧回路を電源回路の外部に接続することにより、過電流検出値を電源回路の外部から切替可能な機能を備えたことを特徴とする。   The present invention provides a current detection resistor for detecting a DC output current at a DC output portion of a power supply circuit, an amplifier circuit for amplifying a potential difference generated when a current flows through the current detection resistor, and an output of the amplifier circuit Overvoltage protection of DC output by controlling or stopping the switching operation by the voltage dividing circuit that divides the voltage, the detection circuit that detects that the divided voltage exceeds the reference voltage, and the output of this detection circuit A circuit having a function is characterized in that the overcurrent detection value can be switched from the outside of the power supply circuit by connecting the voltage dividing circuit to the outside of the power supply circuit.

本発明によれば、電源回路あるいは電源装置の過電流検出回路を変えることなく、負荷側に例えばプルアップまたはプルダウン接続などの極めて簡単な接続回路を用意するだけで、過電流検出値を負荷側で切替えることができ、負荷構成に応じて電源回路あるいは電源装置の過電流検出値を最適化することができる。   According to the present invention, the overcurrent detection value can be transferred to the load side only by preparing a very simple connection circuit such as pull-up or pull-down connection on the load side without changing the overcurrent detection circuit of the power supply circuit or power supply device. The overcurrent detection value of the power supply circuit or the power supply device can be optimized according to the load configuration.

以下、本発明の実施の形態を、実施例を用いて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail using examples.

図1は、本発明の実施例1の直流電源回路を用いた電子装置の図である。   FIG. 1 is a diagram of an electronic device using the DC power supply circuit according to the first embodiment of the present invention.

図1において、1は、AC/DCコンバータ2と、負荷4と、負荷4に接続された直流電源回路3から構成された電子装置である。AC/DCコンバータ2は、交流入力ACを入力し直流出力に変換する。直流電源回路3は、AC/DCコンバータ2の直流出力を入力し、この入力をPWM(パルス幅変調)するPWM回路31と、PWM回路31の出力を整流し平滑する整流平滑回路32によって定格直流出力電圧に変換し、電流検出用抵抗器R1を介して、負荷4に直流電流を供給する。負荷4は、例えばコンピュータにおけるCPUまたはCPUを搭載するマザーボードなどである。   In FIG. 1, reference numeral 1 denotes an electronic device including an AC / DC converter 2, a load 4, and a DC power supply circuit 3 connected to the load 4. The AC / DC converter 2 receives an AC input AC and converts it into a DC output. The DC power supply circuit 3 receives a DC output of the AC / DC converter 2, a PWM circuit 31 that performs PWM (pulse width modulation) on this input, and a rectifying / smoothing circuit 32 that rectifies and smooths the output of the PWM circuit 31. The output voltage is converted, and a direct current is supplied to the load 4 through the current detection resistor R1. The load 4 is, for example, a CPU in a computer or a mother board on which a CPU is mounted.

また、増幅器33は、電流検出用抵抗器R1に直流電流が流れることによって発生するR1の両端の電位差を検出および増幅し、増幅器33の出力を分圧抵抗R3aと分圧抵抗R3bで分圧し、この分圧された電圧Vcと、基準電圧源36の電圧Vrefが比較器34に入力さる。比較器34は、電圧Vcと電圧Vrefとを比較し、電圧Vrefより電圧Vcが大きくなるとHレベルを出力し、PWM・ON/OFF制御回路35に入力し、PWM・ON/OFF回路35は、このHレベル入力を検知してPWM動作を制御または停止する。以上の動作により、直流電源回路3の出力過電流保護を行う。   The amplifier 33 detects and amplifies a potential difference between both ends of R1 generated when a direct current flows through the current detection resistor R1, and divides the output of the amplifier 33 by the voltage dividing resistor R3a and the voltage dividing resistor R3b. The divided voltage Vc and the voltage Vref of the reference voltage source 36 are input to the comparator 34. The comparator 34 compares the voltage Vc with the voltage Vref, outputs an H level when the voltage Vc becomes larger than the voltage Vref, and inputs it to the PWM / ON / OFF control circuit 35. The PWM / ON / OFF circuit 35 The PWM operation is controlled or stopped by detecting this H level input. With the above operation, output overcurrent protection of the DC power supply circuit 3 is performed.

ここで、分圧抵抗R3bの片側の配線を直流電源回路3の外部に出し、負荷4のAに接続する。Aは、負荷の種類に応じて、A(その1)に示す開放、あるいは、A(その2)に示すプルダウン接続、あるいはA(その3)に示す抵抗RAを介してプルダウン接続、を用意することによって、負荷に応じて、負荷側から電圧Vcを可変することができる。電圧Vcが可変できるとは即ち、直流電源回路3の過電流検出閾値が可変できることになる。   Here, the wiring on one side of the voltage dividing resistor R 3 b is taken out of the DC power supply circuit 3 and connected to A of the load 4. Depending on the type of load, A prepares an open-circuit shown in A (part 1), a pull-down connection shown in A (part 2), or a pull-down connection via a resistor RA shown in A (part 3). Thus, the voltage Vc can be varied from the load side according to the load. That the voltage Vc can be varied, that is, the overcurrent detection threshold of the DC power supply circuit 3 can be varied.

つまり、直流電源回路3を変更することなく、負荷に応じて、負荷側から、直流電源回路3の過電流検出値を可変することができる。   That is, the overcurrent detection value of the DC power supply circuit 3 can be varied from the load side according to the load without changing the DC power supply circuit 3.

図2は、本発明の実施例2の直流電源回路を用いた電子装置の図である。なお、図1と同一符号は、同一部分を示している。   FIG. 2 is a diagram of an electronic device using the DC power supply circuit according to the second embodiment of the present invention. The same reference numerals as those in FIG. 1 indicate the same parts.

図1との違いは、分圧抵抗R3bの片側の配線を、直接、直流電源回路3の外部に出力するのではなく、FETなどのスイッチ素子37を介して、直流電源回路3の内部で接続する。さらに、スイッチ素子37の駆動用として、たとえばゲート端子などのスイッチ素子の駆動用端子に、制御回路電源Vccから接続された抵抗R3cと抵抗R3dを接続する。さらに、この抵抗R3cと抵抗R3dの中点Bを、直流電源回路3の外部に出し、負荷4のAに接続する。   The difference from FIG. 1 is that the wiring on one side of the voltage dividing resistor R3b is not directly output to the outside of the DC power supply circuit 3, but is connected inside the DC power supply circuit 3 via a switch element 37 such as an FET. To do. Further, for driving the switch element 37, a resistor R3c and a resistor R3d connected from the control circuit power supply Vcc are connected to a drive terminal of a switch element such as a gate terminal, for example. Further, the middle point B of the resistors R3c and R3d is taken out of the DC power supply circuit 3 and connected to A of the load 4.

ここで、AがA(その1)の場合、スイッチ素子37はONし、AがA(その2)の場合、スイッチ素子37はOFFする。これにより、電圧Vcが可変する。   Here, when A is A (part 1), the switch element 37 is turned ON, and when A is A (part 2), the switch element 37 is turned OFF. As a result, the voltage Vc varies.

つまり、直流電源回路3を変更することなく、負荷に応じて、負荷側から、直流電源回路3の過電流検出値を可変することができる。   That is, the overcurrent detection value of the DC power supply circuit 3 can be varied from the load side according to the load without changing the DC power supply circuit 3.

なお、実施例2は、分圧抵抗R3bを、直接、直流電源回路の外部に出さないため、この配線抵抗あるいは負荷側のインピーダンスなどの影響を電圧Vcが直接受けることなく、したがって、実施例1に比べて、過電流検出閾値の精度が安定して得られる効果がある。   In the second embodiment, the voltage dividing resistor R3b is not directly exposed to the outside of the DC power supply circuit. Therefore, the voltage Vc is not directly affected by the wiring resistance or the impedance on the load side. As compared with the above, there is an effect that the accuracy of the overcurrent detection threshold can be stably obtained.

図3は、本発明の実施例3の直流電源回路を用いた電子装置の図である。実施例3は、実施例2の直流電源回路を用いて、多出力電源回路を構成した例である。なお、図2と同一符号は、同一部分を示しており、第1の出力電源回路を構成している。   FIG. 3 is a diagram of an electronic device using the DC power supply circuit according to the third embodiment of the present invention. The third embodiment is an example in which a multi-output power supply circuit is configured using the DC power supply circuit of the second embodiment. Note that the same reference numerals as those in FIG. 2 indicate the same parts, and constitute a first output power supply circuit.

図3において、PWM回路31の入力に並列接続されたPWM回路41、整流平滑回路42、電流検出用抵抗器R2、増幅器43、比較器44、PWM・ON/OFF制御回路45は、それぞれ順に、図2の31、32、R1、33、34、35と同様の機能を備え、第2の出力電源回路を構成している。また、分圧抵抗R4aとR4bは、第2の出力電源回路の過電流検出閾値を決めており、ここでは、R4bは直流電源回路300の内部に接続されており、したがって、第2の出力電源回路のVc4は、負荷によらず固定値である。また、比較器34と比較器44の非反転入力端子には、共通の基準電圧Vrefを入力する。第1の出力電源回路のVc3は、実施例2と同様に、負荷に応じて、負荷側から可変ができる。   In FIG. 3, a PWM circuit 41, a rectifying / smoothing circuit 42, a current detection resistor R2, an amplifier 43, a comparator 44, and a PWM / ON / OFF control circuit 45 connected in parallel to the input of the PWM circuit 31 are sequentially The second output power supply circuit is configured with functions similar to those of 31, 32, R1, 33, 34, and 35 in FIG. The voltage dividing resistors R4a and R4b determine the overcurrent detection threshold of the second output power supply circuit. Here, R4b is connected to the inside of the DC power supply circuit 300, and therefore, the second output power supply The Vc4 of the circuit is a fixed value regardless of the load. A common reference voltage Vref is input to the non-inverting input terminals of the comparator 34 and the comparator 44. As in the second embodiment, Vc3 of the first output power supply circuit can be varied from the load side according to the load.

つまり、本方式では、基準電圧側を可変するのではなく、フィードバック側であるVc3を可変するため、多出力電源回路において、基準電圧源は共通にしながらも、特定の出力電源回路側だけに対して、過電流検出閾値を負荷に応じて負荷側から可変することができる。   In other words, in this method, Vc3 on the feedback side is changed instead of changing the reference voltage side. Therefore, in the multi-output power supply circuit, the reference voltage source is shared, but only to a specific output power supply circuit side. Thus, the overcurrent detection threshold can be varied from the load side according to the load.

本発明による技術は、たとえばDC−DCコンバータ、オンボード電源回路、オンボード電源モジュール、AC−DCコンバータ、フロントエンド電源ユニットなど、直流出力機能を持ったあらゆる電源回路あるいは電源装置に適用できる。   The technology according to the present invention can be applied to any power supply circuit or power supply device having a DC output function, such as a DC-DC converter, an on-board power supply circuit, an on-board power supply module, an AC-DC converter, and a front-end power supply unit.

本発明の実施例1による電子装置の構成図である。It is a block diagram of the electronic device by Example 1 of this invention. 本発明の実施例2による電子装置の構成図である。It is a block diagram of the electronic device by Example 2 of this invention. 本発明の実施例3による電子装置の構成図である。It is a block diagram of the electronic device by Example 3 of this invention. 従来の過電流検出回路を用いた電子装置の代表例の図である。It is a figure of the typical example of the electronic apparatus using the conventional overcurrent detection circuit.

符号の説明Explanation of symbols

1…電子装置、2…AC−DCコンバータ、3…直流電源回路、4…負荷、31…PWM回路、32…整流平滑回路、33…増幅器、34…比較器、35…PWM・ON/OFF制御回路、36…基準電圧源、37…スイッチ素子、41…PWM回路、42…整流平滑回路、43…増幅器、44…比較器、45…PWM・ON/OFF制御回路、300…直流電源回路、R1…電流検出用抵抗器、R2…電流検出用抵抗器、R3a…抵抗器、R3b…抵抗器、R4a…抵抗器、R4b…抵抗器、RA…抵抗器。   DESCRIPTION OF SYMBOLS 1 ... Electronic device, 2 ... AC-DC converter, 3 ... DC power supply circuit, 4 ... Load, 31 ... PWM circuit, 32 ... Rectification smoothing circuit, 33 ... Amplifier, 34 ... Comparator, 35 ... PWM ON / OFF control Circuit: 36: Reference voltage source 37: Switch element 41: PWM circuit 42: Rectification smoothing circuit 43: Amplifier 44: Comparator 45: PWM ON / OFF control circuit 300: DC power supply circuit R1 A current detection resistor, R2 ... a current detection resistor, R3a ... a resistor, R3b ... a resistor, R4a ... a resistor, R4b ... a resistor, RA ... a resistor.

Claims (3)

直流電源回路において、直流出力電流を検出する電流検出抵抗器と、この電流検出抵抗器に電流が流れることにより発生する電位差を増幅する増幅回路と、この増幅回路の出力電圧を分圧する分圧回路と、この分圧された電圧が基準電圧を超えたことを検出する検出回路と、この検出回路の出力によりスイッチング動作を制御または停止させることによる直流出力の過電流保護機能を備えた回路において、前記分圧回路を電源回路の外部に接続することにより、過電流検出値を電源回路の外部から切替可能な機能を備えたことを特徴とする直流電源回路。   In a DC power supply circuit, a current detection resistor for detecting a DC output current, an amplifier circuit for amplifying a potential difference generated by current flowing through the current detection resistor, and a voltage dividing circuit for dividing the output voltage of the amplifier circuit In a circuit having a detection circuit that detects that the divided voltage exceeds the reference voltage, and a DC output overcurrent protection function by controlling or stopping the switching operation by the output of the detection circuit, A DC power supply circuit comprising a function capable of switching an overcurrent detection value from outside the power supply circuit by connecting the voltage dividing circuit to the outside of the power supply circuit. 請求項1の直流電源回路を用いたことを特徴とする電源装置。   A power supply apparatus using the DC power supply circuit according to claim 1. 請求項1の直流電源回路を用いたことを特徴とする電子装置。   An electronic apparatus using the DC power supply circuit according to claim 1.
JP2007133624A 2007-05-21 2007-05-21 Overcurrent detection circuit and electronic device using the same Pending JP2008289308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007133624A JP2008289308A (en) 2007-05-21 2007-05-21 Overcurrent detection circuit and electronic device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007133624A JP2008289308A (en) 2007-05-21 2007-05-21 Overcurrent detection circuit and electronic device using the same

Publications (1)

Publication Number Publication Date
JP2008289308A true JP2008289308A (en) 2008-11-27

Family

ID=40148502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007133624A Pending JP2008289308A (en) 2007-05-21 2007-05-21 Overcurrent detection circuit and electronic device using the same

Country Status (1)

Country Link
JP (1) JP2008289308A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010055853A1 (en) 2008-11-11 2010-05-20 ユニ・チャーム株式会社 Device for manufacturing absorptive article and method of manufacturing absorptive article
CN104934946A (en) * 2014-03-18 2015-09-23 Abb技术有限公司 Overload protection system for AC filter and method thereof
JP2019219888A (en) * 2018-06-19 2019-12-26 株式会社リコー Power supply device, control method for power supply device, and image forming device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010055853A1 (en) 2008-11-11 2010-05-20 ユニ・チャーム株式会社 Device for manufacturing absorptive article and method of manufacturing absorptive article
CN104934946A (en) * 2014-03-18 2015-09-23 Abb技术有限公司 Overload protection system for AC filter and method thereof
CN104934946B (en) * 2014-03-18 2017-11-28 Abb技术有限公司 The overload protective device and its method of alternating current filter
JP2019219888A (en) * 2018-06-19 2019-12-26 株式会社リコー Power supply device, control method for power supply device, and image forming device
JP7119629B2 (en) 2018-06-19 2022-08-17 株式会社リコー POWER SUPPLY DEVICE, CONTROL METHOD OF POWER SUPPLY DEVICE, IMAGE FORMING APPARATUS

Similar Documents

Publication Publication Date Title
US9154037B2 (en) Current-mode buck converter and electronic system using the same
EP2852258B1 (en) Light source control device
US8614872B2 (en) Switching power source apparatus
TWI610528B (en) Boost-type switching regulator and electronic device
KR20110042240A (en) Power control circuit, power supply unit, power supply system, and power controller control method
EP2408095A2 (en) Circuits and methods for controlling a DC/DC converter
JP2017085725A (en) Step-down dc/dc converter, control circuit thereof, and on-vehicle power supply device
JP2007053892A (en) Dc-dc converter
JP2007325371A (en) Power supply device
JP6594797B2 (en) Switching regulator
JP5636386B2 (en) Switching power supply device and control circuit thereof
US20100046124A1 (en) Boost DC-DC converter control circuit and boost DC-DC converter having protection circuit interrupting overcurrent
US8421428B2 (en) Current trigger circuit and switching power converter using the same
KR102068843B1 (en) Dc-dc converter
WO2017110231A1 (en) Dc-dc converter and load-driving semiconductor integrated circuit
EP3244518A1 (en) Current limited power converter circuits and methods
US10153695B2 (en) Feedback scheme for non-isolated power supply
EP2933912A1 (en) Overvoltage reduction in buck converter operating in PFM mode
US9401650B2 (en) Power supply apparatus
JP2008289308A (en) Overcurrent detection circuit and electronic device using the same
US10191502B2 (en) Power supply device
JP2006136146A (en) Switching power supply unit
JP6832082B2 (en) DC / DC converter and its control circuit, inductor short circuit detection method, control method, electronic equipment
EP2804303B1 (en) Switching power supply circuit
JP2009038854A (en) Switching power supply