JP2008288384A - Three-dimensional stacked device and its manufacturing method, and method of junction of three-dimensional stacked device - Google Patents

Three-dimensional stacked device and its manufacturing method, and method of junction of three-dimensional stacked device Download PDF

Info

Publication number
JP2008288384A
JP2008288384A JP2007131983A JP2007131983A JP2008288384A JP 2008288384 A JP2008288384 A JP 2008288384A JP 2007131983 A JP2007131983 A JP 2007131983A JP 2007131983 A JP2007131983 A JP 2007131983A JP 2008288384 A JP2008288384 A JP 2008288384A
Authority
JP
Japan
Prior art keywords
semiconductor wafer
joint
concave
bonding
convex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007131983A
Other languages
Japanese (ja)
Inventor
Atsuto Yasui
淳人 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2007131983A priority Critical patent/JP2008288384A/en
Publication of JP2008288384A publication Critical patent/JP2008288384A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Micromachines (AREA)
  • Pressure Sensors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a three-dimensional stacked device excellent in reliability and its manufacturing method, and a method of the junction of the three-dimensional stacked device. <P>SOLUTION: A plurality of semiconductor wafers 2-5 are laminated to be integrated and thereafter, the integrated body is divided individually into respective devices to constitute the three-dimensional stacked device 1, and in this case, a junction of one semiconductor wafer is formed so as to have a projected shape 6 and a junction of the other semiconductor wafer is formed so as to have a recessed shape 7 while the projected junction 6 of one semiconductor wafer is directly connected to the recessed junction 7 for the other semiconductor wafer to constitute the stacked device. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、複数の半導体チップを積層一体化した3次元積層デバイスとその製造方法、及び3次元積層デバイスの接合方法に関する。   The present invention relates to a three-dimensional laminated device in which a plurality of semiconductor chips are laminated and integrated, a manufacturing method thereof, and a bonding method of the three-dimensional laminated device.

従来、半導体デバイスの集積化は、2次元においてリソグラフィ技術の進歩により劇的に進められてきた。2次元方向の集積化には、リソグラフィの物理的な限界がある。また、必要とされる半導体デバイスの最小サイズや、パッケ−ジ内部での各半導体デバイス間の相互接続の要求仕様も高くなってきている。   Conventionally, the integration of semiconductor devices has been dramatically advanced in two dimensions by advances in lithography technology. Two-dimensional integration has physical limitations in lithography. In addition, the required minimum size of semiconductor devices and the required specifications for interconnection between semiconductor devices inside the package are also increasing.

また、異なるタイプの技術によるデバイス、例えば使用する材料の違いや、製造プロセスの違うデバイスを1つの回路またはウェハに集積使用とするとき、特別な製造プロセス技術が必要となるが、技術の組み合わせは容易ではない。   In addition, when different types of devices, such as different materials used or devices with different manufacturing processes, are used on a single circuit or wafer, a special manufacturing process technology is required. It's not easy.

そのため、例えば半導体素子、MEMS(Micro Electro Mechanical Systems)素子、センサ、高周波回路、モノリシックマイクロ波集積回路(MMIC)などの異なる機能を有する多数のデバイスを互いに集積化するのに、チップレベルもしくはウェハレベルで接合、積層することで3次元方向にデバイスを集積する方法がとられる。   Therefore, for example, in order to integrate a large number of devices having different functions such as semiconductor elements, MEMS (Micro Electro Mechanical Systems) elements, sensors, high frequency circuits, monolithic microwave integrated circuits (MMICs), chip level or wafer level Thus, a method of integrating devices in a three-dimensional direction by joining and laminating is employed.

チップレベルもしくはウェハレベルでの接合には、例えばBCB(ベンゾシクロブデン)、ポリイミド、フォトレジストなど中間材料層を介して接着する方法や、特許文献1に開示されているようにウェハ表面の薄膜、もしくは材料層を所要の表面粗さまで研磨してから直接接合する方法がとられる。これらの方法により、異なる材料や異なる製造プロセス技術で得られた多数のデバイスが3次元方向に集積化されることになる。   For bonding at the chip level or wafer level, for example, a method of bonding through an intermediate material layer such as BCB (benzocyclobutene), polyimide, photoresist, or the like, a thin film on the wafer surface as disclosed in Patent Document 1, Alternatively, the material layer is polished to a required surface roughness and then directly joined. By these methods, a large number of devices obtained with different materials and different manufacturing process technologies are integrated in a three-dimensional direction.

特表2003−524886号公報Special table 2003-524886

ところで、例えばBCB、ポリイミド、フォトレジストなどの中間材料層を用いて接着する方法においては、中間材料層と半導体ウェハとの熱膨張係数差により、接合した半導体ウェハ間に熱応力が発生して、デバイスの特性変化や信頼性の低下をもたらす。また、中間材料層の耐熱温度により接合後の実装などにおける、サーマルバッジェット(熱履歴)が決まってしまうといった問題がある。   By the way, in the method of bonding using an intermediate material layer such as BCB, polyimide, or photoresist, thermal stress is generated between the bonded semiconductor wafers due to the difference in thermal expansion coefficient between the intermediate material layer and the semiconductor wafer. It causes changes in device characteristics and reliability. In addition, there is a problem that a thermal budget (thermal history) in mounting after bonding is determined by the heat resistance temperature of the intermediate material layer.

特許文献1に開示したようなウェハ表面の薄膜、もしくは材料を所要の表面粗さまで研磨して直接接合する方法においては、接合したウェハの裏面をCMP(化学機械研磨)により5Å〜10Åといった表面粗さまで研磨して、さらに別のウェハを接合していく場合に、次のような問題がある。すなわち、1度目の接合において接合したウェハ裏面には、接合装置のステージや、それ以前のプロセス装置のステージなどで、傷やマイクロスクラッチなどが入り、欠陥が導入されたりする。このため、接合したウェハ裏面に充分な表面粗さが得られず、信頼性にたる接合、つまり別のウェハの接合ができないといった問題がある。   In the method of directly bonding by thinning the thin film or material on the wafer surface as disclosed in Patent Document 1 to the required surface roughness and directly bonding it, the surface roughness of 5 to 10 mm is applied to the back surface of the bonded wafer by CMP (chemical mechanical polishing). In the case of further polishing and bonding another wafer, there are the following problems. In other words, scratches, microscratches, and the like are introduced into the back surface of the wafer bonded in the first bonding at the stage of the bonding apparatus or the stage of the previous process apparatus, and defects are introduced. For this reason, there is a problem that sufficient surface roughness cannot be obtained on the bonded wafer back surface, and bonding with reliability, that is, bonding of another wafer cannot be performed.

本発明は、上述の点に鑑み、信頼性の高い3次元積層デバイスとその製造方法、及びその3次元積層デバイスの接合方法を提供するものである。   In view of the above, the present invention provides a highly reliable three-dimensional laminated device, a manufacturing method thereof, and a joining method of the three-dimensional laminated device.

本発明に係る3次元積層デバイスは、複数の半導体ウェハが積層一体化された後、各デバイスを形成する3次元積層デバイスであって、隣り合って積層される半導体ウェハにおいて、一方の半導体ウェハの接合部が凸状に形成され、他方の半導体ウェハの接合部が凹状に形成され、一方の半導体ウェハの凸状の接合部と、他方の半導体ウェハの凹状の接合部とが直接接合されて積層されて成ることを特徴とする。   The three-dimensional laminated device according to the present invention is a three-dimensional laminated device that forms each device after a plurality of semiconductor wafers are laminated and integrated. The bonding part is formed in a convex shape, the bonding part of the other semiconductor wafer is formed in a concave shape, and the convex bonding part of one semiconductor wafer and the concave bonding part of the other semiconductor wafer are directly bonded and laminated. It is characterized by being made.

本発明の3次元積層デバイスでは、隣り合って積層される半導体ウェハにおいて、一方の半導体ウェハに凸状の接合が形成され、他方の半導体ウェハに凹状の接合部が形成され、両凸状及び凹状の接合部が直接接合されるので、接合した半導体ウェハ間での熱応力の発生がない。また、半導体ウェハの一方の面に凹状の接合部が形成されるので、半導体ウェハを製造装置のステージに載置させた時にも、凹状の接合部を有するウェハ面をステージ面に接するようになせば、接合面に傷やマイクロスクラッチなどの欠陥が導入されず、清浄な接合面は保たれる。   In the three-dimensional laminated device of the present invention, in semiconductor wafers stacked adjacent to each other, a convex junction is formed on one semiconductor wafer, a concave junction is formed on the other semiconductor wafer, and both convex and concave shapes are formed. Therefore, no thermal stress is generated between the bonded semiconductor wafers. In addition, since the concave bonding portion is formed on one surface of the semiconductor wafer, the wafer surface having the concave bonding portion cannot be in contact with the stage surface even when the semiconductor wafer is placed on the stage of the manufacturing apparatus. For example, defects such as scratches and micro scratches are not introduced into the joint surface, and a clean joint surface is maintained.

本発明に係る3次元積層デバイスの製造方法は、隣り合って積層すべき一方の半導体ウェハに凸状の接合部を形成し、他方の半導体ウェハに凹状の接合部を形成する工程と、凸状の接合部と凹状の接合部とを直接接合して、一方の半導体ウェハと他方の半導体ウェハを積層する工程と、前記工程を経て複数の半導体ウェハを積層一体化した後、各デバイスを形成する工程を有することを特徴とする。   The manufacturing method of the three-dimensional laminated device according to the present invention includes a step of forming a convex joint on one semiconductor wafer to be stacked next to the other and forming a concave joint on the other semiconductor wafer, A step of directly bonding the bonding portion and the concave bonding portion to laminate one semiconductor wafer and the other semiconductor wafer, and laminating and integrating a plurality of semiconductor wafers through the above steps, and then forming each device It has the process.

本発明の3次元積層デバイスの製造方法では、隣り合って積層すべき一方の半導体ウェハに凸状の接合部を形成し、他方の半導体ウェハに凹状の接合部を形成し、凸状の接合部と凹状の接合部とを直接接合するようにしている。この直接接合で、接合された半導体ウェハ間には熱応力の発生が抑制され、デバイスとしたときに、特性変化や信頼性の低下が回避される。また、半導体ウェハの一方の面に、凸状の接合部と接合される凹状の接合部を形成するので、半導体ウェハを製造装置のステージに載置させた時にも、凹状の接合部を有するウェハ面をステージ面に接するようになせば、接合面に傷やマイクロスクラッチなどの欠陥が導入されず、清浄な接合面は保たれる。接合面が清浄な状態に保たれるので、隣り合って積層する半導体ウェハの接合が良好に行われる。   In the manufacturing method of the three-dimensional laminated device of the present invention, a convex joint is formed on one semiconductor wafer to be laminated adjacently, a concave joint is formed on the other semiconductor wafer, and the convex joint is formed. And the concave joint are directly joined. With this direct bonding, the generation of thermal stress is suppressed between the bonded semiconductor wafers, and changes in characteristics and a decrease in reliability are avoided when a device is used. In addition, since a concave bonding portion to be bonded to the convex bonding portion is formed on one surface of the semiconductor wafer, a wafer having a concave bonding portion even when the semiconductor wafer is placed on the stage of the manufacturing apparatus. If the surface is in contact with the stage surface, defects such as scratches and micro scratches are not introduced into the joint surface, and a clean joint surface is maintained. Since the bonding surface is kept clean, the semiconductor wafers stacked adjacent to each other can be bonded well.

本発明に係る3次元積層デバイスの接合方法は、 複数の半導体ウェハを積層一体化した後、各デバイスに形成して3次元積層デバイスを製造する際の、積層デバイスの接合方法であって、隣り合って積層すべき一方の半導体ウェハに形成した凸状の接合部と、他方の半導体ウェハに形成した凹状の接合部とを、プラズマ活性化による低温接合、もしくはArイオンビーム活性化による常温接合で直接接合することを特徴とする。   A bonding method of a three-dimensional laminated device according to the present invention is a bonding method of a laminated device when a plurality of semiconductor wafers are laminated and integrated, and then formed on each device to manufacture a three-dimensional laminated device. The convex joint formed on one semiconductor wafer to be laminated and the concave joint formed on the other semiconductor wafer are joined by low-temperature bonding by plasma activation or normal-temperature bonding by Ar ion beam activation. It is characterized by direct bonding.

本発明の3次元積層デバイスの接合方法では、隣り合って積層すべき一方の半導体ウェハに凸状の接合部を形成し、他方の半導体ウェハに凹状の接合部を形成し、凸状の接合部と凹状の接合部とを直接接合するようにしている。この直接接合で、接合された半導体ウェハ間には熱応力の発生が抑制される。直接接合は、プラズマ活性化による低温接合、もしくはArイオンビーム活性化による常温接合で行うので、半導体ウェハに形成されている素子、配線等への熱的影響を与えることがない。また、一方の半導体ウェハの接合部を凸状にし、他方の半導体ウェハの接合部を凹状にして接合するので、ウェハ接合装置のステージや、その他の製造装置のステージに半導体ウェハを配置する際、凹状の接合部を有するウェハ面をステージ面に接するようになせば、接合面に傷やマイクロスクラッチなどの欠陥が導入されず、清浄な接合面は保たれる。また、ステージ面に接しないため、ステージ表面の異物の転写も削減できる。これによって、接合面が清浄な状態に保たれ、良好な接合ができる。   In the bonding method of the three-dimensional laminated device of the present invention, a convex bonding portion is formed on one semiconductor wafer to be stacked next to each other, a concave bonding portion is formed on the other semiconductor wafer, and the convex bonding portion is formed. And the concave joint are directly joined. By this direct bonding, generation of thermal stress is suppressed between the bonded semiconductor wafers. Since direct bonding is performed by low-temperature bonding by plasma activation or normal temperature bonding by Ar ion beam activation, there is no thermal influence on elements, wirings, and the like formed on the semiconductor wafer. In addition, since the bonding part of one semiconductor wafer is made convex and the bonding part of the other semiconductor wafer is made concave, the semiconductor wafer is placed on the stage of the wafer bonding apparatus or the stage of another manufacturing apparatus. If the wafer surface having the concave bonding portion is brought into contact with the stage surface, defects such as scratches and micro scratches are not introduced into the bonding surface, and a clean bonding surface is maintained. In addition, since it does not contact the stage surface, transfer of foreign matter on the stage surface can be reduced. As a result, the bonding surface is kept clean and good bonding can be achieved.

本発明に係る3次元積層デバイスによれば、熱応力の発生が抑制され、接合部の接合面に傷やマイクロスクラッチなどの欠陥が入らないので、信頼性の高い3次元積層デバイスを提供することができる。
本発明に係る3次元積層デバイスの製造方法によれば、熱応力の発生を抑制し、清浄な接合面を保って接合するので、信頼性に高い3次元積層デバイスを製造することができる。
本発明に係る3次元積層デバイスの接合方法によれば、接合の信頼性を高めることができる。
According to the three-dimensional laminated device according to the present invention, the generation of thermal stress is suppressed, and defects such as scratches and micro scratches do not enter the joint surface of the joint portion. Therefore, a highly reliable three-dimensional laminated device is provided. Can do.
According to the method for manufacturing a three-dimensional laminated device according to the present invention, since the generation of thermal stress is suppressed and bonding is performed while maintaining a clean bonding surface, a highly reliable three-dimensional laminated device can be manufactured.
According to the three-dimensional laminated device bonding method of the present invention, the bonding reliability can be improved.

以下、図面を参照して本発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1及び図2に、本発明に係る3次元積層デバイスの一実施の形態を示す。本実施の形態に係る3次元積層デバイス1は、図1に示すように、複数の半導体ウェハ、本例では4層構造となるように4つの半導体ウェハ2〜5を積層一体化した後、各デバイスを形成するようにして、すなわち各デバイスに固片化して構成される。各固片化した3次元積層デバイス1は、完成された状態では、4つの半導体チップ2A〜5Aが積層されて構成される。図2は、複数の半導体ウェハ2〜5を接合し、各デバイスに固片化する前の、半導体ウェハ2〜5の分解図である。   1 and 2 show an embodiment of a three-dimensional laminated device according to the present invention. As shown in FIG. 1, the three-dimensional laminated device 1 according to the present embodiment includes a plurality of semiconductor wafers, and in this example, four semiconductor wafers 2 to 5 are laminated and integrated so as to have a four-layer structure. A device is formed, that is, each device is separated into pieces. Each solidified three-dimensional stacked device 1 is configured by stacking four semiconductor chips 2A to 5A in a completed state. FIG. 2 is an exploded view of the semiconductor wafers 2 to 5 before the plurality of semiconductor wafers 2 to 5 are bonded and separated into devices.

上記複数の半導体ウェハ2〜5は、隣り合って積層される半導体ウェハにおいて、一方の半導体ウェハに凸状の接合部6を形成し、他方の半導体ウェハに凹状の接合部7を形成し、凸状及び凹状の両接合部6及び7を互いに挿入し、中間材料層を介在することなく、接合部6及び7の接合面同士を対接させて直接接合される。   In the semiconductor wafers stacked adjacent to each other, the plurality of semiconductor wafers 2 to 5 are formed by forming a convex joint 6 on one semiconductor wafer and forming a concave joint 7 on the other semiconductor wafer. The joints 6 and 7 having both the shape and the concave shape are inserted into each other, and the joint surfaces of the joints 6 and 7 are brought into direct contact with each other without interposing an intermediate material layer.

本実施の形態においては、図2に示すように、第1の半導体ウェハ2にMEMS構造体11が形成される。MEMS構造体11は、本例では1つの半導体チップ2Aに対応して2つ形成される。MEMS構造体11は、例えば、周囲の固定部12に対して半導体ウェハ2をエッチング加工で形成した支持バネ(図示せず)を介して中空に支持される。MEMS構造体11と上下の第2及び第4の半導体ウェハ3及び5との間には、空間13及び14が形成される(図1参照)。このMEMS構造体11は、本例ではウェハ面内のXY方向に静電駆動し、ウェハ積層方向のZ方向に変位するように構成される。   In the present embodiment, as shown in FIG. 2, the MEMS structure 11 is formed on the first semiconductor wafer 2. In this example, two MEMS structures 11 are formed corresponding to one semiconductor chip 2A. The MEMS structure 11 is supported in a hollow manner, for example, via a support spring (not shown) formed by etching the semiconductor wafer 2 with respect to the surrounding fixed portion 12. Spaces 13 and 14 are formed between the MEMS structure 11 and the upper and lower second and fourth semiconductor wafers 3 and 5 (see FIG. 1). In this example, the MEMS structure 11 is configured to be electrostatically driven in the XY directions within the wafer surface and displaced in the Z direction in the wafer stacking direction.

この第1の半導体ウェハ2内の各半導体チップ2Aに対応する領域の周端部には、第1の表面、すなわち表面側に凸状の接合部6が形成され、第2の表面、すなわち裏面側に凹状の接合部7が形成される。凸状の接合部6の接合面(頂部)はシリコンウェハによる平坦面で形成され、凹状の接合部7の接合面(底部)はシリコンウェハによる平坦面で形成される。   At the peripheral end of the region corresponding to each semiconductor chip 2A in the first semiconductor wafer 2, a convex bonding portion 6 is formed on the first surface, that is, the surface side, and the second surface, that is, the back surface. A concave joint 7 is formed on the side. The joint surface (top) of the convex joint portion 6 is formed as a flat surface made of a silicon wafer, and the joint surface (bottom portion) of the concave joint portion 7 is formed as a flat surface made of a silicon wafer.

第1の半導体ウェハ2は、シリコン基板15にBOX層と呼ばれる埋め込み絶縁膜(例えばシリコン酸化膜)16が形成され、埋め込み絶縁膜16上にシリコン層17が形成された、いわゆるSOI(semiconductor on insulator)ウェハで構成される。図示しないが、MEMS構造体11の側面と固定部12側の側面にそれぞれ静電駆動用の電極が形成される。また、表面側は、空間13を形成するために、周端部の凸状の接合部6を除いて凹状19に形成され、固定部12に電極パッド18が形成される。   The first semiconductor wafer 2 is a so-called SOI (semiconductor on insulator) in which a buried insulating film (for example, a silicon oxide film) 16 called a BOX layer is formed on a silicon substrate 15 and a silicon layer 17 is formed on the buried insulating film 16. ) Consists of wafers. Although not illustrated, electrodes for electrostatic driving are formed on the side surface of the MEMS structure 11 and the side surface on the fixed portion 12 side, respectively. Further, in order to form the space 13, the surface side is formed in a concave shape 19 except for the convex joint portion 6 at the peripheral end portion, and an electrode pad 18 is formed in the fixed portion 12.

MEMS構造体11としては、例えば加速度センサ、角速度センサ、圧力センサ等の、いわゆる物理量センサとして構成することができる。   The MEMS structure 11 can be configured as a so-called physical quantity sensor such as an acceleration sensor, an angular velocity sensor, or a pressure sensor.

第2の半導体ウェハ3は、半導体ウェハ3を貫通する貫通電極21が形成されたウェハであり、MEMS構造体11を形成した第1の半導体ウェハ2から、後述するロジックIC(集積回路)が表面に形成された第3の半導体ウェハ4へ電気的な信号を中継する、いわゆるインターポーザーウェハとして機能する。この半導体ウェハ3では、シリコンウェハの上記MEMS構造体11に対向する位置にスルーホール22が形成され、スルーホール22の内面を含んでウェハ表裏全面に絶縁膜23、例えばシリコン酸化膜が形成され、スルーホール22内に貫通電極21が形成されて成る。   The second semiconductor wafer 3 is a wafer on which a through electrode 21 penetrating the semiconductor wafer 3 is formed, and a logic IC (integrated circuit) to be described later is surfaced from the first semiconductor wafer 2 on which the MEMS structure 11 is formed. It functions as a so-called interposer wafer that relays electrical signals to the third semiconductor wafer 4 formed in the above. In this semiconductor wafer 3, a through hole 22 is formed at a position facing the MEMS structure 11 of the silicon wafer, and an insulating film 23, for example, a silicon oxide film is formed on the entire front and back surfaces of the wafer including the inner surface of the through hole 22. A through electrode 21 is formed in the through hole 22.

第2の半導体ウェハ3の第3の半導体ウェハ4に対向する第1の表面、すなわち表面側には、貫通電極21に接続する電極パッド24が形成される。電極パッド24を被覆するようにウェハ表面には、例えば上記絶縁膜(例えばシリコン酸化膜)23とは異なる材料の絶縁膜25、例えばシリコン窒化膜が形成され、絶縁膜25上に臨むように電極パッド24に導通した電極(図示せず)が形成される。半導体ウェハ3の第4の半導体ウェハ5に対向する第2の表面、すなわち裏面側には、貫通電極21に接続し、上記MEMS構造体11のシリコン層17で構成される電極と対向するように電極26が形成される。また、第1の半導体ウェハ2の電極18と対向して電極27とその上の導電性バンプ28が形成される。   On the first surface of the second semiconductor wafer 3 facing the third semiconductor wafer 4, that is, on the surface side, an electrode pad 24 connected to the through electrode 21 is formed. For example, an insulating film 25 made of a material different from that of the insulating film (for example, silicon oxide film) 23, for example, a silicon nitride film, is formed on the wafer surface so as to cover the electrode pad 24, and the electrode faces the insulating film 25. An electrode (not shown) that is conducted to the pad 24 is formed. The second surface of the semiconductor wafer 3 facing the fourth semiconductor wafer 5, that is, the back surface side, is connected to the through electrode 21 and faces the electrode composed of the silicon layer 17 of the MEMS structure 11. Electrode 26 is formed. Further, an electrode 27 and a conductive bump 28 thereon are formed facing the electrode 18 of the first semiconductor wafer 2.

そして、この第2の半導体ウェハ3内の各半導体チップ3Aに対応する領域の周端部には、第1の表面、すなわち表面側に凹状の接合部7が形成され、第2の表面、すなわち裏面側に上記第1の半導体ウェハ2の凸状の接合部6を挿入してこれと接合する凹状の接合部7が形成される。表面側の凹状の接合部7は、絶縁膜25に形成され、その接合面(底面)が絶縁膜23による平坦面で形成される。裏面側の凹状の接合部7は、その接合面(底部)が絶縁膜23の平坦面で形成される。   Then, at the peripheral end portion of the region corresponding to each semiconductor chip 3A in the second semiconductor wafer 3, a concave bonding portion 7 is formed on the first surface, that is, the surface side, and the second surface, that is, A concave joint portion 7 is formed on the back surface side where the convex joint portion 6 of the first semiconductor wafer 2 is inserted and joined thereto. The concave bonding portion 7 on the front surface side is formed in the insulating film 25, and its bonding surface (bottom surface) is formed as a flat surface by the insulating film 23. The concave bonding portion 7 on the back surface side is formed with a flat surface of the insulating film 23 at its bonding surface (bottom).

第3の半導体ウェハ4は、表面(図では裏面)にロジックIC(半導体集積回路)31が形成され、このロジックIC31の領域に第2の半導体ウェハ3側の電極パッド24に導通する電極(図示せず)と接続される導電性バンプ32が形成される。そして、層間絶縁膜(例えばシリコン酸化膜)33が形成され、凸状の接合部となる部分を除いて層間絶縁膜33がエッチング除去されることにより、第3の半導体ウェハ4内の各半導体チップ4Aに対応する領域の周端部に層間絶縁膜33による凸状の接合部6が形成される。凸状の接合部6の接合面(頂部)は、層間絶縁膜33の平坦面で形成される。   The third semiconductor wafer 4 has a logic IC (semiconductor integrated circuit) 31 formed on the front surface (rear surface in the figure), and an electrode (FIG. 5) that conducts to the electrode pad 24 on the second semiconductor wafer 3 side in the region of the logic IC 31. Conductive bumps 32 connected to (not shown) are formed. Then, an interlayer insulating film (for example, a silicon oxide film) 33 is formed, and the interlayer insulating film 33 is etched away except for a portion that becomes a convex joint portion, whereby each semiconductor chip in the third semiconductor wafer 4 is removed. Convex joint 6 is formed by interlayer insulating film 33 at the peripheral edge of the region corresponding to 4A. The joint surface (top) of the convex joint 6 is formed as a flat surface of the interlayer insulating film 33.

第4の半導体ウェハ5は、MEMS構造体11の信頼性を確保するために、低温かつ低荷重でMEMS構造対内部を気密封止するための、いわゆるキャップウェハである。第4の半導体ウェハ5の第1の表面、すなわち表面側のMEMS構造体11に対向する領域は、MEMS構造体11との間で空間14(図1参照)を形成するように、凹状35に形成される。第4の半導体ウェハ5の表裏全面には絶縁膜(例えばシリコン酸化膜)36が形成される。   The fourth semiconductor wafer 5 is a so-called cap wafer for hermetically sealing the inside of the MEMS structure at a low temperature and a low load in order to ensure the reliability of the MEMS structure 11. The first surface of the fourth semiconductor wafer 5, that is, the region facing the MEMS structure 11 on the surface side, has a concave shape 35 so as to form a space 14 (see FIG. 1) with the MEMS structure 11. It is formed. An insulating film (for example, silicon oxide film) 36 is formed on the entire front and back surfaces of the fourth semiconductor wafer 5.

この第4の半導体ウェハ5内の各半導体チップ5Aに対応する領域の周端部には、第1の表面、すなわち表面側に第1の半導体ウェハ2の凹状の接合部7に挿入される凸状の接合部6が形成される。この接合部6の接合面(頂部)は、絶縁膜36による平坦面で形成される。   At the peripheral end portion of the region corresponding to each semiconductor chip 5A in the fourth semiconductor wafer 5, a first surface, that is, a protrusion inserted into the concave joint portion 7 of the first semiconductor wafer 2 on the surface side. A joint portion 6 is formed. The bonding surface (top) of the bonding portion 6 is formed as a flat surface by the insulating film 36.

これら各半導体ウェハ2、3、4及び5が互いの凹状の接合部7に凸状の接合部6を挿入するようにして、互いに直接接合して積層一体化される。MEMS構造体11は、その上下の空間13及び14に挟まれるように気密封止される。この積層で第1の半導体ウェハ2の表面側の電極18と、第2の半導体ウェハ3の裏面側の導電性バンプ28とが電気的に接続される。また、この積層で第2の半導体ウェハ3の表面側の、電極パッド24に導通する電極(図示せず)と、第3の半導体ウェハ4の裏面側の導電性バンプ32とが電気的に接続される。   These semiconductor wafers 2, 3, 4, and 5 are laminated and integrated by directly joining each other such that the convex joint 6 is inserted into the concave joint 7. The MEMS structure 11 is hermetically sealed so as to be sandwiched between the upper and lower spaces 13 and 14 thereof. With this lamination, the electrodes 18 on the front surface side of the first semiconductor wafer 2 and the conductive bumps 28 on the back surface side of the second semiconductor wafer 3 are electrically connected. In addition, an electrode (not shown) that is electrically connected to the electrode pad 24 on the front surface side of the second semiconductor wafer 3 and the conductive bumps 32 on the back surface side of the third semiconductor wafer 4 are electrically connected in this lamination. Is done.

凸状の接合部6と凹状の接合部7との直接接合は、両接合部6、7の接合面を例えばArイオンビームにより活性化処理し、荷重をかけて常温で接合することができる。あるいは、両接合部6、7の接合面をプラズマにより活性化処理し、荷重をかけて400℃以下、例えば200℃〜400℃の低温で接合することができる。さらに、活性化処理せずに、700℃〜1100℃の高温で接合することもできる。   The direct joining of the convex joint 6 and the concave joint 7 can be performed at normal temperature by applying a load by activating the joint surfaces of the joints 6 and 7 with, for example, an Ar ion beam. Alternatively, the joint surfaces of both joints 6 and 7 can be activated by plasma, and a load can be applied to join at a low temperature of 400 ° C. or lower, for example, 200 ° C. to 400 ° C. Furthermore, it can also join at high temperature of 700 to 1100 degreeC, without performing an activation process.

次に、図3〜図6を参照して本発明に係る3次元積層デバイスの製造方法の一実施の形態を説明する。本例は上述の3次元積層デバイス1の製造に適用した場合である。   Next, an embodiment of a method for manufacturing a three-dimensional laminated device according to the present invention will be described with reference to FIGS. This example is a case where it is applied to the manufacture of the above-described three-dimensional laminated device 1.

第1、第2、第3及び第4の半導体ウェハ2、3、4及び5は、既に図2に示すように、それぞれ各構成要素を形成して構成される。
そして先ず、図3に示すように、ウェハ接合装置の下部ステージ41に第1の半導体ウェハ2を、その凹状の接合部7を有する裏面側が下部ステージ41の面に接するように、固定もしくは未固定の状態で配置する。また、上部ステージ42に第2の半導体ウェハ3が、その凹状の接合部7を有する表面側が上部ステージ42の面に接するように、固定した状態で配置する。
As shown in FIG. 2, the first, second, third and fourth semiconductor wafers 2, 3, 4 and 5 are each formed by forming respective components.
First, as shown in FIG. 3, the first semiconductor wafer 2 is fixed to the lower stage 41 of the wafer bonding apparatus, and fixed or unfixed so that the back surface side having the concave bonding portion 7 is in contact with the surface of the lower stage 41. Arrange in the state of. In addition, the second semiconductor wafer 3 is disposed on the upper stage 42 in a fixed state so that the surface side having the concave joint 7 is in contact with the surface of the upper stage 42.

各ステージ41、42への半導体ウェハの固定方法は、静電チャック方式もしくは真空バキューム方式のいずれでも良い。半導体ウェハ2及び3の下部ステージ41及び上部ステージ42への接触するウェハ表面が凹状の接合部7が形成されている側とされる。すなわち、次工程以降においても、凹状の接合部7を有する側の面が上部ステージ42、下部ステージ41に接するようにプログラムされる。   The method of fixing the semiconductor wafer to each stage 41, 42 may be either an electrostatic chuck method or a vacuum vacuum method. The wafer surface that contacts the lower stage 41 and the upper stage 42 of the semiconductor wafers 2 and 3 is the side on which the concave joint 7 is formed. That is, in the subsequent process and subsequent steps, the surface on the side having the concave joint 7 is programmed so as to be in contact with the upper stage 42 and the lower stage 41.

凹状の接合部7側の面が接するように上部ステージ42、下部ステージ41に配置されることにより、凹状の接合部7の接合面に傷やマイクロスクラッチが入ることがなく、また、異物が付着することなく、正常な接合面が保たれる。   By arranging on the upper stage 42 and the lower stage 41 so that the surface on the concave joint 7 side is in contact, the joint surface of the concave joint 7 will not be scratched or microscratched, and foreign matter will adhere. Without this, a normal joint surface is maintained.

次いで、上部ステージ42及び下部ステージ41を相対的に上下方向に可動し、それぞれの半導体ウェハ2及び3の接合すべき凸状の接合部6、凹状の接合部7の接合面を突き合わせて、直接接合する。接合方法は、上述した常温接合法、低温接合法、さらには高温接合を用いる。すなわち、半導体ウェハ2、3の耐熱温度が高ければ高温接合でもよい。また、金属や有機物などが形成されている場合には、400℃以下で接合が可能であるプラズマ活性化による低温接合や、Arイオンビーム活性化による常温接合とすることができる。高温接合の場合は、活性化処理を必要としない。   Next, the upper stage 42 and the lower stage 41 are moved relatively in the vertical direction, and the bonding surfaces of the convex bonding portions 6 and the concave bonding portions 7 to be bonded of the respective semiconductor wafers 2 and 3 are brought into contact with each other directly. Join. As the bonding method, the above-described room temperature bonding method, low temperature bonding method, and high temperature bonding are used. That is, if the heat resistance temperature of the semiconductor wafers 2 and 3 is high, high temperature bonding may be used. Further, when a metal or an organic material is formed, it can be a low-temperature bonding by plasma activation that can be bonded at 400 ° C. or lower, or a normal-temperature bonding by Ar ion beam activation. In the case of high temperature bonding, activation treatment is not required.

次に、図4に示すように、第1及び第2の半導体ウェハ2及び3を積層して接合した接合ウェハ45を、その第2の半導体ウェハ3の凹状の接合部7が形成されている表面側が上部ステージ42の面に接するように、上部ステージ42に固定した状態で配置する。また、下部ステージ41に第4の半導体ウェハ5を、その接合部が形成されない裏面側が下部ステージ41の面に接するように、固定しもしくは未固定の状態で配置する。   Next, as shown in FIG. 4, a concave bonding portion 7 of the second semiconductor wafer 3 is formed on the bonding wafer 45 obtained by laminating and bonding the first and second semiconductor wafers 2 and 3. It arrange | positions in the state fixed to the upper stage 42 so that the surface side may contact the surface of the upper stage 42. FIG. Further, the fourth semiconductor wafer 5 is arranged on the lower stage 41 in a fixed or unfixed state so that the back surface side where the bonding portion is not formed is in contact with the surface of the lower stage 41.

次いで、上部ステージ42及び下部ステージ41を相対的に上下方向に可動し、接合ウェハ45における第1の半導体ウェハ2の接合すべき凸状の接合部6の接合面と、第4の半導体ウェハ5の接合すべき凹状の接合部7の接合面とを突き合わせて、直接接合する。接合方法は、上述した常温接合法、低温接合法、あるいは高温接合を用いる。   Next, the upper stage 42 and the lower stage 41 are relatively moved in the vertical direction, and the bonding surface of the convex bonding portion 6 to be bonded to the first semiconductor wafer 2 in the bonding wafer 45 and the fourth semiconductor wafer 5. These are joined directly to the joint surface of the concave joint 7 to be joined. As the bonding method, the above-described normal temperature bonding method, low temperature bonding method, or high temperature bonding is used.

ここでも、接合ウェハ45、第4の半導体ウェハ5のステージ42、41の面に接触する表面側、裏面側の接合部7が凹状であるので、接合面にダメージが入ることはなく、清浄な接合面に保たれる。清浄な接合面に保たれた状態で、次の工程の接合に移行できる。   Also here, since the bonding portions 7 on the front surface side and the back surface side that contact the surfaces of the bonding wafer 45 and the stage 42, 41 of the fourth semiconductor wafer 5 are concave, the bonding surfaces are not damaged and are clean. The joint surface is maintained. It is possible to shift to the next step of bonding while being kept on a clean bonding surface.

次に、図5に示すように、第1、第2及び第4の半導体ウェハ2、3及び5を積層して接合した接合ウェハ45を、その第4の半導体ウェハ5の接合部6が形成されていない裏面側が上部ステージ42の面に接するように、上部ステージ42に固定した状態で配置する。また、下部ステージ41に第3の半導体ウェハ4を、その接合部6が形成されていない裏面側が下部ステージ41の面に接するように、固定もしくは未固定の状態で配置する。   Next, as shown in FIG. 5, a bonded wafer 45 formed by stacking and bonding the first, second and fourth semiconductor wafers 2, 3 and 5 is formed in the bonded portion 6 of the fourth semiconductor wafer 5. It arrange | positions in the state fixed to the upper stage 42 so that the back side which is not touched the surface of the upper stage 42. FIG. In addition, the third semiconductor wafer 4 is disposed on the lower stage 41 in a fixed or unfixed state so that the back surface side where the bonding portion 6 is not formed is in contact with the surface of the lower stage 41.

次いで、上部ステージ42及び下部ステージ41を相対的に上下方向に可動し、接合ウェハ46における第2の半導体ウェハ3の接合すべき凹状の接合部7の接合面と、第3の半導体ウェハ4の接合すべき凸状の接合部6の接合面とを突合わせて、直接接合する。接合方法は、上述した常温接合法、低温接合法、あるいは高温接合法を用いる。   Next, the upper stage 42 and the lower stage 41 are moved relatively in the vertical direction, and the bonding surface of the concave bonding portion 7 to be bonded to the second semiconductor wafer 3 in the bonding wafer 46 and the third semiconductor wafer 4 The joint surface of the convex joint 6 to be joined is abutted and joined directly. As the bonding method, the above-described room temperature bonding method, low temperature bonding method, or high temperature bonding method is used.

ここでは、接合ウェハ46、第3の半導体ウェハ3のステージ42、41の面に接する面には、それぞれ接合部6、7が形成されていないので、接合される接合面にダメージが入ることはなく、清浄な接合面に保たれる。   Here, since the bonding portions 6 and 7 are not formed on the surfaces of the bonded wafer 46 and the third semiconductor wafer 3 that are in contact with the surfaces 42 and 41, damage to the bonded surfaces to be bonded is prevented. And is kept on a clean joint surface.

これにより、図6に示すように、第1、第2、第3及び第4の半導体ウェハ2、3、4及び5が積層した4層の3次元積層ウェハ47が形成される。次いで、この3次元積層ウェハ47を、ウェハ接合装置から、ダイシング装置に搬送される。このダイシング装置において、3次元積層ウェハ47は、スクライブラインに沿って各デバイス毎にダイシングされて、図1に示す目的の3次元積層デバイス1を得る。   As a result, as shown in FIG. 6, a four-layer three-dimensional laminated wafer 47 in which the first, second, third and fourth semiconductor wafers 2, 3, 4 and 5 are laminated is formed. Next, the three-dimensional laminated wafer 47 is transferred from the wafer bonding apparatus to a dicing apparatus. In this dicing apparatus, the three-dimensional laminated wafer 47 is diced for each device along the scribe line to obtain the target three-dimensional laminated device 1 shown in FIG.

本実施の形態の3次元積層デバイスでは、半導体チップ2AとしてMEMS構造体チップと、半導体チップ3Aとして貫通電極を含む配線チップと、半導体チップ4AとしてロジックICチップとが積層され、さらにMEMS構造体チップとなる半導体チップ2Aと空間14を保持して半導体チップ5Aとして封止するキャップ用チップが積層された集積化MEMSデバイスとして構成される。   In the three-dimensional stacked device of the present embodiment, a MEMS structure chip as the semiconductor chip 2A, a wiring chip including a through electrode as the semiconductor chip 3A, and a logic IC chip as the semiconductor chip 4A are stacked, and further the MEMS structure chip. The integrated MEMS device is configured by laminating a semiconductor chip 2A to be formed and a cap chip that holds the space 14 and is sealed as the semiconductor chip 5A.

上述の実施の形態に係る3次元積層デバイス1によれば、それぞれ隣り合って積層される半導体チップ2A〜5Aの接合部6、7が凸状、凹状に形成され、これら凸状の接合部6と凹状の接合部7が直接突き合わされて接合されるので、信頼性の高い3次元積層デバイスを提供することができる。すなわち、個片化前の積層半導体ウェハにおいて、隣り合って積層される一方の半導体ウェハ及び他方の半導体ウェハが、凸状の接合部6及び凹状の接合部7により直接接合されるので、接合した半導体ウェハ間にBCB、ポリイミド、フォトレジストなどの中間材料層を介在したときのような、熱膨張係数差による熱応力が発生しない。この熱応力の発生が抑制されることにより、デバイスの特性変化が生ぜず、信頼性が向上する。   According to the three-dimensional multilayer device 1 according to the above-described embodiment, the joint portions 6 and 7 of the semiconductor chips 2A to 5A that are laminated adjacent to each other are formed in a convex shape and a concave shape, and these convex joint portions 6 are formed. And the concave joint 7 are directly abutted and joined to each other, so that a highly reliable three-dimensional laminated device can be provided. That is, in the laminated semiconductor wafer before singulation, one semiconductor wafer and the other semiconductor wafer laminated next to each other are directly joined by the convex joint 6 and the concave joint 7, and thus joined. Thermal stress due to a difference in thermal expansion coefficient does not occur as when an intermediate material layer such as BCB, polyimide, or photoresist is interposed between semiconductor wafers. By suppressing the generation of this thermal stress, the device characteristics do not change and the reliability is improved.

また、半導体ウェハの一方の面に凹状の接合部7が形成されるので、半導体ウェハをウェハ接合装置のステージや、その他の製造装置のステージに載置させる時にも、凹状の接合部7を有するウェハ面をステージ面に接するようになせば、凹状の接合部7の接合面が直接ステージに接触することがない。そのため、凹状の接合面に傷やマイクロスクラッチなどの欠陥が入ることがなく、また、ステージ面からの異物の付着することがなく、清浄な接合面が保たれる。従って、接合においてボイド等の発生がなく、接合不良が生ぜず、3次元積層デバイスとしての信頼性を向上することができる。   In addition, since the concave bonding portion 7 is formed on one surface of the semiconductor wafer, the concave bonding portion 7 is also provided when the semiconductor wafer is placed on the stage of the wafer bonding apparatus or the stage of another manufacturing apparatus. If the wafer surface is in contact with the stage surface, the bonding surface of the concave bonding portion 7 does not directly contact the stage. Therefore, defects such as scratches and micro scratches do not enter the concave joint surface, and foreign matter does not adhere from the stage surface, and a clean joint surface is maintained. Therefore, voids or the like are not generated in bonding, and bonding defects do not occur, and the reliability as a three-dimensional laminated device can be improved.

上述の実施の形態に係る3次元積層デバイスの製造方法によれば、隣り合って積層すべき一方の半導体ウェハに凸状の接合部を形成し、他方の半導体ウェハに凹状の接合部を形成し、凸状の接合部と凹状の接合部とを直接接合するようにしている。この直接接合で、接合された半導体ウェハ間には前述した中間材料がなく、熱膨張係数差による熱応力の発生が抑制され、デバイス特性を変化させることなく、信頼性の高い3次元積層デバイスを製造することができる。   According to the method for manufacturing a three-dimensionally laminated device according to the above-described embodiment, a convex joint is formed on one semiconductor wafer to be laminated adjacently, and a concave joint is formed on the other semiconductor wafer. The convex joint and the concave joint are directly joined. With this direct bonding, there is no intermediate material as described above between the bonded semiconductor wafers, the generation of thermal stress due to the difference in thermal expansion coefficient is suppressed, and a highly reliable three-dimensional laminated device can be produced without changing the device characteristics. Can be manufactured.

また、半導体ウェハの一方の面に、凸状の接合部と接合される凹状の接合部を形成するので、半導体ウェハをウェハ接合装置のステージや、その他の製造装置のステージに載置させた時にも、凹状の接合部を有するウェハ面をステージ面に接するようになせば、接合面に傷やマイクロスクラッチなどの欠陥が入らず、また、ステージ面からの異物の付着することがなく、清浄な接合面を保つことができる。接合面が清浄な状態に保たれるので、隣り合って積層する半導体ウェハの接合を良好に行うことができ、信頼性の高い3次元積層デバイスを製造することができる。
凹状の接合部とすることで、清浄な接合面の維持をデバイス表面構造で対応することができ、装置上の特別な制約を受けることなく、複数の半導体ウェハを積層接合することができ、信頼性の高い3次元積層デバイスを製造することができる。
In addition, since a concave bonding portion to be bonded to the convex bonding portion is formed on one surface of the semiconductor wafer, when the semiconductor wafer is placed on the stage of the wafer bonding apparatus or other manufacturing apparatus However, if the wafer surface having a concave bonding portion is brought into contact with the stage surface, the bonding surface is free from defects such as scratches and microscratches, and no foreign matter adheres from the stage surface. The joint surface can be maintained. Since the bonding surface is kept clean, the semiconductor wafers stacked adjacent to each other can be bonded well, and a highly reliable three-dimensional stacked device can be manufactured.
By using a concave joint, it is possible to maintain a clean joint surface with the device surface structure, and multiple semiconductor wafers can be laminated and joined without any special restrictions on the equipment. A highly reliable three-dimensional laminated device can be manufactured.

上述の接合方法によれば、凸状の接合部6と凹状の接合部7を直接接合するので、接合された半導体ウェハ間に熱膨張係数差による熱応力は発生せず、あるいは熱応力の発生が抑制される。直接接合では、プラズマ活性化による低温接合、もしくはArイオンビーム活性化による常温接合で行うときは、半導体ウェハへの熱的な影響、例えば半導体ウェハに形成される素子や配線等への熱的影響を与えずに良好な接合ができる。さらに上述したように、凹状の接合部を用い接合するので、製造装置のステージと接触した際にも、接合面に傷やマイクロスクラッチなどの欠陥が入ることがなく、清浄な接合面の状態で接合することができる。   According to the above-described bonding method, the convex bonding portion 6 and the concave bonding portion 7 are directly bonded, so that no thermal stress is generated between the bonded semiconductor wafers due to a difference in thermal expansion coefficient, or generation of thermal stress. Is suppressed. When direct bonding is performed by low-temperature bonding by plasma activation or normal temperature bonding by Ar ion beam activation, a thermal influence on the semiconductor wafer, for example, a thermal influence on elements or wirings formed on the semiconductor wafer. Good bonding is possible without giving Furthermore, as described above, since the bonding is performed using the concave bonding portion, even when contacting with the stage of the manufacturing apparatus, there is no defect such as scratches or micro scratches on the bonding surface, and in a clean bonding surface state. Can be joined.

次に、凹状の接合部7及び凸状の接合部6の形成方法の実施の形態について説明する。以下に挙げるように、凹状の接合部7の接合面(底面)の表面粗さ、凸状の接合部6の接合面(頂面)の表面粗さが、1nm以下、さらに0.5nm以下となるような表面粗さになる接合部形成方法であれば、どのような凹状または凸状の接合部の形成方法であっても良い。   Next, an embodiment of a method for forming the concave joint 7 and the convex joint 6 will be described. As described below, the surface roughness of the joint surface (bottom surface) of the concave joint 7 and the surface roughness of the joint surface (top surface) of the convex joint 6 are 1 nm or less, and further 0.5 nm or less. Any method for forming a concave or convex joint may be used as long as it is a method for forming a joint with such a surface roughness.

図7に、凹状の接合部7の形成方法の一例を示す。本例は、半導体ウェハ51、例えばシリコンウェハに半導体回路52を形成した後、全面に層間絶縁膜53を成膜する。層間絶縁膜53をエッチバックして平坦化する。図示の例では、半導体ウェハ51が半導体回路52を形成する領域を残して選択的に所要の深さまでエッチング除去される。そして、接合部となる領域54の層間絶縁膜53を半導体ウェハ51の表面が露出するまでエッチングして、凹状の接合部7を形成する。   In FIG. 7, an example of the formation method of the concave junction part 7 is shown. In this example, after a semiconductor circuit 52 is formed on a semiconductor wafer 51, for example, a silicon wafer, an interlayer insulating film 53 is formed on the entire surface. The interlayer insulating film 53 is etched back and planarized. In the illustrated example, the semiconductor wafer 51 is selectively etched away to a required depth, leaving a region where the semiconductor circuit 52 is formed. Then, the interlayer insulating film 53 in the region 54 to be the junction is etched until the surface of the semiconductor wafer 51 is exposed to form the concave junction 7.

図8に、凹状の接合部7の形成方法の他の例を示す。本例は、図8Aに示すように、半導体ウェハ51、例えばシリコンウェハの表面の接合部となる領域54を除く全面にシリコン窒化膜55を形成した後、熱酸化処理、すなわち選択酸化(LOCOS)処理して、熱酸化膜(SiO2膜)56を形成する。次に、図8Bに示すように、熱酸化膜56を選択的にエッチング除去して凹状の接合部7を形成する。シリコン窒化膜55は除去される。   FIG. 8 shows another example of a method for forming the concave joint 7. In this example, as shown in FIG. 8A, after a silicon nitride film 55 is formed on the entire surface of a semiconductor wafer 51, for example, a region 54 to be a junction on the surface of a silicon wafer, thermal oxidation treatment, that is, selective oxidation (LOCOS) is performed. By processing, a thermal oxide film (SiO 2 film) 56 is formed. Next, as shown in FIG. 8B, the thermal oxide film 56 is selectively removed by etching to form a concave joint 7. The silicon nitride film 55 is removed.

図9に、凹状の接合部7の形成方法の更に他の例を示す。本例は、半導体ウェハ51、例えばシリコンウェハの表面に接合部を形成すべき領域を除いてレジストマスク57を形成し、このレジストマスク57の開口に臨む部分の半導体ウェハ51をドライエッチングまたはウェットエッチングして、凹状の接合部7を形成する。   FIG. 9 shows still another example of the method for forming the concave joint 7. In this example, a resist mask 57 is formed except for a region where a bonding portion is to be formed on the surface of a semiconductor wafer 51, for example, a silicon wafer, and a portion of the semiconductor wafer 51 facing the opening of the resist mask 57 is dry etched or wet etched. Thus, the concave joint 7 is formed.

図10に、凹状の接合部7の形成方法の更に他の例を示す。本例は、半導体基板(例えばシリコン基板)58の表面に埋め込み絶縁膜(例えば酸化膜)59を介して半導体層(例えばシリコン層)60が形成された、いわゆるSOIウェハ61を用いる。このSOIウェハ61の埋め込み絶縁膜59をエッチングストッパ層とし、半導体層60の接合部を形成すべき領域を選択的にエッチング除去する。すなわち、埋め込み絶縁膜59の面が露出するまでエッチング除去し、凹状の接合部7を形成する。   FIG. 10 shows still another example of the method for forming the concave joint 7. In this example, a so-called SOI wafer 61 in which a semiconductor layer (for example, a silicon layer) 60 is formed on a surface of a semiconductor substrate (for example, a silicon substrate) 58 via a buried insulating film (for example, an oxide film) 59 is used. The buried insulating film 59 of the SOI wafer 61 is used as an etching stopper layer, and a region where a junction of the semiconductor layer 60 is to be formed is selectively removed by etching. That is, etching is removed until the surface of the buried insulating film 59 is exposed, and the concave joint 7 is formed.

図11に、凸状の接合部7の形成方法の一例を示す。本例は、半導体ウェハ51、例えばシリコンウェハの表面に絶縁膜62を形成した後、接合部を形成すべき領域55を残して他の絶縁膜62を、半導体ウェハ51の表面が露出するまでエッチング除去する。これにより、残った絶縁膜62にて凸状の接合部6を形成する。   In FIG. 11, an example of the formation method of the convex junction part 7 is shown. In this example, after an insulating film 62 is formed on the surface of a semiconductor wafer 51, for example, a silicon wafer, the other insulating film 62 is etched until the surface of the semiconductor wafer 51 is exposed, leaving a region 55 where a junction is to be formed. Remove. Thereby, the convex joint 6 is formed by the remaining insulating film 62.

図12に、凸状の接合部7の形成方法の他の例を示す。本例は、図12Aに示すように、半導体ウェハ51、例えばシリコンウェハの表面の接合部となる領域63にシリコン窒化膜55を形成した後、熱酸化処理、すなわち選択酸化(LOCOS)処理して、熱酸化膜(SiO2膜)56を形成する。次に、図12Bに示すように、熱酸化膜56を選択的にエッチング除去する。シリコン窒化膜55を除去する。これにより、エッチングされず残った部分を半導体による凸状の接合部6として形成する。   FIG. 12 shows another example of a method for forming the convex joint 7. In this example, as shown in FIG. 12A, after a silicon nitride film 55 is formed in a region 63 to be a junction on the surface of a semiconductor wafer 51, for example, a silicon wafer, thermal oxidation processing, that is, selective oxidation (LOCOS) processing is performed. Then, a thermal oxide film (SiO 2 film) 56 is formed. Next, as shown in FIG. 12B, the thermal oxide film 56 is selectively removed by etching. The silicon nitride film 55 is removed. As a result, the remaining portion that is not etched is formed as a convex joint 6 made of a semiconductor.

図13に、凸状の接合部7の形成方法の更に他の例を示す。本例は、半導体ウェハ51、例えばシリコンウェハの表面の接合部を形成すべき領域にレジストマスク57を形成し、このレジストマスク57を介して半導体ウェハ51をドライエッチングまたはウェットエッチングする。そして、エッチングされずに残った半導体部分を凸状の接合部6として形成する。   FIG. 13 shows still another example of the method for forming the convex joint 7. In this example, a resist mask 57 is formed in a region where a bonding portion on the surface of a semiconductor wafer 51, for example, a silicon wafer is to be formed, and the semiconductor wafer 51 is dry etched or wet etched through the resist mask 57. Then, the semiconductor portion remaining without being etched is formed as a convex joint 6.

図14に、凸状の接合部7の形成方法の更に他の例を示す。本例は、半導体基板(例えばシリコン基板)58の表面に埋め込み絶縁膜(例えば酸化膜)59を介して半導体層(例えばシリコン層)60が形成された、いわゆるSOIウェハ61を用いる。このSOIウェハ61の埋め込み絶縁膜59をエッチングストッパ層とし、半導体層60の接合部を形成すべき領域を除く他の領域を選択的にエッチング除去する。すなわち、埋め込み絶縁膜59の面が露出するまでエッチング除去する。そして、エッチングされずに残った半導体部分を凸状の接合部6として形成する。   FIG. 14 shows still another example of the method for forming the convex joint 7. In this example, a so-called SOI wafer 61 in which a semiconductor layer (for example, a silicon layer) 60 is formed on a surface of a semiconductor substrate (for example, a silicon substrate) 58 via a buried insulating film (for example, an oxide film) 59 is used. The buried insulating film 59 of the SOI wafer 61 is used as an etching stopper layer, and other regions except the region where the junction of the semiconductor layer 60 is to be formed are selectively etched away. That is, etching is removed until the surface of the buried insulating film 59 is exposed. Then, the semiconductor portion remaining without being etched is formed as a convex joint 6.

上述の凹状の接合部7、及び凸状の接合部6の形成方法によれば、最初の半導体ウェハ51の平滑な面、あるいは半導体ウェハ51上に成膜された絶縁膜の平滑な面で、接合部7、6の接合面が形成される。   According to the method for forming the concave joint 7 and the convex joint 6 described above, the smooth surface of the first semiconductor wafer 51 or the smooth surface of the insulating film formed on the semiconductor wafer 51 Bonding surfaces of the bonding portions 7 and 6 are formed.

接合部6、7の接合面は、単結晶シリコン、ポリシリコン、アモルファスシリコン、シリコン酸化膜、またはシリコン窒化膜などによる平坦面で形成することができる。さらに、接合部6、7の接合面は、Au,Cu、Al,Al合金などの金属薄膜の平坦面で形成することができる。   The joint surfaces of the joint portions 6 and 7 can be formed as flat surfaces such as single crystal silicon, polysilicon, amorphous silicon, silicon oxide film, or silicon nitride film. Furthermore, the joint surfaces of the joint portions 6 and 7 can be formed by a flat surface of a metal thin film such as Au, Cu, Al, or an Al alloy.

凹状の接合部7は、図15Aに示すように、その深さh1が凸状の接合部6の高さh2以下、例えば2μm以下、好ましくは1μm〜2μmとし、その底面の幅w1が凸状の接合部6の頂面の幅w2以上、例えば20μm以上、好ましくは20μm〜500μmとする。凸状の接合部6は、図15Bに示すように、その高さh2が凹状の接合部7の深さh1以上、例えば1μm以上、好ましくは1μm〜2μmとし、その頂面の幅w2が凹状の接合部7の底面の幅w1以下、例えば20μm以下、好ましくは20μm〜500μmとする。   As shown in FIG. 15A, the concave joint 7 has a depth h1 that is less than or equal to a height h2 of the convex joint 6, for example, 2 μm or less, preferably 1 μm to 2 μm, and a bottom surface width w1 that is convex. The width w2 or more of the top surface of the joint 6 is, for example, 20 μm or more, preferably 20 μm to 500 μm. As shown in FIG. 15B, the convex joint 6 has a height h2 that is not less than the depth h1 of the concave joint 7, for example, 1 μm or more, preferably 1 μm to 2 μm, and the width w2 of the top surface is concave. The width w1 or less of the bottom surface of the joint 7 is, for example, 20 μm or less, preferably 20 μm to 500 μm.

凹状の接合部7の深さh1が2μmより大きくなると、フォトレジスト塗布時の不都合が生じ、1μmより小さくなると、サブミクロンの異物の付着などの不都合が生じる。凹状の接合部7の底面の幅w1が20μmより小さいと、接合強度不足の不都合が生じ、 500μmより大きいと、接合面積が大きくなることによるチップ面積増大の不都合が生じる。   If the depth h1 of the concave joint 7 is greater than 2 μm, there will be inconveniences when applying the photoresist, and if it is less than 1 μm, inconveniences such as adhesion of submicron foreign matter will occur. If the width w1 of the bottom surface of the concave bonding portion 7 is smaller than 20 μm, the disadvantage of insufficient bonding strength occurs. If it is larger than 500 μm, the disadvantage of an increase in chip area due to an increase in bonding area occurs.

凸状の接合部6の高さh2が2μmより大きくなると、フォトレジスト塗布時の不都合が生じる。凸状の接合部7の頂面の幅w2が500μmより大きいと、接合面積が大きくなることによるチップ面積増大の不都合が生じ、20μmより小さいと、接合強度不足の不都合が生じる。   If the height h2 of the convex joint 6 is greater than 2 μm, there will be inconvenience when applying the photoresist. If the width w2 of the top surface of the convex joint 7 is larger than 500 μm, there will be a disadvantage of increasing the chip area due to an increase in the joint area, and if it is smaller than 20 μm, there will be a disadvantage of insufficient joint strength.

図16に、本発明に係る3次元積層デバイスの他の実施の形態を示す。本実施の形態に係る3次元積層デバイス65は、複数の半導体チップ、すなわち本例では、固体撮像素子チップとなる半導体チップ66Aと、メモリチップとなる半導体チップ67Aと、ロジックICチップとなる半導体チップ68Aと、MEMS物理量チップとなる半導体チップ69Aと、キャップ用チップとなる半導体チップ70Aとが積層接合化された、いわゆる複合センサデバイスとして構成される。この複合センサデバイスは、複数の半導体ウェハ、すなわち、固体撮像素子が形成された半導体ウェハ66と、メモリ素子が形成されたメモリウェハ67と、ロジックICが形成されたロジックICウェハ68と、MEMS物理量センサが形成されたMEMS物理量ウェハ69とが積層接合されて一体化され、さらにMEMS物理量ウェハ69を空間を介して封止するキャップ用ウェハ70とを積層一体化した後、各固片化して、構成される。なお、ウェハ70としては、キャップ用ウェハ以外に、例えばMEMS用ロジックICウェハを用いることもできる。   FIG. 16 shows another embodiment of the three-dimensional laminated device according to the present invention. The three-dimensional stacked device 65 according to the present embodiment includes a plurality of semiconductor chips, that is, in this example, a semiconductor chip 66A serving as a solid-state imaging element chip, a semiconductor chip 67A serving as a memory chip, and a semiconductor chip serving as a logic IC chip. 68A, a semiconductor chip 69A serving as a MEMS physical quantity chip, and a semiconductor chip 70A serving as a cap chip are stacked and joined to form a so-called composite sensor device. This composite sensor device includes a plurality of semiconductor wafers, that is, a semiconductor wafer 66 on which a solid-state imaging element is formed, a memory wafer 67 on which a memory element is formed, a logic IC wafer 68 on which a logic IC is formed, and a MEMS physical quantity. The MEMS physical quantity wafer 69 on which the sensor is formed is laminated and integrated to be integrated, and further, the cap physical wafer 69 that seals the MEMS physical quantity wafer 69 through a space is laminated and integrated, and then separated into individual pieces. Composed. For example, a MEMS logic IC wafer can be used as the wafer 70 in addition to the cap wafer.

これら、各半導体ウェハ66〜70の積層接合化は、前述と同様に隣り合う半導体ウェハでは、一方の半導体ウェハに凸状の接合部6が形成され、他方の半導体ウェハに凹状の接合部7が形成され、両接合部6、7の接合面が突き合わされるようにして直接接合される。図16では模式的に示したが、対応する部分は前述と同様に構成することができ、詳細説明を省略する。   These semiconductor wafers 66 to 70 are laminated and bonded in the same manner as described above. In the adjacent semiconductor wafers, the convex bonding portion 6 is formed on one semiconductor wafer, and the concave bonding portion 7 is formed on the other semiconductor wafer. It is formed, and it joins directly so that the joint surface of both the junction parts 6 and 7 may be faced | matched. Although schematically shown in FIG. 16, corresponding portions can be configured in the same manner as described above, and detailed description thereof will be omitted.

MEMS物理量センサとしては、例えば、加速度センサ、角速度センサ、圧力センサ等を適用できる。   As the MEMS physical quantity sensor, for example, an acceleration sensor, an angular velocity sensor, a pressure sensor, or the like can be applied.

図20に、MEMS物理量センサとして、加速度センサの一例を示す。本例の加速度センサ101は、シリコン基板102上に絶縁膜103、シリコン層104が形成されたSOI基板105に形成される。すなわち、SOI基板105からなる枠体による支持部106を有し、シリコン層103からなる4辺の弾性支持部107〔107A,107B,107C,107D〕を介して支持部106の中央部にSOI基板105からなる質量部108が支持される。各弾性支持部107〔107A〜107D〕には、質量部108の変位を検出するための変位検出手段109が備えられる。この変位検出手段109は、例えば応力電気変換素子(ピエゾ素子)からなる。このようにして加速度センサ101が構成される。   FIG. 20 shows an example of an acceleration sensor as the MEMS physical quantity sensor. The acceleration sensor 101 of this example is formed on an SOI substrate 105 in which an insulating film 103 and a silicon layer 104 are formed on a silicon substrate 102. That is, it has a support portion 106 made of a frame made of an SOI substrate 105, and an SOI substrate at the center of the support portion 106 via four-side elastic support portions 107 [107A, 107B, 107C, 107D] made of a silicon layer 103. A mass part 108 made of 105 is supported. Each elastic support portion 107 [107A to 107D] is provided with a displacement detection means 109 for detecting the displacement of the mass portion. The displacement detection means 109 is composed of, for example, a stress electrical conversion element (piezo element). In this way, the acceleration sensor 101 is configured.

この加速度センサ101の動作原理を説明する。上記加速度センサ101に加速度が作用すると、枠体による支持部106の中央部に、弾性支持部107〔107A〜107D〕により浮動状態に支持された質量部108が加速度に比例した力を受けて変位する。この質量部108の変位で弾性支持部107にたわみを生じ、弾性支持部107に形成された変位検出手段109が、弾性支持部107上にある2つの直交する検出軸(X軸とY軸)及び弾性支持部107に垂直な1つの検出軸(Z軸)に対応して、各軸それぞれ4か所の変位検出手段109で構成されたホイートストンブリッジ回路を用いて3軸方向の加速度を検出する。   The operation principle of the acceleration sensor 101 will be described. When acceleration acts on the acceleration sensor 101, the mass portion 108 supported in a floating state by the elastic support portions 107 [107A to 107D] receives a force proportional to the acceleration and is displaced at the center portion of the support portion 106 by the frame. To do. The displacement of the mass portion 108 causes the elastic support portion 107 to bend, and the displacement detection means 109 formed on the elastic support portion 107 has two orthogonal detection axes (X axis and Y axis) on the elastic support portion 107. In addition, corresponding to one detection axis (Z-axis) perpendicular to the elastic support portion 107, acceleration in three axial directions is detected using a Wheatstone bridge circuit configured by four displacement detection means 109 for each axis. .

次に、図17〜図19に、複数の半導体ウェハを積層接合する場合の変形例を示す。
図17の例は、複数の半導体ウェハ81〜85を積層した多層ウェハを用いてなる3次元積層デバイスにおいて、最上層と最下層を除く中間層の半導体ウェハ82〜85が、それぞれ第1の表面、例えば表面側に凸状の接合部6を有し、第2の表面、例えば裏面側に凹状の接合部7を有し、これら隣り合って積層する半導体ウェハ同士の凸状の接合部6及び凹状の接合部7を直接接合して構成される。最上層の半導体ウェハ86は凹状の接合7が形成され、最下層の半導体ウェハ81は凸状の接合部6が形成される。
Next, FIG. 17 to FIG. 19 show modifications in the case where a plurality of semiconductor wafers are laminated and bonded.
In the example of FIG. 17, in a three-dimensional laminated device using a multilayer wafer in which a plurality of semiconductor wafers 81 to 85 are laminated, the intermediate layer semiconductor wafers 82 to 85 excluding the uppermost layer and the lowermost layer respectively have the first surface. For example, a convex joint 6 on the front surface side, a concave joint 7 on the second surface, for example, the back surface side, and the convex joint 6 between the semiconductor wafers stacked adjacent to each other, and The concave joint 7 is directly joined. The uppermost semiconductor wafer 86 is formed with a concave joint 7, and the lowermost semiconductor wafer 81 is formed with a convex joint 6.

すなわち、図17の構成を一般化して説明すると、第1の半導体ウェハは、その第1の表面例えば表面側に凸状の接合部を有して構成される。第2の半導体ウェハは、その第1の表面例えば表面側に凸状の接合部6を有し、その第2の表面例えば裏面側に凹状の接合部7を有して構成される。第3の半導体ウェハは、同様にその第1の表面例えば表面側に凸状の接合部6を有し、その第2の表面例えば裏面側に凹状の接合部7を有して構成される。この第1の半導体ウェハの凸状の接合部6が第2の半導体ウェハの凹状の接合部7に接合され、第2の半導体ウェハの凸状の接合部に第3の半導体ウェハの凹状の接合部7が接合される。そして、第4から第N−1の半導体ウェハの夫々も、同様に第1の表面例えば表面側に凸状の接合部6を有し、第2の表面例えば裏面側に凹状の接合部7を有して構成される。第3の半導体ウェハから第N−1の半導体ウェハまで、同様に接合される。さらに、第Nの半導体ウェハは、その第2の表面例えば裏面側に凹状の接合部を有して構成され、第N−1の半導体ウェハと積層接合される。このようにしてN層に積層接合された3次元積層デバイスが構成される。   That is, when the structure of FIG. 17 is generalized and described, the first semiconductor wafer is configured to have a convex bonding portion on the first surface, for example, the surface side. The second semiconductor wafer has a convex joint 6 on its first surface, for example, the front surface side, and has a concave joint 7 on its second surface, for example, the back surface side. Similarly, the third semiconductor wafer has a convex joint 6 on the first surface, for example, the front side, and a concave joint 7 on the second surface, for example, the back side. The convex joint 6 of the first semiconductor wafer is joined to the concave joint 7 of the second semiconductor wafer, and the concave joint of the third semiconductor wafer is joined to the convex joint of the second semiconductor wafer. Part 7 is joined. Similarly, each of the fourth to (N-1) th semiconductor wafers has a convex joint 6 on the first surface, for example, the front surface side, and a concave joint 7 on the second surface, for example, the back surface side. It is configured. Bonding is similarly performed from the third semiconductor wafer to the (N-1) th semiconductor wafer. Furthermore, the Nth semiconductor wafer is configured to have a concave bonding portion on the second surface, for example, the back surface side, and is laminated and bonded to the N-1th semiconductor wafer. In this way, a three-dimensional laminated device laminated and bonded to the N layer is configured.

図18の例は、3層構造の半導体ウェハ91〜93を用いてなる3次元積層デバイスにおいて、最上層と最下層の半導体ウェハ91及び93を除く中間層の半導体ウェハ92が、両面に凹状の接合部7を有し、最上層及び最下層の半導体ウェハ93及び91に凸状の接合部6を有し、これら凹状の接合部7と凸状の接合部6が直接接合して構成される。   In the example of FIG. 18, in a three-dimensional stacked device using semiconductor wafers 91 to 93 having a three-layer structure, an intermediate layer semiconductor wafer 92 excluding the uppermost layer and the lowermost layer semiconductor wafers 91 and 93 is concave on both sides. It has a joint 7, and has convex joints 6 on the uppermost and lowermost semiconductor wafers 93 and 91, and these concave joints 7 and convex joints 6 are directly joined. .

図19の例は、複数の半導体ウェハ94〜97を積層した多層ウェハを用いてなる3次元積層デバイスにおいて、最上層と最下層を除く一部の中間層の半導体ウェハ96が、両面に凹状の接合部7を有し、残りの中間層の半導体ウェハ95が、第1の表面、例えば表面側に凸状の接合部6を有し、第2の表面、例えば裏面側に凹状の接合部7を有し、これら隣り合って積層する半導体ウェハ同士の凸状の接合部及び凹状の接合部を直接接合して構成される。最上層の半導体ウェハ97及び最下層の半導体ウェハ94は、凸状の接合部6が形成されている。   In the example of FIG. 19, in a three-dimensional stacked device using a multilayer wafer in which a plurality of semiconductor wafers 94 to 97 are stacked, a part of the intermediate layer semiconductor wafer 96 excluding the uppermost layer and the lowermost layer has a concave shape on both sides. The remaining intermediate layer semiconductor wafer 95 having the joint 7 has a convex joint 6 on the first surface, for example, the front surface side, and a concave joint 7 on the second surface, for example, the back surface side. These are formed by directly bonding the convex joint and the concave joint between the semiconductor wafers stacked adjacent to each other. The uppermost semiconductor wafer 97 and the lowermost semiconductor wafer 94 are formed with convex joints 6.

本発明に係る3次元積層デバイスの一実施の形態を示す構成図である。It is a block diagram which shows one Embodiment of the three-dimensional laminated device which concerns on this invention. 図1の実施の形態に係る3次元積層デバイスの分解図である。It is an exploded view of the three-dimensional laminated device which concerns on embodiment of FIG. 本発明に係る3次元積層デバイスの製造方法の一実施の形態を示す製造工程図(その1)である。It is a manufacturing process figure (1) which shows one Embodiment of the manufacturing method of the three-dimensional laminated device which concerns on this invention. 本発明に係る3次元積層デバイスの製造方法の一実施の形態を示す製造工程図(その2)である。It is a manufacturing process figure (the 2) which shows one Embodiment of the manufacturing method of the three-dimensional laminated device which concerns on this invention. 本発明に係る3次元積層デバイスの製造方法の一実施の形態を示す製造工程図(その3)である。It is a manufacturing process figure (the 3) which shows one Embodiment of the manufacturing method of the three-dimensional laminated device which concerns on this invention. 本発明に係る3次元積層デバイスの製造方法の一実施の形態を示す製造工程図(その4)である。It is a manufacturing process figure (the 4) which shows one Embodiment of the manufacturing method of the three-dimensional laminated device which concerns on this invention. 本発明に係る3次元積層デバイスの凹状の接合部の作製法の一例を示す断面図である。It is sectional drawing which shows an example of the preparation methods of the concave junction part of the three-dimensional laminated device which concerns on this invention. A,B 本発明に係る3次元積層デバイスの凹状の接合部の作製法の他の例を示す断面図である。A, B It is sectional drawing which shows the other example of the preparation methods of the concave junction part of the three-dimensional laminated device which concerns on this invention. 本発明に係る3次元積層デバイスの凹状の接合部の作製法の他の例を示す断面図である。It is sectional drawing which shows the other example of the manufacturing method of the concave junction part of the three-dimensional laminated device which concerns on this invention. 本発明に係る3次元積層デバイスの凹状の接合部の作製法の更に他の例を示す断面図である。It is sectional drawing which shows the further another example of the manufacturing method of the concave junction part of the three-dimensional laminated device which concerns on this invention. 本発明に係る3次元積層デバイスの凸状の接合部の作製法の一例を示す断面図である。It is sectional drawing which shows an example of the preparation methods of the convex junction part of the three-dimensional laminated device which concerns on this invention. A,B 本発明に係る3次元積層デバイスの凸状の接合部の作製法の他の例を示す断面図である。A, B It is sectional drawing which shows the other example of the preparation methods of the convex junction part of the three-dimensional laminated device which concerns on this invention. 本発明に係る3次元積層デバイスの凸状の接合部の作製法の他の例を示す断面図である。It is sectional drawing which shows the other example of the preparation methods of the convex junction part of the three-dimensional laminated device which concerns on this invention. 本発明に係る3次元積層デバイスの凸状の接合部の作製法の更に他の例を示す断面図である。It is sectional drawing which shows the further another example of the manufacturing method of the convex junction part of the three-dimensional laminated device which concerns on this invention. A,B 本発明に係る凹状の接合部と凸状の接合部の大きさの説明に供する断面図である。A and B It is sectional drawing with which it uses for description of the magnitude | size of the concave junction part which concerns on this invention, and a convex junction part. 本発明に係る3次元積層デバイスの他の実施の形態を示す模式的な構成図である。It is a typical block diagram which shows other embodiment of the three-dimensional laminated device which concerns on this invention. 本発明に係る複数の半導体ウェハを積層接合する場合の変形例を示す分解図である。It is an exploded view which shows the modification in the case of carrying out the lamination | stacking joining of the several semiconductor wafer concerning this invention. 本発明に係る複数の半導体ウェハを積層接合する場合の他の変形例を示す分解図である。It is an exploded view which shows the other modification in the case of carrying out the lamination | stacking joining of the several semiconductor wafer which concerns on this invention. 本発明に係る複数の半導体ウェハを積層接合する場合の更に他の変形例を示す分解図である。It is an exploded view which shows the other modification in the case of carrying out the lamination | stacking joining of the several semiconductor wafer which concerns on this invention. A,B 本発明に係る3次元積層デバイスの構成要素に適用されるMEMS物理量センサの一つである加速度センサの例を示す斜視図及び断面図である。A and B are a perspective view and a cross-sectional view showing an example of an acceleration sensor which is one of MEMS physical quantity sensors applied to the components of the three-dimensional multilayer device according to the present invention.

符号の説明Explanation of symbols

1・・3次元積層デバイス、2〜5・・半導体ウェハ、2A,3A,4A,5A・・半導体チップ、6・・凸状の接合部、7・・凹状の接合部、11・・MEMS構造体、13,14・・空間、41・・下部ステージ、42・・上部ステージ、65・・3次元積層デバイス、66〜70・・半導体ウェハ、66A・・チップ、67A・・メモリチップ、68A・・ロジックICチップ、69A・・MEMS物理量チップ、70A・・キャップ用チップ、81〜86・・半導体ウェハ、91〜93・・半導体ウェハ、94〜97・・半導体ウェハ、101・・加速度センサ   1 .. Three-dimensional laminated device, 2-5 .. Semiconductor wafer, 2A, 3A, 4A, 5A .. Semiconductor chip, 6 .... Convex joint, 7 .... Concave joint, 11 .... MEMS structure Body 13, 14 ... Space, 41 ... Lower stage, 42 ... Upper stage, 65 ... Three-dimensional stacked device, 66-70 ... Semiconductor wafer, 66A ... Chip, 67A ... Memory chip, 68A ... · Logic IC chip, 69A · · MEMS physical quantity chip, 70A · · Cap chip, 81 to 86 · · Semiconductor wafer, 91 to 93 · · Semiconductor wafer, 94 to 97 · · Semiconductor wafer, 101 · · Accelerometer

Claims (19)

複数の半導体ウェハが積層一体化された後、各デバイスを形成する3次元積層デバイスであって、
隣り合って積層される半導体ウェハにおいて、一方の半導体ウェハの接合部が凸状に形成され、他方の半導体ウェハの接合部が凹状に形成され、
前記一方の半導体ウェハの凸状の接合部と、前記他方の半導体ウェハの凹状の接合部とが直接接合されて積層されて成る
ことを特徴とする3次元積層デバイス。
A three-dimensional laminated device that forms each device after a plurality of semiconductor wafers are laminated and integrated,
In semiconductor wafers stacked next to each other, the junction of one semiconductor wafer is formed in a convex shape, and the junction of the other semiconductor wafer is formed in a concave shape,
The three-dimensional laminated device, wherein the convex joint of the one semiconductor wafer and the concave joint of the other semiconductor wafer are directly joined and laminated.
最上層及び最下層の半導体ウェハを除く、中間層の半導体ウェハは、表面に凸状の接合部を有し、裏面に凹状の接合部を有して成る
ことを特徴とする請求項1記載の3次元積層デバイス。
The intermediate layer semiconductor wafer, excluding the uppermost layer and the lowermost layer semiconductor wafer, has a convex joint on the front surface and a concave joint on the back surface. Three-dimensional laminated device.
最上層及び最下層の半導体ウェハを除く、中間層又は一部の中間層の半導体ウェハは、表面及び裏面とも凹状の接合部を有して成る
ことを特徴とする請求項1記載の3次元積層デバイス。
3. The three-dimensional laminated structure according to claim 1, wherein the intermediate layer or a part of the intermediate layer semiconductor wafer, excluding the uppermost layer and the lowermost layer semiconductor wafer, has concave joints on both the front surface and the back surface. device.
前記接合部の表面が、単結晶シリコン、ポリシリコン、アモルファスシリコン、シリコン酸化膜、又はシリコン窒化膜の平坦面で形成されて成る
ことを特徴とする請求項1記載の3次元積層デバイス。
2. The three-dimensional laminated device according to claim 1, wherein the surface of the joint is formed of a flat surface of single crystal silicon, polysilicon, amorphous silicon, a silicon oxide film, or a silicon nitride film.
前記接合部の表面が金属薄膜の平坦面で形成されて成る
ことを特徴とする請求項1記載の3次元デバイス。
The three-dimensional device according to claim 1, wherein the surface of the joint is formed by a flat surface of a metal thin film.
前記デバイスが、MEMS構造体チップと、貫通電極を含む配線チップと、ロジックICチップとが積層された集積化MEMSデバイスである
ことを特徴とする請求項1記載の3次元積層デバイス。
The three-dimensional stacked device according to claim 1, wherein the device is an integrated MEMS device in which a MEMS structure chip, a wiring chip including a through electrode, and a logic IC chip are stacked.
前記デバイスが、MEMS物理量センサチップと、固体撮像素子チップと、ロジックICチップと、メモリチップとが積層された複合センサデバイスである
ことを特徴とする請求項1記載の3次元積層デバイス。
The three-dimensional stacked device according to claim 1, wherein the device is a composite sensor device in which a MEMS physical quantity sensor chip, a solid-state imaging device chip, a logic IC chip, and a memory chip are stacked.
隣り合って積層すべき一方の半導体ウェハに凸状の接合部を形成し、他方の半導体ウェハに凹状の接合部を形成する工程と、
前記凸状の接合部と前記凹状の接合部とを直接接合して、前記一方の半導体ウェハと前記他方の半導体ウェハを積層する工程と、
前記工程を経て複数の半導体ウェハを積層一体化した後、各デバイスを形成する工程を有する
ことを特徴とする3次元積層デバイスの製造方法。
Forming a convex joint on one semiconductor wafer to be stacked next to each other, and forming a concave joint on the other semiconductor wafer;
Directly bonding the convex joint and the concave joint, and laminating the one semiconductor wafer and the other semiconductor wafer;
A method of manufacturing a three-dimensional laminated device, comprising: forming a device after stacking and integrating a plurality of semiconductor wafers through the above steps.
表面が平坦面の前記凸状及び凹状の接合部を形成し、
前記直接接合を、プラズマ活性化による低温接合、もしくはArイオンビーム活性化による常温接合で行う
ことを特徴とする請求項8記載の3次元積層デバイスの製造方法。
Forming the convex and concave joints with a flat surface,
The method of manufacturing a three-dimensional laminated device according to claim 8, wherein the direct bonding is performed by low-temperature bonding by plasma activation or normal temperature bonding by Ar ion beam activation.
前記接合部の表面を、単結晶シリコン、ポリシリコン、アモルファスシリコン、シリコン酸化膜、又はシリコン窒化膜の平坦面で形成する
ことを特徴とする請求項8記載の3次元積層デバイスの製造方法。
The method of manufacturing a three-dimensional multilayer device according to claim 8, wherein the surface of the joint is formed by a flat surface of single crystal silicon, polysilicon, amorphous silicon, a silicon oxide film, or a silicon nitride film.
前記接合部の表面を、金属薄膜の平坦面で形成する
ことを特徴とする請求項8記載の3次元積層デバイスの製造方法。
The method of manufacturing a three-dimensional laminated device according to claim 8, wherein the surface of the joint is formed by a flat surface of a metal thin film.
前記凸状の接合部を、半導体ウェハの凸状の接合部以外の領域をドライエッチングまたはウェットエッチングして凹状領域を形成し、前記凹状領域のエッチングされない凸状領域により形成する
ことを特徴とする請求項8記載の3次元積層デバイスの製造方法。
The convex joint is formed by forming a concave region by dry etching or wet etching a region other than the convex joint of the semiconductor wafer, and forming the concave region by the non-etched convex region. The manufacturing method of the three-dimensional laminated device of Claim 8.
前記凸状の接合部を、半導体ウェハの凸状の接合部以外の領域を選択酸化した後、該選択酸化層をエッチング除去して凹状領域を形成し、前記凹状領域が形成されない凸状領域により形成する
ことを特徴とする請求項8記載の3次元積層デバイスの製造方法。
By selectively oxidizing the convex joint portion in a region other than the convex joint portion of the semiconductor wafer, the selective oxidation layer is removed by etching to form a concave region, and the convex region in which the concave region is not formed. The method of manufacturing a three-dimensional laminated device according to claim 8, wherein the method is formed.
凹状の接合部を、ドライエッチングまたはウェットエッチングにより形成する
ことを特徴とする請求項8記載の3次元積層デバイスの製造方法。
The method for manufacturing a three-dimensional laminated device according to claim 8, wherein the concave joint is formed by dry etching or wet etching.
凹状の接合部を、半導体ウェハを選択酸化した後、該選択酸化層をエッチング除去して形成する
ことを特徴とする請求項8記載の3次元積層デバイスの製造方法。
The method for manufacturing a three-dimensional laminated device according to claim 8, wherein the concave joint is formed by selectively oxidizing a semiconductor wafer and then removing the selective oxide layer by etching.
複数の半導体ウェハを積層一体化した後、各デバイスに形成して3次元積層デバイスを製造する際の、積層デバイスの接合方法であって、
隣り合って積層すべき一方の半導体ウェハに形成した凸状の接合部と、他方の半導体ウェハに形成した凹状の接合部とを、プラズマ活性化による低温接合で直接接合する
ことを特徴とする3次元積層デバイスの接合方法。
A method for joining laminated devices when a plurality of semiconductor wafers are laminated and integrated, and then formed into each device to produce a three-dimensional laminated device,
A convex joint formed on one semiconductor wafer to be stacked adjacent to a concave joint formed on the other semiconductor wafer is directly joined by low-temperature joining by plasma activation. Bonding method for three-dimensional laminated device.
複数の半導体ウェハを積層一体化した後、各デバイスに形成して3次元積層デバイスを製造する際の、積層デバイスの接合方法であって、
隣り合って積層すべき一方の半導体ウェハに形成した凸状の接合部と、他方の半導体ウェハに形成した凹状の接合部とを、Arイオンビーム活性化による常温接合で直接接合する
ことを特徴とする3次元積層デバイスの接合方法。
A method for joining laminated devices when a plurality of semiconductor wafers are laminated and integrated, and then formed into each device to produce a three-dimensional laminated device,
It is characterized in that a convex joint formed on one semiconductor wafer to be laminated next to a concave joint formed on the other semiconductor wafer is directly joined by room temperature bonding by Ar ion beam activation. A method for joining three-dimensional laminated devices.
前記接合部の表面を、単結晶シリコン、ポリシリコン、アモルファスシリコン、シリコン酸化膜、又はシリコン窒化膜の平坦面で形成する
ことを特徴とする請求項16又は17記載の3次元積層デバイスの接合方法。
18. The method for bonding a three-dimensional stacked device according to claim 16, wherein the surface of the bonding portion is formed by a flat surface of single crystal silicon, polysilicon, amorphous silicon, a silicon oxide film, or a silicon nitride film. .
前記接合部の表面を、金属薄膜の平坦面で形成する
ことを特徴とする請求項16又は17記載の3次元積層デバイスの接合方法。
The surface of the said junction part is formed with the flat surface of a metal thin film. The joining method of the three-dimensional laminated device of Claim 16 or 17 characterized by the above-mentioned.
JP2007131983A 2007-05-17 2007-05-17 Three-dimensional stacked device and its manufacturing method, and method of junction of three-dimensional stacked device Pending JP2008288384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007131983A JP2008288384A (en) 2007-05-17 2007-05-17 Three-dimensional stacked device and its manufacturing method, and method of junction of three-dimensional stacked device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007131983A JP2008288384A (en) 2007-05-17 2007-05-17 Three-dimensional stacked device and its manufacturing method, and method of junction of three-dimensional stacked device

Publications (1)

Publication Number Publication Date
JP2008288384A true JP2008288384A (en) 2008-11-27

Family

ID=40147823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007131983A Pending JP2008288384A (en) 2007-05-17 2007-05-17 Three-dimensional stacked device and its manufacturing method, and method of junction of three-dimensional stacked device

Country Status (1)

Country Link
JP (1) JP2008288384A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052627A1 (en) 2009-10-28 2011-05-05 三菱重工業株式会社 Controller for bonding apparatus and multilayer bonding method
KR101299845B1 (en) * 2010-10-18 2013-08-23 도쿄엘렉트론가부시키가이샤 Bonding apparatus
WO2014084217A1 (en) * 2012-11-27 2014-06-05 三菱重工業株式会社 Normal temperature bonding device, wafer having normal temperature bonding device, and normal temperature bonding method
US8759926B2 (en) 2010-03-17 2014-06-24 Denso Corporation Semiconductor physical quantity sensor
JP2014143399A (en) * 2012-12-25 2014-08-07 Nikon Corp Substrate and substrate bonding method
US9437584B2 (en) 2012-09-14 2016-09-06 Seiko Epson Corporation Electronic apparatus
US10490734B2 (en) 2016-09-29 2019-11-26 Tdk Corporation Magnetoresistance effect device
WO2020195564A1 (en) * 2019-03-25 2020-10-01 ソニーセミコンダクタソリューションズ株式会社 Imaging device
US20220093731A1 (en) * 2020-09-22 2022-03-24 Globalfoundries U.S. Inc. Semiconductor on insulator wafer with cavity structures

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04159788A (en) * 1990-10-23 1992-06-02 Toshiba Corp Manufacture of semiconductor element
JPH06215993A (en) * 1993-01-14 1994-08-05 Ube Ind Ltd Composite semiconductor substrate and manufacture thereof
JPH0758197A (en) * 1993-01-14 1995-03-03 N T T Electron Technol Kk Composite semiconductor substrate and its manufacture
JPH08125121A (en) * 1994-08-29 1996-05-17 Matsushita Electric Ind Co Ltd Semiconductor device and production thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04159788A (en) * 1990-10-23 1992-06-02 Toshiba Corp Manufacture of semiconductor element
JPH06215993A (en) * 1993-01-14 1994-08-05 Ube Ind Ltd Composite semiconductor substrate and manufacture thereof
JPH0758197A (en) * 1993-01-14 1995-03-03 N T T Electron Technol Kk Composite semiconductor substrate and its manufacture
JPH08125121A (en) * 1994-08-29 1996-05-17 Matsushita Electric Ind Co Ltd Semiconductor device and production thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052627A1 (en) 2009-10-28 2011-05-05 三菱重工業株式会社 Controller for bonding apparatus and multilayer bonding method
US9064910B2 (en) 2009-10-28 2015-06-23 Mitsubishi Heavy Industries, Ltd. Bonding unit control unit and multi-layer bonding method
US8759926B2 (en) 2010-03-17 2014-06-24 Denso Corporation Semiconductor physical quantity sensor
KR101299845B1 (en) * 2010-10-18 2013-08-23 도쿄엘렉트론가부시키가이샤 Bonding apparatus
US9437584B2 (en) 2012-09-14 2016-09-06 Seiko Epson Corporation Electronic apparatus
WO2014084217A1 (en) * 2012-11-27 2014-06-05 三菱重工業株式会社 Normal temperature bonding device, wafer having normal temperature bonding device, and normal temperature bonding method
JP2014107393A (en) * 2012-11-27 2014-06-09 Mitsubishi Heavy Ind Ltd Normal temperature bonding device, wafer having normal temperature bonding device and normal temperature bonding method
JP2014143399A (en) * 2012-12-25 2014-08-07 Nikon Corp Substrate and substrate bonding method
US10490734B2 (en) 2016-09-29 2019-11-26 Tdk Corporation Magnetoresistance effect device
WO2020195564A1 (en) * 2019-03-25 2020-10-01 ソニーセミコンダクタソリューションズ株式会社 Imaging device
US20220093731A1 (en) * 2020-09-22 2022-03-24 Globalfoundries U.S. Inc. Semiconductor on insulator wafer with cavity structures
US12027580B2 (en) * 2020-09-22 2024-07-02 Globalfoundries U.S. Inc. Semiconductor on insulator wafer with cavity structures

Similar Documents

Publication Publication Date Title
JP2008288384A (en) Three-dimensional stacked device and its manufacturing method, and method of junction of three-dimensional stacked device
JP4559993B2 (en) Manufacturing method of semiconductor device
TWI443723B (en) Composite wafer semiconductor device and method of forming the same
JP2024504035A (en) Direct bonded structure
TWI543280B (en) Method of manufacturing mems device
US6448109B1 (en) Wafer level method of capping multiple MEMS elements
CN109553065B (en) MEMS device and packaging method of MEMS
US7514286B2 (en) Method for forming individual semi-conductor devices
US20150210540A1 (en) Methods of forming semiconductor structures including mems devices and integrated circuits on common sides of substrates, and related structures and devices
JP2011524084A (en) How to initiate molecular bonding
TWI667815B (en) Micro-electro-mechanical system piezoelectric transducer and method for manufacturing the same
US9481566B2 (en) Methods of forming semiconductor structures including MEMS devices and integrated circuits on opposing sides of substrates, and related structures and devices
Tsuji et al. Low temperature process for CMUT fabrication with wafer bonding technique
JP2008060135A (en) Sensor unit and manufacturing method thereof
US20040063237A1 (en) Fabricating complex micro-electromechanical systems using a dummy handling substrate
JP4675945B2 (en) Semiconductor device
US20110175177A1 (en) Microelectromechanical system (mems) device and methods for fabricating the same
JP3938199B1 (en) Wafer level package structure and sensor device
CN114455536A (en) Wafer-level three-dimensional packaging method and structure of MEMS gas sensor
EP3180802B1 (en) Semiconductor structure with multiple active layers in an soi wafer
JP2009107041A (en) Microstructure and its manufacturing method
JPH0845935A (en) Forming method of multilayer interconnection
JP3938201B1 (en) Sensor device and manufacturing method thereof
TWI693191B (en) Substrate structure for mems device and method of fabricating semiconductor structure
JP3585337B2 (en) Micro device having hollow beam and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130409