JP2008284442A - Oxygen concentrator - Google Patents

Oxygen concentrator Download PDF

Info

Publication number
JP2008284442A
JP2008284442A JP2007130602A JP2007130602A JP2008284442A JP 2008284442 A JP2008284442 A JP 2008284442A JP 2007130602 A JP2007130602 A JP 2007130602A JP 2007130602 A JP2007130602 A JP 2007130602A JP 2008284442 A JP2008284442 A JP 2008284442A
Authority
JP
Japan
Prior art keywords
compressor
drain pot
adsorption
oxygen concentrator
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007130602A
Other languages
Japanese (ja)
Other versions
JP5380787B2 (en
Inventor
Kentaro Narai
健太郎 成相
Noriyoshi Osawa
法喜 大澤
Kunihiko Nakano
邦彦 中野
Hiroyuki Kamata
博之 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2007130602A priority Critical patent/JP5380787B2/en
Publication of JP2008284442A publication Critical patent/JP2008284442A/en
Application granted granted Critical
Publication of JP5380787B2 publication Critical patent/JP5380787B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Drying Of Gases (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact type oxygen concentrator wherein an adsorbent is prevented from deteriorating by surely removing moisture contained in air. <P>SOLUTION: The oxygen concentrator 1 comprises at least two adsorption cylinders 3, 4 packed with adsorbent 31, 41 selectively adsorbing nitrogen, a compressor 2 for compressing air to be fed to the adsorption cylinders 3, 4 and a switching means 6 connected between the compressor 2 and the adsorption cylinders 3, 4 for feeding the air compressed by the compressor 2 to either one of the adsorption cylinders 3, 4. A drain pot 7 is connected between the compressor 2 and the switching means 6, and a control means 8 for controlling the pressure inside the drain pot 7 is provided for the purpose of removing moisture contained in the compressed air compressed by the compressor 2 in the drain pot 7. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、オゾン発生器や医療用酸素濃縮装置などに適用される酸素濃縮器に関するものである。   The present invention relates to an oxygen concentrator applied to an ozone generator, a medical oxygen concentrator, and the like.

酸素濃縮器は、窒素を選択的に吸着するゼオライトなどの吸着剤を充填した数本の吸着筒を用いて、空気中の酸素を濃縮する装置である(例えば、特許文献1参照)。   The oxygen concentrator is an apparatus that concentrates oxygen in the air using several adsorption cylinders filled with an adsorbent such as zeolite that selectively adsorbs nitrogen (see, for example, Patent Document 1).

そのような酸素濃縮器として、例えば、二つの吸着筒のうちの一方で吸着、他方で脱着再生を行うと共に、所定時間ごとに各吸着筒で吸着と脱着と切り替えて連続的に酸素を製造するようにしたPSA酸素濃縮器が知られている。   As such an oxygen concentrator, for example, one of two adsorption cylinders is adsorbed and the other is desorbed and regenerated, and oxygen is continuously produced by switching between adsorption and desorption at each adsorption cylinder every predetermined time. Such a PSA oxygen concentrator is known.

特開2004−275493号公報JP 2004-275493 A

ここで、吸着剤は主に窒素の吸脱着を繰り返し行うが、空気中の水分やその他のガスも同時に吸着する性質を持つ。特に、水分は吸着剤に強く吸着し、吸着剤の性能を劣化させる一番の問題である。   Here, the adsorbent mainly repeats adsorption and desorption of nitrogen, but has the property of simultaneously adsorbing moisture and other gases in the air. In particular, water is strongly adsorbed by the adsorbent and is the primary problem that degrades the performance of the adsorbent.

対策として、吸着剤の上流側にドレンポットや吸湿剤を配置して、空気中の水分を除去しているが、十分な除湿を行うために多量の吸湿剤が必要となり、酸素濃縮器が大型化してしまう。   As a countermeasure, a drain pot or a hygroscopic agent is placed upstream of the adsorbent to remove moisture in the air. However, a large amount of hygroscopic agent is required to perform sufficient dehumidification, and the oxygen concentrator is large. It will become.

また水分による劣化を見越して多量の吸着剤を詰めるなどの対策もあるが、吸着筒および酸素濃縮器のサイズが大型化する問題がある。   In addition, there are measures such as packing a large amount of adsorbent in anticipation of deterioration due to moisture, but there is a problem that the size of the adsorption cylinder and oxygen concentrator increases.

そこで、本発明の目的は、上記課題を解決し、原料となる空気中の水分を確実に除去して吸着剤の劣化を防止することができ、コンパクト化を図ることができる酸素濃縮器を提供することにある。   Accordingly, an object of the present invention is to provide an oxygen concentrator that solves the above-mentioned problems, can reliably remove moisture in the air as a raw material to prevent deterioration of the adsorbent, and can be made compact. There is to do.

上記目的を達成するために本発明は、窒素を選択的に吸着する吸着剤が充填された少なくとも二つの吸着筒と、該吸着筒に供給される空気を圧縮するためのコンプレッサと、そのコンプレッサと上記吸着筒との間に接続され上記コンプレッサの圧縮空気をいずれかの吸着筒に供給する切替手段とを備えた酸素濃縮器において、上記コンプレッサと上記切替手段との間にドレンポットを接続し、上記コンプレッサで圧縮された上記圧縮空気中の水分を上記ドレンポットで除去すべく、上記ドレンポット内の圧力を調整する調整手段を設けたものである。   In order to achieve the above object, the present invention provides at least two adsorption cylinders filled with an adsorbent that selectively adsorbs nitrogen, a compressor for compressing air supplied to the adsorption cylinder, and the compressor, In the oxygen concentrator provided with switching means connected between the adsorption cylinders and supplying compressed air of the compressor to any of the adsorption cylinders, a drain pot is connected between the compressor and the switching means, An adjusting means for adjusting the pressure in the drain pot is provided in order to remove moisture in the compressed air compressed by the compressor with the drain pot.

好ましくは、上記調整手段は、上記ドレンポットと上記吸着筒との間に設けられたオリフィスまたはレギュレータを有するものである。   Preferably, the adjusting means includes an orifice or a regulator provided between the drain pot and the adsorption cylinder.

好ましくは、上記調整手段は、上記吸着筒と該吸着筒で濃縮された高濃度酸素を貯留するための貯留手段との間に設けられたオリフィスまたはレギュレータを有するものである。   Preferably, the adjusting means includes an orifice or a regulator provided between the adsorption cylinder and a storage means for storing high-concentration oxygen concentrated in the adsorption cylinder.

好ましくは、上記吸着筒内に、吸湿剤が充填されると共に、その吸湿剤が上記吸着剤よりもコンプレッサ側に配置されたものである。   Preferably, the adsorbing cylinder is filled with a hygroscopic agent, and the hygroscopic agent is disposed closer to the compressor than the adsorbent.

好ましくは、上記ドレンポットに、該ドレンポット内の圧縮空気を冷却して水分を凝縮させるための冷却手段が設けられたものである。   Preferably, the drain pot is provided with cooling means for cooling the compressed air in the drain pot to condense moisture.

本発明によれば、原料となる空気中の水分を確実に除去して吸着剤の劣化を防止することができ、酸素濃縮器のコンパクト化を図ることができるという優れた効果を発揮するものである。   According to the present invention, it is possible to reliably remove moisture in the air as a raw material and prevent deterioration of the adsorbent, and to exhibit an excellent effect that the oxygen concentrator can be made compact. is there.

以下、本発明の好適な一実施形態を添付図面に基づいて詳述する。   Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.

本実施形態の酸素濃縮器は、PSA(Pressure Swing Adsorption)方式により酸素を濃縮するPSA酸素濃縮器(PSA装置)であり、例えば、オゾン発生器や医療用酸素濃縮装置などに適用される。   The oxygen concentrator of this embodiment is a PSA oxygen concentrator (PSA device) that concentrates oxygen by a PSA (Pressure Swing Adsorption) method, and is applied to, for example, an ozone generator or a medical oxygen concentrator.

図1に基づき本実施形態の酸素濃縮器の概略構造を説明する。   The schematic structure of the oxygen concentrator of this embodiment will be described based on FIG.

図1に示すように、本実施形態の酸素濃縮器1は、空気を圧縮するためのコンプレッサ2と、その圧縮空気から窒素を選択的に吸着する吸着剤(以下、N2吸着剤という)31、41が充填された少なくとも二つの(図例では二つ)吸着筒3、4と、吸着筒3、4で濃縮された高濃度酸素を貯留するための貯留手段(以下、O2バッファタンクという)5と、コンプレッサ2と吸着筒3、4との間に接続されコンプレッサ2の圧縮空気をいずれかの吸着筒3、4に供給する切替手段6と、コンプレッサ2と切替手段6との間に接続されたドレンポット7と、コンプレッサ2で圧縮された圧縮空気中の水分をドレンポット7で除去すべく、ドレンポット7内の圧力(以下、ドレンポット内圧という)を調整する調整手段8とを備える。 As shown in FIG. 1, an oxygen concentrator 1 of this embodiment includes a compressor 2 for compressing air and an adsorbent (hereinafter referred to as N 2 adsorbent) 31 that selectively adsorbs nitrogen from the compressed air. , 41 filled with at least two (two in the illustrated example) adsorption cylinders 3, 4 and storage means for storing high-concentration oxygen concentrated in the adsorption cylinders 3, 4 (hereinafter referred to as O 2 buffer tank) ) 5, a switching means 6 connected between the compressor 2 and the adsorption cylinders 3, 4 for supplying the compressed air of the compressor 2 to any of the adsorption cylinders 3, 4, and between the compressor 2 and the switching means 6 The connected drain pot 7 and adjusting means 8 for adjusting the pressure in the drain pot 7 (hereinafter referred to as the drain pot internal pressure) in order to remove the moisture in the compressed air compressed by the compressor 2 with the drain pot 7. Prepare.

コンプレッサ2は、例えば、容積型コンプレッサなどが考えられ、図例では、電動式のダイヤフラムコンプレッサである。そのコンプレッサ2は、吐出管10を介してドレンポット7に接続される。なお、コンプレッサはこれに限定されず、非容積型のものでもよい。   The compressor 2 may be a positive displacement compressor, for example, and is an electric diaphragm compressor in the illustrated example. The compressor 2 is connected to the drain pot 7 via the discharge pipe 10. The compressor is not limited to this, and may be a non-volumetric type.

ドレンポット7は、吐出管10から導入された圧縮空気中の水分を凝縮させると共に、凝縮水を圧縮空気から分離してドレンポット7内に貯留する。ドレンポット7は、ドレンポット7内に貯留した水を適宜除去できるように外部排出口(図示せず)につながるバルブを有する。また、ドレンポット7には、除湿した圧縮空気を各吸着筒3、4に各々供給するための分岐管11が接続される。   The drain pot 7 condenses moisture in the compressed air introduced from the discharge pipe 10 and separates the condensed water from the compressed air and stores the condensed water in the drain pot 7. The drain pot 7 has a valve connected to an external outlet (not shown) so that water stored in the drain pot 7 can be removed as appropriate. The drain pot 7 is connected to a branch pipe 11 for supplying dehumidified compressed air to the adsorption cylinders 3 and 4 respectively.

本実施形態では、吸着筒3、4とドレンポット7との間の分岐管11に、調整手段8をなすオリフィス(以下、上流側オリフィスという)81が設けられる。その上流側オリフィス81は、ドレンポット内圧(コンプレッサ2の吐出圧)を吸着筒3、4内の圧力よりも高圧に保持すべく、圧縮空気が通る分岐管11を絞る。   In the present embodiment, the branch pipe 11 between the adsorption cylinders 3 and 4 and the drain pot 7 is provided with an orifice 81 (hereinafter referred to as an upstream orifice) that constitutes the adjusting means 8. The upstream side orifice 81 restricts the branch pipe 11 through which the compressed air passes in order to maintain the drain pot internal pressure (discharge pressure of the compressor 2) higher than the pressure in the adsorption cylinders 3 and 4.

分岐管11は、上流側オリフィス81の下流側の分岐部にて二つに分岐して切替手段6に接続される。   The branch pipe 11 branches into two at the downstream branch portion of the upstream orifice 81 and is connected to the switching means 6.

図例では、切替手段6は、二つの吸着筒3、4に対応させて設けられた二つの三方切替弁61、62からなり、各三方切替弁61、62は、分岐管11およびドレンポット7を介してコンプレッサ2に各々接続される。   In the illustrated example, the switching means 6 includes two three-way switching valves 61 and 62 provided corresponding to the two adsorption cylinders 3 and 4, and each of the three-way switching valves 61 and 62 includes the branch pipe 11 and the drain pot 7. Are connected to the compressor 2 respectively.

その三方切替弁61、62は、圧縮空気導入管12を介して吸着筒3、4に接続されると共に、排気管13を介してサイレンサ14に接続される。三方切替弁61、62は、吸着筒3、4(圧縮空気導入管12)とコンプレッサ2(分岐管11)とを連通させる吸着位置と、吸着筒3、4(圧縮空気導入管12)とサイレンサ14(排気管13)とを連通させる脱着位置とで切り替えられる。   The three-way switching valves 61 and 62 are connected to the adsorption cylinders 3 and 4 through the compressed air introduction pipe 12 and are connected to the silencer 14 through the exhaust pipe 13. The three-way switching valves 61 and 62 include an adsorption position where the adsorption cylinders 3 and 4 (compressed air introduction pipe 12) communicate with the compressor 2 (branch pipe 11), and the adsorption cylinders 3 and 4 (compressed air introduction pipe 12) and a silencer. 14 (exhaust pipe 13) can be switched between the detachment position and the communication position.

これら三方切替弁61、62は、図示しないコントローラなどに接続され、互いに連動してPSA制御(開閉制御)される。   These three-way switching valves 61 and 62 are connected to a controller or the like (not shown), and are PSA controlled (open / close control) in conjunction with each other.

吸着筒3、4は、圧縮空気導入管12と、O2バッファタンク5に接続された酸素取出管15とに各々接続される。その吸着筒3、4内には、N2吸着剤31、41と吸湿剤32、42とが充填される。それらN2吸着剤31、41と吸湿剤32、42とは、吸湿剤32、42がコンプレッサ側、N2吸着剤31、41がO2バッファタンク側に配置される。N2吸着剤31、41は、例えば、合成ジルコニウムからなり、吸湿剤32、42は、例えば、シリカゲルなどからなる。 The adsorption cylinders 3 and 4 are respectively connected to a compressed air introduction pipe 12 and an oxygen extraction pipe 15 connected to the O 2 buffer tank 5. The adsorption cylinders 3 and 4 are filled with N 2 adsorbents 31 and 41 and hygroscopic agents 32 and 42. The N 2 adsorbents 31 and 41 and the hygroscopic agents 32 and 42 are arranged such that the hygroscopic agents 32 and 42 are on the compressor side, and the N 2 adsorbents 31 and 41 are on the O 2 buffer tank side. The N 2 adsorbents 31 and 41 are made of, for example, synthetic zirconium, and the hygroscopic agents 32 and 42 are made of, for example, silica gel.

本実施形態では、各吸着筒3、4とO2バッファタンク5と間の酸素取出管15に、圧力調整用の下流側オリフィス16、16が各々設けられる。それら下流側オリフィス16、16は、O2バッファタンク5内の圧力をほぼ大気圧にすべく、高濃度酸素が通る酸素取出管15を各々絞る。なお、下流側オリフィス16、16のかわりにレギュレータを設けてもよい。 In the present embodiment, downstream orifices 16 and 16 for pressure adjustment are provided in the oxygen extraction pipes 15 between the respective adsorption cylinders 3 and 4 and the O 2 buffer tank 5. These downstream orifices 16 and 16 respectively throttle the oxygen extraction pipe 15 through which high-concentration oxygen passes so that the pressure in the O 2 buffer tank 5 is almost atmospheric pressure. A regulator may be provided in place of the downstream orifices 16 and 16.

酸素取出管15、15は、集合部にて一本に接続されて、O2バッファタンク5に接続される。 The oxygen take-out pipes 15 and 15 are connected together at the gathering portion and connected to the O 2 buffer tank 5.

2バッファタンク5は、図示しないオゾン発生器などに、タンク管17を介して接続され、そのタンク管17には、流量あるいは圧力を調整するためのレギュレータ18が設けられる。 The O 2 buffer tank 5 is connected to an ozone generator (not shown) or the like via a tank pipe 17, and the tank pipe 17 is provided with a regulator 18 for adjusting the flow rate or pressure.

次に、図1に基づき本実施形態に係る酸素濃縮器1の作動を説明する。   Next, the operation of the oxygen concentrator 1 according to the present embodiment will be described based on FIG.

本実施形態では、一方の吸着筒3のN2吸着剤31で圧縮空気中の窒素で吸着して酸素を濃縮する(吸着工程)と共に、他方の吸着筒4でN2吸着剤41の窒素を脱着して吸着筒4を再生し(再生工程)、さらに、窒素の吸着を行う吸着筒3、4と窒素の脱着を行う吸着筒3、4とを所定時間ごとに交互に切替えて、連続的に高濃度酸素を生成する。また、本実施形態では、吸着工程と再生工程とを切り替える際に、二つの吸着筒3、4内の圧力を互いに等しくするための均圧工程を行う。 In the present embodiment, the N 2 adsorbent 31 of one adsorption cylinder 3 is adsorbed with nitrogen in compressed air to concentrate oxygen (adsorption process), and the other adsorption cylinder 4 is used to nitrogen the N 2 adsorbent 41. The adsorption cylinder 4 is desorbed to regenerate (regeneration process), and the adsorption cylinders 3 and 4 for nitrogen adsorption and the adsorption cylinders 3 and 4 for nitrogen desorption are alternately switched at predetermined intervals to continuously To produce high concentration oxygen. Moreover, in this embodiment, when switching an adsorption | suction process and a regeneration process, the pressure equalization process for making the pressure in the two adsorption cylinders 3 and 4 mutually equal is performed.

以下に、これら吸着工程、再生工程および均圧工程について説明する。   Below, these adsorption processes, a regeneration process, and a pressure equalization process are explained.

まず、図1の左側の吸着筒3により吸着工程を説明する。   First, the adsorption process will be described using the adsorption cylinder 3 on the left side of FIG.

[吸着工程]
外部からコンプレッサ2に吸入された原料の空気は、そのコンプレッサ2で所定の吐出圧まで昇圧される。その昇圧された圧縮空気(加圧空気)は、ドレンポット7を通り、そのドレンポット7にて凝縮水が回収されて除湿(脱水)される。ドレンポット7で脱湿された圧縮空気は、上流側オリフィス81にて所望の吸着圧力(運転圧力)まで降圧された後、吸着位置に設定された三方切替弁61により吸着筒3に導入される。
[Adsorption process]
The raw material air sucked into the compressor 2 from the outside is increased by the compressor 2 to a predetermined discharge pressure. The pressurized compressed air (pressurized air) passes through the drain pot 7, and condensed water is collected in the drain pot 7 and dehumidified (dehydrated). The compressed air dehumidified in the drain pot 7 is lowered to a desired adsorption pressure (operating pressure) at the upstream orifice 81 and then introduced into the adsorption cylinder 3 by the three-way switching valve 61 set at the adsorption position. .

その吸着筒3に導入された圧縮空気は、吸着筒3内に充填されている吸湿剤32でさらに除湿され、続いて吸着筒3内のN2吸着剤31で、窒素が吸着される。この窒素の吸着により高濃度酸素が生成され、その高濃度酸素が、下流側オリフィス16を通ってO2バッファタンク5に貯蔵される。 The compressed air introduced into the adsorption cylinder 3 is further dehumidified by the moisture absorbent 32 filled in the adsorption cylinder 3, and then nitrogen is adsorbed by the N 2 adsorbent 31 in the adsorption cylinder 3. This nitrogen adsorption generates high-concentration oxygen, which is stored in the O 2 buffer tank 5 through the downstream orifice 16.

次に、図1の右側の吸着筒4により再生工程を説明する。   Next, the regeneration process will be described using the adsorption cylinder 4 on the right side of FIG.

[再生工程]
再生工程では、右側の吸着筒4に対応する三方切替弁62が脱着位置に切り替えられ、高濃度酸素が、吸着筒4内を吸着工程における圧縮空気の流れとは反対方向に流れる。
[Regeneration process]
In the regeneration process, the three-way switching valve 62 corresponding to the right adsorption cylinder 4 is switched to the desorption position, and high-concentration oxygen flows in the adsorption cylinder 4 in the direction opposite to the flow of compressed air in the adsorption process.

すなわち、吸着工程中の他方の吸着筒3あるいはO2バッファタンク5から乾燥した高濃度酸素が、酸素取出管15および下流側オリフィス16を通り吸着筒4内に流入し、その吸着筒4内を吸着工程とは反対向きに通り抜けて、圧縮空気導入管12、脱着位置の三方切替弁62、排気管13およびサイレンサ14を通って系外へ排気される。 That is, high-concentration oxygen dried from the other adsorption cylinder 3 or the O 2 buffer tank 5 in the adsorption process flows into the adsorption cylinder 4 through the oxygen take-out pipe 15 and the downstream orifice 16, and passes through the adsorption cylinder 4. The air passes through in the opposite direction to the adsorption step, and is exhausted out of the system through the compressed air introduction pipe 12, the three-way switching valve 62 at the desorption position, the exhaust pipe 13, and the silencer 14.

この高濃度酸素が吸着筒4を流れるときに、N2吸着剤41に吸着していた成分(窒素)と吸湿剤42に吸着した水分とが脱着されて、N2吸着剤41および吸湿剤42の再生が行われる。 When the high-concentration oxygen is flowing through the adsorption column 4, and the moisture adsorbed component adsorbed on the N 2 adsorption agent 41 (nitrogen) in the moisture absorbent 42 is desorbed, N 2 adsorbent 41 and the moisture absorbent 42 Is played.

次に、均圧工程を説明する。   Next, the pressure equalizing process will be described.

[均圧工程]
均圧工程は、以上の吸着工程と再生工程との切り替えの際に行われる。均圧工程では、三方切替弁61、62の流路を切り替えて(例えば、両方の三方切替弁61、62を脱着位置に切替えて)、吸着筒3と吸着筒4とを互いにつなぎ、それら吸着筒3、4内の圧力の平均化と、高濃度酸素の回収を行う。吸着筒3、4内の圧力を平均化した後、三方切替弁61、62の流路を切替え、吸着工程を行っていた吸着筒3を再生工程に、再生工程を行っていた吸着筒4を吸着工程に使用する。
[Pressure equalization process]
The pressure equalization process is performed when switching between the adsorption process and the regeneration process. In the pressure equalization process, the flow paths of the three-way switching valves 61 and 62 are switched (for example, both the three-way switching valves 61 and 62 are switched to the detaching position), and the adsorption cylinder 3 and the adsorption cylinder 4 are connected to each other to absorb them. The pressure in the cylinders 3 and 4 is averaged and high concentration oxygen is recovered. After the pressure in the adsorption cylinders 3 and 4 is averaged, the flow paths of the three-way switching valves 61 and 62 are switched, and the adsorption cylinder 3 that has been performing the adsorption process is used as a regeneration process, and the adsorption cylinder 4 that is performing the regeneration process is replaced with Used in the adsorption process.

以上のように、三方切替弁61、62を切り替えることで、吸着筒3、4の吸着・均圧・再生操作を繰返し、連続的に高濃度の酸素ガスを製造する。酸素濃縮器1の使用後は、ドレンポット7に溜まった水分を排気・乾燥させて、運転を終了する。   As described above, by switching the three-way switching valves 61 and 62, the adsorption, pressure equalization, and regeneration operations of the adsorption cylinders 3 and 4 are repeated to continuously produce high-concentration oxygen gas. After using the oxygen concentrator 1, the water accumulated in the drain pot 7 is exhausted and dried, and the operation is terminated.

ここで、本実施形態では、ドレンポット7の下流に調整手段8(上流側オリフィス81)を配置して、ドレンポット7の除湿能力を高めるようにしている。   Here, in this embodiment, the adjusting means 8 (upstream side orifice 81) is disposed downstream of the drain pot 7 so as to increase the dehumidifying capacity of the drain pot 7.

すなわち、空気中に含まれる水分は、空気の温度が低いほど、また空気の圧力が高いほど、結露(凝縮)し易い。したがって、ドレンポット内圧が高いほど、ドレンポット7の除湿能力は高まることになる。   That is, moisture contained in the air is more likely to condense (condensate) as the temperature of the air is lower and the pressure of the air is higher. Therefore, the higher the drain pot internal pressure, the higher the dehumidifying capacity of the drain pot 7.

一方、吸着筒3、4内の圧力は、吸着条件(例えば、N2吸着剤31、41の量、密度)や酸素濃縮器1が供給する酸素流量などで決定される。 On the other hand, the pressure in the adsorption cylinders 3 and 4 is determined by adsorption conditions (for example, the amount and density of the N 2 adsorbents 31 and 41), the oxygen flow rate supplied by the oxygen concentrator 1, and the like.

そこで、本実施形態では、ドレンポット7と吸着筒3、4との間に上流側オリフィス81を設け、コンプレッサ2の吐出圧を高めることで、吸着筒3、4内を所望の吸着圧力に保ちつつ、ドレンポット内圧を吸着筒3、4内の吸着圧力よりも高圧に保持する。そのドレンポット内圧は、上流側オリフィス81の径とコンプレッサ2の運転条件(例えば、ダイアフラムコンプレッサでは往復速度など)とにより設定される。   Therefore, in the present embodiment, the upstream side orifice 81 is provided between the drain pot 7 and the adsorption cylinders 3 and 4 to increase the discharge pressure of the compressor 2, thereby maintaining the inside of the adsorption cylinders 3 and 4 at a desired adsorption pressure. At the same time, the drain pot internal pressure is kept higher than the adsorption pressure in the adsorption cylinders 3 and 4. The drain pot internal pressure is set according to the diameter of the upstream orifice 81 and the operating conditions of the compressor 2 (for example, the reciprocating speed in the case of a diaphragm compressor).

これにより、吸着筒3、4に流入する原料の圧縮空気中の水分を確実に除去してN2吸着剤31、41の劣化を防止することができ、酸素濃縮器1のコンパクト化を図ることができる。 Thereby, the moisture in the compressed air of the raw material flowing into the adsorption cylinders 3 and 4 can be reliably removed to prevent the deterioration of the N 2 adsorbents 31 and 41, and the oxygen concentrator 1 can be made compact. Can do.

このように本実施形態では、ドレンポット7の下流側に調整手段8(上流側オリフィス81)を設け、運転時にドレンポット7内を吸着筒3、4より高い圧力まで昇圧して水分を凝縮させ、ドレンポット7で効率的に水を除去することで、脱水の効果を向上させることが可能となる。   As described above, in the present embodiment, the adjusting means 8 (upstream orifice 81) is provided on the downstream side of the drain pot 7, and the drain pot 7 is pressurized to a pressure higher than that of the adsorption cylinders 3 and 4 during operation to condense moisture. By removing water efficiently with the drain pot 7, the effect of dehydration can be improved.

その結果、劣化するN2吸着剤31、41の量が低減すると共に、吸湿剤32、42により除去すべき水分が減少するので、N2吸着剤31、41・吸湿剤32、42の量を少なくすることが可能となり、酸素濃縮器1のサイズをよりコンパクトにできる。 As a result, the amount of N 2 adsorbents 31 and 41 that deteriorates decreases and the moisture to be removed by the hygroscopic agents 32 and 42 decreases. Therefore, the amount of the N 2 adsorbents 31 and 41 and the hygroscopic agents 32 and 42 is reduced. It becomes possible to reduce, and the size of the oxygen concentrator 1 can be made more compact.

次に、ドレンポット7の圧力と吸着筒3、4の吸湿剤量との関係を説明する。   Next, the relationship between the pressure in the drain pot 7 and the amount of moisture absorbent in the adsorption cylinders 3 and 4 will be described.

2吸着剤31、41の劣化を防止するためには、N2吸着剤31、41の手前で空気中の水分量をゼロにまで除湿する必要がある。 In order to prevent degradation of N 2 adsorbents 31 and 41, it is necessary to dehumidify the moisture content in the air to zero before the N 2 adsorbents 31 and 41.

本実施形態では、上述したように、ドレンポット7と吸湿剤32、42とにより水分の除去を行う。具体的には、ドレンポット7により、飽和蒸気量以上の水分を回収し、回収しきれない水分(水蒸気)を吸湿剤32、42で回収する。   In the present embodiment, as described above, moisture is removed by the drain pot 7 and the hygroscopic agents 32 and 42. Specifically, the drain pot 7 collects moisture equal to or greater than the saturated vapor amount, and moisture (water vapor) that cannot be collected is collected by the moisture absorbents 32 and 42.

このことから、ドレンポット7の運転圧力(ドレンポット内圧)を決めることで、必要な吸湿剤32、42の量が決定可能となる。   From this, by determining the operating pressure (drain pot internal pressure) of the drain pot 7, it becomes possible to determine the necessary amounts of the hygroscopic agents 32 and 42.

図2に基づき、ドレンポット内圧と吸湿剤32、42の量の一例を説明する。   An example of the drain pot internal pressure and the amounts of the hygroscopic agents 32 and 42 will be described with reference to FIG.

図2は、25℃および40℃の空気が流入する場合の飽和水蒸気量を、圧力(絶対圧)ごとに示したものである。   FIG. 2 shows the amount of saturated water vapor for each pressure (absolute pressure) when air at 25 ° C. and 40 ° C. flows in.

図2に示すように、ドレンポット7内の運転圧力が150kPaのとき、ドレンポット7内で17.2mg/Lまで圧縮空気を除湿可能である。このときの余剰水分を除去するために必要な吸湿剤32、42を、例えば、必要吸湿剤量100gと定義する。   As shown in FIG. 2, when the operating pressure in the drain pot 7 is 150 kPa, the compressed air can be dehumidified to 17.2 mg / L in the drain pot 7. The hygroscopic agents 32 and 42 necessary for removing excess water at this time are defined as, for example, the necessary hygroscopic agent amount 100 g.

ドレンポット7内の運転圧力が200kPaのとき、ドレンポット7内で12.8mg/Lまで圧縮空気を除湿可能である。この200kPaのときは、吸湿剤32、42は、必要吸湿剤量75gまで減量が可能となる。   When the operating pressure in the drain pot 7 is 200 kPa, the compressed air can be dehumidified in the drain pot 7 to 12.8 mg / L. At 200 kPa, the hygroscopic agents 32 and 42 can be reduced to the required hygroscopic agent amount of 75 g.

ドレンポット7内の運転圧力が300kPaのとき、ドレンポット7内で6.5mg/Lまで圧縮空気を除湿可能である。この300kPaのときは、吸湿剤32、42は、必要吸湿剤量50gまで減量が可能となる。   When the operating pressure in the drain pot 7 is 300 kPa, the compressed air can be dehumidified to 6.5 mg / L in the drain pot 7. At 300 kPa, the hygroscopic agents 32 and 42 can be reduced to the required hygroscopic agent amount of 50 g.

このように、本実施形態では、ドレンポット内圧に応じて吸湿剤32、42の量を決定することで、吸湿剤32、42の量を最小限に抑えることができ、これによっても酸素濃縮器1のコンパクト化を図ることができる。   As described above, in this embodiment, the amount of the moisture absorbents 32 and 42 can be minimized by determining the amount of the moisture absorbents 32 and 42 according to the drain pot internal pressure. 1 can be made compact.

つまり、水分は、N2吸着剤31、41に吸着しやすく脱着しにくいため、吸湿剤32、42を用いて完全に除湿を行うことが望ましい。しかし、吸湿剤32、42だけでN2吸着剤31、41に流入する全ての水分を除去しようとすると、大量の吸湿剤32、42が必要となってしまう。 That is, since moisture is easily adsorbed by the N 2 adsorbents 31 and 41 and is not easily desorbed, it is desirable to completely dehumidify using the moisture absorbents 32 and 42. However, if all the moisture flowing into the N 2 adsorbents 31 and 41 is to be removed using only the hygroscopic agents 32 and 42, a large amount of the hygroscopic agents 32 and 42 are required.

そこで、本実施形態では、ドレンポット7内の圧力を高圧にして運転を行うことで、吸湿剤32、42に入る前に空気中の水分除去を行うことが可能となり、必要となる吸湿剤32、42の量を減量化し、決定することができる。   Therefore, in the present embodiment, by operating the drain pot 7 at a high pressure, it is possible to remove moisture in the air before entering the hygroscopic agents 32 and 42, and the necessary hygroscopic agent 32 is obtained. , 42 can be reduced and determined.

次に、図3に基づき他の実施形態を説明する。   Next, another embodiment will be described based on FIG.

本実施形態は、上述の図1の実施形態とは、調整手段の構成が異なり、その他は実質的に同じである。したがって、上述の実施形態と同一の要素については、図中同一符号を付すに止め、詳細な説明は省略する。   This embodiment is substantially the same as the above-described embodiment of FIG. 1 except for the configuration of the adjusting means. Accordingly, the same elements as those in the above-described embodiment are given the same reference numerals in the drawings, and detailed description thereof is omitted.

本実施形態の酸素濃縮器91では、吸着筒3、4の下流側に設けた昇圧機構(図例では、下流側オリフィス82、82)を用いて酸素濃縮器91(PSA装置)の運転圧力自体を上げることで凝縮水分量を増加させ、ドレンポット7で脱水を行う。   In the oxygen concentrator 91 of the present embodiment, the operating pressure itself of the oxygen concentrator 91 (PSA device) using a pressure increasing mechanism (in the illustrated example, the downstream orifices 82 and 82) provided on the downstream side of the adsorption cylinders 3 and 4. Is increased to increase the amount of condensed water, and dewatering is performed in the drain pot 7.

つまり、本実施形態の調整手段8は、各吸着筒3、4とO2バッファタンク5との間の酸素取出管15に各々設けられた下流側オリフィス82、82からなる。この下流側オリフィス82により、吸着工程中の吸着筒3(4)内およびドレンポット7内の圧力が高められる。 In other words, the adjusting means 8 of the present embodiment includes the downstream orifices 82 and 82 provided in the oxygen extraction pipe 15 between the adsorption cylinders 3 and 4 and the O 2 buffer tank 5. This downstream orifice 82 increases the pressure in the adsorption cylinder 3 (4) and the drain pot 7 during the adsorption process.

例えば、下流側オリフィス82、82の径が、図1の下流側オリフィス16よりも小径に形成されると共に、コンプレッサ2の吐出圧が高めらて、ドレンポット7が、図1の実施形態とほぼ同じ圧力に保持される。   For example, the diameter of the downstream orifices 82 and 82 is smaller than that of the downstream orifice 16 of FIG. 1 and the discharge pressure of the compressor 2 is increased, so that the drain pot 7 is substantially the same as that of the embodiment of FIG. Held at the same pressure.

本実施形態でも、図1の実施形態と同様の効果が得られる。   Also in this embodiment, the same effect as the embodiment of FIG. 1 can be obtained.

なお、本発明は、上述の実施形態に限定されず、様々な変形例や応用例が考えられるものである。   In addition, this invention is not limited to the above-mentioned embodiment, Various modifications and application examples can be considered.

例えば、上述の実施形態では、調整手段としてオリフィスを用いたが、これに限定されず、例えば、レギュレータを用いるようにしてもよい。レギュレータを用いる場合、コンプレッサ2に吸入される空気の湿度を検出する手段を設け、その手段により検出された湿度が高いほど、レギュレータの設定圧力を高く(絞りを小さく)することが考えられる。   For example, in the above-described embodiment, the orifice is used as the adjusting unit. However, the present invention is not limited to this. For example, a regulator may be used. In the case of using a regulator, a means for detecting the humidity of the air sucked into the compressor 2 is provided, and the higher the humidity detected by the means, the higher the set pressure of the regulator (smaller the throttle) can be considered.

また、ドレンポット7の除湿能力をより高めるために、ドレンポット7に冷却手段を設けることが考えられる。つまり、コンプレッサ2の吐出圧力が上がりコンプレッサ2が発熱して圧縮空気の温度が上昇すると、飽和水蒸気量が増加する問題があるため、ドレンポット7を冷却し、温度を一定にすることが考えられる。また、運転温度をさらに低く制御することで、さらに除湿を行うことが可能となる。冷却手段として、放熱フィンや、空冷ファン、ヒートパイプなどの手段が考えられる。   In order to further increase the dehumidifying capacity of the drain pot 7, it is conceivable to provide a cooling means for the drain pot 7. That is, when the discharge pressure of the compressor 2 rises and the compressor 2 generates heat and the temperature of the compressed air rises, there is a problem that the saturated water vapor amount increases. Therefore, it is possible to cool the drain pot 7 and make the temperature constant. . Further, it is possible to further dehumidify by controlling the operating temperature to be lower. As cooling means, means such as a heat radiating fin, an air cooling fan, and a heat pipe are conceivable.

図1は、本発明に係る一実施形態による酸素濃縮器の概略構成図である。FIG. 1 is a schematic configuration diagram of an oxygen concentrator according to an embodiment of the present invention. 図2は、ドレンポット内の圧力と吸湿剤の量との関係を説明するための図である。FIG. 2 is a diagram for explaining the relationship between the pressure in the drain pot and the amount of the hygroscopic agent. 図3は、他の実施形態による酸素濃縮器の概略構成図である。FIG. 3 is a schematic configuration diagram of an oxygen concentrator according to another embodiment.

符号の説明Explanation of symbols

1 酸素濃縮器
2 コンプレッサ
3、4 吸着筒
6 切替手段
7 ドレンポット
8 調整手段
31、41 吸着剤
61、62 三方切替弁
81 上流側オリフィス
DESCRIPTION OF SYMBOLS 1 Oxygen concentrator 2 Compressor 3, 4 Adsorption cylinder 6 Switching means 7 Drain pot 8 Adjustment means 31, 41 Adsorbent 61, 62 Three-way switching valve 81 Upstream orifice

Claims (5)

窒素を選択的に吸着する吸着剤が充填された少なくとも二つの吸着筒と、該吸着筒に供給される空気を圧縮するためのコンプレッサと、そのコンプレッサと上記吸着筒との間に接続され上記コンプレッサの圧縮空気をいずれかの吸着筒に供給する切替手段とを備えた酸素濃縮器において、
上記コンプレッサと上記切替手段との間にドレンポットを接続し、上記コンプレッサで圧縮された上記圧縮空気中の水分を上記ドレンポットで除去すべく、上記ドレンポット内の圧力を調整する調整手段を設けたことを特徴とする酸素濃縮器。
At least two adsorption cylinders filled with an adsorbent that selectively adsorbs nitrogen, a compressor for compressing air supplied to the adsorption cylinder, and the compressor connected between the compressor and the adsorption cylinder In an oxygen concentrator provided with switching means for supplying the compressed air of
A drain pot is connected between the compressor and the switching means, and an adjusting means for adjusting the pressure in the drain pot is provided to remove moisture in the compressed air compressed by the compressor with the drain pot. An oxygen concentrator characterized by that.
上記調整手段は、上記ドレンポットと上記吸着筒との間に設けられたオリフィスまたはレギュレータからなる請求項1記載の酸素濃縮器。   The oxygen concentrator according to claim 1, wherein the adjusting means comprises an orifice or a regulator provided between the drain pot and the adsorption cylinder. 上記調整手段は、上記吸着筒と該吸着筒で濃縮された高濃度酸素を貯留するための貯留手段との間に設けられたオリフィスまたはレギュレータからなる請求項1記載の酸素濃縮器。   2. The oxygen concentrator according to claim 1, wherein the adjusting means comprises an orifice or a regulator provided between the adsorption cylinder and a storage means for storing high-concentration oxygen concentrated in the adsorption cylinder. 上記吸着筒内に、吸湿剤が充填されると共に、その吸湿剤が上記吸着剤よりもコンプレッサ側に配置された請求項1から3いずれかに記載の酸素濃縮器。   The oxygen concentrator according to any one of claims 1 to 3, wherein the adsorption cylinder is filled with a hygroscopic agent, and the hygroscopic agent is disposed closer to the compressor than the adsorbent. 上記ドレンポットに、該ドレンポット内の圧縮空気を冷却して水分を凝縮させるための冷却手段が設けられた請求項1から4いずれかに記載の酸素濃縮器。   The oxygen concentrator according to any one of claims 1 to 4, wherein the drain pot is provided with cooling means for cooling the compressed air in the drain pot to condense moisture.
JP2007130602A 2007-05-16 2007-05-16 Oxygen concentrator Active JP5380787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007130602A JP5380787B2 (en) 2007-05-16 2007-05-16 Oxygen concentrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007130602A JP5380787B2 (en) 2007-05-16 2007-05-16 Oxygen concentrator

Publications (2)

Publication Number Publication Date
JP2008284442A true JP2008284442A (en) 2008-11-27
JP5380787B2 JP5380787B2 (en) 2014-01-08

Family

ID=40144674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007130602A Active JP5380787B2 (en) 2007-05-16 2007-05-16 Oxygen concentrator

Country Status (1)

Country Link
JP (1) JP5380787B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010196149A (en) * 2009-02-27 2010-09-09 Honda Motor Co Ltd Water electrolysis system
JP2011078859A (en) * 2009-10-02 2011-04-21 Nippon Steel Engineering Co Ltd Operation method of pressure swing type gas generator
JP2012067879A (en) * 2010-09-24 2012-04-05 Honda Motor Co Ltd Operating method of high pressure water electrolysis system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57105220A (en) * 1980-12-24 1982-06-30 Hitachi Ltd Oxygen-concentrating method
JPH02187126A (en) * 1989-01-13 1990-07-23 Sumitomo Heavy Ind Ltd Dehumidifying process for raw material gas in pressure varying adsorption process and its device
JP2001198428A (en) * 2000-01-18 2001-07-24 Advan Riken:Kk Exhaust sound silencer/water drain evaporator of oxygen/nitrogen concentrator
JP2006258302A (en) * 2005-03-15 2006-09-28 Taiyo Nippon Sanso Corp Purification method for raw material air in air liquefaction separation device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57105220A (en) * 1980-12-24 1982-06-30 Hitachi Ltd Oxygen-concentrating method
JPH02187126A (en) * 1989-01-13 1990-07-23 Sumitomo Heavy Ind Ltd Dehumidifying process for raw material gas in pressure varying adsorption process and its device
JP2001198428A (en) * 2000-01-18 2001-07-24 Advan Riken:Kk Exhaust sound silencer/water drain evaporator of oxygen/nitrogen concentrator
JP2006258302A (en) * 2005-03-15 2006-09-28 Taiyo Nippon Sanso Corp Purification method for raw material air in air liquefaction separation device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010196149A (en) * 2009-02-27 2010-09-09 Honda Motor Co Ltd Water electrolysis system
JP2011078859A (en) * 2009-10-02 2011-04-21 Nippon Steel Engineering Co Ltd Operation method of pressure swing type gas generator
JP2012067879A (en) * 2010-09-24 2012-04-05 Honda Motor Co Ltd Operating method of high pressure water electrolysis system

Also Published As

Publication number Publication date
JP5380787B2 (en) 2014-01-08

Similar Documents

Publication Publication Date Title
JP6575050B2 (en) Carbon dioxide recovery method and recovery apparatus
JPH04298216A (en) Adsorption method for removing oil vapor from steam-contained feed gas
KR101647017B1 (en) Oxygen concentrating method and apparatus having condensate water removing function
JP5380787B2 (en) Oxygen concentrator
CN216136959U (en) Device for adsorbing gas from gas mixture to be treated
JP2671436B2 (en) Method for producing medical oxygen-enriched air
JP4867786B2 (en) Low dew point compressed air production equipment
JP2009018970A (en) Oxygen concentrator
JP5922784B2 (en) Oxygen concentrator
JP4798076B2 (en) Oxygen concentrator
KR20180042222A (en) Method and apparatus for compressing and drying a gas
KR100467424B1 (en) absoption type air dryer system
JP5007610B2 (en) Oxygen concentrator design method
JP2014014797A (en) Purging method by gas separating device and gas separating device
KR101819665B1 (en) Nitrous oxide gas dryer
JPH10194708A (en) Oxygen enricher
KR100467425B1 (en) absoption type air dryer system
JP2015167897A (en) Dehumidifying apparatus
JP2013111491A (en) Method of removing co2 of compressed gas and co2 removal apparatus
JP2009273623A (en) Oxygen enricher
JP2020171875A (en) Gas concentration device and gas concentration method
JPH11347336A (en) Small-size gas separation device
JPH04275903A (en) Equipment for enriching oxygen
KR200291009Y1 (en) absoption type air dryer system
JP2007209900A (en) Apparatus and method for concentrating and separating component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130916

R151 Written notification of patent or utility model registration

Ref document number: 5380787

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250