JP2013012756A - Magnetoresistance effect element and nonvolatile magnetic memory equipped with the same - Google Patents

Magnetoresistance effect element and nonvolatile magnetic memory equipped with the same Download PDF

Info

Publication number
JP2013012756A
JP2013012756A JP2012181783A JP2012181783A JP2013012756A JP 2013012756 A JP2013012756 A JP 2013012756A JP 2012181783 A JP2012181783 A JP 2012181783A JP 2012181783 A JP2012181783 A JP 2012181783A JP 2013012756 A JP2013012756 A JP 2013012756A
Authority
JP
Japan
Prior art keywords
film
ferromagnetic
tunnel magnetoresistive
ferromagnetic film
effect element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012181783A
Other languages
Japanese (ja)
Other versions
JP5591888B2 (en
Inventor
Jun Hayakawa
純 早川
Hideo Ono
英男 大野
Shoji Ikeda
正二 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Hitachi Ltd
Original Assignee
Tohoku University NUC
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Hitachi Ltd filed Critical Tohoku University NUC
Priority to JP2012181783A priority Critical patent/JP5591888B2/en
Publication of JP2013012756A publication Critical patent/JP2013012756A/en
Application granted granted Critical
Publication of JP5591888B2 publication Critical patent/JP5591888B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mram Or Spin Memory Techniques (AREA)
  • Thin Magnetic Films (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonvolatile memory operates at high speed and has extremely low power consumption.SOLUTION: A nonvolatile magnetic memory is equipped with a high-output tunnel magnetoresistance effect element, and applies a writing method by spin-transfer torque. The tunnel magnetoresistance effect element 1 comprises a structure obtained by laminating a ferromagnetic film 304 having a body-centered cubic structure containing Co, Fe and B; an MgO insulating film 305 having a rock-salt structure oriented in (100); and a ferromagnetic film 306.

Description

本発明は、高出力トンネル磁気抵抗素子及びそれを装備した低消費電力不揮発性磁気メモリに関するものである。   The present invention relates to a high-power tunnel magnetoresistive element and a low power consumption nonvolatile magnetic memory equipped with the same.

従来のトンネル磁気抵抗効果素子は、Alの酸化物を絶縁膜に用いたトンネル積層膜を用いていた(T. Miyazaki and N. Tezuka, J. Magn. Magn. Mater. 139, L231 (1995))が、Al酸化物は非晶質であるため工業的に使用するための十分な電気的出力信号を得ることができなかった。最近、絶縁膜に酸化マグネシウムを用いたトンネル磁気抵抗効果素子において、上記のAlの酸化物を絶縁体に用いたトンネル磁気抵抗効果素子よりも数倍大きい磁気抵抗比が得られることが報告された(S. Yuasa. et al., Nature Material 3, 868(2004))。また、従来の不揮発性磁気メモリは、MOSFET上にトンネル磁気抵抗効果素子を形成したメモリセルにより構成される。スイッチングはMOSFETを利用し、ビット線とワード線に通電させることにより発生する電流誘起の空間磁場を使ってトンネル磁気抵抗効果素子の磁化方向を回転させ、情報を書込み、トンネル磁気抵抗効果素子の出力電圧により情報を読み出す方式である。また、上記電流誘起の空間磁場を使った磁化回転のほかに、直接磁気抵抗効果素子に電流を流すことにより磁化を回転させるいわゆるスピントランスファートルク磁化反転あるいは同義であるスピン注入磁化反転方式があり、例えば米国特許第5,695,864号明細書あるいは特開2002−305337号公報に開示されている。   A conventional tunnel magnetoresistive element uses a tunnel laminated film using an oxide of Al as an insulating film (T. Miyazaki and N. Tezuka, J. Magn. Magn. Mater. 139, L231 (1995)). However, since the Al oxide is amorphous, a sufficient electrical output signal for industrial use cannot be obtained. Recently, it has been reported that a tunnel magnetoresistive effect element using magnesium oxide as an insulating film can obtain a magnetoresistance ratio several times larger than that of a tunnel magnetoresistive effect element using the above-described Al oxide as an insulator. (S. Yuasa. Et al., Nature Material 3, 868 (2004)). A conventional nonvolatile magnetic memory is constituted by a memory cell in which a tunnel magnetoresistive element is formed on a MOSFET. Switching uses a MOSFET to rotate the magnetization direction of the tunnel magnetoresistive element using the current-induced spatial magnetic field generated by energizing the bit line and the word line, write information, and output the tunnel magnetoresistive element This is a method of reading information by voltage. In addition to the magnetization rotation using the current-induced spatial magnetic field, there is a so-called spin transfer torque magnetization reversal or synonymous spin injection magnetization reversal method in which magnetization is rotated by passing a current directly through the magnetoresistive element, For example, it is disclosed in US Pat. No. 5,695,864 or JP-A-2002-305337.

米国特許第5,695,864号明細書US Pat. No. 5,695,864 特開2002−305337号公報JP 2002-305337 A

J. Magn. Magn. Mater. 139, L231 (1995)J. Magn. Magn. Mater. 139, L231 (1995) Nature Material 3, 868(2004)Nature Material 3, 868 (2004)

低消費電力不揮発性磁気メモリの実現には、トンネル磁気抵抗効果素子の高出力化とトンネル磁気抵抗効果素子へのスピントランスファートルク磁化反転による書込み方式を同時に満足する技術を開発することが重要な課題である。   To realize low-power non-volatile magnetic memory, it is important to develop a technology that simultaneously satisfies the high output of the tunnel magnetoresistive element and the write method by spin transfer torque magnetization reversal to the tunnel magnetoresistive element It is.

本発明は、このような要請に応えることのできるトンネル磁気抵抗効果素子及び不揮発性磁気メモリを提供することを目的とする。   It is an object of the present invention to provide a tunnel magnetoresistive element and a nonvolatile magnetic memory that can meet such a demand.

本発明は、上記の課題を解決するために、トンネル磁気抵抗効果素子の強磁性膜にBを含むCoあるいはFeの体心立方格子をもつ化合物強磁性膜を用い、また絶縁膜に酸化マグネシウムを用いる。   In order to solve the above problems, the present invention uses a compound ferromagnetic film having a body-centered cubic lattice of Co or Fe containing B as a ferromagnetic film of a tunnel magnetoresistive element, and magnesium oxide as an insulating film. Use.

すなわち、本発明によるトンネル磁気抵抗効果素子は、絶縁膜と、その絶縁膜を挟んで設けられた第一の強磁性膜と第二の強磁性膜とを有し、第一の強磁性膜はCoとFeとBを含有する体心立方構造の膜であり、絶縁膜は(100)配向した岩塩構造のMgO膜であることを特徴とする。第二の強磁性膜は、CoとFeとBを含有する体心立方構造の膜であってもよい。また、第一の強磁性膜はCoとFeの組成比(atm%の比)が50:50〜70:30であるのが好ましい。絶縁膜にMgOを適用したトンネル磁気抵抗効果素子では、図8に示すように体心立方構造が安定に存在し、かつCoをFeより多く含むことでトンネル磁気抵抗比に寄与するスピン分極率を向上できるためである。CoとFeとBを含有する体心立方構造の強磁性膜は、膜厚が3nm以下で、Bを10〜30%atm含有するのが好ましい。   That is, the tunnel magnetoresistive effect element according to the present invention has an insulating film, a first ferromagnetic film and a second ferromagnetic film sandwiched between the insulating films, and the first ferromagnetic film is The film is a body-centered cubic structure film containing Co, Fe, and B, and the insulating film is a (100) -oriented rock salt structure MgO film. The second ferromagnetic film may be a body-centered cubic film containing Co, Fe, and B. The first ferromagnetic film preferably has a Co / Fe composition ratio (atm% ratio) of 50:50 to 70:30. In the tunnel magnetoresistive effect element in which MgO is applied to the insulating film, as shown in FIG. 8, the body-centered cubic structure exists stably, and the spin polarizability contributing to the tunnel magnetoresistive ratio is increased by containing more Co than Fe. It is because it can improve. The body-centered cubic structure ferromagnetic film containing Co, Fe and B preferably has a film thickness of 3 nm or less and contains B at 10 to 30% atm.

本発明による磁気メモリは、トンネル磁気抵抗効果素子と、トンネル磁気抵抗効果素子に流れる電流をオン・オフ制御するスイッチング素子とを備える磁気メモリであり、トンネル磁気抵抗効果素子は、絶縁膜と、絶縁膜を挟んで設けられた第一の強磁性膜と第二の強磁性膜とを有し、第一の強磁性膜はCoとFeとBを含有する体心立方構造の膜であり、絶縁膜は(100)配向した岩塩構造のMgO膜であることを特徴とする。   A magnetic memory according to the present invention is a magnetic memory including a tunnel magnetoresistive effect element and a switching element that controls on / off of a current flowing through the tunnel magnetoresistive effect element. A first ferromagnetic film and a second ferromagnetic film provided on both sides of the film, the first ferromagnetic film being a body-centered cubic structure film containing Co, Fe, and B, and insulating The film is characterized by being a (100) -oriented rock salt structure MgO film.

本発明による磁気ランダムアクセスメモリは、複数の磁気メモリセルと、所望の磁気メモリセルを選択する手段とを備える磁気ランダムアクセスメモリであり、磁気メモリセルは、CoとFeとBを含有する体心立方構造の第一の強磁性膜と、(100)配向した岩塩構造のMgO絶縁膜と、第二の強磁性膜とが積層されたトンネル磁気抵抗効果素子を含むことを特徴とする。   A magnetic random access memory according to the present invention is a magnetic random access memory comprising a plurality of magnetic memory cells and means for selecting a desired magnetic memory cell, and the magnetic memory cell includes a body core containing Co, Fe, and B. It includes a tunnel magnetoresistive element in which a first ferromagnetic film having a cubic structure, an MgO insulating film having a (100) -oriented rock salt structure, and a second ferromagnetic film are stacked.

本発明によると、高出力なトンネル磁気抵抗効果素子が得られる。また、そのトンネル磁気抵抗効果素子を磁気メモリに装備することにより、高速かつ消費電力が極めて小さい不揮発性メモリを実現することができる。   According to the present invention, a high-power tunnel magnetoresistive element can be obtained. In addition, by installing the tunnel magnetoresistive element in a magnetic memory, a non-volatile memory with high speed and extremely low power consumption can be realized.

本発明のトンネル磁気抵抗効果素子の第一の構成例を示した図である。It is the figure which showed the 1st structural example of the tunnel magnetoresistive effect element of this invention. 本発明のトンネル磁気抵抗効果素子の第二の構成例を示した図である。It is the figure which showed the 2nd structural example of the tunnel magnetoresistive effect element of this invention. 本発明のトンネル磁気抵抗効果素子の第三の構成例を示した図である。It is the figure which showed the 3rd structural example of the tunnel magnetoresistive effect element of this invention. 本発明のトンネル磁気抵抗効果素子の第四の構成例を示した図である。It is the figure which showed the 4th structural example of the tunnel magnetoresistive effect element of this invention. 本発明のトンネル磁気抵抗効果素子の第五の構成例を示した図である。It is the figure which showed the 5th structural example of the tunnel magnetoresistive effect element of this invention. 本発明のトンネル磁気抵抗効果素子の第六の構成例を示した図である。It is the figure which showed the 6th structural example of the tunnel magnetoresistive effect element of this invention. 本発明の磁気メモリセルの構成例を示した図である。It is the figure which showed the structural example of the magnetic memory cell of this invention. CoFe100−xの組成に対する結晶構造を示した図である。It is a diagram showing the crystal structure on the composition of Co x Fe 100-x. 本発明の磁気メモリセルの構成例を示した図である。It is the figure which showed the structural example of the magnetic memory cell of this invention. 本発明のトンネル磁気抵抗素子のTMR比と熱処理温度依存性を示した図である。It is the figure which showed the TMR ratio and heat processing temperature dependence of the tunnel magnetoresistive element of this invention.

以下、図面を参照して本発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

[実施例1]
図1は、本発明によるトンネル磁気抵抗効果素子の一例を示す断面模式図である。このトンネル磁気抵抗効果素子1は、配向制御膜300、反強磁性膜301、強磁性膜302、非磁性膜303、強磁性膜304、絶縁膜305、強磁性膜306、保護膜307を積層して形成され、適当な温度で熱処理することにより磁気抵抗比が最適化される。本実施例では、トンネル磁気抵抗効果素子はスパッタリング法を用いて作製した。
[Example 1]
FIG. 1 is a schematic cross-sectional view showing an example of a tunnel magnetoresistive effect element according to the present invention. The tunnel magnetoresistive effect element 1 includes an orientation control film 300, an antiferromagnetic film 301, a ferromagnetic film 302, a nonmagnetic film 303, a ferromagnetic film 304, an insulating film 305, a ferromagnetic film 306, and a protective film 307. The magnetoresistance ratio is optimized by heat treatment at an appropriate temperature. In this example, the tunnel magnetoresistive effect element was produced using a sputtering method.

配向制御膜300はNiFe(5nm)により形成したが、Ta(5nm)/NiFe(5nm)の2層膜など、上記反強磁性膜301の配向性を向上させ、安定した反強磁性結合を実現することのできる他の材料を用いてもよい。反強磁性膜301にはMnIr(8nm)を用いたが、膜厚は5〜15nmの範囲で選択可能である。また、MnPt,MnFeなど、Mn化合物で構成される反強磁性膜を用いても安定に反強磁性結合を実現できる。強磁性膜302にはCoFe(2nm)を、非磁性膜303にはRu(0.8nm)を、強磁性膜304には体心立方格子をもつCoFeB(3nm)を用いた。強磁性膜302のCoFeの組成比は、主としてCo組成が50〜90atm%の間で使用した。この組成範囲において、上記反強磁性膜と安定した反強磁性結合を実現できる。強磁性膜302、非磁性膜303、強磁性膜304は、強磁性膜302と強磁性膜304の磁化が反強磁性結合するような材料を選択し、それぞれの膜厚は強磁性膜302と強磁性膜304の磁化の大きさが等しくなるように選択した。絶縁膜305は、岩塩構造をもつ酸化マグネシウム結晶膜を用い、(100)方向に配向した膜である。絶縁膜の膜厚は0.8nm〜3nmの範囲で使用した。強磁性膜306は体心立方格子をもつCoFeB(3nm)を用いた。強磁性膜304と強磁性膜306のCoFeBのCoとFeの組成は50:50〜70:30で使用するのが好ましい。この組成範囲では、図8に示すように、体心立方構造が安定に存在し、かつ絶縁膜305にMgOを適用したトンネル磁気抵抗効果素子1では、CoをFeより多く含むことでトンネル磁気抵抗比に寄与するスピン分極率を向上できるためである。   Although the orientation control film 300 is formed of NiFe (5 nm), the orientation of the antiferromagnetic film 301 such as a two-layer film of Ta (5 nm) / NiFe (5 nm) is improved to realize stable antiferromagnetic coupling. Other materials that can be used may be used. Although MnIr (8 nm) was used for the antiferromagnetic film 301, the film thickness can be selected in the range of 5 to 15 nm. Further, even when an antiferromagnetic film made of a Mn compound such as MnPt or MnFe is used, antiferromagnetic coupling can be realized stably. CoFe (2 nm) was used for the ferromagnetic film 302, Ru (0.8 nm) was used for the nonmagnetic film 303, and CoFeB (3 nm) having a body-centered cubic lattice was used for the ferromagnetic film 304. The CoFe composition ratio of the ferromagnetic film 302 was mainly used when the Co composition was 50 to 90 atm%. In this composition range, stable antiferromagnetic coupling with the antiferromagnetic film can be realized. For the ferromagnetic film 302, the nonmagnetic film 303, and the ferromagnetic film 304, materials are selected so that the magnetizations of the ferromagnetic film 302 and the ferromagnetic film 304 are antiferromagnetically coupled. The ferromagnetic films 304 were selected so that the magnitudes of magnetization were equal. The insulating film 305 is a film oriented in the (100) direction using a magnesium oxide crystal film having a rock salt structure. The thickness of the insulating film was used in the range of 0.8 nm to 3 nm. As the ferromagnetic film 306, CoFeB (3 nm) having a body-centered cubic lattice was used. The composition of Co and Fe of CoFeB in the ferromagnetic film 304 and the ferromagnetic film 306 is preferably 50:50 to 70:30. In this composition range, as shown in FIG. 8, in the tunnel magnetoresistive effect element 1 in which the body-centered cubic structure is stably present and MgO is applied to the insulating film 305, the tunnel magnetoresistance is increased by containing Co more than Fe. This is because the spin polarizability contributing to the ratio can be improved.

強磁性膜304、強磁性膜306に使用できるCoFeB及びCoFeの組成を記載した例を表1に示す。トンネル磁気抵抗効果素子1において大きなTMR比を得るには、強磁性膜304及び強磁性膜306にCoFeBを用い、Co組成は50〜90atm%の間で使用することが望ましいが、CoのFeに対する組成比が0〜50atm%の間で使用することも可能である。このCo組成を使用した場合、TMR比の大きさはCo組成が50〜90atm%の場合に比べて低下するが、トンネル磁気抵抗効果素子に印加する電圧依存性が改善される傾向にある。通常TMR比は印加電圧が大きくなるにつれて減少する傾向を示すが、Co組成0〜50atm%の間の組成では、その減少率が最大で半減できる。   Table 1 shows an example in which the composition of CoFeB and CoFe that can be used for the ferromagnetic film 304 and the ferromagnetic film 306 is described. In order to obtain a large TMR ratio in the tunnel magnetoresistive effect element 1, it is desirable to use CoFeB for the ferromagnetic film 304 and the ferromagnetic film 306 and to use Co composition between 50 to 90 atm%. It is also possible to use the composition ratio between 0 and 50 atm%. When this Co composition is used, the magnitude of the TMR ratio is reduced as compared with the case where the Co composition is 50 to 90 atm%, but the dependency on the voltage applied to the tunnel magnetoresistive element tends to be improved. Usually, the TMR ratio shows a tendency to decrease as the applied voltage increases, but the reduction rate can be reduced to half at maximum in the composition of Co composition of 0 to 50 atm%.

上記強磁性膜304と強磁性膜306のCoFeBは、非結晶であってもよく、適当な温度での熱処理により結晶化させてもよい。また、CoFeBの組成比は、体心立方格子となるCo組成が40〜60atm%、B組成が10〜30atm%の間で使用した。さらに、強磁性膜306にはCoFeB以外に、CoFeの単層膜、NiFeの単層膜、CoFe/NiFeあるいはCoFeB/NiFeの2層膜を用いてもよい。このときのCoFeのCo組成は体心立方格子が安定である50atm%としたが、50〜90%の間で使用してよい。Co組成が大きいと、面心立方格子が安定であり、トンネル磁気抵抗比は減少するが、磁気フリー層として保磁力の小さい良好な磁気特性が実現でき、スピントランスファートルク磁化反転の閾値電流密度をそれぞれの磁気モーメントの大きさに対応して変化させることができる。保護膜307は、Ta(5nm)/Ru(5nm)の2層膜で形成した。   The CoFeB of the ferromagnetic film 304 and the ferromagnetic film 306 may be amorphous, or may be crystallized by heat treatment at an appropriate temperature. Moreover, the composition ratio of CoFeB was used between 40 to 60 atm% for the Co composition to be a body-centered cubic lattice and 10 to 30 atm% for the B composition. Further, in addition to CoFeB, the ferromagnetic film 306 may be a single layer film of CoFe, a single layer film of NiFe, or a double layer film of CoFe / NiFe or CoFeB / NiFe. The Co composition of CoFe at this time is 50 atm% where the body-centered cubic lattice is stable, but may be used between 50 and 90%. When the Co composition is large, the face-centered cubic lattice is stable and the tunnel magnetoresistive ratio decreases, but as a magnetic free layer, good magnetic characteristics with a small coercive force can be realized, and the threshold current density of spin transfer torque magnetization reversal is reduced. It can be changed corresponding to the magnitude of each magnetic moment. The protective film 307 was formed of a two-layer film of Ta (5 nm) / Ru (5 nm).

素子加工にはフォトリソグラフィーとイオンミリングを用い、0.8μm×1.6μmの面積をもつトンネル磁気抵抗効果素子を作製した。このように作製されたトンネル磁気抵抗効果素子のトンネル磁気抵抗比は、熱処理を施すことにより増大させることが可能であり、強磁性膜306にCoFeBを用いた構成では、375℃以上で、1時間程度の熱処理を施すことにより250%に達した。また、絶縁膜305の厚さが0.8nmから3.0nmの範囲では、100%以上のトンネル磁気抵抗比を示した。また、熱処理の温度は400℃まで上昇させても、150%以上の良好な磁気抵抗比を得ることが可能である。特に、熱処理によりCoFeBは結晶化することが確認され、結晶化した後のCoFeBが体心立方格子の結晶構造をもつ場合に、トンネル磁気抵抗比は最も大きくなった。さらに、上記酸化マグネシウムの(100)配向膜は、非晶質の強磁性膜の上にスパッタ法を用いて作製することは可能であるが、多結晶構造をもつ強磁性膜の上にスパッタ法を用いて作製した場合、良好な(100)配向膜を得ることは困難であり、トンネル磁気抵抗比は最大でも50%にとどまった。したがって、強磁性膜304と強磁性膜306が結晶のCoFeBであり、かつ絶縁膜305が(100)配向の結晶の酸化マグネシウムであるトンネル磁気抵抗効果素子1で、200%以上のトンネル磁気抵抗比が得られている素子は、必ず製膜時の強磁性膜304と強磁性膜306は非結晶のCoFeBであって、熱処理の過程を経て作製されたものであることを示している。   A tunnel magnetoresistive effect element having an area of 0.8 μm × 1.6 μm was manufactured by photolithography and ion milling for element processing. The tunnel magnetoresistive ratio of the tunnel magnetoresistive effect element manufactured in this way can be increased by performing heat treatment. In the configuration using CoFeB for the ferromagnetic film 306, it is 1 hour at 375 ° C. or more. It reached 250% by applying a degree of heat treatment. Further, when the thickness of the insulating film 305 was in the range of 0.8 nm to 3.0 nm, a tunnel magnetoresistance ratio of 100% or more was shown. Moreover, even if the temperature of the heat treatment is increased to 400 ° C., a good magnetoresistance ratio of 150% or more can be obtained. In particular, it was confirmed that CoFeB was crystallized by the heat treatment, and when the CoFeB after crystallization had a body-centered cubic lattice crystal structure, the tunnel magnetoresistance ratio was the largest. Further, the (100) oriented film of magnesium oxide can be formed on an amorphous ferromagnetic film by a sputtering method, but a sputtering method is applied on a ferromagnetic film having a polycrystalline structure. When using this, it was difficult to obtain a good (100) orientation film, and the tunnel magnetoresistance ratio was only 50% at the maximum. Therefore, the tunnel magnetoresistance effect element 1 in which the ferromagnetic film 304 and the ferromagnetic film 306 are crystalline CoFeB and the insulating film 305 is (100) -oriented crystalline magnesium oxide has a tunnel magnetoresistance ratio of 200% or more. In the device obtained, the ferromagnetic film 304 and the ferromagnetic film 306 at the time of film formation are necessarily amorphous CoFeB and are manufactured through a heat treatment process.

トンネル磁気抵抗効果素子1は、強磁性膜304をCoFeB、絶縁膜305をMgO、強磁性膜306をCoFeBとし、反強磁性膜301を使用しない構造であり、強磁性膜304と強磁性膜306の磁気異方性のあるいは保磁力の大きさの違いを利用してTMR比を得る積層構造を使用してもよい。例えば、Ta/CoFeB/MgO/CoFeB/Taの積層構造を用い、それぞれの膜において適当な膜厚を選ぶことにより、図10に示すように、熱処理温度450℃において、450%のTMR比を得る。上記CoFeBの組成は、Co:Fe:Bが40:40:20(atm%)である場合に、最大のTMR比を得ることができるが、B組成を0〜30(atm%)として、Co:Feは0〜100atm%の間の任意の組成を選んでもよい。その組成比は表1に示すように、[Co(100−x)Fe(x)](100−y)B(y)、0<x<100(%)、0<y<30(%)の関係にある。表1は、本発明の強磁性膜に使用する可能な材料とその組成例を示した表である。上記Ta以外に融点の高い非晶質膜を使用することも有効である。この場合の構造では、反強磁性膜301に用いられるMn化合物のMnなどの熱拡散がないため、高い熱処理温度でさらに高いTMR比を得る事が可能となる。   The tunnel magnetoresistive element 1 has a structure in which the ferromagnetic film 304 is CoFeB, the insulating film 305 is MgO, the ferromagnetic film 306 is CoFeB, and the antiferromagnetic film 301 is not used. A laminated structure that obtains the TMR ratio by utilizing the difference in magnetic anisotropy or coercive force may be used. For example, by using a laminated structure of Ta / CoFeB / MgO / CoFeB / Ta and selecting an appropriate film thickness for each film, a TMR ratio of 450% is obtained at a heat treatment temperature of 450 ° C. as shown in FIG. . The composition of CoFeB can obtain the maximum TMR ratio when Co: Fe: B is 40:40:20 (atm%). : Fe may select any composition between 0 and 100 atm%. As shown in Table 1, the composition ratio is [Co (100-x) Fe (x)] (100-y) B (y), 0 <x <100 (%), 0 <y <30 (%) Are in a relationship. Table 1 is a table showing possible materials used for the ferromagnetic film of the present invention and examples of compositions thereof. It is also effective to use an amorphous film having a high melting point other than Ta. In the structure in this case, since there is no thermal diffusion of Mn of the Mn compound used for the antiferromagnetic film 301, it is possible to obtain a higher TMR ratio at a high heat treatment temperature.

Figure 2013012756
Figure 2013012756

上記のように、製膜時非晶質であった強磁性膜304と強磁性膜306を熱処理により結晶化させてトンネル磁気抵抗効果素子1を作製する方法は、従来の方法とは異なる。ただし、強磁性膜306にCoFe単層膜、NiFe単層膜、CoFe/NiFe膜を使用したトンネル磁気抵抗効果素子1では、これらの強磁性膜306は製膜時から結晶質であり、熱処理により強磁性膜304のみが結晶化することになる。強磁性膜306にCoFe単層膜、NiFe単層膜、CoFe/NiFe膜を使用したトンネル磁気抵抗効果素子1の最大のトンネル磁気抵抗比は、それぞれ、200%、40%、150%であった。   As described above, the method of fabricating the tunnel magnetoresistive effect element 1 by crystallizing the ferromagnetic film 304 and the ferromagnetic film 306 that were amorphous at the time of film formation by heat treatment is different from the conventional method. However, in the tunnel magnetoresistive effect element 1 using a CoFe single layer film, a NiFe single layer film, and a CoFe / NiFe film as the ferromagnetic film 306, these ferromagnetic films 306 are crystalline from the time of film formation and are subjected to heat treatment. Only the ferromagnetic film 304 is crystallized. The maximum tunnel magnetoresistance ratio of the tunnel magnetoresistive element 1 using a CoFe single layer film, a NiFe single layer film, and a CoFe / NiFe film as the ferromagnetic film 306 was 200%, 40%, and 150%, respectively. .

[実施例2]
図2は、本発明によるトンネル磁気抵抗効果素子の他の例を示す断面模式図である。このトンネル磁気抵抗効果素子2は、配向制御膜300、強磁性膜306、絶縁膜305、強磁性膜304、非磁性膜303、強磁性膜302、反強磁性膜301、保護膜307を積層して形成した。特に強磁性膜306及び強磁性層膜304にCoFeBを用いた場合、その結晶構造は体心立方格子であり、絶縁膜305は(100)に高配向した岩塩構造をもつMgOである。
[Example 2]
FIG. 2 is a schematic cross-sectional view showing another example of the tunnel magnetoresistive effect element according to the present invention. The tunnel magnetoresistive effect element 2 includes an orientation control film 300, a ferromagnetic film 306, an insulating film 305, a ferromagnetic film 304, a nonmagnetic film 303, a ferromagnetic film 302, an antiferromagnetic film 301, and a protective film 307. Formed. In particular, when CoFeB is used for the ferromagnetic film 306 and the ferromagnetic layer film 304, the crystal structure is a body-centered cubic lattice, and the insulating film 305 is MgO having a rock salt structure highly oriented to (100).

本構成のトンネル磁気抵抗効果素子2では、強磁性膜306は、配向絶縁膜300に隣接して作製され平坦性に優れているため、実施例1の構造に比べて強磁性膜306の軟磁気特性が向上する。例えば、結晶化した後のCoFeBの保磁力が実施例1に比べて半減する。絶縁膜305も平坦な膜に形成される。しかし、反強磁性膜301がトンネル磁気抵抗効果素子2の積層方向の上方に製膜されるため、当該膜の配向性が実施例1に比べ劣化するため反強磁性結合が弱くなり、実施例1に比べ耐熱処理特性が劣化し、400℃の熱処理によりトンネル磁気抵抗比は減少する傾向を示す。トンネル磁気抵抗効果素子2の作製方法、それぞれの膜に使用した材料は実施例1と同様である。また、このトンネル磁気抵抗効果素子2によって得られた磁気抵抗比は、実施例1とほぼ同様の200%であった。   In the tunnel magnetoresistive effect element 2 of this configuration, the ferromagnetic film 306 is formed adjacent to the alignment insulating film 300 and has excellent flatness. Therefore, the soft magnetism of the ferromagnetic film 306 is larger than that of the structure of the first embodiment. Improved characteristics. For example, the coercivity of CoFeB after crystallization is halved compared to Example 1. The insulating film 305 is also formed as a flat film. However, since the antiferromagnetic film 301 is formed above the tunnel magnetoresistive element 2 in the stacking direction, the orientation of the film is deteriorated as compared with the first embodiment, so that the antiferromagnetic coupling becomes weaker. Compared to 1, the heat resistance treatment characteristics are deteriorated, and the tunnel magnetoresistance ratio tends to decrease by heat treatment at 400 ° C. The manufacturing method of the tunnel magnetoresistive effect element 2 and the materials used for the respective films are the same as those in Example 1. Further, the magnetoresistive ratio obtained by the tunnel magnetoresistive element 2 was 200%, which was almost the same as that in Example 1.

[実施例3]
図3は、本発明によるトンネル磁気抵抗効果素子の他の例を示す断面模式図である。このトンネル磁気抵抗効果素子3は、図1に示したトンネル磁気抵抗効果素子1の構成において、強磁性膜306の上に、非磁性膜308、強磁性膜309、反強磁性膜310、保護膜307を、この順に積層したものに相当する。
[Example 3]
FIG. 3 is a schematic cross-sectional view showing another example of the tunnel magnetoresistive effect element according to the present invention. This tunnel magnetoresistive element 3 has the same structure as the tunnel magnetoresistive element 1 shown in FIG. 1 except that a nonmagnetic film 308, a ferromagnetic film 309, an antiferromagnetic film 310, and a protective film are formed on the ferromagnetic film 306. 307 corresponds to the stacked layers in this order.

本実施例では、非磁性膜308にRu(6nm)を、強磁性膜309にCoFe(2nm)を、反強磁性膜310にMnIr(8nm)を用いた。強磁性膜309のCoFeの組成比は、反強磁性膜310との間に反強磁性結合が安定して実現できるCo組成が50〜90%の間で使用した。非磁性膜308はRu(6nm)以外に、強磁性膜306と強磁性膜309の間の磁気的な結合が消失する材料、膜厚を選択してもよい。トンネル磁気抵抗効果素子3の作製方法、配向制御膜300、反強磁性膜301、強磁性膜302、非磁性膜303、強磁性膜304、絶縁膜305、強磁性膜306、保護膜307に使用した材料は、実施例1と同様である。特に強磁性膜306及び強磁性層膜304にCoFeBを用いた場合、その結晶構造は体心立方格子であり、絶縁膜305は(100)に高配向した岩塩構造をもつMgOである。   In this embodiment, Ru (6 nm) is used for the nonmagnetic film 308, CoFe (2 nm) is used for the ferromagnetic film 309, and MnIr (8 nm) is used for the antiferromagnetic film 310. The CoFe composition ratio of the ferromagnetic film 309 was such that the Co composition capable of stably realizing antiferromagnetic coupling with the antiferromagnetic film 310 was between 50% and 90%. In addition to Ru (6 nm), the nonmagnetic film 308 may be made of a material and film thickness that eliminate the magnetic coupling between the ferromagnetic film 306 and the ferromagnetic film 309. Method for manufacturing tunnel magnetoresistive effect element 3, used for orientation control film 300, antiferromagnetic film 301, ferromagnetic film 302, nonmagnetic film 303, ferromagnetic film 304, insulating film 305, ferromagnetic film 306, and protective film 307 The materials obtained are the same as in Example 1. In particular, when CoFeB is used for the ferromagnetic film 306 and the ferromagnetic layer film 304, the crystal structure is a body-centered cubic lattice, and the insulating film 305 is MgO having a rock salt structure highly oriented to (100).

本実施例で得られた磁気抵抗比は150%であり、実施例1に比べ若干小さくなるが、非磁性膜308と強磁性膜309の界面で起きるスピン依存反射のため強磁性膜306に作用するスピントルクの効率を増大させることが可能であり、実施例1に比べスピントルク磁化反転の閾値電流密度がおよそ3分の2程度低減できる。   The magnetoresistance ratio obtained in this example is 150%, which is slightly smaller than that in Example 1, but acts on the ferromagnetic film 306 due to spin-dependent reflection that occurs at the interface between the nonmagnetic film 308 and the ferromagnetic film 309. As compared with the first embodiment, the threshold current density of the spin torque magnetization reversal can be reduced by about two thirds.

[実施例4]
図4は、本発明によるトンネル磁気抵抗効果素子の他の例を示す断面模式図である。このトンネル磁気抵抗効果素子4は、図2のトンネル磁気抵抗効果素子2の構成において、強磁性膜306と配向制御膜300の間に、配向制御膜300側から反強磁性膜310、強磁性膜309、非磁性膜308を、この順に積層したものに相当する。
[Example 4]
FIG. 4 is a schematic cross-sectional view showing another example of the tunnel magnetoresistive effect element according to the present invention. This tunnel magnetoresistive effect element 4 is the same as the tunnel magnetoresistive effect element 2 shown in FIG. 2, but between the ferromagnetic film 306 and the orientation control film 300, from the orientation control film 300 side, the antiferromagnetic film 310, the ferromagnetic film. 309 corresponds to a nonmagnetic film 308 laminated in this order.

本実施例では、非磁性膜308にRu(6nm)を、強磁性膜309にCoFe(2nm)を、反強磁性膜310にMnIr(8nm)を用いた。強磁性膜309のCoFeの組成比は、反強磁性膜310との間に反強磁性結合が安定して実現できるCo組成が50〜90%の間で使用した。非磁性膜308はRu(6nm)以外に、強磁性膜306と強磁性膜309の間の磁気的な結合が消失する材料、膜厚を選択してもよい。トンネル磁気抵抗効果素子4の作製方法、配向制御膜300、反強磁性膜301、強磁性膜302、非磁性膜303、強磁性膜304、絶縁膜305、強磁性膜306、保護膜307に使用した材料は、実施例2と同様である。特に強磁性膜306及び強磁性層膜304にCoFeBを用いた場合、その結晶構造は体心立方格子であり、絶縁膜305は(100)に高配向した岩塩構造をもつMgOである。   In this embodiment, Ru (6 nm) is used for the nonmagnetic film 308, CoFe (2 nm) is used for the ferromagnetic film 309, and MnIr (8 nm) is used for the antiferromagnetic film 310. The CoFe composition ratio of the ferromagnetic film 309 was such that the Co composition capable of stably realizing antiferromagnetic coupling with the antiferromagnetic film 310 was between 50% and 90%. In addition to Ru (6 nm), the nonmagnetic film 308 may be made of a material and film thickness that eliminate the magnetic coupling between the ferromagnetic film 306 and the ferromagnetic film 309. Method for fabricating tunnel magnetoresistive effect element 4, used for orientation control film 300, antiferromagnetic film 301, ferromagnetic film 302, nonmagnetic film 303, ferromagnetic film 304, insulating film 305, ferromagnetic film 306, and protective film 307 The materials made are the same as in Example 2. In particular, when CoFeB is used for the ferromagnetic film 306 and the ferromagnetic layer film 304, the crystal structure is a body-centered cubic lattice, and the insulating film 305 is MgO having a rock salt structure highly oriented to (100).

本実施例で得られた磁気抵抗比は140%であり、実施例2に比べ若干小さくなるが、非磁性膜308と強磁性膜309の界面で起きるスピン依存反射のため強磁性膜306に作用するスピントルクの効率を増大させることが可能であり、実施例2に比べスピントルク磁化反転の閾値電流密度がおよそ3分の2程度低減できる。   The magnetoresistance ratio obtained in this example is 140%, which is slightly smaller than that in Example 2, but acts on the ferromagnetic film 306 due to spin-dependent reflection that occurs at the interface between the nonmagnetic film 308 and the ferromagnetic film 309. As compared with the second embodiment, the spin torque magnetization reversal threshold current density can be reduced by about two thirds.

[実施例5]
図5は、本発明によるトンネル磁気抵抗効果素子の他の例を示す断面模式図である。このトンネル磁気抵抗効果素子5は、図3に示したトンネル磁気抵抗効果素子3の構成において反強磁性膜310のない素子に相当する。
[Example 5]
FIG. 5 is a schematic cross-sectional view showing another example of the tunnel magnetoresistive effect element according to the present invention. The tunnel magnetoresistive element 5 corresponds to an element without the antiferromagnetic film 310 in the configuration of the tunnel magnetoresistive element 3 shown in FIG.

本実施例では、非磁性膜308にRu(8nm)を用いた。非磁性膜308はRu(8nm)以外に、強磁性膜306と強磁性膜309の間の反強磁性的な結合が消失する材料、膜厚を選択してもよい。トンネル磁気抵抗効果素子5の作製方法、配向制御膜300、反強磁性膜301、強磁性膜302、非磁性膜303、強磁性膜304、絶縁膜305、強磁性膜306、強磁性膜309、保護膜307に使用した材料は、実施例3と同様である。特に強磁性膜306及び強磁性層膜304にCoFeBを用いた場合、その結晶構造は体心立方格子であり、絶縁膜305は(100)に高配向した岩塩構造をもつMgOである。得られた磁気抵抗比は、実施例3とほぼ同様で150%程度である。   In this embodiment, Ru (8 nm) is used for the nonmagnetic film 308. In addition to Ru (8 nm), the nonmagnetic film 308 may be made of a material and film thickness that eliminate the antiferromagnetic coupling between the ferromagnetic film 306 and the ferromagnetic film 309. Method for fabricating tunnel magnetoresistive element 5, orientation control film 300, antiferromagnetic film 301, ferromagnetic film 302, nonmagnetic film 303, ferromagnetic film 304, insulating film 305, ferromagnetic film 306, ferromagnetic film 309, The material used for the protective film 307 is the same as in Example 3. In particular, when CoFeB is used for the ferromagnetic film 306 and the ferromagnetic layer film 304, the crystal structure is a body-centered cubic lattice, and the insulating film 305 is MgO having a rock salt structure highly oriented to (100). The obtained magnetoresistance ratio is substantially the same as in Example 3 and is about 150%.

本構成では、実施例3と同様に強磁性膜306に作用するスピントラスファートルクの効率が実施例1よりも増大し、スピントランスファートルクを用いた磁化回転が低電流で実現できる。さらに、実施例3に対して反強磁性膜310がないため、熱処理によるMnの拡散が抑制され、実施例3に比べ磁気抵抗比の耐熱性が向上する。   In this configuration, as in the third embodiment, the efficiency of the spin transfer torque acting on the ferromagnetic film 306 is increased as compared with the first embodiment, and the magnetization rotation using the spin transfer torque can be realized with a low current. Furthermore, since there is no antiferromagnetic film 310 as compared to Example 3, diffusion of Mn due to heat treatment is suppressed, and the heat resistance of the magnetoresistance ratio is improved as compared with Example 3.

[実施例6]
図6は、本発明によるトンネル磁気抵抗効果素子の他の例を示す断面模式図である。このトンネル磁気抵抗効果素子6は、図4に示したトンネル磁気抵抗効果素子4の構成において反強磁性膜310のない素子に相当する。
[Example 6]
FIG. 6 is a schematic cross-sectional view showing another example of the tunnel magnetoresistive effect element according to the present invention. The tunnel magnetoresistive element 6 corresponds to an element without the antiferromagnetic film 310 in the configuration of the tunnel magnetoresistive element 4 shown in FIG.

本実施例では、非磁性膜308にRu(8nm)を用いた。非磁性膜308はRu(8nm)以外に、強磁性膜306と強磁性膜309の間の反強磁性的な結合を消失できる得られる材料、膜厚を選択してもよい。トンネル磁気抵抗効果素子6の作製方法、配向制御膜300、反強磁性膜301、強磁性膜302、非磁性膜303、強磁性膜304、絶縁膜305、強磁性膜306、強磁性膜309、保護膜307に使用した材料は、実施例4と同様である。特に強磁性膜306及び強磁性層膜304にCoFeBを用いた場合、その結晶構造は体心立方格子であり、絶縁膜305は(100)に高配向した岩塩構造をもつMgOである。得られた最大の磁気抵抗比は実施例4とほぼ同様であり、140%程度であった。   In this embodiment, Ru (8 nm) is used for the nonmagnetic film 308. In addition to Ru (8 nm), the nonmagnetic film 308 may be made of a material and a film thickness that can eliminate the antiferromagnetic coupling between the ferromagnetic film 306 and the ferromagnetic film 309. Manufacturing method of tunnel magnetoresistive element 6, orientation control film 300, antiferromagnetic film 301, ferromagnetic film 302, nonmagnetic film 303, ferromagnetic film 304, insulating film 305, ferromagnetic film 306, ferromagnetic film 309, The material used for the protective film 307 is the same as in Example 4. In particular, when CoFeB is used for the ferromagnetic film 306 and the ferromagnetic layer film 304, the crystal structure is a body-centered cubic lattice, and the insulating film 305 is MgO having a rock salt structure highly oriented to (100). The maximum magnetoresistance ratio obtained was almost the same as in Example 4, and was about 140%.

本構成では、強磁性膜306に作用するスピントラスファートルクの効率が実施例4よりも増大し、スピントランスファートルクを用いた磁化回転が低電流で実現できる。さらに、実施例4に対して反強磁性膜310がないため、熱処理によるMnの拡散が抑制され、実施例4に比べ磁気抵抗比の耐熱性が向上する。   In this configuration, the efficiency of the spin transfer torque acting on the ferromagnetic film 306 is increased as compared with the fourth embodiment, and the magnetization rotation using the spin transfer torque can be realized with a low current. Furthermore, since there is no antiferromagnetic film 310 compared to Example 4, the diffusion of Mn by heat treatment is suppressed, and the heat resistance of the magnetoresistance ratio is improved compared to Example 4.

[実施例7]
図7は、本発明による磁気メモリセルの構成例を示す断面模式図である。この磁気メモリセルは、メモリセルとして実施例1〜実施例6に示したトンネル磁気抵抗効果素子10を搭載している。
[Example 7]
FIG. 7 is a schematic cross-sectional view showing a configuration example of a magnetic memory cell according to the present invention. This magnetic memory cell is equipped with the tunnel magnetoresistive effect element 10 shown in the first to sixth embodiments as a memory cell.

C−MOS11は、2つのn型半導体12,13と一つのp型半導体14からなる。n型半導体12にドレインとなる電極21が電気的に接続され、電極41及び電極47を介してグラウンドに接続されている。n型半導体13には、ソースとなる電極22が電気的に接続されている。さらに23はゲート電極であり、このゲート電極23のON/OFFによりソース電極22とドレイン電極21の間の電流をON/OFF制御する。上記ソース電極22に電極45、電極44、電極43、電極42、電極46が積層され、電極46を介してトンネル磁気抵抗効果素子10の配向制御膜300が接続されている。   The C-MOS 11 includes two n-type semiconductors 12 and 13 and one p-type semiconductor 14. An electrode 21 serving as a drain is electrically connected to the n-type semiconductor 12 and is connected to the ground via an electrode 41 and an electrode 47. An electrode 22 serving as a source is electrically connected to the n-type semiconductor 13. Further, reference numeral 23 denotes a gate electrode, and the current between the source electrode 22 and the drain electrode 21 is ON / OFF controlled by turning the gate electrode 23 ON / OFF. An electrode 45, an electrode 44, an electrode 43, an electrode 42, and an electrode 46 are stacked on the source electrode 22, and the orientation control film 300 of the tunnel magnetoresistive effect element 10 is connected through the electrode 46.

ビット線212は上記トンネル磁気抵抗効果素子10の保護膜307に接続されている。本実施例の磁気メモリセルでは、トンネル磁気抵抗効果素子10に流れる電流、いわゆるスピントランスファートルクによりトンネル磁気抵抗効果素子10の強磁性膜306の磁化方向を回転し、磁気的情報を記録する。また、前記のスピントランスファートルクを用いずに、ビット線212とワード線を兼ねる電極47に電流を流し、その周りに作られる磁界を用いてトンネル磁気抵抗効果素子10の強磁性膜306の磁化方向を回転し、磁気的情報を記録してもよい。スピントランスファートルクにより書込みを行った場合、書込み時の電力は電流磁界を用いた場合に比べ百分の一程度まで低減可能である。   The bit line 212 is connected to the protective film 307 of the tunnel magnetoresistive element 10. In the magnetic memory cell of this embodiment, the magnetization direction of the ferromagnetic film 306 of the tunnel magnetoresistive effect element 10 is rotated by a current flowing through the tunnel magnetoresistive effect element 10, so-called spin transfer torque, and magnetic information is recorded. In addition, the magnetization direction of the ferromagnetic film 306 of the tunnel magnetoresistive effect element 10 using a magnetic field generated around the electrode 47 that also serves as the bit line 212 and the word line without using the spin transfer torque. May be rotated to record magnetic information. When writing is performed by spin transfer torque, the power at the time of writing can be reduced to about one-hundred compared with the case where a current magnetic field is used.

図9は、上記磁気メモリセルを配置した不揮発性磁気メモリの構成例を示す図である。ゲート電極23とビット線212がメモリセル100に電気的に接続されている。前記実施例に記載した磁気メモリセルを配置することにより前記磁気メモリは低消費電力で動作が可能であり、ギガビット級の高密度磁気メモリを実現可能である。   FIG. 9 is a diagram showing a configuration example of a nonvolatile magnetic memory in which the magnetic memory cells are arranged. The gate electrode 23 and the bit line 212 are electrically connected to the memory cell 100. By disposing the magnetic memory cells described in the embodiments, the magnetic memory can operate with low power consumption, and a gigabit-class high-density magnetic memory can be realized.

1…トンネル磁気抵抗効果素子、2…トンネル磁気抵抗効果素子、3…トンネル磁気抵抗効果、4…トンネル磁気抵抗効果素子、5…トンネル磁気抵抗効果素子、6…トンネル磁気抵抗効果素子、10…トンネル磁気抵抗効果素子、11…トランジスタ、12…第一のn型半導体、13…第二のn型半導体、14…p型半導体、21…ドレイン電極、211…書込みワード線、212…ビット線、22…ソース電極、23…ゲート電極、300…配向制御膜、301…反強磁性膜、302…強磁性膜、303…非磁性膜、304…強磁性膜、305…絶縁膜、306…強磁性膜、307…保護膜、308…非磁性膜、309…強磁性膜、310…反強磁性膜、41…電極、42…電極、43…電極、44…電極、45…電極、46…電極、47…電極 DESCRIPTION OF SYMBOLS 1 ... Tunnel magnetoresistive effect element 2 ... Tunnel magnetoresistive effect element 3 ... Tunnel magnetoresistive effect 4 ... Tunnel magnetoresistive effect element 5 ... Tunnel magnetoresistive effect element 6 ... Tunnel magnetoresistive effect element 10 ... Tunnel Magnetoresistive effect element, 11... Transistor, 12... First n-type semiconductor, 13... Second n-type semiconductor, 14... P-type semiconductor, 21. ... Source electrode, 23 ... Gate electrode, 300 ... Orientation control film, 301 ... Antiferromagnetic film, 302 ... Ferromagnetic film, 303 ... Nonmagnetic film, 304 ... Ferromagnetic film, 305 ... Insulating film, 306 ... Ferromagnetic film 307: Protective film, 308 Nonmagnetic film, 309 Ferromagnetic film, 310 Antiferromagnetic film, 41 Electrode, 42 Electrode, 43 Electrode, 44 Electrode, 45 Electrode, 46 Electrode, 4 ... electrode

Claims (13)

絶縁膜と、前記絶縁膜を挟んで設けられた第一の強磁性膜と第二の強磁性膜とを有するトンネル磁気抵抗効果素子において、
前記第一の強磁性膜及び第二の磁性膜は、CoとFeとBを含有し、Co組成が50〜90atm%の体心立方構造の膜であり、
前記絶縁膜は(100)配向した岩塩構造のMgO膜であることを特徴とするトンネル磁気抵抗効果素子。
In a tunnel magnetoresistive element having an insulating film, and a first ferromagnetic film and a second ferromagnetic film provided with the insulating film interposed therebetween,
The first ferromagnetic film and the second magnetic film contain Co, Fe, and B, and have a body-centered cubic structure with a Co composition of 50 to 90 atm%,
The tunnel magnetoresistive element according to claim 1, wherein the insulating film is a (100) -oriented rock salt MgO film.
請求項1記載のトンネル磁気抵抗効果素子において、
配向制御膜と、前記配向制御膜の上に順に積層された反強磁性膜、第三の強磁性膜、非磁性膜を有し、前記非磁性膜の上に前記第一の強磁性膜、絶縁膜及び第二の強磁性膜が順に積層され、
前記第三の強磁性膜の磁化方向は前記反強磁性膜によって固定され、前記第三の強磁性膜と前記第一の強磁性膜とは前記非磁性膜を介して反強磁性結合していることを特徴とするトンネル磁気抵抗効果素子。
The tunnel magnetoresistive effect element according to claim 1.
An orientation control film, and an antiferromagnetic film, a third ferromagnetic film, and a nonmagnetic film sequentially stacked on the orientation control film, the first ferromagnetic film on the nonmagnetic film, An insulating film and a second ferromagnetic film are sequentially laminated,
The magnetization direction of the third ferromagnetic film is fixed by the antiferromagnetic film, and the third ferromagnetic film and the first ferromagnetic film are antiferromagnetically coupled through the nonmagnetic film. A tunnel magnetoresistive effect element.
請求項2記載のトンネル磁気抵抗効果素子において、前記第二の強磁性膜の上に第二の非磁性膜と第四の強磁性膜と第二の反強磁性膜がこの順に積層され、前記第四の強磁性膜の磁化方向は前記第二の反強磁性膜によって固定されていることを特徴とするトンネル磁気抵抗効果素子。   The tunnel magnetoresistive effect element according to claim 2, wherein a second nonmagnetic film, a fourth ferromagnetic film, and a second antiferromagnetic film are laminated in this order on the second ferromagnetic film, A tunnel magnetoresistive effect element characterized in that the magnetization direction of the fourth ferromagnetic film is fixed by the second antiferromagnetic film. 請求項2記載のトンネル磁気抵抗効果素子において、前記第二の強磁性膜の上に第二の非磁性膜と第四の強磁性膜がこの順に積層されていることを特徴とするトンネル磁気抵抗効果素子。   3. The tunnel magnetoresistive element according to claim 2, wherein a second nonmagnetic film and a fourth ferromagnetic film are laminated in this order on the second ferromagnetic film. Effect element. 請求項1記載のトンネル磁気抵抗効果素子において、
配向制御膜を有し、前記配向制御膜の上に前記第一の強磁性膜、絶縁膜及び第二の強磁性膜が順に積層され、
更に、前記第二の強磁性膜の上に非磁性膜、第三の強磁性膜、反強磁性膜が順に積層され、
前記第三の強磁性膜の磁化方向は前記反強磁性膜によって固定され、前記第三の強磁性膜と前記第一の強磁性膜とは前記非磁性膜を介して反強磁性結合していることを特徴とするトンネル磁気抵抗効果素子。
The tunnel magnetoresistive effect element according to claim 1.
Having an orientation control film, the first ferromagnetic film, the insulating film and the second ferromagnetic film are sequentially laminated on the orientation control film;
Furthermore, a nonmagnetic film, a third ferromagnetic film, and an antiferromagnetic film are sequentially laminated on the second ferromagnetic film,
The magnetization direction of the third ferromagnetic film is fixed by the antiferromagnetic film, and the third ferromagnetic film and the first ferromagnetic film are antiferromagnetically coupled through the nonmagnetic film. A tunnel magnetoresistive effect element.
請求項5記載のトンネル磁気抵抗効果素子において、前記配向制御膜と前記第一の強磁性膜の間に、第二の反強磁性膜と第四の強磁性膜と第二の非磁性膜がこの順に積層され、前記第四の強磁性膜の磁化方向は前記第二の反強磁性膜によって固定されていることを特徴とするトンネル磁気抵抗効果素子。   6. The tunnel magnetoresistive element according to claim 5, wherein a second antiferromagnetic film, a fourth ferromagnetic film, and a second nonmagnetic film are provided between the orientation control film and the first ferromagnetic film. A tunneling magnetoresistive element, wherein the fourth ferromagnetic film is laminated in this order, and the magnetization direction of the fourth ferromagnetic film is fixed by the second antiferromagnetic film. 請求項5記載のトンネル磁気抵抗効果素子において、前記配向制御膜と前記第一の強磁性膜の間に、第四の強磁性膜と第二の非磁性膜がこの順に積層されていることを特徴とするトンネル磁気抵抗素子。   6. The tunnel magnetoresistive element according to claim 5, wherein a fourth ferromagnetic film and a second nonmagnetic film are laminated in this order between the orientation control film and the first ferromagnetic film. A tunneling magnetoresistive element. トンネル磁気抵抗効果素子と、前記トンネル磁気抵抗効果素子に流れる電流をオン・オフ制御するスイッチング素子とを備える磁気メモリにおいて、
前記トンネル磁気抵抗効果素子は、絶縁膜と、前記絶縁膜を挟んで設けられた第一の強磁性膜と第二の強磁性膜とを有し、前記第一の強磁性膜及び第二の磁性膜はCoとFeとBを含有し、Co組成が50〜90atm%の体心立方構造の膜であり、前記絶縁膜は(100)配向した岩塩構造のMgO膜であることを特徴とする磁気メモリ。
In a magnetic memory comprising a tunnel magnetoresistive element and a switching element that controls on / off of a current flowing through the tunnel magnetoresistive element,
The tunnel magnetoresistive element includes an insulating film, a first ferromagnetic film and a second ferromagnetic film provided with the insulating film interposed therebetween, and the first ferromagnetic film and the second ferromagnetic film The magnetic film contains Co, Fe, and B and has a body-centered cubic structure with a Co composition of 50 to 90 atm%, and the insulating film is a (100) -oriented rock salt structure MgO film. Magnetic memory.
請求項8記載の磁気メモリにおいて、スピントランスファートルクにより磁気情報を記録することを特徴とする磁気メモリ。   9. The magnetic memory according to claim 8, wherein magnetic information is recorded by a spin transfer torque. 複数の磁気メモリセルと、所望の磁気メモリセルを選択する手段とを備える磁気ランダムアクセスメモリにおいて、
前記磁気メモリセルは、CoとFeとBを含有し、Co組成が50〜90atm%である体心立方構造の第一の強磁性膜と、(100)配向した岩塩構造のMgO絶縁膜と、CoとFeとBを含有し、Co組成が50〜90atm%である体心立方構造の第二の強磁性膜とが積層されたトンネル磁気抵抗効果素子を含むことを特徴とする磁気ランダムアクセスメモリ。
In a magnetic random access memory comprising a plurality of magnetic memory cells and means for selecting a desired magnetic memory cell,
The magnetic memory cell includes Co, Fe, and B, a first ferromagnetic film having a body-centered cubic structure having a Co composition of 50 to 90 atm%, a (100) -oriented rock salt structure MgO insulating film, A magnetic random access memory comprising a tunnel magnetoresistive effect element including a second ferromagnetic film having a body-centered cubic structure containing Co, Fe, and B and having a Co composition of 50 to 90 atm% .
請求項10記載の磁気ランダムアクセスメモリにおいて、スピントランスファートルクにより磁気情報を記録することを特徴とする磁気ランダムアクセスメモリ。   11. The magnetic random access memory according to claim 10, wherein magnetic information is recorded by a spin transfer torque. 請求項1記載のトンネル磁気抵抗効果素子において、前記絶縁膜は前記第二の強磁性膜の上に形成され、前記第一の強磁性膜は前記絶縁膜の上に形成されていることを特徴とするトンネル磁気抵抗効果素子。   2. The tunnel magnetoresistive element according to claim 1, wherein the insulating film is formed on the second ferromagnetic film, and the first ferromagnetic film is formed on the insulating film. A tunnel magnetoresistive effect element. 請求項1記載のトンネル磁気抵抗効果素子において、前記絶縁膜は結晶構造を有することを特徴とするトンネル磁気抵抗効果素子。   2. The tunnel magnetoresistive element according to claim 1, wherein the insulating film has a crystal structure.
JP2012181783A 2005-07-28 2012-08-20 Magnetoresistive element and nonvolatile magnetic memory equipped with the same Active JP5591888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012181783A JP5591888B2 (en) 2005-07-28 2012-08-20 Magnetoresistive element and nonvolatile magnetic memory equipped with the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005219526 2005-07-28
JP2005219526 2005-07-28
JP2012181783A JP5591888B2 (en) 2005-07-28 2012-08-20 Magnetoresistive element and nonvolatile magnetic memory equipped with the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006181979A Division JP5096702B2 (en) 2005-07-28 2006-06-30 Magnetoresistive element and nonvolatile magnetic memory equipped with the same

Publications (2)

Publication Number Publication Date
JP2013012756A true JP2013012756A (en) 2013-01-17
JP5591888B2 JP5591888B2 (en) 2014-09-17

Family

ID=47686320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012181783A Active JP5591888B2 (en) 2005-07-28 2012-08-20 Magnetoresistive element and nonvolatile magnetic memory equipped with the same

Country Status (1)

Country Link
JP (1) JP5591888B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001156357A (en) * 1999-09-16 2001-06-08 Toshiba Corp Magneto-resistance effect element and magnetic recording element
JP2004023015A (en) * 2002-06-20 2004-01-22 Sony Corp Magnetoresistive effect element and method of manufacturing the same, and magnetic memory device
JP2004119511A (en) * 2002-09-24 2004-04-15 Toshiba Corp Magnetic memory device and method of manufacturing same
JP2005116888A (en) * 2003-10-09 2005-04-28 Toshiba Corp Magnetic memory
JP2006318983A (en) * 2005-05-10 2006-11-24 Sony Corp Magnetic memory element and memory
JP2007059879A (en) * 2005-07-28 2007-03-08 Hitachi Ltd Magnetoresistive effect element and nonvolatile magnetic memory equipped with the same
JP2008523589A (en) * 2004-12-06 2008-07-03 グランディス インコーポレイテッド Method and system for providing highly textured magnetoresistive element and magnetic memory

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001156357A (en) * 1999-09-16 2001-06-08 Toshiba Corp Magneto-resistance effect element and magnetic recording element
JP2004023015A (en) * 2002-06-20 2004-01-22 Sony Corp Magnetoresistive effect element and method of manufacturing the same, and magnetic memory device
JP2004119511A (en) * 2002-09-24 2004-04-15 Toshiba Corp Magnetic memory device and method of manufacturing same
JP2005116888A (en) * 2003-10-09 2005-04-28 Toshiba Corp Magnetic memory
JP2008523589A (en) * 2004-12-06 2008-07-03 グランディス インコーポレイテッド Method and system for providing highly textured magnetoresistive element and magnetic memory
JP2006318983A (en) * 2005-05-10 2006-11-24 Sony Corp Magnetic memory element and memory
JP2007059879A (en) * 2005-07-28 2007-03-08 Hitachi Ltd Magnetoresistive effect element and nonvolatile magnetic memory equipped with the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012030725; Jun HAYAKAWA et al.: 'Dependence of Giant Tunnel Magnetoresistance of Sputtered CoFeB/MgO/CoFeB Magnetic Tunnel Junctions' Japanese Journal of Applied Physics Vol.44,No.19, 20050422, p.L587-L589, The Japan Society of Applied Physics *

Also Published As

Publication number Publication date
JP5591888B2 (en) 2014-09-17

Similar Documents

Publication Publication Date Title
JP5096702B2 (en) Magnetoresistive element and nonvolatile magnetic memory equipped with the same
US7894244B2 (en) Tunnel magnetic resistance device, and magnetic memory cell and magnetic random access memory using the same
JP5143444B2 (en) Magnetoresistive element, magnetic memory cell and magnetic random access memory using the same
US8456898B2 (en) Magnetic element having perpendicular anisotropy with enhanced efficiency
US9564152B2 (en) Magnetoresistance effect element and magnetic memory
US8547737B2 (en) Magnetoresistive element and magnetic memory
US9042165B2 (en) Magnetoresistive effect element, magnetic memory cell using same, and random access memory
US8274818B2 (en) Magnetoresistive element, magnetic memory cell and magnetic random access memory using the same
WO2011111473A1 (en) Magnetoresistive element and magnetic memory
WO2010137679A1 (en) Magneto-resistance effect element and random access memory using same
US20170271577A1 (en) Ferromagnetic tunnel junction element and method of driving ferromagnetic tunnel junction element
WO2011036795A1 (en) Magnetoresistive effect element and magnetic memory
US10672977B2 (en) Perpendicular magnetoresistive elements
JP5562946B2 (en) Tunnel magnetoresistive element, magnetic memory cell and random access memory using the same
JP2013016820A (en) Tunnel magnetoresistance effect element, and magnetic memory cell and random access memory including the same
JPWO2012014415A1 (en) A low-resistance and high-efficiency spin injection device using a rock salt structure thin film as a seed
JP5591888B2 (en) Magnetoresistive element and nonvolatile magnetic memory equipped with the same
JP5030888B2 (en) Resonant tunnel magnetoresistive element, magnetic memory cell, and magnetic random access memory
WO2011036752A1 (en) Resonant tunneling magnetoresistance effect element, magnetic memory cell, and magnetic random access memory
WO2011062005A1 (en) Ferromagnetic tunnel junction element
JP5777124B6 (en) Magnetoresistive element, magnetic film, and method of manufacturing magnetic film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140617

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140715

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140730

R150 Certificate of patent or registration of utility model

Ref document number: 5591888

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250