JP4834834B2 - Tunnel magnetoresistive element, nonvolatile magnetic memory, light emitting element, and three-terminal element - Google Patents

Tunnel magnetoresistive element, nonvolatile magnetic memory, light emitting element, and three-terminal element Download PDF

Info

Publication number
JP4834834B2
JP4834834B2 JP2006129097A JP2006129097A JP4834834B2 JP 4834834 B2 JP4834834 B2 JP 4834834B2 JP 2006129097 A JP2006129097 A JP 2006129097A JP 2006129097 A JP2006129097 A JP 2006129097A JP 4834834 B2 JP4834834 B2 JP 4834834B2
Authority
JP
Japan
Prior art keywords
film
ferromagnetic
insulating film
tunnel magnetoresistive
magnetoresistive element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006129097A
Other languages
Japanese (ja)
Other versions
JP2007305610A (en
Inventor
英男 大野
正二 池田
永▲眠▼ 李
雅司 川▲崎▼
明 大友
正文 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2006129097A priority Critical patent/JP4834834B2/en
Publication of JP2007305610A publication Critical patent/JP2007305610A/en
Application granted granted Critical
Publication of JP4834834B2 publication Critical patent/JP4834834B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高出力トンネル磁気抵抗素子ならびにそれを搭載した不揮発性磁気メモリ、発光素子および3端子素子(3端子構造を有するデバイス)に関するものである。   The present invention relates to a high-power tunnel magnetoresistive element, a nonvolatile magnetic memory equipped with the same, a light-emitting element, and a three-terminal element (device having a three-terminal structure).

トンネル磁気抵抗素子は、絶縁膜を二つの強磁性膜で挟んだ基本構造を有している。かようなトンネル磁気抵抗素子としては、非特許文献1に記載されたような、酸化アルミニウムを絶縁膜に用いたトンネル積層膜が知られているが、このトンネル積層膜では、工業的に使用するための十分な電気的出力信号を得ることができなかった。
「T.Miyazaki and N.Tezuka、J.Magn. Magn. Mater 139、L231(1995)」
The tunnel magnetoresistive element has a basic structure in which an insulating film is sandwiched between two ferromagnetic films. As such a tunnel magnetoresistive element, a tunnel laminated film using aluminum oxide as an insulating film as described in Non-Patent Document 1 is known, but this tunnel laminated film is used industrially. Therefore, a sufficient electrical output signal could not be obtained.
"T.Miyazaki and N. Tezuka, J. Magn. Magn. Mater 139, L231 (1995)"

最近、トンネル磁気抵抗素子の絶縁物として酸化マグネシウムを用いることにより、上記した酸化アルミニウムを絶縁膜に用いたトンネル磁気抵抗素子よりも数倍大きい磁気抵抗比が得られることが報告されている(例えば非特許文献2)。
このように、トンネル磁気抵抗素子の絶縁膜としては、一種の酸化物を使用している場合がほとんどである。
「S.Yuasa et al.、Nature Material 3、868 (2004)」
Recently, it has been reported that by using magnesium oxide as an insulator of a tunnel magnetoresistive element, a magnetoresistance ratio several times larger than that of a tunnel magnetoresistive element using aluminum oxide as an insulating film can be obtained (for example, Non-patent document 2).
Thus, in most cases, a kind of oxide is used as the insulating film of the tunnel magnetoresistive element.
"S.Yuasa et al., Nature Material 3, 868 (2004)"

トンネル磁気抵抗素子の絶縁膜として、一種の酸化物を使用した場合、酸化物の厚さを規定するとその酸化物固有のバンドギャップで、トンネル磁気抵抗の特性は決まってしまう。そのため、人為的にトンネル磁気抵抗の特性を操作することは難しく、また新規の特性を付随させることも困難である。
そこで、トンネル磁気抵抗の人為的特性操作を可能とする絶縁膜の開発が強く要望されていた。
When a kind of oxide is used as the insulating film of the tunnel magnetoresistive element, if the thickness of the oxide is defined, the characteristics of the tunnel magnetoresistive are determined by the band gap inherent to the oxide. For this reason, it is difficult to artificially manipulate the characteristics of the tunnel magnetoresistance, and it is also difficult to attach new characteristics.
Thus, there has been a strong demand for the development of an insulating film that enables an artificial characteristic manipulation of the tunneling magnetoresistance.

本発明は、上記の要請に有利に応えることのできるトンネル磁気抵抗素子を、それを搭載した不揮発性磁気メモリ、発光素子および3端子構造を有するデバイスと共に提案することを目的とする。   It is an object of the present invention to propose a tunnel magnetoresistive element that can advantageously meet the above requirements, together with a nonvolatile magnetic memory, a light emitting element and a device having a three-terminal structure.

さて、発明者らは、上記の課題を解決するために、トンネル磁気抵抗の人為的特性操作が可能となるトンネル磁気抵抗素子、特に絶縁膜の材質について鋭意研究を重ねた。
その結果、絶縁膜を強磁性膜で挟む基本積層構造になるトンネル磁気抵抗素子において、絶縁膜として、化学式:Mg1-yyO(X:Zn,Ca,Sr,BaおよびCdのうちから選んだ一種または二種以上、0<y≦1)で示される酸化物を用いることにより、所期した目的が有利に達成されることの新規知見を得た。
本発明は上記の知見に立脚するものである。
In order to solve the above-mentioned problems, the inventors have made extensive studies on the material of a tunnel magnetoresistive element, particularly an insulating film, which enables an artificial characteristic manipulation of the tunnel magnetoresistive.
As a result, in a tunnel magnetoresistive element having a basic laminated structure in which an insulating film is sandwiched between ferromagnetic films, the insulating film is expressed by the chemical formula: Mg 1-y X y O (X: Zn, Ca, Sr, Ba and Cd). By using one or two or more selected oxides represented by 0 <y ≦ 1), new findings have been obtained that the intended purpose is advantageously achieved.
The present invention is based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
1.絶縁膜を二つの強磁性膜で挟んだ基本構造を有し、該強磁性膜は、Co,FeおよびNiのうちから選んだ少なくとも一種を含有する組成になり、一方、該絶縁膜は、化学式:Mg1-yyO(X:Zn,Ca,Sr,BaおよびCdのうちから選んだ一種または二種以上、0<y≦1(但し、y=1を除く))で示される酸化物からなることを特徴とするトンネル磁気抵抗素子。
That is, the gist configuration of the present invention is as follows.
1. It has a basic structure in which an insulating film is sandwiched between two ferromagnetic films, and the ferromagnetic film has a composition containing at least one selected from Co, Fe and Ni, while the insulating film has a chemical formula : Mg 1-y X y O (X: one or more selected from Zn, Ca, Sr, Ba and Cd, 0 <y ≦ 1 (excluding y = 1) ) A tunnel magnetoresistive element comprising a material.

2.前記強磁性膜のいずれか一方または両方が、体心立方構造の膜であることを特徴とする上記1記載のトンネル磁気抵抗素子。 2. 2. The tunnel magnetoresistive element according to 1 above, wherein one or both of the ferromagnetic films is a film having a body-centered cubic structure.

3.前記絶縁膜が、岩塩構造の酸化物であることを特徴とする上記1または2記載のトンネル磁気抵抗素子。 3. 3. The tunnel magnetoresistive element according to 1 or 2 above, wherein the insulating film is an oxide having a rock salt structure.

4.絶縁膜を二つの強磁性膜で挟んだ基本構造を有し、該強磁性膜は、Co,FeおよびNiのうちから選んだ少なくとも一種を含有する組成になり、一方、該絶縁膜は2層構造になり、第1の絶縁層はMgO、また第2の絶縁層は化学式:Mg1-yyO(X:Zn,Ca,Sr,BaおよびCdのうちから選んだ一種または二種以上、0<y≦1(但し、y=1を除く))で示される酸化物からなることを特徴とするトンネル磁気抵抗素子。 4). It has a basic structure in which an insulating film is sandwiched between two ferromagnetic films, and the ferromagnetic film has a composition containing at least one selected from Co, Fe and Ni, while the insulating film has two layers. The first insulating layer is MgO, and the second insulating layer is chemical formula: Mg 1-y X y O (X: one or more selected from Zn, Ca, Sr, Ba and Cd) , 0 <y ≦ 1 (excluding y = 1) ). A tunnel magnetoresistive element characterized by comprising:

5.絶縁膜を二つの強磁性膜で挟んだ基本構造を有し、該強磁性膜は、Co,FeおよびNiのうちから選んだ少なくとも一種を含有する組成になり、一方、該絶縁膜は2層構造になり、第1の絶縁層は化学式:Mg1-yyO(X:Zn,Ca,Sr,BaおよびCdのうちから選んだ一種または二種以上、0<y≦1(但し、y=1を除く))で示される酸化物、また第2の絶縁層は化学式:Mg1-zzO(X:Zn,Ca,Sr,BaおよびCdのうちから選んだ一種または二種以上、y<z≦1)で示される酸化物からなることを特徴とするトンネル磁気抵抗素子。 5). It has a basic structure in which an insulating film is sandwiched between two ferromagnetic films, and the ferromagnetic film has a composition containing at least one selected from Co, Fe and Ni, while the insulating film has two layers. And the first insulating layer has a chemical formula: Mg 1-y X y O (X: one or more selected from Zn, Ca, Sr, Ba and Cd, 0 <y ≦ 1 (provided that (except y = 1) The oxide represented by ) ) and the second insulating layer are of the chemical formula: Mg 1-z X z O (X: one or two selected from Zn, Ca, Sr, Ba and Cd) As described above, the tunnel magnetoresistive element is made of an oxide represented by y <z ≦ 1).

6.前記強磁性膜のいずれか一方または両方が、体心立方構造の膜であることを特徴とする上記4または5記載のトンネル磁気抵抗素子。 6). 6. The tunnel magnetoresistive element according to 4 or 5 above, wherein one or both of the ferromagnetic films is a film having a body-centered cubic structure.

7.絶縁膜を二つの強磁性膜で挟んだ基本構造を有し、該強磁性膜は、Co,FeおよびNiのうちから選んだ少なくとも一種を含有する組成になり、一方、該絶縁膜は3層構造になり、該強磁性膜と隣接する第1と第3の絶縁層はMgO、また該第1と第3の絶縁層で挟まれた第2の絶縁層は化学式:Mg1-yyO(X:Zn,Ca,Sr,BaおよびCdのうちから選んだ一種または二種以上、0<y≦1(但し、y=1を除く))で示される酸化物からなることを特徴とするトンネル磁気抵抗素子。 7). It has a basic structure in which an insulating film is sandwiched between two ferromagnetic films, and the ferromagnetic film has a composition containing at least one selected from Co, Fe, and Ni, while the insulating film has three layers. The first and third insulating layers adjacent to the ferromagnetic film are MgO, and the second insulating layer sandwiched between the first and third insulating layers is a chemical formula: Mg 1-y X y It is characterized by comprising an oxide represented by O (X: one or more selected from Zn, Ca, Sr, Ba and Cd, 0 <y ≦ 1 (excluding y = 1) ) Tunnel magnetoresistive element.

8.前記強磁性膜のいずれか一方または両方が、体心立方構造の膜であることを特徴とする上記7記載のトンネル磁気抵抗素子。 8). 8. The tunnel magnetoresistive element according to 7 above, wherein one or both of the ferromagnetic films is a body-centered cubic film.

9.絶縁膜を二つの強磁性膜で挟んだ基本構造を有し、該強磁性膜は、Co,FeおよびNiのうちから選んだ少なくとも一種を含有する組成になり、一方、該絶縁膜は3層構造になり、該強磁性膜と隣接する第1と第3の絶縁層は化学式:Mg1-yyO(X:Zn,Ca,Sr,BaおよびCdのうちから選んだ一種または二種以上、0<y≦1(但し、y=1を除く))で示される酸化物、また該第1と第3の絶縁層で挟まれた第2の絶縁層は化学式:Mg1-zzO(X:Zn,Ca,Sr,BaおよびCdのうちから選んだ一種または二種以上、y<z≦1)で示される酸化物からなることを特徴とするトンネル磁気抵抗素子。 9. It has a basic structure in which an insulating film is sandwiched between two ferromagnetic films, and the ferromagnetic film has a composition containing at least one selected from Co, Fe, and Ni, while the insulating film has three layers. The first and third insulating layers adjacent to the ferromagnetic film have a chemical formula: Mg 1-y X y O (X: one or two selected from Zn, Ca, Sr, Ba and Cd) As described above, the oxide represented by 0 <y ≦ 1 (excluding y = 1) and the second insulating layer sandwiched between the first and third insulating layers have the chemical formula: Mg 1-z X A tunnel magnetoresistive element comprising an oxide represented by z O (X: one or more selected from Zn, Ca, Sr, Ba and Cd, y <z ≦ 1).

10.前記強磁性膜のいずれか一方または両方が、体心立方構造の膜であることを特徴とする上記9記載のトンネル磁気抵抗素子。 Ten. 10. The tunnel magnetoresistive element according to 9 above, wherein either one or both of the ferromagnetic films is a film having a body-centered cubic structure.

11.絶縁膜を二つの強磁性膜で挟んだ基本構造を有し、該強磁性膜は、Co,FeおよびNiのうちから選んだ少なくとも一種を含有する組成になり、一方、該絶縁膜は4層以上の構造になり、これらの絶縁層は、化学式:Mg1-yyO(X:Zn,Ca,Sr,BaおよびCdのうちから選んだ一種または二種以上、0<y≦1(但し、y=1を除く))で示される酸化物と化学式:Mg1-zzO(X:Zn,Ca,Sr,BaおよびCdのうちから選んだ一種または二種以上、y<z≦1)で示される酸化物を交互に積層させたものであることを特徴とするトンネル磁気抵抗素子。 11. It has a basic structure in which an insulating film is sandwiched between two ferromagnetic films, and the ferromagnetic film has a composition containing at least one selected from Co, Fe and Ni, while the insulating film has four layers. With the above structure, these insulating layers have the chemical formula: Mg 1-y X y O (X: one or more selected from Zn, Ca, Sr, Ba and Cd, 0 <y ≦ 1 ( However, excluding y = 1) ) and the chemical formula: Mg 1-z X z O (X: one or more selected from Zn, Ca, Sr, Ba and Cd, y <z A tunnel magnetoresistive element, wherein oxides represented by ≦ 1) are alternately laminated.

12.前記強磁性膜のいずれか一方または両方が、体心立方構造の膜であることを特徴とする上記11記載のトンネル磁気抵抗素子。 12. 12. The tunnel magnetoresistive element according to claim 11, wherein one or both of the ferromagnetic films is a film having a body-centered cubic structure.

13.上記1〜12のいずれかに記載のトンネル磁気抵抗素子を搭載したことを特徴とする不揮発性磁気メモリ。 13. 13. A nonvolatile magnetic memory comprising the tunnel magnetoresistive element according to any one of 1 to 12 above.

14.上記7〜12のいずれかに記載のトンネル磁気抵抗素子を搭載したことを特徴とする発光素子。 14. 13. A light emitting device comprising the tunnel magnetoresistive device according to any one of 7 to 12 above.

15.上記7〜10のいずれかに記載の3層構造になる積層絶縁膜を基本構造として有する3端子素子であって、前記積層絶縁膜の第2層目に電極を設けたことを特徴とする3端子素子。 15. 11. A three-terminal element having a multilayer insulating film having a three-layer structure according to any one of 7 to 10 as a basic structure, wherein an electrode is provided on the second layer of the multilayer insulating film. Terminal element.

16.上記11または12に記載の4層以上の構造になる積層絶縁膜を基本構造として有する3端子素子であって、前記積層絶縁膜の任意の層に電極を設けたことを特徴とする3端子素子。 16. 13. A three-terminal element having, as a basic structure, a laminated insulating film having a structure of four or more layers as described in 11 or 12 above, wherein an electrode is provided in an arbitrary layer of the laminated insulating film .

本発明のトンネル磁気抵抗素子によれば、トンネル磁気抵抗の人為的特性操作を容易に行うことができ、従って、かような新規の特性を付随させたトンネル磁気抵抗素子を搭載することにより、同じく特性操作が容易な不揮発性磁気メモリ、発光素子および3端子構造を有するデバイスを得ることが可能となる。   According to the tunnel magnetoresistive element of the present invention, an artificial characteristic manipulation of the tunnel magnetoresistive can be easily performed. Therefore, by mounting the tunnel magnetoresistive element accompanied by such a novel characteristic, It is possible to obtain a nonvolatile magnetic memory, a light emitting element, and a device having a three-terminal structure that can be easily operated.

以下、図面を参照して本発明の実施の形態を説明する。
図1に、トンネル磁気抵抗素子の基本構造を示す。
図中、番号1は、絶縁膜であり、この絶縁膜1は二つの強磁性膜2,3で挟まれる構造になっている。なお、番号4は下地膜、5は保護膜である。
本発明では、上記の基本構造になるトンネル磁気抵抗素子において、特に絶縁膜1として特殊な酸化物を用いるところに特徴がある。
すなわち、本発明では、かような絶縁膜1として、化学式:Mg1-yyO(X:Zn,Ca,Sr,BaおよびCdのうちから選んだ一種または二種以上、0<y≦1(但し、y=1を除く))で示される酸化物を用いるところに特徴を有している。
そして、このような化学式で示される酸化物を用いることにより、トンネル磁気抵抗の人為的特性操作が可能になったのである。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows a basic structure of a tunnel magnetoresistive element.
In the figure, reference numeral 1 denotes an insulating film, and the insulating film 1 is sandwiched between two ferromagnetic films 2 and 3. Reference numeral 4 is a base film, and 5 is a protective film.
The present invention is characterized in that a special oxide is used as the insulating film 1 in the tunnel magnetoresistive element having the above basic structure.
In other words, in the present invention, such an insulating film 1 has the chemical formula: Mg 1-y X y O (X: one or more selected from Zn, Ca, Sr, Ba and Cd, 0 <y ≦ 1 (excluding y = 1) ).
By using an oxide represented by such a chemical formula, it becomes possible to artificially manipulate the tunnel magnetoresistance.

なお、かような酸化物としては、岩塩構造のものがより有利に適合する。ここに、岩塩構造とは、立方晶系に属するもので、異種元素が単純立方格子の隅に交互に配列した構造を意味し、かかる岩塩構造のものを用いると、特定の電子状態にある電子(完全対称性を持ったs電子的な性質の電子)が高いトンネル確率を有するようになり、その優先的にトンネルされる電子状態のスピン分極率が高い場合に巨大なトンネル磁気抵抗効果を発現できるという利点がある。なお、このような岩塩構造としては(001)配向していることが大きなトンネル磁気抵抗効果を得る上でより有利である。   In addition, as such an oxide, the thing of a rock salt structure adapts more advantageously. Here, the rock salt structure belongs to a cubic system, and means a structure in which different elements are alternately arranged at the corners of a simple cubic lattice. When such a rock salt structure is used, an electron in a specific electronic state is used. (Electrons with s-electron properties with perfect symmetry) have a high tunnel probability, and when the preferentially tunneled electronic state has a high spin polarizability, a huge tunnel magnetoresistance effect appears There is an advantage that you can. For such a rock salt structure, (001) orientation is more advantageous for obtaining a large tunnel magnetoresistance effect.

一方、強磁性膜2,3としては、強磁性体であるCo,FeおよびNiのうちから選んだ少なくとも一種を含有する材料を用いる必要がある。ここに、強磁性膜中におけるかような強磁性体の含有量は30原子%以上とすることが好ましい。というのは、含有量が30原子%に満たないと、含有する他の非磁性原子のため磁性原子間の交換結合が切れてしまい強磁性を示さなくなるという問題が生じるからである。
なお、かような強磁性膜としては、体心立方構造の膜がより有利に適合する。というのは、体心立方構造の強磁性膜を用いることにより、体心立方構造の(001)面でのΔ1バンド(完全対称性を持ったs電子的な性質を有する電子状態)の電子が岩塩構造を有した絶縁膜の(001)面を優先的にトンネルでき、かつそのΔ1バンドがフェルミ準位EFで完全にスピン分極しているために、大きなトンネル磁気抵抗効果が生じるからである。
On the other hand, as the ferromagnetic films 2 and 3, it is necessary to use a material containing at least one selected from Co, Fe and Ni which are ferromagnetic materials. Here, the content of such a ferromagnetic material in the ferromagnetic film is preferably 30 atomic% or more. This is because, if the content is less than 30 atomic%, there arises a problem that the exchange coupling between the magnetic atoms is broken due to the other nonmagnetic atoms contained, resulting in no ferromagnetism.
As such a ferromagnetic film, a film having a body-centered cubic structure is more advantageously adapted. This is because, by using a ferromagnetic film having a body-centered cubic structure, electrons of Δ 1 band (electronic state having s-electron properties with perfect symmetry) on the (001) plane of the body-centered cubic structure are used. There can preferentially tunnel (001) surface of the insulating film having a rock salt structure, and to its delta 1 band is completely spin-polarized by the Fermi level E F, because a large tunnel magnetoresistance effect occurs It is.

また、絶縁膜1の厚みは0.4〜4.0nm程度とするのが好適である。というのは、絶縁膜1の厚みが0.4nmに満たないと、岩塩構造を形成することができず、一方4.0nmを超えると、抵抗が高いために、低電流でも絶縁膜1部分に高い電位を生じるようになり、そのバイアスにより大きなトンネル磁気抵抗効果が期待できなくなるからである。また,単層で4.0 nmを超えて絶縁膜の厚さを増やしていくと膜質が劣化する傾向にあり、トンネル磁気抵抗効果の低減が観測されている。
より好ましい絶縁膜の厚みは0.4〜3.5nmの範囲である。
The thickness of the insulating film 1 is preferably about 0.4 to 4.0 nm. This is because if the thickness of the insulating film 1 is less than 0.4 nm, a rock salt structure cannot be formed. On the other hand, if the thickness exceeds 4.0 nm, since the resistance is high, a high potential is applied to the insulating film 1 even at a low current. This is because a large tunnel magnetoresistance effect cannot be expected due to the bias. In addition, when the thickness of the insulating film is increased beyond 4.0 nm in a single layer, the film quality tends to deteriorate, and the reduction of the tunnel magnetoresistance effect has been observed.
A more preferable insulating film thickness is in the range of 0.4 to 3.5 nm.

一方、強磁性膜2,3の厚みはそれぞれ、0.8〜20 nm程度とするのが好適である。というのは、強磁性膜2,3の厚みが0.8 nmに満たないと、隣接する絶縁膜1と保護膜5との原子拡散により非磁性化してしまい、トンネル磁気抵抗効果を生じなくなってしまうおそれがあり、一方20 nmを超えると結晶粒の柱状成長などにより平坦で均質な構造が得難くなり、トンネル磁気抵抗効果が減少してしまうからである。
より好ましい強磁性膜の厚みは1〜10nmの範囲である。
On the other hand, the thickness of each of the ferromagnetic films 2 and 3 is preferably about 0.8 to 20 nm. This is because if the thickness of the ferromagnetic films 2 and 3 is less than 0.8 nm, it becomes non-magnetic due to atomic diffusion between the adjacent insulating film 1 and protective film 5 and the tunnel magnetoresistive effect may not be generated. On the other hand, if the thickness exceeds 20 nm, it becomes difficult to obtain a flat and homogeneous structure due to columnar growth of crystal grains, and the tunnel magnetoresistance effect is reduced.
A more preferable thickness of the ferromagnetic film is in the range of 1 to 10 nm.

さらに、本発明においては、絶縁膜は必ずしも1層である必要はなく、2層、3層、さらにはそれ以上の複数層とすることができる。
例えば、絶縁膜を2層で構成する場合、いずれか1層については、化学式:Mg1-yyO(X:Zn,Ca,Sr,BaおよびCdのうちから選んだ一種または二種以上、0<y≦1(但し、y=1を除く))で示される酸化物を用いる必要がある。また、他層については、MgOを用いることができるが、化学式:Mg1-zzO(X:Zn,Ca,Sr,BaおよびCdのうちから選んだ一種または二種以上、y<z≦1)で示される酸化物を用いることがより有利である。
そして、かような2層構造とする、すなわち強磁性膜2上で第1と第2の絶縁膜の組成を調整し格子整合よく堆積させることにより、良質な絶縁膜1が形成され、該絶縁膜1が単一層で構成されるときよりも低抵抗にすることができ、また強磁性膜2,3間の磁気的結合も制御でき、その結果、デバイス設計が容易になる。
Furthermore, in the present invention, the insulating film does not necessarily have to be a single layer, and may be a multilayer of two layers, three layers, or more.
For example, when the insulating film is composed of two layers, any one layer is selected from the chemical formula: Mg 1-y X y O (X: Zn, Ca, Sr, Ba and Cd selected from two or more types) , 0 <y ≦ 1 (except for y = 1) ) must be used. In addition, MgO can be used for the other layers, but the chemical formula: Mg 1-z X z O (X: one or more selected from Zn, Ca, Sr, Ba and Cd, y <z It is more advantageous to use an oxide represented by ≦ 1).
Then, by forming such a two-layer structure, that is, by adjusting the composition of the first and second insulating films on the ferromagnetic film 2 and depositing them with good lattice matching, a high-quality insulating film 1 is formed and the insulating film 1 is formed. The resistance can be made lower than that when the film 1 is composed of a single layer, and the magnetic coupling between the ferromagnetic films 2 and 3 can be controlled. As a result, device design is facilitated.

次に、絶縁膜を3層で構成する場合には、強磁性膜と隣接する第1と第3の絶縁層としてはMgOを、一方該第1と第3の絶縁層で挟まれた第2の絶縁層としては化学式:Mg1-yyO(X:Zn,Ca,Sr,BaおよびCdのうちから選んだ一種または二種以上、0<y≦1(但し、y=1を除く))で示される酸化物を用いることが有利である。
そして、かような3層構造とすることにより、絶縁膜1が単一酸化物一層で構成されるときよりも一層低抵抗にすることができ,強磁性膜2,3の磁気的結合も制御できて、デバイス設計が容易になるだけでなく、絶縁膜1が2層構造の場合よりも3層構造とすることで、MgO上で強磁性膜3の構造を結晶性の良い良好な状態に保つことができ、トンネル磁気抵抗効果を高めることができる。
Next, when the insulating film is composed of three layers, MgO is used as the first and third insulating layers adjacent to the ferromagnetic film, while the second is sandwiched between the first and third insulating layers. As the insulating layer, the chemical formula: Mg 1-y X y O (X: one or more selected from Zn, Ca, Sr, Ba and Cd, 0 <y ≦ 1 (excluding y = 1) It is advantageous to use the oxides represented by ) ).
In addition, by adopting such a three-layer structure, the resistance can be made lower than when the insulating film 1 is composed of a single oxide layer, and the magnetic coupling between the ferromagnetic films 2 and 3 is also controlled. In addition to facilitating device design, the structure of the ferromagnetic film 3 on MgO is in a good state with good crystallinity by making the insulating film 1 have a three-layer structure rather than a two-layer structure. The tunnel magnetoresistance effect can be enhanced.

また、このような3層構造の場合には、強磁性膜と隣接する第1と第3の絶縁層として化学式:Mg1-yyO(X:Zn,Ca,Sr,BaおよびCdのうちから選んだ一種または二種以上、0<y≦1(但し、y=1を除く))で示される酸化物を、一方該第1と第3の絶縁層で挟まれた第2の絶縁層としては化学式:Mg1-zzO(X:Zn,Ca,Sr,BaおよびCdのうちから選んだ一種または二種以上、y<z≦1)で示される酸化物を用いることができる。
このように、3つの絶縁層の第1層と第3層にMg1-yyOで、また第2層にMg1-zzOで示される酸化物を用いることにより,上記の場合と比較して、強磁性膜2,3との格子整合をより良くすることが可能となり、トンネル磁気抵抗効果が一層改善される。
なお、化学式:Mg1-yyOおよびMg1-zzOで示される酸化物において、zの値をyの値よりも大きくしたのは、酸化物中のXの量が少ない方が強磁性膜との格子不整合が小さいことから、強磁性膜と接する酸化物のXの量を少なくすることで均質な絶縁膜が得られ大きなトンネル磁気抵抗を実現できることの他、Mg1-zzOのバンドギャップをMg1-yyOのバンドギャップよりも小さくしてバンドオフセットを形成できるためであり、このような構成にすることにより、トンネル磁気抵抗効果の性質を併せもつ共鳴トンネル効果素子・発光素子・3端子デバイスへの適用が実現可能となる。
In the case of such a three-layer structure, the first and third insulating layers adjacent to the ferromagnetic film have chemical formulas: Mg 1-y X y O (X: Zn, Ca, Sr, Ba and Cd). One or two or more selected from among them, an oxide represented by 0 <y ≦ 1 (excluding y = 1) ), on the other hand, a second insulation sandwiched between the first and third insulation layers As the layer, an oxide represented by the chemical formula: Mg 1-z X z O (X: one or more selected from Zn, Ca, Sr, Ba, and Cd, y <z ≦ 1) is used. it can.
Thus, by using an oxide represented by Mg 1-y X y O for the first and third layers of the three insulating layers and Mg 1-z X z O for the second layer, Compared with the case, the lattice matching with the ferromagnetic films 2 and 3 can be improved, and the tunnel magnetoresistance effect is further improved.
In the oxides represented by the chemical formulas: Mg 1-y X y O and Mg 1-z X z O, the value of z is larger than the value of y because the amount of X in the oxide is smaller There since small lattice mismatch with the ferromagnetic film, the other that X amount to less that that in a homogeneous insulating film of an oxide in contact with the ferromagnetic film can be achieved a large tunnel magnetoresistance obtained, Mg 1- This is because the band gap of z X z O can be made smaller than the band gap of Mg 1-y X y O to form a band offset. By adopting such a configuration, the tunnel magnetoresistive effect is also obtained. Application to resonant tunneling effect elements, light-emitting elements, and three-terminal devices can be realized.

さらに、本発明では、絶縁膜を4層以上の構造とすることもでき、この場合には、絶縁層として、化学式:Mg1-yyO(X:Zn,Ca,Sr,BaおよびCdのうちから選んだ一種または二種以上、0<y≦1(但し、y=1を除く))で示される酸化物と化学式:Mg1-zzO(X:Zn,Ca,Sr,BaおよびCdのうちから選んだ一種または二種以上、y<z≦1)で示される酸化物を交互に積層させた構造とすることが好ましい。
かような4層構造の絶縁膜とすることにより、絶縁膜間の整合性を一層良好に保つことができ、その結果、トンネル磁気抵抗効果などの特性の改善やその特性の任意調整などが容易になるからである。
Furthermore, in the present invention, the insulating film may have a structure of four or more layers. In this case, as the insulating layer, the chemical formula: Mg 1-y X y O (X: Zn, Ca, Sr, Ba and Cd One or two or more selected from among the oxides represented by 0 <y ≦ 1 (excluding y = 1) and the chemical formula: Mg 1-z X z O (X: Zn, Ca, Sr, A structure in which one or more selected from Ba and Cd and oxides represented by y <z ≦ 1) are alternately laminated is preferable.
By adopting such an insulating film having a four-layer structure, it is possible to maintain better matching between the insulating films. As a result, it is easy to improve characteristics such as the tunnel magnetoresistive effect and arbitrarily adjust the characteristics. Because it becomes.

上述したとおり、本発明に従い、トンネル磁気抵抗素子の絶縁膜として、MgOの一部を、ZnOやCaO,SrO,BaO,CdO等で置換した酸化物(Mg1-yyO,Mg1-zzO)を用いることにより、トンネル磁気抵抗効果をはじめとする種々の特性が向上する理由については、まだ明確に解明されたわけではないが、発明者らは次のように推測している。
XO(X:Zn,Ca,Sr,BaおよびCd)のバンドギャップEgは、MgOのバンドギャップEgよりも小さいために、XでMgを置換した酸化物では、トンネル磁気抵抗効果を維持しつつ低抵抗が実現できる。この低抵抗化の効果により、素子の抵抗を減少させて高速で駆動するデバイスを得ることができ、また素子の抵抗を一定にした場合には、絶縁層を厚くする、すなわち磁性層間の間隔を広くすることができるので、磁性層間の磁気結合に由来する素子間のばらつきを抑えることができる。
また、大きなトンネル磁気抵抗効果は、絶縁層1の岩塩構造と強磁性層2,3の体心立方構造との結晶方位を(001)面に揃えることにより、強磁性層2,3の完全にスピン分極したΔ1バンドの電子が絶縁膜1を優先的にトンネルできることに起因しているため、酸化物中のX(X:Zn,Ca,Sr,BaおよびCd)の組成を調整して絶縁層1を形成したり、もしくは異なる組成で多層化して絶縁層1を形成することは、強磁性層2,3と絶縁層1との界面もしくは絶縁層1中での格子整合の改善や、異種元素添加もしくは多層化による粒成長抑制による平坦性の改善により、トンネル磁気抵抗効果を高めるように作用する。
さらに、Xの添加量の異なる酸化物を積層することで、その異なる組成の酸化物層間のバンドギャップEgの違いによりバンドオフセットが生じる場合、これらのヘテロ接合を強磁性膜2,3で挟むことによってトンネル磁気抵抗効果をともなう量子井戸構造を形成できる可能性があり、その量子井戸構造の共鳴準位に対応する電位でのTMR比の増大や強磁性膜2,3の磁化の平行・反平行磁化配列状態で、発光素子や3端子素子の特性を制御することが可能となる。
As described above, in accordance with the present invention, as an insulating film for a tunnel magneto-resistance element, the part of the MgO, ZnO and CaO, SrO, BaO, oxides obtained by substituting CdO, etc. (Mg 1-y X y O , Mg 1- by using z X z O), the reasons for improving various properties including tunneling magnetoresistance effect, but not been yet elucidated, the inventors presume as follows .
Since the band gap E g of XO (X: Zn, Ca, Sr, Ba and Cd) is smaller than the band gap E g of MgO, the oxide in which Mg is substituted with X maintains the tunnel magnetoresistance effect. Low resistance can be realized. Due to the effect of reducing the resistance, a device that can be driven at high speed by reducing the resistance of the element can be obtained. When the resistance of the element is constant, the insulating layer is thickened, that is, the interval between the magnetic layers is reduced. Since it can be widened, it is possible to suppress variations between elements due to magnetic coupling between magnetic layers.
In addition, the large tunnel magnetoresistance effect is achieved by aligning the crystal orientations of the rock salt structure of the insulating layer 1 and the body-centered cubic structure of the ferromagnetic layers 2 and 3 to the (001) plane so that the ferromagnetic layers 2 and 3 are completely Since the spin-polarized Δ1 band electrons can preferentially tunnel through the insulating film 1, the composition of X (X: Zn, Ca, Sr, Ba and Cd) in the oxide is adjusted to adjust the insulating layer. Forming the insulating layer 1 by forming a multi-layer 1 with different compositions or improving the lattice matching in the interface between the ferromagnetic layers 2, 3 and the insulating layer 1 or in the insulating layer 1, It improves the tunnel magnetoresistance effect by improving the flatness by suppressing grain growth by addition or multilayering.
Further, by stacking the different oxides added amount of X, if the band offset by the difference in the band gap E g of the oxide layers of the different compositions resulting sandwich these heterojunctions ferromagnetic films 2 and 3 Therefore, there is a possibility that a quantum well structure with a tunnel magnetoresistive effect can be formed. An increase in the TMR ratio at a potential corresponding to the resonance level of the quantum well structure and the parallel / reverse magnetization of the ferromagnetic films 2 and 3 are possible. It is possible to control the characteristics of the light emitting element and the three-terminal element in the parallel magnetization arrangement state.

次に、本発明では、上記したようなトンネル磁気抵抗素子を利用して、不揮発性磁気メモリを作製することができる。
本発明に従うトンネル磁気抵抗素子を不揮発性磁気メモリに利用した場合、従来は、強磁性膜2,3の磁気的結合によるメモリセル間のトンネル磁気抵抗のばらつきが問題であったのに対し、低い抵抗値を保持しつつ絶縁膜厚を厚くできることで強磁性膜2,3の磁気的結合が弱まるためトンネル磁気抵抗のばらつきを抑えることができ、不揮発磁気メモリの性能を向上させることができる。
Next, in the present invention, a nonvolatile magnetic memory can be manufactured using the tunnel magnetoresistive element as described above.
When the tunnel magnetoresistive element according to the present invention is used in a non-volatile magnetic memory, conventionally, the variation in tunnel magnetoresistance between memory cells due to magnetic coupling of the ferromagnetic films 2 and 3 has been a problem. By increasing the insulating film thickness while maintaining the resistance value, the magnetic coupling between the ferromagnetic films 2 and 3 is weakened, so that variations in tunneling magnetoresistance can be suppressed and the performance of the nonvolatile magnetic memory can be improved.

また、本発明では、上記したようなトンネル磁気抵抗素子(但し、絶縁膜は3層構造以上)を利用して、発光素子を作製することができる。
本発明に従うトンネル磁気抵抗素子を発光素子に利用した場合、発光を強磁性膜2,3の磁化配列状態で制御できる、すなわち磁界によって発光状態を変化させることができるという利点がある。これにより,磁気的な情報を光の情報に直接変換することが可能となる。
In the present invention, a light-emitting element can be manufactured using the tunnel magnetoresistive element as described above (however, the insulating film has a three-layer structure or more).
When the tunnel magnetoresistive element according to the present invention is used as a light emitting element, there is an advantage that light emission can be controlled by the magnetization arrangement state of the ferromagnetic films 2 and 3, that is, the light emitting state can be changed by a magnetic field. This makes it possible to directly convert magnetic information into optical information.

さらに、本発明では、上記したようなトンネル磁気抵抗素子(但し、絶縁膜は3層構造以上)を3端子素子(3端子構造を有するデバイス)に利用することもできる。
まず、絶縁膜が3層構造の場合には、
強磁性膜と隣接する第1と第3の絶縁層としてはMgOを、一方該第1と第3の絶縁層で挟まれた第2の絶縁層としては化学式:Mg1-yyO(X:Zn,Ca,Sr,BaおよびCdのうちから選んだ一種または二種以上、0<y≦1(但し、y=1を除く))で示される酸化物を用いるか、あるいは
強磁性膜と隣接する第1と第3の絶縁層として化学式:Mg1-yyO(X:Zn,Ca,Sr,BaおよびCdのうちから選んだ一種または二種以上、0<y≦1(但し、y=1を除く))で示される酸化物を、一方該第1と第3の絶縁層で挟まれた第2の絶縁層としては化学式:Mg1-zzO(X:Zn,Ca,Sr,BaおよびCdのうちから選んだ一種または二種以上、y<z≦1)で示される酸化物を用いる
ものとし、いずれの場合も絶縁層の第2層目に電極を設けることによって、3端子素子とすることができる。
Further, in the present invention, the tunnel magnetoresistive element as described above (however, the insulating film has a three-layer structure or more) can also be used for a three-terminal element (device having a three-terminal structure).
First, when the insulating film has a three-layer structure,
MgO is used as the first and third insulating layers adjacent to the ferromagnetic film, while the second insulating layer sandwiched between the first and third insulating layers is represented by the chemical formula: Mg 1-y X y O ( X: One or more selected from Zn, Ca, Sr, Ba, and Cd, and an oxide represented by 0 <y ≦ 1 (excluding y = 1) ) or a ferromagnetic film As the first and third insulating layers adjacent to each other, the chemical formula: Mg 1-y X y O (X: one or more selected from Zn, Ca, Sr, Ba and Cd, 0 <y ≦ 1 ( However, except for y = 1) ), the second insulating layer sandwiched between the first and third insulating layers has the chemical formula: Mg 1-z X z O (X: Zn , Ca, Sr, Ba and Cd selected from one or more selected from oxides represented by y <z ≦ 1), and in any case, an electrode is provided on the second layer of the insulating layer Possibly Thus, a three-terminal element can be obtained.

次に、絶縁膜が4層以上の構造の場合には、
絶縁層として、化学式:Mg1-yyO(X:Zn,Ca,Sr,BaおよびCdのうちから選んだ一種または二種以上、0<y≦1(但し、y=1を除く))で示される酸化物と化学式:Mg1-zzO(X:Zn,Ca,Sr,BaおよびCdのうちから選んだ一種または二種以上、y<z≦1)で示される酸化物を交互に積層させた構造
とし、これらの絶縁層の任意の層に電極を設けることによって、3端子素子とすることができる。
上記したように、本発明に従うトンネル磁気抵抗素子構造を3端子素子に適用することにより、従来の端子間の電流もしくは電界での制御に加え、強磁性膜2,3の磁化配列状態で特性を制御することができ,かつ回路を遮断した直後の状態を電荷の供給なしに維持できる不揮発性の性能も兼備できるという利点がある。
Next, when the insulating film has a structure of four or more layers,
As the insulating layer, chemical formula: Mg 1-y X y O (X: one or more selected from Zn, Ca, Sr, Ba and Cd, 0 <y ≦ 1 (except y = 1)) And an oxide represented by the chemical formula: Mg 1-z X z O (X: one or more selected from Zn, Ca, Sr, Ba and Cd, y <z ≦ 1) A three-terminal element can be obtained by alternately stacking layers and providing electrodes on any of these insulating layers.
As described above, by applying the tunnel magnetoresistive element structure according to the present invention to a three-terminal element, characteristics can be obtained in the magnetization arrangement state of the ferromagnetic films 2 and 3 in addition to the conventional control by current or electric field between terminals. There is an advantage that it can be controlled and also has a non-volatile performance capable of maintaining the state immediately after the circuit is cut off without supplying electric charge.

実施例1
図2に、本発明に従うトンネル磁気抵抗素子の一例の断面を、模式的に示す。
図2において、トンネル磁気抵抗素子についての構成の骨子は、前掲図1と共通するので、同一の番号を付して示す。
さて、このトンネル磁気抵抗素子は、下地膜4、配向制御膜6、反強磁性膜7、強磁性膜(1)8、非磁性膜9、強磁性膜(2)2、絶縁膜1、強磁性膜(3)3および保護膜5を、順次に積層して形成される。そして、磁場を印加しながら適当な温度で熱処理することにより、トンネル磁気抵抗(TRM)比が最適化される。図中、第2の強磁性膜2と第3の強磁性膜3で絶縁膜1を挟んだ構造が、本発明のトンネル磁気抵抗素子の基本構造である。
Example 1
FIG. 2 schematically shows a cross section of an example of a tunnel magnetoresistive element according to the present invention.
In FIG. 2, the outline of the configuration of the tunnel magnetoresistive element is the same as that shown in FIG.
The tunnel magnetoresistive element is composed of a base film 4, an orientation control film 6, an antiferromagnetic film 7, a ferromagnetic film (1) 8, a nonmagnetic film 9, a ferromagnetic film (2) 2, an insulating film 1, and a strong film. The magnetic film (3) 3 and the protective film 5 are sequentially laminated. The tunnel magnetoresistance (TRM) ratio is optimized by heat treatment at an appropriate temperature while applying a magnetic field. In the figure, the structure in which the insulating film 1 is sandwiched between the second ferromagnetic film 2 and the third ferromagnetic film 3 is the basic structure of the tunnel magnetoresistive element of the present invention.

本実施例では、トンネル磁気抵抗素子はスパッタリング法を用いて作製した。なお、下地膜4にはTa(5nm)/Ru(50nm)/Ta(5nm)を、配向制御膜6にはNiFe(5nm)を、反強磁性膜7にはMnIr(8nm)を、強磁性膜(1)8にはCo50Fe50(2.5nm)を、そして非磁性膜9にはRu(0.8 nm)を用いた。また、強磁性膜(2)2にはCo40Fe40B20(3nm)を、強磁性膜(3)3には Co40Fe4020(3nm)を、保護膜5にはTa(5nm)/Ru(15nm)を用いた。
さらに、絶縁膜1としては、MgO(1nm)単層の場合、MgO(1.6 nm)単層の場合およびMgO(1nm)/ZnO(0.6 nm)二層構造の場合の3種を用いた。
In this example, the tunnel magnetoresistive element was produced using a sputtering method. The underlying film 4 is Ta (5 nm) / Ru (50 nm) / Ta (5 nm), the orientation control film 6 is NiFe (5 nm), the antiferromagnetic film 7 is MnIr (8 nm), and ferromagnetic. Co 50 Fe 50 (2.5 nm) was used for the film (1) 8 and Ru (0.8 nm) was used for the nonmagnetic film 9. The ferromagnetic film (2) in 2 Co 40 Fe 40 B 20 ( 3nm), the ferromagnetic film (3) on 3 Co 40 Fe 40 B 20 ( 3nm), the protective film 5 Ta (5 nm ) / Ru (15 nm) was used.
Further, as the insulating film 1, three types of MgO (1 nm) single layer, MgO (1.6 nm) single layer, and MgO (1 nm) / ZnO (0.6 nm) double layer structure were used.

素子加工には、フォトリソグラフィーとイオンミリングを用い、0.8μm×1.6μmの面積を持つトンネル磁気抵抗素子を作製した。
なお、トンネル磁気抵抗の測定は直流4端子法で行った。TMR比は、{(RAP−RP)/RP}×100と定義し、ここで、RAPとRPは、図2中の強磁性膜2と強磁性膜3の磁化がそれぞれ反平行と平行のときの抵抗値を示す。
For the element processing, a tunnel magnetoresistive element having an area of 0.8 μm × 1.6 μm was fabricated by using photolithography and ion milling.
The tunnel magnetoresistance was measured by a direct current four-terminal method. The TMR ratio is defined as {(R AP −R P ) / R P } × 100, where R AP and R P are the magnetizations of the ferromagnetic film 2 and the ferromagnetic film 3 in FIG. The resistance value when parallel and parallel is shown.

図3に、絶縁膜がMgO(1nm)単層の場合およびMgO(1nm)/ZnO(0.6 nm)二層構造の場合におけるトンネル磁気抵抗素子のTMR比の磁場依存性を比較して示す。なお、このトンネル磁気抵抗素子は、4kOeの磁場のもと、325℃で熱処理されたものである。
同図に示したとおり、絶縁膜をMgO(1nm)単層からMgO(1nm)/ZnO(0.6 nm)二層構造に変更することにより、TMR比が85%から117%に増大するだけでなく、強磁性膜3のCo40Fe4020(3nm)の磁化反転に対応するTMR曲線のゼロ磁場からのシフト量が大幅に減少し、ほぼゼロ磁場で対称的な磁化反転を示すようになった。
これは、絶縁膜の膜厚を厚くすることで、強磁性膜2と強磁性膜3間の磁気的相互作用が減少したことによる。
FIG. 3 shows a comparison of the magnetic field dependence of the TMR ratio of the tunnel magnetoresistive element in the case where the insulating film is a single layer of MgO (1 nm) and in the case of a double layer structure of MgO (1 nm) / ZnO (0.6 nm). This tunnel magnetoresistive element was heat-treated at 325 ° C. under a magnetic field of 4 kOe.
As shown in the figure, changing the insulating film from MgO (1 nm) monolayer to MgO (1 nm) / ZnO (0.6 nm) bilayer structure not only increases the TMR ratio from 85% to 117%. The amount of shift from the zero magnetic field of the TMR curve corresponding to the magnetization reversal of Co 40 Fe 40 B 20 (3 nm) in the ferromagnetic film 3 is greatly reduced, and symmetric magnetization reversal is exhibited at almost zero magnetic field. It was.
This is because the magnetic interaction between the ferromagnetic film 2 and the ferromagnetic film 3 is reduced by increasing the thickness of the insulating film.

次に、表1に、素子抵抗と素子接合面積との積RAを示す。
同表に示したとおり、絶縁膜がMgO(1nm)/ZnO(0.6 nm)二層構造を有するトンネル磁気抵抗素子のRAは174Ωμm2で、MgO(1nm)で得られる90Ωμm2の1.9倍程度の増加で収まったのに対し、単にMgOを肉厚化したMgO(1.6 nm)単層のRAは795Ωμm2で、MgO(1nm)の8.3倍にも達した。
Next, Table 1 shows a product RA of element resistance and element junction area.
As shown in the table, RA is 174Ωμm 2 for tunnel magnetoresistive element whose insulating film has MgO (1 nm) / ZnO (0.6 nm) bilayer structure, which is about 1.9 times of 90Ωμm 2 obtained with MgO (1 nm). The RA of the MgO (1.6 nm) monolayer with MgO thickened was 795 Ωμm 2 , reaching 8.3 times that of MgO (1 nm).

なお、本実施例では、絶縁膜に隣接する強磁性膜にCo40Fe4020を用いその構造は体心立方構造であったが、Co,Fe,Niの1種以上を含有し、かつ他の元素を含んだ組成でもよく、さらに強磁性膜の一方が体心立方構造の膜でもう一方が体心立方構造以外の構造や非晶質であってもよい。
また、絶縁膜にはMgO/ZnO二層構造を用いた場合について示したが、ZnOの代わりに表2で示すような、MgOよりも小さなバンドギャップEgを有するCaOやSrO,BaO,CdOに代えた場合にも同様の効果が得られることが確認された。
さらに、MgOのMgの一部または全部を、Zn,Ca,Sr,BaおよびCdのうち一種または二種以上の任意元素で置換したMg1-yyO(X:Zn,Ca,Sr,BaおよびCdのうちから選んだ一種または二種以上、0<y≦1(但し、y=1を除く))の単層膜または複合膜も、同じ膜厚では、MgOよりもRAが小さくなる上述した結果と同等の効果を得られることが確認された。例えば、MgOのMgを50原子%Znで置換したMg0.5Zn0.5Oでは、Mg0.5Zn0.5O(1.6 nm)単層でRA=20Ωμm2、またMgO(1nm)/Mg0.5Zn0.5O(0.6 nm)二層構造ではRA=200Ωμm2となり、MgO(1.6 nm)単層のRA=795Ωμm2よりも格段に小さな値となった。
また、Mg1-yyO/Mg1-zzO(X:Zn,Ca,Sr,BaおよびCdのうちから選んだ一種または二種以上、0<y≦1(但し、y=1を除く)、y<z≦1)のように組成を変調させた二層構造の場合にも、同様のRAを低減する効果が得られた。例として、表1にX=Zn,y=0.1,z=0.5の場合:およびX=Zn,y=0.3,z=0.5の場合の結果を示す。
In this embodiment, Co 40 Fe 40 B 20 is used for the ferromagnetic film adjacent to the insulating film, and the structure thereof is a body-centered cubic structure. However, the structure contains one or more of Co, Fe, and Ni, and The composition may include other elements, and one of the ferromagnetic films may have a body-centered cubic structure and the other may have a structure other than the body-centered cubic structure or an amorphous structure.
In addition, the case where the MgO / ZnO bilayer structure is used for the insulating film has been shown, but instead of ZnO, it is replaced with CaO, SrO, BaO, CdO having a band gap Eg smaller than MgO as shown in Table 2. It was confirmed that the same effect can be obtained also in the case of.
Further, Mg 1-y X y O (X: Zn, Ca, Sr, where Mg is partially or entirely substituted with one or more arbitrary elements of Zn, Ca, Sr, Ba and Cd). One or two or more selected from Ba and Cd, 0 <y ≦ 1 (excluding y = 1) ), the RA or the MgO is smaller than MgO at the same film thickness. It was confirmed that the same effect as the above-mentioned result can be obtained. For example, in Mg 0.5 Zn 0.5 O in which Mg of MgO is replaced with 50 atomic% Zn, RA = 20Ωμm 2 in a Mg 0.5 Zn 0.5 O (1.6 nm) monolayer, and MgO (1 nm) / Mg 0.5 Zn 0.5 O (0.6 nm) RA = 200 Ωμm 2 for the two-layer structure, which is much smaller than RA = 795 Ωμm 2 for the MgO (1.6 nm) single layer.
Further, Mg 1-y X y O / Mg 1-z X z O (X: one or more selected from Zn, Ca, Sr, Ba and Cd, 0 <y ≦ 1 (where y = In the case of a two-layer structure in which the composition is modulated as in y <z ≦ 1), the same effect of reducing RA was obtained. As an example, Table 1 shows the results when X = Zn, y = 0.1 and z = 0.5: and when X = Zn, y = 0.3 and z = 0.5.

Figure 0004834834
Figure 0004834834

Figure 0004834834
Figure 0004834834

上述したように、MgOのMgの一部を他元素で置換または異なる組成の酸化物を複合化することで、単純にMgOを厚くした場合よりもRAの増大が効果的に抑制され、TMR曲線の磁場に対するシフトを抑制できることから、絶縁膜の設計はトンネル磁気抵抗を利用したデバイス応用上極めて有効であることが分かる。
このように絶縁層を人工的に設計することで、不揮発性メモリ特にMRAMの記録セルを構成するトンネル磁気抵抗素子の磁気特性の制御が可能となり、MRAMの製造が容易になる。
As described above, by composite oxides of substituted or different composition one part of Mg in MgO with another element, simply increasing RA than when thick MgO is effectively suppressed, TMR curve Therefore, it can be seen that the design of the insulating film is extremely effective for device application using tunneling magnetoresistance.
By artificially designing the insulating layer in this way, it is possible to control the magnetic characteristics of the tunnel magnetoresistive element constituting the recording cell of the nonvolatile memory, particularly the MRAM, and the manufacture of the MRAM becomes easy.

実施例2
次に、図2の積層構造において、絶縁膜1をMgO(tMgO nm)単層、またはMgO(1nm)/ZnO(tZnO nm)二層構造またはMgO(1nm)/ZnO(tZnO nm)/MgO(1nm)三層構造としたトンネル磁気抵抗素子について、325℃熱処理後のTMR比の全障壁厚さ(MgOとZnOの厚さの合計)依存性について調べた結果を、図4に示す。
また、図5には、同様の構造におけるRAの全障壁厚さ(MgOとZnOの厚さの合計) 依存性について調べた結果を示す。
なお、本実施例でも、強磁性膜としてはCo40Fe4020を用いその構造は体心立方構造であったが、Co,Fe,Niの1種以上を含有し、かつ他の元素を含んだ組成でもよく、さらに強磁性膜の一方が体心立方構造の膜でもう一方が体心立方構造以外の構造や非晶質であってもよいのはいうまでもない。
Example 2
Next, in the stacked structure of FIG. 2, the insulating film 1 is made of MgO (t MgO nm) single layer, or MgO (1 nm) / ZnO (t ZnO nm) double layer structure, or MgO (1 nm) / ZnO (t ZnO nm). Figure 4 shows the results of investigating the dependence of the TMR ratio on the total barrier thickness (sum of MgO and ZnO thickness) after heat treatment at 325 ° C for a tunnel magnetoresistive element with a three-layer structure of MgO / MgO (1 nm) .
FIG. 5 shows the results of examining the dependence of RA on the total barrier thickness (total thickness of MgO and ZnO) in a similar structure.
Also in this example, Co 40 Fe 40 B 20 was used as the ferromagnetic film, and the structure thereof was a body-centered cubic structure. However, the ferromagnetic film contained one or more of Co, Fe, and Ni and contained other elements. Needless to say, one of the ferromagnetic films may have a body-centered cubic structure and the other may have a structure other than the body-centered cubic structure or an amorphous structure.

図4,5に示したとおり、MgO(1nm)/ZnO(tZnO nm)障壁では、MgO単層障壁の場合よりも低抵抗RAを維持し、tMgO+tZnO=2まではTMR比は増加したが、tMgO+tZnO>2では TMR比が減少した。MgO障壁における高いTMR比の要因として、MgOが岩塩構造の(001)面に配向していることが挙げられる。従って、このようなTMR特性の劣化は、MgO上でZnOが厚くなるMgOと類似の構造からZnOの本来安定な構造に移行しようとするため、(001)配向性の低下や構造の変化に由来するとものと考えられる。
一方、MgO(1nm)/ZnO(tZnO nm)/MgO(1nm)三層構造の障壁とすることで、tMgO+tZnO>2の領域においてもMgO単層と同等の212%のTMR比が得られ、かつMgO単層よりも低抵抗RAを実現できた。
As shown in FIGS. 4 and 5, the MgO (1 nm) / ZnO (t ZnO nm) barrier maintains a lower resistance RA than the MgO single layer barrier, and the TMR ratio increases until t MgO + t ZnO = 2. However, the TMR ratio decreased when t MgO + t ZnO > 2. The reason for the high TMR ratio in the MgO barrier is that MgO is oriented in the (001) plane of the rock salt structure. Therefore, such deterioration of TMR characteristics is caused by a decrease in (001) orientation and a change in structure because it tries to shift from a structure similar to MgO where MgO becomes thicker on MgO to a structure that is essentially stable in ZnO. Then, it is thought.
On the other hand, by using MgO (1 nm) / ZnO (t ZnO nm) / MgO (1 nm) as a barrier, the TMR ratio of 212% is the same as that of MgO single layer even in the region of t MgO + t ZnO > 2. It was obtained, and a lower resistance RA than that of the MgO single layer was realized.

上記の結果から、MgO/ZnO/MgO 三層構造の障壁は、高TMR比と低RA両立のために有効であることが分かる。
なお、この例では、MgO層の厚さが1nmの代表的な結果を示したが、MgO厚を変えても同様の傾向が得られ、またZnOの代わりに表2で示したような、MgOよりも小さなバンドギャップEgを有するCaOやSrO,BaO,CdOに代えた場合にも同様の効果が得られることが確認された。
さらに、MgOのMgの一部または全部を、Zn,Ca,Sr,BaおよびCdのうち一種または二種以上の任意元素で置換したMg1-yyO(X:Zn,Ca,Sr,BaおよびCdのうちから選んだ一種または二種以上、0<y≦1(但し、y=1を除く))から構成されるMgO/Mg1-yyO/MgO複合膜、またMg1-yyO/Mg1-zzO/Mg1-yyO(X:Zn,Ca,Sr,BaおよびCdのうちから選んだ一種または二種以上、0<y≦1(但し、y=1を除く)、y<z≦1)のように組成を変調させた三層障壁およびMg1-yyO/Mg1-zzOを繰り返し積層した多層障壁の場合にも、上記と同等の効果を得られることが確認されている。
From the above results, it can be seen that the barrier of the MgO / ZnO / MgO trilayer structure is effective for achieving both a high TMR ratio and a low RA.
In this example, a typical result of the MgO layer having a thickness of 1 nm was shown. However, the same tendency was obtained even when the MgO thickness was changed, and MgO as shown in Table 2 instead of ZnO. It can be obtained the same effect even when the place of CaO or SrO, BaO, a CdO having a smaller band gap E g than was confirmed.
Further, Mg 1-y X y O (X: Zn, Ca, Sr, where Mg is partially or entirely substituted with one or more arbitrary elements of Zn, Ca, Sr, Ba and Cd). MgO / Mg 1-y X y O / MgO composite film composed of one or more selected from Ba and Cd, 0 <y ≦ 1 (except y = 1) ), and Mg 1 -y X y O / Mg 1- z X z O / Mg 1-y X y O (X: Zn, Ca, Sr, one or more kinds chosen from among Ba and Cd, 0 <y ≦ 1 ( However, except for y = 1) , in the case of a multi - layer barrier in which a composition is modulated as in y <z ≦ 1) and a multilayer barrier in which Mg 1-y X y O / Mg 1-z X z O is repeatedly laminated In addition, it has been confirmed that the same effect as described above can be obtained.

実施例3
異種の絶縁材料をヘテロ接合することによりバンドオフセットが生じる場合、これらのヘテロ接合を強磁性膜で挟むことによって、量子井戸の共鳴準位に対応する電位でのTMR比の増大や強磁性膜の磁化の平行・反平行磁化配列状態で、発光素子や3端子素子の特性を制御することが可能となる。
例えば、図6に示すように、強磁性層間に三層構造の障壁でかつ量子井戸の中間層を有したトンネル磁気抵抗素子で、共鳴準位ε1に対応した電位V1を印加した時、二つの強磁性層の磁化が平行配列の場合には、スピン偏極電子は散乱を受けず障壁をトンネルすることができる。一方、共鳴準位ε1に対応した電位V1を印加しても、二つの強磁性層の磁化が反平行配列の場合には、スピン偏極電子は一方の強磁性電極で散乱される。
Example 3
When band offsets are generated by heterojunction of dissimilar insulating materials, sandwiching these heterojunctions with a ferromagnetic film increases the TMR ratio at a potential corresponding to the resonance level of the quantum well or increases the ferromagnetic film It is possible to control the characteristics of the light emitting element and the three-terminal element in the parallel / antiparallel magnetization arrangement state of the magnetization.
For example, as shown in FIG. 6, when the tunnel magneto-resistance element having an intermediate layer of barrier a and quantum well having a three-layer structure between the ferromagnetic layers, and applying a potential V 1 corresponding to the resonance level epsilon 1, When the magnetizations of the two ferromagnetic layers are parallel, the spin-polarized electrons are not scattered and can tunnel through the barrier. On the other hand, even if the potential V 1 corresponding to the resonance level ε 1 is applied, if the magnetizations of the two ferromagnetic layers are antiparallel, the spin-polarized electrons are scattered by one ferromagnetic electrode.

従って、図7に示すように、二つの強磁性層の磁化が平行配列の場合、共鳴トンネル効果で特徴的な負性抵抗特性が得られる。
一方、二つの強磁性層の磁化が反平行配列の場合には、スピン偏極した電流は強磁性層で散乱され、負性抵抗特性が低減もしくは消失する。
そのため、共鳴準位ε1に対応した電位V1でTMR比の発散的な増大が予想され、このような絶縁物を混合・複合した構造は高出力トンネル磁気抵抗デバイスとして期待される。
Therefore, as shown in FIG. 7, when the magnetizations of the two ferromagnetic layers are arranged in parallel, a characteristic negative resistance characteristic can be obtained by the resonant tunneling effect.
On the other hand, when the magnetizations of the two ferromagnetic layers are antiparallel, the spin-polarized current is scattered by the ferromagnetic layer, and the negative resistance characteristic is reduced or eliminated.
Therefore, a divergent increase in the TMR ratio is expected at the potential V 1 corresponding to the resonance level ε 1 , and a structure in which such an insulator is mixed and combined is expected as a high-power tunnel magnetoresistive device.

図8は、Feの強磁性膜で挟んだMgO/ZnO/MgO絶縁膜積層構造における理論計算から求めたバンド図であり、この結果から、伝導帯のバンドオフセットが4.5〜4.7eV、価電子帯のバンドオフセットが0.2 eVとなることが分かる。ここでは、MgOとZnOを用いたが、X=(Zn,Ca,Sr,Ba,Cd)を含有するMg−X−Oを組み合わせてヘテロ接合とすることで、バンドオフセットは任意に変化させることが可能となり、量子井戸の共鳴準位を変化できる結果、任意の印加電位でのトンネル磁気抵抗比の増大、またはトンネル磁気抵抗で制御される発光素子や3端子素子の設計が可能となる。
なお、Mg−X−O中には、ドナーもしくはアクセプタとなるような他の不純物元素をドーピングしてもよい。また、強磁性膜は、Co,Fe,Niの1種以上を所定量以上含有していれば、他の元素を含んでいてもよい。
FIG. 8 is a band diagram obtained from theoretical calculation in an MgO / ZnO / MgO insulating layered structure sandwiched between Fe ferromagnetic films. From this result, the band offset of the conduction band is 4.5 to 4.7 eV, and the valence band. It can be seen that the band offset is 0.2 eV. Here, MgO and ZnO were used, but the band offset can be changed arbitrarily by combining Mg—X—O containing X = (Zn, Ca, Sr, Ba, Cd) into a heterojunction. As a result, the resonance level of the quantum well can be changed. As a result, the tunnel magnetoresistance ratio can be increased at an arbitrary applied potential, or a light emitting element or a three-terminal element controlled by the tunnel magnetoresistance can be designed.
Note that Mg—X—O may be doped with another impurity element that serves as a donor or an acceptor. Further, the ferromagnetic film may contain other elements as long as it contains one or more kinds of Co, Fe, and Ni in a predetermined amount or more.

本発明のトンネル磁気抵抗素子の基本構造を示した模式図である。It is the schematic diagram which showed the basic structure of the tunnel magnetoresistive element of this invention. 本発明のトンネル磁気抵抗素子の構造の一例を示した模式図である。It is the schematic diagram which showed an example of the structure of the tunnel magnetoresistive element of this invention. 本発明のトンネル磁気抵抗素子の磁気抵抗比の磁場依存性の一例を示した図である。It is the figure which showed an example of the magnetic field dependence of the magnetoresistive ratio of the tunnel magnetoresistive element of this invention. 本発明のトンネル磁気抵抗素子の磁気抵抗比の障壁厚さ依存性の一例を示した図である。It is the figure which showed an example of the barrier thickness dependence of the magnetoresistive ratio of the tunnel magnetoresistive element of this invention. 本発明のトンネル磁気抵抗素子のRA(素子抵抗と接合面積の積)の障壁厚さ依存性の一例を示した図である。It is the figure which showed an example of barrier thickness dependence of RA (product of element resistance and junction area) of the tunnel magnetoresistive element of this invention. 本発明のトンネル磁気抵抗素子の共鳴トンネルの模式図である。It is a schematic diagram of the resonant tunnel of the tunnel magnetoresistive element of this invention. 本発明のトンネル磁気抵抗素子の電流I−電位V曲線およびトンネル磁気抵抗比の電位依存性の模式図である。It is a schematic diagram of the electric current dependency of the current I-potential V curve and the tunnel magnetoresistance ratio of the tunnel magnetoresistive element of the present invention. 本発明のトンネル磁気抵抗素子のバンド構造の一例を示した図である。It is the figure which showed an example of the band structure of the tunnel magnetoresistive element of this invention.

符号の説明Explanation of symbols

1 絶縁膜
2 強磁性膜
3 強磁性膜
4 下地膜
5 保護膜
6 配向制御膜
7 反強磁性膜
8 強磁性膜
9 非磁性膜
DESCRIPTION OF SYMBOLS 1 Insulating film 2 Ferromagnetic film 3 Ferromagnetic film 4 Base film 5 Protective film 6 Orientation control film 7 Antiferromagnetic film 8 Ferromagnetic film 9 Nonmagnetic film

Claims (16)

絶縁膜を二つの強磁性膜で挟んだ基本構造を有し、該強磁性膜は、Co,FeおよびNiのうちから選んだ少なくとも一種を含有する組成になり、一方、該絶縁膜は、化学式:Mg1-yyO(X:Zn,Ca,Sr,BaおよびCdのうちから選んだ一種または二種以上、0<y≦1 (但し、y=1を除く))で示される酸化物からなることを特徴とするトンネル磁気抵抗素子。 It has a basic structure in which an insulating film is sandwiched between two ferromagnetic films, and the ferromagnetic film has a composition containing at least one selected from Co, Fe and Ni, while the insulating film has a chemical formula : Mg 1-y X y O (X: one or more selected from Zn, Ca, Sr, Ba and Cd, 0 <y ≦ 1 (However, y = 1 is excluded.) The tunnel magnetoresistive element characterized by comprising. 前記強磁性膜のいずれか一方または両方が、体心立方構造の膜であることを特徴とする請求項1記載のトンネル磁気抵抗素子。   2. The tunnel magnetoresistive element according to claim 1, wherein one or both of the ferromagnetic films is a film having a body-centered cubic structure. 前記絶縁膜が、岩塩構造の酸化物であることを特徴とする請求項1または2記載のトンネル磁気抵抗素子。   3. The tunnel magnetoresistive element according to claim 1, wherein the insulating film is an oxide having a rock salt structure. 絶縁膜を二つの強磁性膜で挟んだ基本構造を有し、該強磁性膜は、Co,FeおよびNiのうちから選んだ少なくとも一種を含有する組成になり、一方、該絶縁膜は2層構造になり、第1の絶縁層はMgO、また第2の絶縁層は化学式:Mg1-yyO(X:Zn,Ca,Sr,BaおよびCdのうちから選んだ一種または二種以上、0<y≦1(但し、y=1を除く))で示される酸化物からなることを特徴とするトンネル磁気抵抗素子。 It has a basic structure in which an insulating film is sandwiched between two ferromagnetic films, and the ferromagnetic film has a composition containing at least one selected from Co, Fe and Ni, while the insulating film has two layers. The first insulating layer is MgO, and the second insulating layer is chemical formula: Mg 1-y X y O (X: one or more selected from Zn, Ca, Sr, Ba and Cd) , 0 <y ≦ 1 (excluding y = 1) ). A tunnel magnetoresistive element characterized by comprising: 絶縁膜を二つの強磁性膜で挟んだ基本構造を有し、該強磁性膜は、Co,FeおよびNiのうちから選んだ少なくとも一種を含有する組成になり、一方、該絶縁膜は2層構造になり、第1の絶縁層は化学式:Mg1-yyO(X:Zn,Ca,Sr,BaおよびCdのうちから選んだ一種または二種以上、0<y≦1(但し、y=1を除く))で示される酸化物、また第2の絶縁層は化学式:Mg1-zzO(X:Zn,Ca,Sr,BaおよびCdのうちから選んだ一種または二種以上、y<z≦1)で示される酸化物からなることを特徴とするトンネル磁気抵抗素子。 It has a basic structure in which an insulating film is sandwiched between two ferromagnetic films, and the ferromagnetic film has a composition containing at least one selected from Co, Fe and Ni, while the insulating film has two layers. And the first insulating layer has a chemical formula: Mg 1-y X y O (X: one or more selected from Zn, Ca, Sr, Ba and Cd, 0 <y ≦ 1 (provided that (except y = 1) The oxide represented by ) ) and the second insulating layer are of the chemical formula: Mg 1-z X z O (X: one or two selected from Zn, Ca, Sr, Ba and Cd) As described above, the tunnel magnetoresistive element is made of an oxide represented by y <z ≦ 1). 前記強磁性膜のいずれか一方または両方が、体心立方構造の膜であることを特徴とする請求項4または5記載のトンネル磁気抵抗素子。   6. The tunnel magnetoresistive element according to claim 4, wherein one or both of the ferromagnetic films are films having a body-centered cubic structure. 絶縁膜を二つの強磁性膜で挟んだ基本構造を有し、該強磁性膜は、Co,FeおよびNiのうちから選んだ少なくとも一種を含有する組成になり、一方、該絶縁膜は3層構造になり、該強磁性膜と隣接する第1と第3の絶縁層はMgO、また該第1と第3の絶縁層で挟まれた第2の絶縁層は化学式:Mg1-yyO(X:Zn,Ca,Sr,BaおよびCdのうちから選んだ一種または二種以上、0<y≦1(但し、y=1を除く))で示される酸化物からなることを特徴とするトンネル磁気抵抗素子。 It has a basic structure in which an insulating film is sandwiched between two ferromagnetic films, and the ferromagnetic film has a composition containing at least one selected from Co, Fe, and Ni, while the insulating film has three layers. The first and third insulating layers adjacent to the ferromagnetic film are MgO, and the second insulating layer sandwiched between the first and third insulating layers is a chemical formula: Mg 1-y X y It is characterized by comprising an oxide represented by O (X: one or more selected from Zn, Ca, Sr, Ba and Cd, 0 <y ≦ 1 (excluding y = 1) ) Tunnel magnetoresistive element. 前記強磁性膜のいずれか一方または両方が、体心立方構造の膜であることを特徴とする請求項7記載のトンネル磁気抵抗素子。   8. The tunnel magnetoresistive element according to claim 7, wherein one or both of the ferromagnetic films are films having a body-centered cubic structure. 絶縁膜を二つの強磁性膜で挟んだ基本構造を有し、該強磁性膜は、Co,FeおよびNiのうちから選んだ少なくとも一種を含有する組成になり、一方、該絶縁膜は3層構造になり、該強磁性膜と隣接する第1と第3の絶縁層は化学式:Mg1-yyO(X:Zn,Ca,Sr,BaおよびCdのうちから選んだ一種または二種以上、0<y≦1(但し、y=1を除く))で示される酸化物、また該第1と第3の絶縁層で挟まれた第2の絶縁層は化学式:Mg1-zzO(X:Zn,Ca,Sr,BaおよびCdのうちから選んだ一種または二種以上、y<z≦1)で示される酸化物からなることを特徴とするトンネル磁気抵抗素子。 It has a basic structure in which an insulating film is sandwiched between two ferromagnetic films, and the ferromagnetic film has a composition containing at least one selected from Co, Fe, and Ni, while the insulating film has three layers. The first and third insulating layers adjacent to the ferromagnetic film have a chemical formula: Mg 1-y X y O (X: one or two selected from Zn, Ca, Sr, Ba and Cd) As described above, the oxide represented by 0 <y ≦ 1 (excluding y = 1) and the second insulating layer sandwiched between the first and third insulating layers have the chemical formula: Mg 1-z X A tunnel magnetoresistive element comprising an oxide represented by z O (X: one or more selected from Zn, Ca, Sr, Ba and Cd, y <z ≦ 1). 前記強磁性膜のいずれか一方または両方が、体心立方構造の膜であることを特徴とする請求項9記載のトンネル磁気抵抗素子。   The tunnel magnetoresistive element according to claim 9, wherein either one or both of the ferromagnetic films is a body-centered cubic film. 絶縁膜を二つの強磁性膜で挟んだ基本構造を有し、該強磁性膜は、Co,FeおよびNiのうちから選んだ少なくとも一種を含有する組成になり、一方、該絶縁膜は4層以上の構造になり、これらの絶縁層は、化学式:Mg1-yyO(X:Zn,Ca,Sr,BaおよびCdのうちから選んだ一種または二種以上、0<y≦1(但し、y=1を除く))で示される酸化物と化学式:Mg1-zzO(X:Zn,Ca,Sr,BaおよびCdのうちから選んだ一種または二種以上、y<z≦1)で示される酸化物を交互に積層させたものであることを特徴とするトンネル磁気抵抗素子。 It has a basic structure in which an insulating film is sandwiched between two ferromagnetic films, and the ferromagnetic film has a composition containing at least one selected from Co, Fe and Ni, while the insulating film has four layers. With the above structure, these insulating layers have the chemical formula: Mg 1-y X y O (X: one or more selected from Zn, Ca, Sr, Ba and Cd, 0 <y ≦ 1 ( However, excluding y = 1) ) and the chemical formula: Mg 1-z X z O (X: one or more selected from Zn, Ca, Sr, Ba and Cd, y <z A tunnel magnetoresistive element, wherein oxides represented by ≦ 1) are alternately laminated. 前記強磁性膜のいずれか一方または両方が、体心立方構造の膜であることを特徴とする請求項11記載のトンネル磁気抵抗素子。   12. The tunnel magnetoresistive element according to claim 11, wherein one or both of the ferromagnetic films is a body-centered cubic structure film. 請求項1〜12のいずれかに記載のトンネル磁気抵抗素子を搭載したことを特徴とする不揮発性磁気メモリ。   A nonvolatile magnetic memory comprising the tunnel magnetoresistive element according to claim 1. 請求項7〜12のいずれかに記載のトンネル磁気抵抗素子を搭載したことを特徴とする発光素子。   13. A light emitting device comprising the tunnel magnetoresistive device according to any one of claims 7 to 12. 請求項7〜10のいずれかに記載の3層構造になる積層絶縁膜を基本構造として有する3端子素子であって、前記積層絶縁膜の第2層目に電極を設けたことを特徴とする3端子素子。   11. A three-terminal element having, as a basic structure, a laminated insulating film having a three-layer structure according to claim 7, wherein an electrode is provided on a second layer of the laminated insulating film. 3-terminal element. 請求項11または12に記載の4層以上の構造になる積層絶縁膜を基本構造として有する3端子素子であって、前記積層絶縁膜の任意の層に電極を設けたことを特徴とする3端子素子。   13. A three-terminal element having, as a basic structure, a laminated insulating film having a structure of four or more layers according to claim 11 or 12, wherein an electrode is provided on an arbitrary layer of the laminated insulating film. element.
JP2006129097A 2006-05-08 2006-05-08 Tunnel magnetoresistive element, nonvolatile magnetic memory, light emitting element, and three-terminal element Active JP4834834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006129097A JP4834834B2 (en) 2006-05-08 2006-05-08 Tunnel magnetoresistive element, nonvolatile magnetic memory, light emitting element, and three-terminal element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006129097A JP4834834B2 (en) 2006-05-08 2006-05-08 Tunnel magnetoresistive element, nonvolatile magnetic memory, light emitting element, and three-terminal element

Publications (2)

Publication Number Publication Date
JP2007305610A JP2007305610A (en) 2007-11-22
JP4834834B2 true JP4834834B2 (en) 2011-12-14

Family

ID=38839330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006129097A Active JP4834834B2 (en) 2006-05-08 2006-05-08 Tunnel magnetoresistive element, nonvolatile magnetic memory, light emitting element, and three-terminal element

Country Status (1)

Country Link
JP (1) JP4834834B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8982614B2 (en) 2013-03-22 2015-03-17 Kabushiki Kaisha Toshiba Magnetoresistive effect element and manufacturing method thereof
US9070866B2 (en) 2013-03-22 2015-06-30 Kabushiki Kaisha Toshiba Magnetoresistive effect element and manufacturing method thereof

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009194224A (en) * 2008-02-15 2009-08-27 Fujitsu Ltd Magnetoresistive effect element, head slider, magnetic information reproduction device, and magnetoresistive effect memory
JP5030888B2 (en) * 2008-08-08 2012-09-19 株式会社日立製作所 Resonant tunnel magnetoresistive element, magnetic memory cell, and magnetic random access memory
JP2010050309A (en) * 2008-08-22 2010-03-04 Canon Anelva Corp Negative resistive element using magneto-resistance effect
JPWO2010023833A1 (en) * 2008-09-01 2012-01-26 キヤノンアネルバ株式会社 Magnetoresistive element, manufacturing method thereof, and storage medium used in the manufacturing method
US8779538B2 (en) 2009-08-10 2014-07-15 Samsung Electronics Co., Ltd. Magnetic tunneling junction seed, capping, and spacer layer materials
JP5576643B2 (en) * 2009-12-10 2014-08-20 エイチジーエスティーネザーランドビーブイ Tunnel junction type magnetoresistive effect element, tunnel junction type magnetoresistive effect head, magnetic recording / reproducing apparatus, and manufacturing method thereof
WO2012014415A1 (en) * 2010-07-29 2012-02-02 株式会社日立製作所 Low-resistance and high-efficiency spin injection element using thin film of rock salt structure as seed
JP5318137B2 (en) * 2011-03-22 2013-10-16 株式会社東芝 Method for producing multilayer film
JP5705683B2 (en) * 2011-08-22 2015-04-22 株式会社日立製作所 Tunnel magnetoresistive element, non-local spin injection element, and magnetic head using the same
KR102142037B1 (en) 2012-11-07 2020-08-06 엔지케이 인슐레이터 엘티디 Ceramic material and sputtering-target member
WO2014073387A1 (en) * 2012-11-07 2014-05-15 日本碍子株式会社 Ceramic material and sputtering-target member
US9123879B2 (en) 2013-09-09 2015-09-01 Masahiko Nakayama Magnetoresistive element and method of manufacturing the same
US9385304B2 (en) 2013-09-10 2016-07-05 Kabushiki Kaisha Toshiba Magnetic memory and method of manufacturing the same
US9368717B2 (en) 2013-09-10 2016-06-14 Kabushiki Kaisha Toshiba Magnetoresistive element and method for manufacturing the same
US9231196B2 (en) 2013-09-10 2016-01-05 Kuniaki SUGIURA Magnetoresistive element and method of manufacturing the same
JP6640766B2 (en) * 2017-02-07 2020-02-05 株式会社東芝 Magnetic element, pressure sensor, magnetic head, and magnetic memory
JP6534462B2 (en) * 2018-02-16 2019-06-26 Tdk株式会社 Tunnel layer

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002084014A (en) * 2000-09-06 2002-03-22 Ricoh Co Ltd Tunnel magnetoresistive effect element and device using the same
JP2002319722A (en) * 2001-01-22 2002-10-31 Matsushita Electric Ind Co Ltd Magnetoresistance effect element and manufacturing method therefor
JP2002314164A (en) * 2001-02-06 2002-10-25 Sony Corp Magnetic tunnel element and its manufacturing method, thin film magnetic head, magnetic memory and magnetic sensor
JP3678213B2 (en) * 2002-06-20 2005-08-03 ソニー株式会社 Magnetoresistive effect element, magnetic memory device, magnetoresistive effect element, and method of manufacturing magnetic memory device
JP4133687B2 (en) * 2003-08-27 2008-08-13 独立行政法人産業技術総合研究所 Tunnel junction element
JP4776164B2 (en) * 2003-12-25 2011-09-21 株式会社東芝 Magnetoresistive element, magnetic head, magnetic reproducing device, and magnetic memory
JP4120589B2 (en) * 2004-01-13 2008-07-16 セイコーエプソン株式会社 Magnetoresistive element and magnetic memory device
JP4678144B2 (en) * 2004-06-10 2011-04-27 ソニー株式会社 Photo mask
US7149106B2 (en) * 2004-10-22 2006-12-12 Freescale Semiconductor, Inc. Spin-transfer based MRAM using angular-dependent selectivity
JP4140616B2 (en) * 2005-04-05 2008-08-27 Tdk株式会社 Tunnel magnetoresistive effect element, thin film magnetic head, head gimbal assembly and magnetic disk device, and manufacturing method, inspection method and inspection apparatus of the tunnel magnetoresistive effect element
JP2009509346A (en) * 2005-09-20 2009-03-05 フリースケール セミコンダクター インコーポレイテッド Spin-dependent tunnel cell and method for forming the same
JP2007150265A (en) * 2005-10-28 2007-06-14 Toshiba Corp Magnetoresistive element and magnetic storage

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8982614B2 (en) 2013-03-22 2015-03-17 Kabushiki Kaisha Toshiba Magnetoresistive effect element and manufacturing method thereof
US9070866B2 (en) 2013-03-22 2015-06-30 Kabushiki Kaisha Toshiba Magnetoresistive effect element and manufacturing method thereof

Also Published As

Publication number Publication date
JP2007305610A (en) 2007-11-22

Similar Documents

Publication Publication Date Title
JP4834834B2 (en) Tunnel magnetoresistive element, nonvolatile magnetic memory, light emitting element, and three-terminal element
US9780300B2 (en) Magnetic memory element with composite perpendicular enhancement layer
US10651369B2 (en) Magnetoresistive element and magnetic memory
CN108352447B (en) Magnetic component with perpendicular magnetic anisotropy that maintains high coercivity after high temperature annealing
KR101858308B1 (en) Tunnel magnetoresistive effect element and random access memory using same
US7679155B2 (en) Multiple magneto-resistance devices based on doped magnesium oxide
US7468542B2 (en) Magnetoresistive device and nonvolatile magnetic memory equipped with the same
KR102524352B1 (en) Magnetoresistive effect element and magnetic memory
US9287323B2 (en) Perpendicular magnetoresistive elements
US20140203383A1 (en) Perpendicular magnetoresistive memory element
US20220238799A1 (en) Magnetoresistive element having a composite recording structure
US10672977B2 (en) Perpendicular magnetoresistive elements
US11316102B2 (en) Composite multi-stack seed layer to improve PMA for perpendicular magnetic pinning
US20180096792A1 (en) Magnetic Capacitor
US20230403945A1 (en) Magnetic Memory Element Including Perpendicular Enhancement Layers and Dual Oxide Cap Layers
US20160260890A1 (en) Novel perpendicular magnetoresistive elements
US10629801B2 (en) Laminated structure and spin modulation element
JP2009239122A (en) Magneto-resistance effect device and spin mos (metal oxide semiconductor) field-effect transistor
US11417836B2 (en) Magnetic memory element incorporating dual perpendicular enhancement layers
US20220246836A1 (en) Composite recording structure for an improved write profermance
US11043631B2 (en) Perpendicular magnetoresistive elements
US11424404B2 (en) Ferromagnetic laminated film, spin current magnetization rotating element, magnetoresistance effect element, and magnetic memory
JP5377531B2 (en) Spin MOS field effect transistor
US10910555B2 (en) Magnetic memory element incorporating perpendicular enhancement layer
JP2013012756A (en) Magnetoresistance effect element and nonvolatile magnetic memory equipped with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110620

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150