JP2008285350A5 - - Google Patents

Download PDF

Info

Publication number
JP2008285350A5
JP2008285350A5 JP2007130252A JP2007130252A JP2008285350A5 JP 2008285350 A5 JP2008285350 A5 JP 2008285350A5 JP 2007130252 A JP2007130252 A JP 2007130252A JP 2007130252 A JP2007130252 A JP 2007130252A JP 2008285350 A5 JP2008285350 A5 JP 2008285350A5
Authority
JP
Japan
Prior art keywords
oxide thin
superlattice
thin films
oxide
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007130252A
Other languages
Japanese (ja)
Other versions
JP5564701B2 (en
JP2008285350A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2007130252A priority Critical patent/JP5564701B2/en
Priority claimed from JP2007130252A external-priority patent/JP5564701B2/en
Publication of JP2008285350A publication Critical patent/JP2008285350A/en
Publication of JP2008285350A5 publication Critical patent/JP2008285350A5/ja
Application granted granted Critical
Publication of JP5564701B2 publication Critical patent/JP5564701B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

すなわち本発明の第一の態様は、基板上に、少なくとも2種類の酸化物薄膜が積層されてなり、前記酸化物薄膜の各層が奇数枚の原子層からなることを特徴とする超格子であって、−50〜50℃において15emu/cc以上の自発磁化と、1μC/cm以上の自発分極とを同時に示すことを特徴とする常温磁性強誘電性超格子を提供して前記課題を解決するものである。 That is, a first aspect of the present invention is a superlattice characterized in that at least two kinds of oxide thin films are laminated on a substrate, and each layer of the oxide thin films is composed of an odd number of atomic layers. The present invention provides a room temperature magnetic ferroelectric superlattice characterized by simultaneously exhibiting spontaneous magnetization of 15 emu / cc or more at −50 to 50 ° C. and spontaneous polarization of 1 μC / cm 2 or more. Is.

本発明の第二の態様は、基板上に、少なくとも2種類の強誘電性酸化物薄膜が積層されてなる超格子であって、前記各酸化物薄膜を構成する酸化物がG型反強磁性体であり、前記各酸化物薄膜が、前記基板に対して(111)方向に配向しており、かつ前記酸化物薄膜の各層が奇数枚の原子層からなることを特徴とする、常温磁性強誘電性超格子を提供して前記課題を解決するものである。 According to a second aspect of the present invention, there is provided a superlattice in which at least two types of ferroelectric oxide thin films are laminated on a substrate, and the oxide constituting each of the oxide thin films is a G-type antiferromagnet. And each oxide thin film is oriented in the (111) direction with respect to the substrate, and each layer of the oxide thin film is composed of an odd number of atomic layers. A dielectric superlattice is provided to solve the above problems.

本発明の第三の態様は、基板上に、少なくとも2種類の強誘電性酸化物薄膜が積層されてなる超格子であって、前記各酸化物薄膜を構成する酸化物がA型反強磁性体であり、前記各酸化物薄膜が、前記基板に対して(100)方向に配向しており、かつ前記酸化物薄膜の各層が奇数枚の原子層からなることを特徴とする、常温磁性強誘電性超格子を提供して前記課題を解決するものである。  A third aspect of the present invention is a superlattice in which at least two kinds of ferroelectric oxide thin films are laminated on a substrate, and the oxides constituting each of the oxide thin films are A-type antiferromagnetic The oxide thin film is oriented in the (100) direction with respect to the substrate, and each layer of the oxide thin film is composed of an odd number of atomic layers. A dielectric superlattice is provided to solve the above problems.

本発明の第四の態様は、基板上に、少なくとも2種類の強誘電性酸化物薄膜が積層されてなる超格子であって、前記各酸化物薄膜を構成する酸化物がC型反強磁性体であり、前記各酸化物薄膜が、前記基板に対して(110)方向に配向しており、かつ前記酸化物薄膜の各層が奇数枚の原子層からなることを特徴とする、常温磁性強誘電性超格子を提供して前記課題を解決するものである。  According to a fourth aspect of the present invention, there is provided a superlattice in which at least two types of ferroelectric oxide thin films are laminated on a substrate, and the oxide constituting each oxide thin film is a C-type antiferromagnetic material. And each oxide thin film is oriented in the (110) direction with respect to the substrate, and each layer of the oxide thin film is composed of an odd number of atomic layers. A dielectric superlattice is provided to solve the above problems.

第一〜第四の態様において、基板は、酸化物単結晶であることが好ましく、その基板表面はステップ−テラス構造で構成されており、テラス幅の平均が50nm以上であることがより好ましい。また、これらの態様において、基板は、ペロブスカイト型酸化物単結晶であることがより好ましく、基板がペロブスカイト型酸化物単結晶である場合、酸化物薄膜の配向方向と同じ面指数を有していることがさらに好ましい。 In the first to fourth embodiments, the substrate is preferably an oxide single crystal, the substrate surface is formed of a step-terrace structure, and the average terrace width is more preferably 50 nm or more. In these embodiments, the substrate is more preferably a perovskite oxide single crystal, and when the substrate is a perovskite oxide single crystal, it has the same plane index as the orientation direction of the oxide thin film. More preferably.

本発明の第五の態様は、酸化物薄膜を気相成長または塗布成長によって製膜することを特徴とする、本発明の第一〜第四の態様(各好ましい態様も含む。)の常温磁性強誘電性超格子の製造方法を提供して前記課題を解決するものである。 The fifth aspect of the present invention is the room temperature magnetism of the first to fourth aspects (including each preferred aspect) of the present invention, wherein the oxide thin film is formed by vapor phase growth or coating growth. A method for manufacturing a ferroelectric superlattice is provided to solve the above-mentioned problems.

本発明の第六の態様は、本発明の第一〜第四の態様(各好ましい態様も含む。)の酸化物超格子の常温での使用によって前記課題を解決するものである。 The sixth aspect of the present invention solves the above problems by using the oxide superlattice of the first to fourth aspects (including each preferred aspect) of the present invention at room temperature.

Claims (13)

基板上に、少なくとも2種類の酸化物薄膜が積層されてなり、前記酸化物薄膜の各層が奇数枚の原子層からなることを特徴とする超格子であって、−50〜50℃において15emu/cc以上の自発磁化と、1μC/cm以上の自発分極とを同時に示すことを特徴とする常温磁性強誘電性超格子。 A superlattice comprising at least two kinds of oxide thin films laminated on a substrate, wherein each layer of the oxide thin films is composed of an odd number of atomic layers, and has a capacity of 15 emu / cm at −50 to 50 ° C. A room temperature magnetic ferroelectric superlattice characterized by simultaneously exhibiting spontaneous magnetization of cc or more and spontaneous polarization of 1 μC / cm 2 or more. 基板上に、少なくとも2種類の強誘電性酸化物薄膜が積層されてなる超格子であって、前記各酸化物薄膜を構成する酸化物がG型反強磁性体であり、前記各酸化物薄膜が、前記基板に対して(111)方向に配向しており、かつ前記酸化物薄膜の各層が奇数枚の原子層からなることを特徴とする、常温磁性強誘電性超格子。 A superlattice formed by laminating at least two types of ferroelectric oxide thin films on a substrate, and the oxides constituting the oxide thin films are G-type antiferromagnetic materials, and the oxide thin films A room-temperature magnetic ferroelectric superlattice characterized in that it is oriented in the (111) direction with respect to the substrate, and each layer of the oxide thin film is composed of an odd number of atomic layers. 前記酸化物薄膜が、一般式ABOで表わされるペロブスカイト型酸化物(A、Bは互いに異なる元素を表す。)よりなるものであることを特徴とする請求項1または2に記載の磁性強誘電性超格子。 3. The magnetic ferroelectric according to claim 1, wherein the oxide thin film is made of a perovskite oxide represented by a general formula ABO 3 (A and B represent different elements from each other). Superlattices. 前記Aで表わされる元素がBiまたはPbであり、前記Bで表わされる元素がTi、V、Cr、Mn、Fe、Co、Ni、Cuのいずれかであることを特徴とする請求項3に記載の磁性強誘電性超格子。 The element represented by A is Bi or Pb, and the element represented by B is any one of Ti, V, Cr, Mn, Fe, Co, Ni, and Cu. Magnetic ferroelectric superlattice. 異なる種類の前記酸化物薄膜が接合する界面において、隣接する前記酸化物薄膜のうちの一方の前記BがTi、V、Cr、Mnのいずれかであり、他方の前記BがFe、Co、Ni、Cuのいずれかであることを特徴とする請求項3または4に記載の磁性強誘電性超格子。 At the interface where the different types of oxide thin films are joined, one of the adjacent oxide thin films is any one of Ti, V, Cr, Mn, and the other B is Fe, Co, Ni. The magnetic ferroelectric superlattice according to claim 3 or 4, wherein the magnetic ferroelectric superlattice is any one of Cu and Cu. 基板上に、少なくとも2種類の強誘電性酸化物薄膜が積層されてなる超格子であって、前記各酸化物薄膜を構成する酸化物がA型反強磁性体であり、前記各酸化物薄膜が、前記基板に対して(100)方向に配向しており、かつ前記酸化物薄膜の各層が奇数枚の原子層からなることを特徴とする、常温磁性強誘電性超格子。 A superlattice formed by laminating at least two types of ferroelectric oxide thin films on a substrate, and the oxides constituting the oxide thin films are A-type antiferromagnetic materials, and the oxide thin films The room temperature magnetic ferroelectric superlattice is characterized in that it is oriented in the (100) direction with respect to the substrate , and each layer of the oxide thin film is composed of an odd number of atomic layers . 基板上に、少なくとも2種類の強誘電性酸化物薄膜が積層されてなる超格子であって、前記各酸化物薄膜を構成する酸化物がC型反強磁性体であり、前記各酸化物薄膜が、前記基板に対して(110)方向に配向しており、かつ前記酸化物薄膜の各層が奇数枚の原子層からなることを特徴とする、常温磁性強誘電性超格子。 A superlattice formed by laminating at least two types of ferroelectric oxide thin films on a substrate, and an oxide constituting each of the oxide thin films is a C-type antiferromagnetic material, and each of the oxide thin films The room temperature magnetic ferroelectric superlattice is characterized in that it is oriented in the (110) direction with respect to the substrate , and each layer of the oxide thin film is composed of an odd number of atomic layers . 前記基板が酸化物単結晶であることを特徴とする請求項1〜7のいずれかに記載の磁性強誘電性超格子。 8. The magnetic ferroelectric superlattice according to claim 1 , wherein the substrate is an oxide single crystal. 前記基板表面がステップ−テラス構造で構成されており、そのテラス幅の平均が50nm以上であることを特徴とする請求項8に記載の磁性強誘電性超格子。 9. The magnetic ferroelectric superlattice according to claim 8 , wherein the substrate surface has a step-terrace structure, and the average terrace width is 50 nm or more. 前記酸化物単結晶がペロブスカイト型酸化物単結晶であることを特徴とする請求項8または9に記載の磁性強誘電性超格子。 10. The magnetic ferroelectric superlattice according to claim 8, wherein the oxide single crystal is a perovskite oxide single crystal. 前記ペロブスカイト型酸化物単結晶が、前記酸化物薄膜の配向方向と同じ面指数を有していることを特徴とする請求項10に記載の磁性強誘電性超格子。 11. The magnetic ferroelectric superlattice according to claim 10 , wherein the perovskite oxide single crystal has the same plane index as the orientation direction of the oxide thin film. 前記酸化物薄膜を気相成長または塗布成長によって製膜することを特徴とする請求項1〜11のいずれかに記載の磁性強誘電性超格子の製造方法。 The method of manufacturing a magnetic ferroelectric superlattice according to claim 1 , wherein the oxide thin film is formed by vapor phase growth or coating growth. 請求項1〜11のいずれか1項に記載の酸化物超格子の常温での使用。 Use of the oxide superlattice according to any one of claims 1 to 11 at room temperature.
JP2007130252A 2007-05-16 2007-05-16 Room temperature magnetic ferroelectric superlattice and method of manufacturing the same Expired - Fee Related JP5564701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007130252A JP5564701B2 (en) 2007-05-16 2007-05-16 Room temperature magnetic ferroelectric superlattice and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007130252A JP5564701B2 (en) 2007-05-16 2007-05-16 Room temperature magnetic ferroelectric superlattice and method of manufacturing the same

Publications (3)

Publication Number Publication Date
JP2008285350A JP2008285350A (en) 2008-11-27
JP2008285350A5 true JP2008285350A5 (en) 2010-07-01
JP5564701B2 JP5564701B2 (en) 2014-08-06

Family

ID=40145453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007130252A Expired - Fee Related JP5564701B2 (en) 2007-05-16 2007-05-16 Room temperature magnetic ferroelectric superlattice and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP5564701B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013181370A1 (en) * 2012-05-31 2013-12-05 Board Of Governors For Higher Education, State Of Rhode A multiferro-heterostructure composition having tunable magnetic coupling at room temperature
JP6161147B2 (en) * 2013-01-25 2017-07-12 国立研究開発法人物質・材料研究機構 Electric field tunable topological insulator using perovskite structure
CN113690051B (en) * 2021-06-30 2023-03-31 中国科学院深圳先进技术研究院 Multi-component relaxation ferroelectric film material with superlattice structure and ultrahigh energy storage efficiency and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02170306A (en) * 1988-12-23 1990-07-02 Olympus Optical Co Ltd Ferromagnetic ferroelectric oxide and manufacture of thin film thereof
JP3969833B2 (en) * 1998-04-02 2007-09-05 独立行政法人科学技術振興機構 Ferromagnetic ferroelectric thin film and manufacturing method thereof
JP4219021B2 (en) * 1998-11-16 2009-02-04 独立行政法人科学技術振興機構 Oxide artificial superlattice thin film and manufacturing method thereof
JP4034139B2 (en) * 2002-07-25 2008-01-16 独立行政法人科学技術振興機構 BiMnO3 crystal synthesis method and composition for BiMnO3 crystal synthesis
WO2006028005A1 (en) * 2004-09-08 2006-03-16 Kyoto University Ferromagnetic ferroelectric substance and process for producing the same

Similar Documents

Publication Publication Date Title
Taniyama Electric-field control of magnetism via strain transfer across ferromagnetic/ferroelectric interfaces
JP5868491B2 (en) Magnetic tunnel junction for magnetic random access memory and method of forming the same
JP6135018B2 (en) Magnetoresistive element and magnetic memory
JP4551484B2 (en) Tunnel magnetoresistive thin film and magnetic multilayer film manufacturing apparatus
JP4834834B2 (en) Tunnel magnetoresistive element, nonvolatile magnetic memory, light emitting element, and three-terminal element
US9276192B2 (en) Magnetoelectric composites
JP6866694B2 (en) Magneto Resistive Sensor
JP2014517516A5 (en)
US9263189B2 (en) Magnetic capacitor
CN102916125A (en) Magnetic memory device and fabrication method thereof
JP6103123B1 (en) Magnetoresistive element, magnetic sensor and magnetic memory
JP2017103419A (en) Single crystal magnetoresistive element, method for manufacturing the same, and method for using the same
JP2006080116A (en) Magnetoresistive effect element and its manufacturing method
JP2008024532A5 (en)
WO2015033791A1 (en) Piezoelectric thin film element and method for manufacturing same
US20180096792A1 (en) Magnetic Capacitor
JP2008285350A5 (en)
JP2001339110A (en) Magnetism control element, magnetic component using the same and memory device
CN110603618B (en) Magnetic device, oscillator device, magnetic structure and method for manufacturing magnetic structure
JP2015207593A (en) magnetoresistive element
JP4915765B2 (en) Ferromagnetic semiconductor exchange coupling film
JP5564701B2 (en) Room temperature magnetic ferroelectric superlattice and method of manufacturing the same
JP6844743B2 (en) Ferromagnetic laminated film, spin current magnetization rotating element, magnetoresistive element and magnetic memory
JP4774092B2 (en) Magnetoresistive element and MRAM using the same
JP4102880B2 (en) Multilayer structure and element structure