JP2008282653A - Lateral stripe type cell for fuel cell and fuel cell - Google Patents

Lateral stripe type cell for fuel cell and fuel cell Download PDF

Info

Publication number
JP2008282653A
JP2008282653A JP2007125314A JP2007125314A JP2008282653A JP 2008282653 A JP2008282653 A JP 2008282653A JP 2007125314 A JP2007125314 A JP 2007125314A JP 2007125314 A JP2007125314 A JP 2007125314A JP 2008282653 A JP2008282653 A JP 2008282653A
Authority
JP
Japan
Prior art keywords
power generation
support substrate
fuel cell
generation element
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007125314A
Other languages
Japanese (ja)
Other versions
JP5192723B2 (en
Inventor
Masahito Nishihara
雅人 西原
Kenji Horiuchi
賢治 堀内
Takaaki Somekawa
貴亮 染川
Yoshio Matsuzaki
良雄 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Tokyo Gas Co Ltd
Original Assignee
Kyocera Corp
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp, Tokyo Gas Co Ltd filed Critical Kyocera Corp
Priority to JP2007125314A priority Critical patent/JP5192723B2/en
Publication of JP2008282653A publication Critical patent/JP2008282653A/en
Application granted granted Critical
Publication of JP5192723B2 publication Critical patent/JP5192723B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lateral stripe type cell for a fuel cell having high output and high reliability, reducing complicated steps by separating stacking portions of a power generation element and a current collector. <P>SOLUTION: Two or more power generation elements 13 each formed by stacking an inside electrode 13a, a solid electrolyte 13b, and an outside electrode 13c in order are arranged in parallel on the surface of an electrically insulating porous supporting substrate 11 having a gas passage on the inside, and the inside electrode of the power generation element 13 is electrically connected to the outside electrode 13c of other power generation element 13 adjoined to the power generation element 13 through a current collector 17 to form the lateral stripe type cell 1 for the fuel cell. The current collector 17 is installed on the side surface of the porous supporting substrate 11. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、横縞型燃料電池セル及び燃料電池に関するものである。   The present invention relates to a horizontal stripe fuel cell and a fuel cell.

近年、次世代エネルギーとして、燃料電池セルを複数接続してなるセルスタックを、収納容器に収容した燃料電池が種々提案されている。このような燃料電池セルとしては、固体高分子形燃料電池セル、リン酸形燃料電池セル、溶融炭酸塩形燃料電池セル、固体電解質形燃料電池セルなど、各種のものが知られている。とりわけ、固体電解質形燃料電池セルは発電効率が高く、また、作動温度が700℃〜1000℃と高いため、その排熱を利用できるなどの利点を有しており、研究開発が推し進められている。   In recent years, various types of fuel cells in which a cell stack formed by connecting a plurality of fuel cells is accommodated in a storage container have been proposed as next-generation energy. As such a fuel cell, various types such as a polymer electrolyte fuel cell, a phosphoric acid fuel cell, a molten carbonate fuel cell, and a solid electrolyte fuel cell are known. In particular, solid electrolyte fuel cells have advantages such as high power generation efficiency and high operating temperatures of 700 ° C. to 1000 ° C., so that the exhaust heat can be used, and research and development are being promoted. .

図11は、従来の固体電解質形燃料電池セルの一部を示す拡大縦断面図である。この固体電解質形燃料電池セルは、横縞型といわれるものであって、多孔質絶縁体である円筒状の支持体(以下絶縁支持体という)11の表面に、燃料極3a、固体電解質3b及び空気極3cが順次積層された多層構造の発電素子3を、図11に示す長手方向に所定間隔をおいて複数形成することにより構成されている。互いに隣接する発電素子3は、それぞれ素子間接続部材(インターコネクタ)4により電気的に直列に接続されている。すなわち、発電素子3の燃料極3aとこれに隣接する他の発電素子3の空気極3cとが、素子間接続部材4により接続されている。また、絶縁支持体11の内部にはガス流路12が形成されている。   FIG. 11 is an enlarged longitudinal sectional view showing a part of a conventional solid oxide fuel cell. This solid electrolyte fuel cell is called a horizontal stripe type. On the surface of a cylindrical support 11 (hereinafter referred to as an insulation support) 11 that is a porous insulator, a fuel electrode 3a, a solid electrolyte 3b, and air are provided. A plurality of power generating elements 3 having a multilayer structure in which poles 3c are sequentially stacked are formed at predetermined intervals in the longitudinal direction shown in FIG. The power generating elements 3 adjacent to each other are electrically connected in series by inter-element connection members (interconnectors) 4 respectively. That is, the fuel electrode 3 a of the power generation element 3 and the air electrode 3 c of another power generation element 3 adjacent thereto are connected by the inter-element connection member 4. A gas flow path 12 is formed inside the insulating support 11.

前記横縞型燃料電池セルにおいて、固体電解質3bの酸素イオン伝導性が600℃以上で高くなるため、このような温度で空気極3cに酸素を含むガスを流し、燃料極3aに水素を含むガスを流すことにより、空気極3cと燃料極3aとの酸素濃度差が高くなり、空気極3cと燃料極3aとの間で電位差が発生する。   In the horizontally-striped fuel cell, the oxygen ion conductivity of the solid electrolyte 3b increases at 600 ° C. or higher. Therefore, a gas containing oxygen flows through the air electrode 3c at such a temperature, and a gas containing hydrogen flows through the fuel electrode 3a. By flowing, the oxygen concentration difference between the air electrode 3c and the fuel electrode 3a is increased, and a potential difference is generated between the air electrode 3c and the fuel electrode 3a.

この電位差により、酸素イオンは、空気極3cから固体電解質3bを通じて燃料極3aへ移動する。移動した酸素イオンが、燃料極3aで水素と結合して水となり、同時に燃料極3aで電子が発生する。
すなわち、空気極3cでは、下記式(1)の電極反応を生じ、燃料極3aでは、下記式(2)の電極反応を生じる。
Due to this potential difference, oxygen ions move from the air electrode 3c to the fuel electrode 3a through the solid electrolyte 3b. The moved oxygen ions are combined with hydrogen at the fuel electrode 3a to become water, and at the same time, electrons are generated at the fuel electrode 3a.
That is, the electrode reaction of the following formula (1) occurs in the air electrode 3c, and the electrode reaction of the following formula (2) occurs in the fuel electrode 3a.

Figure 2008282653
そして、燃料極3aと空気極3cとを電気的に接続することにより、燃料極3aから空気極3cへの電子の移動が起こり、両極間で起電力が生じる。
このように、固体電解質形燃料電池セルでは、酸素と水素を供給することにより、前記の反応を連続して起こし、起電力を生じさせて発電する(例えば、特許文献1参照)。
横縞型の燃料電池セルでは、以上の反応を起こす発電素子3が、絶縁支持体11表面に、長手方向に直列に複数接続されているために、少ないセル数で高い電圧が得られるという利点がある。
Figure 2008282653
Then, by electrically connecting the fuel electrode 3a and the air electrode 3c, electrons move from the fuel electrode 3a to the air electrode 3c, and an electromotive force is generated between both electrodes.
Thus, in the solid oxide fuel cell, by supplying oxygen and hydrogen, the above reaction is continuously caused to generate an electromotive force to generate electric power (see, for example, Patent Document 1).
The horizontal stripe fuel cell has the advantage that a high voltage can be obtained with a small number of cells because a plurality of power generating elements 3 that cause the above reaction are connected to the surface of the insulating support 11 in series in the longitudinal direction. is there.

絶縁支持体11の両面に発電素子3が形成された横縞型の中空平板状の固体電解質形燃料電池セルでは、絶縁支持体11の表裏面の各発電素子3を、直列に接続する場合は、図10に示すように、絶縁支持体表面の先端の発電素子(図示せず)と、絶縁支持体裏面の先端の発電素子(図示せず)との接続には、セルの外部を周回する金属バンドBを用いた方法が知られている(例えば、特許文献2参照)。なお、符号8は、隣設する燃料電池セルの発電素子を接続するセル間接続部材である。
特開平10−003932号公報 特開2006−019059号公報
In the horizontally striped hollow flat solid electrolyte fuel cell in which the power generation elements 3 are formed on both surfaces of the insulating support 11, when the power generation elements 3 on the front and back surfaces of the insulating support 11 are connected in series, As shown in FIG. 10, the metal that circulates outside the cell is connected to the power generating element (not shown) at the front end of the insulating support and the power generating element (not shown) at the front end of the insulating support. A method using band B is known (see, for example, Patent Document 2). Reference numeral 8 denotes an inter-cell connecting member that connects power generating elements of adjacent fuel cells.
JP 10-003932 A JP 2006-019059 A

しかしながら、複数の発電素子で構成する燃料電池セル、また複数の燃料電池セルで構成するユニットを小型化するためには、単一のセルの高出力化を図る必要がある。高出力化を図る一つの方法は、発電素子数の密度(セル単位長さ当りの発電素子数)を増加することである。
しかし、従来のセルは、絶縁支持体11の表面に燃料極、電解質及び空気極等で構成される発電素子と集電体が交互に絶縁支持体11の長手方向に並設されていることから、発電素子数の密度を増加するのが困難であった。さらに、図11に示すように、発電素子3とインターコネクタ4とによって複雑な段差がセル表面に形成され、それがガスリークの原因となり、信頼性が低くなるという問題があった。
本発明の課題は、発電素子数の密度を増加させ、かつ発電素子と集電体とにより形成される複雑な段差を低減し、高出力で信頼性の高い横縞型燃料電池セルを提供することにある。
However, in order to reduce the size of a fuel cell composed of a plurality of power generation elements and a unit composed of a plurality of fuel cells, it is necessary to increase the output of a single cell. One method for achieving higher output is to increase the density of the number of power generation elements (number of power generation elements per unit cell length).
However, in the conventional cell, a power generating element and a current collector composed of a fuel electrode, an electrolyte, an air electrode, and the like are alternately arranged on the surface of the insulating support 11 in the longitudinal direction of the insulating support 11. It was difficult to increase the density of the number of power generation elements. Further, as shown in FIG. 11, there is a problem that a complicated step is formed on the cell surface by the power generation element 3 and the interconnector 4, which causes a gas leak and decreases reliability.
An object of the present invention is to provide a horizontal stripe fuel cell having high output and high reliability by increasing the density of the number of power generation elements and reducing a complicated step formed by the power generation elements and the current collector. It is in.

本発明者は、上記課題を解決すべく鋭意研究を重ねた結果、発電素子を絶縁支持基板の表面に、集電体を前記絶縁支持基板の側面にそれぞれ形成することにより、前記発電素子と前記集電体をそれぞれ前記絶縁支持基板の表面及び側面に電気極性が同極である積層部材として積層できる。それにより、前記絶縁支持基板の表面での発電素子を増やすことができるので、高出力化を実現できると共に、前記絶縁支持基板の表面での段差が複数生じないので、ガスリークの発生も大きく軽減できる。更に、前記絶縁支持基板の表面での隣接する発電素子同士は同極なため、隣接する発電素子間の絶縁部の幅が狭くても電気ショートの危険性が無くなることを見出して、本発明を完成させるに至った。   As a result of intensive studies to solve the above problems, the present inventor formed the power generating element on the surface of the insulating support substrate and the current collector on the side surface of the insulating support substrate, respectively. The current collector can be laminated as a laminated member having the same polarity on the surface and side surfaces of the insulating support substrate. As a result, the number of power generating elements on the surface of the insulating support substrate can be increased, so that high output can be realized and a plurality of steps on the surface of the insulating support substrate do not occur, so that the occurrence of gas leak can be greatly reduced. . Further, since the adjacent power generating elements on the surface of the insulating support substrate are of the same polarity, the present inventors have found that there is no risk of an electrical short even if the width of the insulating portion between adjacent power generating elements is narrow. It came to complete.

即ち、本発明における横縞型燃料電池セル及びそれを用いた燃料電池は、以下の構成を有する。
(1)ガス流路を内部に備えた電気絶縁性の多孔質支持基板の表面に、内側電極、固体電解質及び外側電極が順次積層された発電素子を複数並設し、前記発電素子の内側電極と、該発電素子に隣接する他の発電素子の外側電極とが集電体を介して電気的に接続されている横縞型燃料電池セルであって、前記集電体が前記多孔質支持基板の側面に形成されていることを特徴とする横縞型燃料電池セル。
(2)前記発電素子が前記多孔質支持基板の表裏面にそれぞれ複数並設されており、前記多孔質支持基板の両側面に前記集電体がそれぞれ形成されていることを特徴とする(1)に記載の横縞型燃料電池セル。
(3)前記発電素子の内側電極が該発電素子を設けた部位の前記多孔質支持基板の側面まで延設され、延設された該内側電極の延設部の表面に前記集電体が形成され、該集電体と前記発電素子に隣接する他の発電素子の外側電極とが電気的に接続されていることを特徴とする(1)又は(2)に記載の横縞型燃料電池セル。
(4)前記発電素子の内側電極が、隣接する前記他の発電素子を設けた部位の前記多孔質支持基板の側面まで延設され、延設された該内側電極の延設部の表面に前記集電体が形成され、該集電体と、前記他の発電素子の外側電極とが電気的に接続されていることを特徴とする(1)又は(2)に記載の横縞型燃料電池セル。
(5)前記集電体の表面と、前記他の発電素子の外側電極の表面とが素子間接続部材を介して接続されていることを特徴とする(2)〜(4)のいずれかに記載の横縞型燃料電池セル。
(6)(1)〜(5)のいずれかに記載の横縞型燃料電池セルを、収納容器内に複数収納してなることを特徴とする燃料電池。
That is, the horizontal stripe fuel cell according to the present invention and the fuel cell using the same have the following configuration.
(1) A plurality of power generation elements in which an inner electrode, a solid electrolyte, and an outer electrode are sequentially stacked are arranged in parallel on the surface of an electrically insulating porous support substrate having a gas flow path therein, and the inner electrode of the power generation element And a laterally striped fuel cell in which the outer electrode of another power generation element adjacent to the power generation element is electrically connected via a current collector, the current collector of the porous support substrate A horizontally-striped fuel cell characterized by being formed on a side surface.
(2) A plurality of the power generation elements are arranged in parallel on the front and back surfaces of the porous support substrate, respectively, and the current collectors are formed on both side surfaces of the porous support substrate, respectively (1) ) Horizontal stripe fuel cell.
(3) The inner electrode of the power generation element is extended to the side surface of the porous support substrate at the site where the power generation element is provided, and the current collector is formed on the surface of the extended portion of the extended inner electrode. The horizontal stripe fuel cell according to (1) or (2), wherein the current collector and an outer electrode of another power generation element adjacent to the power generation element are electrically connected.
(4) The inner electrode of the power generation element is extended to the side surface of the porous support substrate at a portion where the other power generation element adjacent to the power generation element is provided. A horizontal stripe fuel cell according to (1) or (2), wherein a current collector is formed, and the current collector is electrically connected to an outer electrode of the other power generating element. .
(5) In any one of (2) to (4), the surface of the current collector and the surface of the outer electrode of the other power generation element are connected via an inter-element connection member. The horizontal stripe fuel cell as described.
(6) A fuel cell comprising a plurality of horizontally-striped fuel cells according to any one of (1) to (5) stored in a storage container.

本発明の横縞型燃料電池セルは、従来、絶縁支持基板の表面に発電素子と交互に並設されていた集電体を、絶縁支持基板の側面に設けるようにしたので、従来と同じセル面積であってもより多くの発電素子を配設することができる。そのためセルを高出力化(同じ出力ならセルを小型化)することが可能となる。また、絶縁支持基板の同じ表面及び側面にそれぞれ同極の部材が配置されるので、隣接する発電素子間の絶縁部の幅が狭くても電気ショートを起こす危険が無いという効果を有する。更に、絶縁支持基板の同じ表面には同極の発電素子しか積層されないので、従来のように逆の極の集電体の並設により生じる複雑な段差が発生しない。これにより、段差部からのガスリーク不良を軽減することができる。以上のことから、高出力で信頼性の高い横縞型燃料電池セルを提供できる。
本発明の燃料電池によれば、高出力化した横縞型燃料電池セルを複数用いることにより、容量の小型化が可能となり、少数の横縞型燃料電池セルで高い発電量を得ることができる。
In the horizontal stripe fuel cell of the present invention, the current collector, which has been arranged alternately in parallel with the power generation element on the surface of the insulating support substrate, is provided on the side surface of the insulating support substrate. Even so, more power generating elements can be provided. Therefore, it becomes possible to increase the output of the cell (the cell can be made smaller if the output is the same). In addition, since members having the same polarity are disposed on the same surface and side surfaces of the insulating support substrate, there is no risk of causing an electrical short even if the width of the insulating portion between adjacent power generation elements is narrow. In addition, since only power generating elements having the same polarity are stacked on the same surface of the insulating support substrate, a complicated step caused by the parallel arrangement of current collectors of opposite poles as in the prior art does not occur. Thereby, the gas leak defect from a level | step-difference part can be reduced. From the above, it is possible to provide a horizontal stripe fuel cell having high output and high reliability.
According to the fuel cell of the present invention, it is possible to reduce the capacity by using a plurality of horizontally striped fuel cells with high output, and a high power generation amount can be obtained with a small number of horizontally striped fuel cells.

以下、本発明の横縞型燃料電池セルの一実施形態について、添付図面を参照しながら詳細に説明する。
図1は、本発明の横縞型燃料電池セルの構造を示す一部破断斜視図であり、図2は図1の平面図である。この燃料電池セル1は、多孔質支持体(以下、多孔質支持基板11という)がガス流路12を内部に備え、この多孔質支持基板11の表裏面に発電素子13が形成され、両側面に集電体17が形成されてなる。即ち、中空平板状である電気絶縁性の多孔質支持基板11の表裏面のそれぞれに、集電燃料極層23、活性燃料極層13a、固体電解質層13b及び空気極層13cが順次積層されてなる発電素子13が配置され、該発電素子13とともに同一素子部を構成する集電体17が多孔質支持基板11の両側面(幅方向両端部)のそれぞれに前記活性燃料極層13aと隣接して配置されている。このとき同一素子部を構成する前記集電燃料極層23が多孔質支持基板11の幅方向に隣接する側面まで延設され、延設された該集電燃料極層23の延設部23’の表面に前記集電体17が形成されている。
そして、前記集電体17を含む前記素子部を前記多孔質支持基板11の長手方向に所定間隔を置いて複数個配置し、それらを素子間接続部材18を介して直列に接続し、横縞型燃料電池セル1を構成した。
なお、前記素子部は前記発電素子13と前記集電体17からなり、多孔質支持基板11の表面に配置された前記発電素子13と該発電素子13の幅方向側の前記多孔質支持基板11の側面に配置された集電体17とを同一素子部という。なお、本願でいう表面とは、対向する位置に設けられた、側面よりも面積の広い主面を意味し、表面および裏面を含んで用いる場合がある。
Hereinafter, an embodiment of a horizontal stripe fuel cell according to the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a partially broken perspective view showing the structure of a horizontal stripe fuel cell according to the present invention, and FIG. 2 is a plan view of FIG. In the fuel cell 1, a porous support (hereinafter referred to as a porous support substrate 11) includes a gas flow path 12 inside, and power generation elements 13 are formed on the front and back surfaces of the porous support substrate 11, and both side surfaces are provided. And a current collector 17 is formed. That is, the current collecting fuel electrode layer 23, the active fuel electrode layer 13a, the solid electrolyte layer 13b, and the air electrode layer 13c are sequentially laminated on the front and back surfaces of the electrically insulating porous support substrate 11 having a hollow flat plate shape. The current generating element 13 is arranged, and the current collector 17 constituting the same element portion together with the power generating element 13 is adjacent to the active fuel electrode layer 13a on each of both side surfaces (both ends in the width direction) of the porous support substrate 11. Are arranged. At this time, the current collecting fuel electrode layer 23 constituting the same element portion extends to the side surface adjacent to the width direction of the porous support substrate 11, and the extended portion 23 ′ of the current collecting fuel electrode layer 23 extended. The current collector 17 is formed on the surface.
A plurality of the element portions including the current collector 17 are arranged at predetermined intervals in the longitudinal direction of the porous support substrate 11, and they are connected in series via the inter-element connection member 18, thereby forming a horizontal stripe type. A fuel cell 1 was constructed.
The element portion includes the power generation element 13 and the current collector 17, and the power generation element 13 disposed on the surface of the porous support substrate 11 and the porous support substrate 11 on the width direction side of the power generation element 13. The current collectors 17 arranged on the side surfaces of the same are called the same element portion. In addition, the surface as used in this application means the main surface with a larger area than the side surface provided in the position which opposes, and may be used including a surface and a back surface.

本発明では、上記したように、従来、多孔質支持基板11の表面において長手方向に発電素子13に隣接して配置されていた集電体17を、多孔質支持基板11の側面に配置し、多孔質支持基板11の表面と側面の両面を素子部の配置に活用した。これにより、多孔質支持基板11の長手方向に素子部をより多く配設することができるので、単位面積当たりの発電量を増加でき、高出力化あるいは小型化が可能となる。また、多孔質支持基板11の表面及び側面のそれぞれには同極の部材のみが隣接して複数個配置されることになるので、隣接する素子部間の絶縁部の幅が狭くても電気ショートを起こす危険性が無くなる。   In the present invention, as described above, the current collector 17 that has been conventionally disposed adjacent to the power generation element 13 in the longitudinal direction on the surface of the porous support substrate 11 is disposed on the side surface of the porous support substrate 11, Both the surface and the side surface of the porous support substrate 11 were utilized for the arrangement of the element portion. Thereby, since more element parts can be arranged in the longitudinal direction of the porous support substrate 11, the amount of power generation per unit area can be increased, and high output or miniaturization can be achieved. In addition, since only a plurality of members of the same polarity are disposed adjacent to each other on the surface and side surfaces of the porous support substrate 11, even if the width of the insulating portion between adjacent element portions is narrow, an electrical short The risk of causing

また、従来、多孔質支持基板11の表面において長手方向に発電素子13と集電体17とを交互に並設したことにより素子部に複雑な段差が生じ、この段差の影響でガスリークが発生していた。しかし、前記集電体17を、多孔質支持基板11の側面に配置したことにより、素子部は一定段差となり(図3を参照)、ガスリーク不良を軽減することができる。   Conventionally, the power generation element 13 and the current collector 17 are alternately arranged in the longitudinal direction on the surface of the porous support substrate 11, so that a complicated step is generated in the element portion, and gas leakage occurs due to the influence of the step. It was. However, by arranging the current collector 17 on the side surface of the porous support substrate 11, the element portion has a certain level difference (see FIG. 3), and gas leak defects can be reduced.

前記固体電解質13bは、隣接する素子部間を電気的に遮断する絶縁層の機能、及びガス流路12からのガス漏出を防止する機能を併せ持たすため、前記多孔質支持基板11の表面及び側面の露出した部分を覆うように形成されている。一方、従来、固体電解質13bを多孔質支持基板11の全表面に積層させることから、曲率を成す多孔質支持基板11の幅方向両端部で固体電解質13bが剥離しやすいという問題があったが、本発明では多孔質支持基板11の側面を平坦とすることができるので、固体電解質13bの剥離を抑制することができる。   The solid electrolyte 13b has both the function of an insulating layer for electrically blocking between adjacent element portions and the function of preventing gas leakage from the gas flow path 12, so that the surface and side surfaces of the porous support substrate 11 are It is formed so as to cover the exposed part. On the other hand, since the solid electrolyte 13b is conventionally laminated on the entire surface of the porous support substrate 11, there is a problem that the solid electrolyte 13b is easily peeled off at both ends in the width direction of the porous support substrate 11 having a curvature. In the present invention, since the side surface of the porous support substrate 11 can be made flat, it is possible to suppress the separation of the solid electrolyte 13b.

本実施形態では、図2に示すように、隣接する素子部間を接続するための素子間接続部材18は、前記素子部の空気極層13c表面と隣接する他の素子部の集電体17表面とを接続するように形成される。図中の矢印は電気(電子e-)の移動する方向を示す。即ち、発電素子13で発生した電子は活性燃料極13aから多孔質支持基板11の側面まで延設された集電燃料極層23の延設部23’を介して前記側面に配置された集電体17に移動し、ついで該集電体17の表面に接続された素子間接続部材18を介して、隣接する他の発電素子13の空気極13cに送られる。これにより、発電素子13同士が直列に電気的に接続された構造となっている。 In the present embodiment, as shown in FIG. 2, the inter-element connection member 18 for connecting adjacent element parts is a current collector 17 of another element part adjacent to the surface of the air electrode layer 13c of the element part. It is formed so as to connect with the surface. The arrow in the figure indicates the direction of movement of electricity (electron e ). That is, the electrons generated in the power generation element 13 are collected on the side surface through the extending portion 23 ′ of the current collecting fuel electrode layer 23 extending from the active fuel electrode 13 a to the side surface of the porous support substrate 11. It moves to the body 17 and is then sent to the air electrode 13 c of another adjacent power generation element 13 via the inter-element connection member 18 connected to the surface of the current collector 17. As a result, the power generating elements 13 are electrically connected in series.

多孔質支持基板11は多孔質であり、さらにその内部には、内径の小さな複数の燃料ガス流路12が、隔壁51(図1参照)で隔てられて長手方向に延びるようにして貫通して設けられている。前記ガス流路12の数は、発電性能及び構造強度の点から、例えば2〜20個が好ましく、6〜15個であるのがより好ましい。このように、多孔質支持基板11の内部にガス流路12を複数形成することにより、多孔質支持基板11の内部に大きなガス流路を1本形成する場合に比べて、多孔質支持基板11を扁平板状とすることができ、燃料電池セル1の体積当たりの発電素子13の面積を増加し発電量を大きくすることができる。よって、必要とする発電量を得るためのセル本数を減らすことができる。また、セル間の接続箇所数を減少させることもできる。   The porous support substrate 11 is porous, and a plurality of fuel gas passages 12 with small inner diameters are separated by partition walls 51 (see FIG. 1) and extend in the longitudinal direction. Is provided. The number of the gas flow paths 12 is preferably 2 to 20, for example, and more preferably 6 to 15 in terms of power generation performance and structural strength. In this way, by forming a plurality of gas flow paths 12 inside the porous support substrate 11, the porous support substrate 11 can be compared with the case where one large gas flow path is formed inside the porous support substrate 11. Can be made into a flat plate shape, and the area of the power generation element 13 per volume of the fuel cell 1 can be increased to increase the amount of power generation. Therefore, the number of cells for obtaining the required power generation amount can be reduced. In addition, the number of connection points between cells can be reduced.

このガス流路12内に燃料ガス(水素ガス)を流し、かつ空気極層13cを空気等の酸素含有ガスに曝すことにより、活性燃料極層13a及び空気極層13c間で前述した式(1)、(2)に示す電極反応が生じ、両極間に電位差が発生し、発電するようになっている。   By flowing a fuel gas (hydrogen gas) through the gas flow path 12 and exposing the air electrode layer 13c to an oxygen-containing gas such as air, the above-described equation (1) is obtained between the active fuel electrode layer 13a and the air electrode layer 13c. ), Electrode reaction shown in (2) occurs, a potential difference is generated between the two electrodes, and power is generated.

前記燃料電池セル1が複数集合して、図3に示すようなセルスタックを組み立てる。このセルスタックの両端に、セルスタックで発生した電力を燃料電池外に取り出すための導電部材(図示せず)を取り付けて、収納容器内に収容して、燃料電池を作製することができる。この収納容器に空気等の酸素含有ガスを導入し、水素等の燃料ガスを導入管を通して燃料ガスマニホールド50に導入する。燃料ガスを燃料ガスマニホールド50を通して燃料電池セル1のガス流路12内部に導入し、上方に導入して燃料電池セル1の先端Eから残余の燃料ガスが放出される。そして、燃料電池セル1を所定温度に加熱すれば、燃料電池セル1によって発電することができる。使用された燃料ガス、酸素含有ガスは、収納容器外に排出される。   A plurality of the fuel cells 1 are assembled to assemble a cell stack as shown in FIG. A conductive member (not shown) for taking out the electric power generated in the cell stack to the outside of the fuel cell is attached to both ends of the cell stack, and accommodated in a storage container to produce a fuel cell. An oxygen-containing gas such as air is introduced into the storage container, and a fuel gas such as hydrogen is introduced into the fuel gas manifold 50 through an introduction pipe. Fuel gas is introduced into the gas flow path 12 of the fuel cell 1 through the fuel gas manifold 50 and introduced upward, and the remaining fuel gas is discharged from the tip E of the fuel cell 1. If the fuel cell 1 is heated to a predetermined temperature, the fuel cell 1 can generate electric power. The used fuel gas and oxygen-containing gas are discharged out of the storage container.

図3に示すように、燃料電池セル1同士は、下端部に配置されたセル間接続部材19を介して互いに電気的に接続されている。
すなわち、セルスタックの下端部において、燃料電池セル1の下端部に素子間接続部材18が設けられ、該素子間接続部材18と接続された集電体17を介して隣接する他の素子部の集電燃料極層23と導通している。この素子間接続部材18は、セル間接続部材19を介して、他の燃料電池セル1の空気極層13cと素子間接続部材18を介して導通している。一方、セル先端部では、多孔質支持基板11の表面の集電燃料極層23と、対向する他の表面(裏面)の空気極層13cとが集電体17及び素子間接続部材18を介して接続されている。
このように、セルスタックは、前記した燃料電池セル1同士が、セル間接続部材19を介して互いに電気的に接続されているため、燃料電池セル1を密に配置することができ、発電量当たりのセルスタックの体積を小さくすることができる。そのため、小型で、熱効率の高いセルスタックを提供することができる。尚、本発明において、セル先端部とは、マニホールド50に接続される側と反対側の燃料電池セル1の端部をいい、言い換えれば、燃料ガスの下流側(放出側)の燃料電池セル1の端部をいう。
As shown in FIG. 3, the fuel cells 1 are electrically connected to each other via an inter-cell connecting member 19 disposed at the lower end.
That is, at the lower end portion of the cell stack, an inter-element connection member 18 is provided at the lower end portion of the fuel cell 1, and the other element portions adjacent to each other through the current collector 17 connected to the inter-element connection member 18 are provided. The collector fuel electrode layer 23 is electrically connected. The inter-element connection member 18 is electrically connected to the air electrode layer 13 c of the other fuel battery cell 1 via the inter-cell connection member 19 via the inter-element connection member 18. On the other hand, at the cell tip portion, the current collecting fuel electrode layer 23 on the surface of the porous support substrate 11 and the air electrode layer 13c on the other surface (back surface) facing each other through the current collector 17 and the inter-element connection member 18. Connected.
Thus, since the above-mentioned fuel battery cells 1 are electrically connected to each other via the inter-cell connecting member 19, the cell stack can arrange the fuel battery cells 1 densely, and the power generation amount The volume of the hit cell stack can be reduced. Therefore, a small and highly efficient cell stack can be provided. In the present invention, the cell tip refers to the end of the fuel cell 1 on the side opposite to the side connected to the manifold 50, in other words, the fuel cell 1 on the downstream side (discharge side) of the fuel gas. The end of

以下、燃料電池セル1を構成する各部材の材質を詳しく説明する。
(多孔質支持基板)
本発明に係る多孔質支持基板11は、Ni若しくはNi酸化物(NiO)と、希土類元素酸化物とからなっている。なお、希土類元素酸化物を構成する希土類元素としては、Y、La、Yb、Tm、Er、Ho、Dy、Gd、Sm、Prなどを例示することができるが、好ましくは、Y23やYb23、特にY23である。好ましくは、組成として、NiOが10〜25mol%、MgOが60〜80mol%、Y23が5〜15mol%であるのがよい。
Hereinafter, the material of each member constituting the fuel cell 1 will be described in detail.
(Porous support substrate)
The porous support substrate 11 according to the present invention is made of Ni or Ni oxide (NiO) and a rare earth element oxide. Examples of rare earth elements constituting rare earth element oxides include Y, La, Yb, Tm, Er, Ho, Dy, Gd, Sm, and Pr. Preferably, Y 2 O 3 or Yb 2 O 3 , especially Y 2 O 3 . Preferably, the composition is 10 to 25 mol% NiO, 60 to 80 mol% MgO, and 5 to 15 mol% Y 2 O 3 .

前記NiあるいはNiO(NiOは、発電時には、通常、水素ガスにより還元されてNiとして存在する)は、NiO換算で10〜25体積%、特に15〜20体積%の範囲で多孔質支持基板11中に含有されているのがよい。
この多孔質支持基板11の熱膨張係数は、通常、10.5〜12.5×10-6(1/K)程度である。
The Ni or NiO (NiO is usually reduced by hydrogen gas and exists as Ni during power generation) is 10 to 25% by volume in terms of NiO, particularly 15 to 20% by volume in the porous support substrate 11. It is good to contain.
The thermal expansion coefficient of the porous support substrate 11 is usually about 10.5 to 12.5 × 10 −6 (1 / K).

多孔質支持基板11は、発電素子13間の電気的ショートを防ぐために電気絶縁性であることが必要であり、通常、10Ω・cm以上の抵抗率を有することが望ましい。Ni等の含量が前記範囲を超えると、電気抵抗値が低下し易い。また、Ni等の含量が前記範囲よりも少ないと、希土類元素酸化物(例えばY23)を単独で用いた場合と変わらなくなってしまい、発電素子13との熱膨張係数の調整が困難となる傾向がある。 The porous support substrate 11 needs to be electrically insulative in order to prevent an electrical short circuit between the power generating elements 13, and normally has a resistivity of 10 Ω · cm or more. When the content of Ni or the like exceeds the above range, the electric resistance value tends to decrease. Further, when the content of Ni or the like is less than the above range, it is not different from the case where a rare earth element oxide (for example, Y 2 O 3 ) is used alone, and it is difficult to adjust the thermal expansion coefficient with the power generation element 13. Tend to be.

また、Ni等以外の残量の全ては、通常、希土類元素酸化物の少なくとも1種である。しかし、少量、例えば5質量%以下の範囲で、MgOやSiO2などの他の酸化物、若しくは複合酸化物例えばジルコン酸カルシウムなどを含有していてもよい。
なお、前記多孔質支持基板11は、燃料ガス流路12内の燃料ガスを活性燃料極層13aの表面まで導入可能でなければならず、このため、多孔質であることが必要である。一般に、その開気孔率は25%以上、特に30〜40%の範囲にあるのがよい。
また、多孔質支持基板11は、例えば、良好な発電性能及び構造強度を得られる点から、その厚さは、2〜5mm、幅30〜50mm、長さ200〜300mmの範囲に設定されるのが望ましい。本発明では、この寸法に限定されるものではない。
Further, the remaining amount other than Ni or the like is usually at least one kind of rare earth element oxide. However, other oxides such as MgO and SiO 2 or composite oxides such as calcium zirconate may be contained in a small amount, for example, in the range of 5% by mass or less.
The porous support substrate 11 must be able to introduce the fuel gas in the fuel gas flow path 12 up to the surface of the active fuel electrode layer 13a, and therefore needs to be porous. In general, the open porosity should be 25% or more, especially in the range of 30-40%.
Moreover, the porous support substrate 11 is set to have a thickness of 2 to 5 mm, a width of 30 to 50 mm, and a length of 200 to 300 mm, for example, from the viewpoint of obtaining good power generation performance and structural strength. Is desirable. The present invention is not limited to this dimension.

(燃料極層)
燃料極層は、前記式(2)の電極反応を生じさせるものであり、本実施形態においては、固体電解質13b側の活性燃料極層13aと、多孔質支持基板11側の集電燃料極層23との二層構造に形成されている。
前記固体電解質13b側の活性燃料極層13aは、それ自体公知の多孔質の導電性セラミックスから形成される。例えば、希土類元素が固溶しているZrO2(安定化ジルコニア)と、Ni及び/又はNiO(以下、Ni等と呼ぶ)とからなる。この希土類元素が固溶した安定化ジルコニアとしては、後述する固体電解質13bに使用されているものと同様のものを用いるのがよい。
(Fuel electrode layer)
The fuel electrode layer causes the electrode reaction of the above formula (2), and in this embodiment, the active fuel electrode layer 13a on the solid electrolyte 13b side and the current collecting fuel electrode layer on the porous support substrate 11 side. 23 and a two-layer structure.
The active fuel electrode layer 13a on the solid electrolyte 13b side is formed of a known porous conductive ceramic. For example, it is composed of ZrO 2 (stabilized zirconia) in which a rare earth element is dissolved, and Ni and / or NiO (hereinafter referred to as Ni or the like). As the stabilized zirconia in which the rare earth element is dissolved, the same one used for the solid electrolyte 13b described later is preferably used.

活性燃料極層13a中の安定化ジルコニア含量は、35〜65体積%の範囲にあることが好ましく、またNi等の含量は、良好な集電性能を発揮させるため、NiO換算で65〜35体積%の範囲にあるのがよい。
さらに活性燃料極層13aの開気孔率は、15%以上、特に20〜40%の範囲にあるのがよい。
The stabilized zirconia content in the active fuel electrode layer 13a is preferably in the range of 35 to 65% by volume, and the content of Ni or the like is 65 to 35% in terms of NiO in order to exhibit good current collecting performance. % Should be in the range.
Further, the open porosity of the active fuel electrode layer 13a is preferably 15% or more, particularly preferably in the range of 20 to 40%.

前記活性燃料極層13aの熱膨張係数は、通常、12.3×10-6(1/K)程度である。
また、固体電解質13bとの熱膨張差に起因して発生する熱応力を吸収し、活性燃料極層13aの割れや剥離などを防止するという点から、活性燃料極層13aの厚みは、5〜15μmの範囲にあることが望ましい。
燃料極層のうち、前記多孔質支持基板11側の集電燃料極層23は、多孔質支持基板11と同様、Ni若しくはNi酸化物と、希土類元素酸化物との混合体である。
The thermal expansion coefficient of the active fuel electrode layer 13a is usually about 12.3 × 10 −6 (1 / K).
The active fuel electrode layer 13a has a thickness of 5 to 5 because it absorbs thermal stress generated due to the difference in thermal expansion from the solid electrolyte 13b and prevents cracking or peeling of the active fuel electrode layer 13a. It is desirable to be in the range of 15 μm.
Among the fuel electrode layers, the current collecting fuel electrode layer 23 on the porous support substrate 11 side is a mixture of Ni or Ni oxide and rare earth element oxide, like the porous support substrate 11.

前記Ni或いはNi酸化物(NiOは、発電時には、通常、水素ガスにより還元されてNiとして存在する)は、NiO換算で30〜60体積%の範囲で希土類元素酸化物中に含有されているのがよい。この範囲で調整することにより、多孔質支持基板11と集電燃料極層23との熱膨張差を2×10-6(1/K)以下とすることができる。
集電燃料極層23は、電流の流れを損なわないように、導電性であることが必要であり、通常、400S/cm以上の導電率を有していることが望ましい。良好な電気伝導度を有するという点から、Ni等の含量は30体積%以上が望ましい。
The Ni or Ni oxide (NiO is usually reduced by hydrogen gas and present as Ni during power generation) is contained in the rare earth element oxide in a range of 30 to 60% by volume in terms of NiO. Is good. By adjusting within this range, the difference in thermal expansion between the porous support substrate 11 and the current collecting fuel electrode layer 23 can be made 2 × 10 −6 (1 / K) or less.
The current collecting fuel electrode layer 23 needs to be conductive so as not to impair the flow of current, and it is generally desirable that the current collecting fuel electrode layer 23 have a conductivity of 400 S / cm or more. From the viewpoint of having good electrical conductivity, the content of Ni or the like is desirably 30% by volume or more.

この集電燃料極層23の熱膨張係数は、通常、11.5×10-6(1/K)程度である。
また、この集電燃料極層23の厚みは、電気伝導度を向上するという点から、80μm以上であることが望ましい。
以上のように、燃料極を固体電解質13b側の活性燃料極層13aと、多孔質支持基板11側の集電燃料極層23と二層に形成した構造であれば、多孔質支持基板11側の集電燃料極層23のNiO換算でのNi量或いはNiO量を30〜60体積%の範囲内で調整することにより、発電素子13との接合性を損なうことなく、その熱膨張係数を、後述する固体電解質13bの熱膨張係数に近づけることができ、例えば両者の熱膨張差を、2×10-6(1/K)未満とすることができる。したがって、燃料電池セル1の作製時、加熱時、冷却時において両者の熱膨張差に起因して発生する熱応力を小さくすることができるため、燃料極の割れや剥離などを抑制することができる。このため、燃料ガス(水素ガス)を流して発電を行う場合においても、多孔質支持基板11との熱膨張係数の整合性は安定に維持され、熱膨張差による割れを有効に回避することができる。
The thermal expansion coefficient of the current collecting fuel electrode layer 23 is usually about 11.5 × 10 −6 (1 / K).
In addition, the thickness of the current collecting fuel electrode layer 23 is desirably 80 μm or more from the viewpoint of improving electric conductivity.
As described above, if the fuel electrode is formed in two layers with the active fuel electrode layer 13a on the solid electrolyte 13b side and the current collecting fuel electrode layer 23 on the porous support substrate 11 side, the porous support substrate 11 side is provided. By adjusting the Ni amount or NiO amount in terms of NiO of the current collecting fuel electrode layer 23 within the range of 30 to 60% by volume, the thermal expansion coefficient is reduced without impairing the bonding property with the power generation element 13. The thermal expansion coefficient of the solid electrolyte 13b, which will be described later, can be approached. For example, the difference in thermal expansion between the two can be less than 2 × 10 −6 (1 / K). Therefore, since the thermal stress generated due to the difference in thermal expansion between the two during the production, heating, and cooling of the fuel battery cell 1 can be reduced, cracking and peeling of the fuel electrode can be suppressed. . For this reason, even when fuel gas (hydrogen gas) is flowed to generate power, the consistency of the thermal expansion coefficient with the porous support substrate 11 is maintained stably, and cracks due to thermal expansion differences can be effectively avoided. it can.

(固体電解質)
固体電解質13bは、希土類またはその酸化物を固溶させたZrO2からなる安定化ZrO2からなる緻密質なセラミックスで構成されている。
ここで、固溶させる希土類元素またはその酸化物としては、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luなど、または、これらの酸化物などが挙げられ、好ましくは、Y、Yb、または、これらの酸化物が挙げられる。また、固体電解質13bは、8モル%のYが固溶している安定化ZrO2(8mol% Yttoria Stabilized Zirconia、以下、「8YSZ」という。)と熱膨張係数がほぼ等しいランタンガレート系(LaGaO3系)固体電解質を挙げることもできる。 また、固体電解質13bは、例えば、厚さが10〜100μmであり、例えば、相対密度(アルキメデス法による)が93%以上、好ましくは、95%以上の範囲に設定される。
このような固体電解質13bは、電極間の電子の橋渡しをする電解質としての機能を有すると同時に、燃料ガスまたは酸素含有ガスのリーク(ガス透過)を防止するためにガス遮断性を有している。
(Solid electrolyte)
The solid electrolyte 13b is composed of a dense ceramic made of stabilized ZrO 2 composed of ZrO 2 which was a solid solution of rare earth or an oxide thereof.
Here, as rare earth elements to be dissolved or oxides thereof, Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, etc. Or these oxides etc. are mentioned, Preferably, Y, Yb, or these oxides are mentioned. The solid electrolyte 13b is a lanthanum gallate system (LaGaO 3 ) having a thermal expansion coefficient substantially equal to that of stabilized ZrO 2 (8 mol% Yttoria Stabilized Zirconia, hereinafter referred to as “8YSZ”) in which 8 mol% of Y is dissolved. System) solid electrolytes. The solid electrolyte 13b has a thickness of 10 to 100 μm, for example, and has a relative density (according to Archimedes method) of 93% or more, preferably 95% or more.
Such a solid electrolyte 13b has a function as an electrolyte for bridging electrons between electrodes, and at the same time has a gas barrier property to prevent leakage of fuel gas or oxygen-containing gas (gas permeation). .

(空気極層)
空気極層13cは、導電性セラミックスから形成されている。導電性セラミックスとしては、例えば、ABO3型のペロブスカイト型酸化物が挙げられ、このようなペロブスカイト型酸化物としては、例えば、遷移金属型ペロブスカイト酸化物、好ましくは、LaMnO3系酸化物、LaFeO3系酸化物、LaCoO3系酸化物など、特にAサイトにLaを有する遷移金属型ペロブスカイト酸化物を挙げることができる。さらに好ましくは、600〜1000℃程度の比較的低温での電気伝導性が高いという観点から、LaCoO3系酸化物が挙げられる。
また、前記したペロブスカイト型酸化物において、AサイトにLa及びSrが共存してもよく、また、BサイトにFe、Co及びMnが共存してもよい。
このような空気極層13cは、前記した式(1)の電極反応を生ずることができる。
また、空気極層13cは、その開気孔率が、例えば、20%以上、好ましくは、30〜50%の範囲に設定される。開気孔率が前記した範囲内にあれば、空気極層13cが良好なガス透過性を有することができる。
また、空気極層13cは、その厚さが、例えば、30〜100μmの範囲に設定される。前記した範囲内にあれば、空気極層13cが良好な集電性を有することができる。
(Air electrode layer)
The air electrode layer 13c is made of conductive ceramics. Examples of conductive ceramics include ABO 3 type perovskite oxides. Examples of such perovskite oxides include transition metal type perovskite oxides, preferably LaMnO 3 oxides, LaFeO 3 oxides. Examples thereof include transition metal type perovskite oxides having La at the A site, such as oxides based on oxides and LaCoO 3 oxides. More preferably, from the viewpoint of high electrical conductivity at a relatively low temperature of about 600 to 1000 ° C., a LaCoO 3 oxide is used.
In the perovskite oxide described above, La and Sr may coexist at the A site, and Fe, Co, and Mn may coexist at the B site.
Such an air electrode layer 13c can cause the electrode reaction of the above-described formula (1).
Further, the air electrode layer 13c has an open porosity of, for example, 20% or more, and preferably 30 to 50%. If the open porosity is within the above-described range, the air electrode layer 13c can have good gas permeability.
Moreover, the thickness of the air electrode layer 13c is set in a range of 30 to 100 μm, for example. If it exists in an above-described range, the air electrode layer 13c can have favorable current collection property.

(集電体)
隣接する発電素子13同士を直列に接続するために使用される集電体17は、前記発電素子13の活性燃料極層13aと他の発電素子13の空気極層13cとを接続するものであり、これらは導電性セラミックス、金属、ガラスの入った金属ガラスを用いることができる。導電性セラミックスとしては、ランタンクロマイト系のペロブスカイト型酸化物(LaCrO3系酸化物)が使用される。また、金属層と、ガラスの入った金属ガラス層との二層構造としてもよい。金属層は、例えば、AgとNiの合金からなり、金属ガラス層は、Agとガラスからなる。
また、集電体17は、その厚さが20μm以上あれば、良好な集電性を有することができる。
(Current collector)
A current collector 17 used for connecting adjacent power generating elements 13 in series connects an active fuel electrode layer 13a of the power generating element 13 and an air electrode layer 13c of another power generating element 13. These can be made of conductive ceramics, metal, or metal glass containing glass. As the conductive ceramic, lanthanum chromite perovskite oxide (LaCrO 3 oxide) is used. Alternatively, a two-layer structure of a metal layer and a metal glass layer containing glass may be used. The metal layer is made of, for example, an alloy of Ag and Ni, and the metal glass layer is made of Ag and glass.
Further, the current collector 17 can have a good current collecting property if its thickness is 20 μm or more.

(素子間接続部材)
隣接する発電素子13同士を直列に接続するために使用される素子間接続部材18は、素子部の集電体17と隣接する他の素子部の空気極層13cとを接続するものである。素子間接続部材18として、導電性セラミックス、金属、ガラスの入った金属ガラスを用いることができ、導電性セラミックスとしては、空気極層13cに用いられるものが使用できる。また空気極層13cに空気等の酸素含有ガスを供給するため、かかる導電性セラミックスは多孔質とされている。
また、素子間接続部材18としては、例えばAg−Pdから構成された多孔質層を使用することができる。
また、素子間接続部材18は、その厚さが100μm以上あれば、良好な導電性を有することができる。
(Element connection member)
The inter-element connection member 18 used for connecting adjacent power generating elements 13 in series connects the current collector 17 of the element section and the air electrode layer 13c of another adjacent element section. As the inter-element connection member 18, conductive glass, metal, or metal glass containing glass can be used. As the conductive ceramic, those used for the air electrode layer 13 c can be used. Moreover, in order to supply oxygen-containing gas, such as air, to the air electrode layer 13c, the conductive ceramic is made porous.
Moreover, as the inter-element connection member 18, a porous layer made of, for example, Ag—Pd can be used.
Further, the inter-element connection member 18 can have good conductivity if the thickness is 100 μm or more.

なお、上述した例においては、多孔質支持基板11上に形成される発電素子13は、内側電極が活性燃料極層13aであり、外側電極が空気極層13cとなった層構造を有しているが、両電極の位置関係を逆とすることも勿論可能である。すなわち、多孔質支持基板11上に、空気極層、固体電解質、活性燃料極層をこの順に積層して発電素子を形成することもできる。この場合、多孔質支持基板11のガス流路内には、空気等の酸素含有ガスが導入され、燃料ガスは外側電極である活性燃料極層の外面に供給されることとなる。   In the example described above, the power generating element 13 formed on the porous support substrate 11 has a layer structure in which the inner electrode is the active fuel electrode layer 13a and the outer electrode is the air electrode layer 13c. However, it is of course possible to reverse the positional relationship between the two electrodes. That is, an air electrode layer, a solid electrolyte, and an active fuel electrode layer can be laminated in this order on the porous support substrate 11 to form a power generation element. In this case, an oxygen-containing gas such as air is introduced into the gas flow path of the porous support substrate 11, and the fuel gas is supplied to the outer surface of the active fuel electrode layer that is the outer electrode.

(セル間接続部材)
セル間接続部材19は、燃料電池セル1に対向する他の燃料電池セル1の空気極層13cと導通し、前記燃料電池セル1の素子間接続部材18と前記他の燃料電池セル1の空気極層13cとを電気的に接続するものであれば特に制限されず、例えば、耐熱性金属、導電性セラミックスなどから形成される。
また、セル間接続部材19と、素子間接続部材18及び空気極層13cとの接続部に、AgやPtなどの貴金属を含有するペーストなどの導電性接着剤を塗布することにより、セル間接続部材19の接続信頼性を向上させることもできる。
(Cell connecting member)
The inter-cell connecting member 19 is electrically connected to the air electrode layer 13 c of another fuel cell 1 facing the fuel cell 1, and the inter-element connecting member 18 of the fuel cell 1 and the air of the other fuel cell 1. The electrode layer 13c is not particularly limited as long as it is electrically connected to the electrode layer 13c. For example, the electrode layer 13c is formed of a heat-resistant metal, a conductive ceramic, or the like.
Further, by applying a conductive adhesive such as a paste containing a noble metal such as Ag or Pt to the connection portion between the inter-cell connection member 19, the inter-element connection member 18 and the air electrode layer 13c, the inter-cell connection The connection reliability of the member 19 can also be improved.

(製造方法)
次に、前記した横縞型燃料電池セルの製造方法について、図4及び図5を参照して、説明する。
(Production method)
Next, a method for manufacturing the horizontal stripe fuel cell described above will be described with reference to FIGS.

まず、多孔質支持基板成形体61を作製する。多孔質支持基板成形体61の材料として、例えば、体積基準での平均粒径(D50)(以下、単に「平均粒径」という。)が0.1〜10.0μmのMgO粉末に、必要により熱膨張係数調整用または接合強度向上用として、Ni粉末、NiO粉末、Y23粉末、または、希土類元素安定化ジルコニア粉末(YSZ)などを所定の比率で配合して混合し、混合後の熱膨張係数が固体電解質13bのそれとほぼ一致するように調整する。この混合粉末を、ポアー剤と、セルロース系有機バインダーと、水とからなる溶媒と混合し、押し出し成形して、図4に示すように、例えば、内部に直径1.0〜1.5mmのガス流路62を6個有する中空の板状形状で、長さ250〜300mm、幅60〜70mm、厚さ3〜5mmの扁平状の多孔質支持基板成形体61を作製し、これを乾燥後、900℃〜1200℃にて仮焼処理する。 First, the porous support substrate molded body 61 is produced. As a material of the porous support substrate molded body 61, for example, it is necessary for an MgO powder having an average particle diameter (D 50 ) (hereinafter simply referred to as “average particle diameter”) on a volume basis of 0.1 to 10.0 μm. After mixing, Ni powder, NiO powder, Y 2 O 3 powder, rare earth element stabilized zirconia powder (YSZ), etc. are blended at a predetermined ratio for adjusting the thermal expansion coefficient or improving the bonding strength. The thermal expansion coefficient is adjusted so as to substantially match that of the solid electrolyte 13b. This mixed powder is mixed with a solvent composed of a pore agent, a cellulosic organic binder, and water, extruded, and as shown in FIG. 4, for example, a gas having a diameter of 1.0 to 1.5 mm inside. A hollow plate-like shape having six channels 62, having a length of 250 to 300 mm, a width of 60 to 70 mm, and a flat porous support substrate molded body 61 having a thickness of 3 to 5 mm, was dried, Calcination is performed at 900 ° C to 1200 ° C.

次いで、燃料極層、固体電解質を作製する。まず、例えば、NiO粉末、Ni粉末と、YSZ粉末とを混合し、これにポアー剤を添加し、アクリル系バインダーとトルエンとを混合して活性燃料極のペーストを作製する。次に、例えば、NiO粉末、Ni粉末と、Y23などの希土類元素酸化物とを混合し、これにポアー剤を添加し、アクリル系バインダーとトルエンとを混合してスラリーとし、ドクターブレード法にてスラリーを塗布して乾燥し、厚さ80〜120μmの集電燃料極層テープ63を作製する。次に、図5に示すように、この集電燃料極層テープ63に、所定のメッシュ製版を用いて、例えば、厚さ30〜60μmの活性燃料極ペースト層63a及び厚さ30〜60μmの集電体ペースト層67を印刷して形成する。当該貼り合わせたテープを発電素子13の形状Sにあわせて切断し、絶縁部を形成する部分Rを打ち抜く[図5の一点鎖線部。ただし、図5中で、63a及び67のハッチングは断面でなく、領域を意味する。] Next, a fuel electrode layer and a solid electrolyte are produced. First, for example, NiO powder, Ni powder, and YSZ powder are mixed, a pore agent is added thereto, and an acrylic binder and toluene are mixed to prepare an active fuel electrode paste. Next, for example, NiO powder, Ni powder, and a rare earth element oxide such as Y 2 O 3 are mixed, a pore agent is added thereto, an acrylic binder and toluene are mixed to form a slurry, and a doctor blade The slurry is applied by the method and dried to produce a current collecting fuel electrode layer tape 63 having a thickness of 80 to 120 μm. Next, as shown in FIG. 5, for example, an active fuel electrode paste layer 63 a having a thickness of 30 to 60 μm and a collector film having a thickness of 30 to 60 μm are collected on the current collecting fuel electrode layer tape 63 using a predetermined mesh plate making. The electrical paste layer 67 is formed by printing. The bonded tape is cut in accordance with the shape S of the power generating element 13, and a portion R that forms an insulating portion is punched out [a chain line portion in FIG. However, in FIG. 5, the hatching 63a and 67 means not a cross section but a region. ]

その後、活性燃料極ペースト層63aと集電体ペースト層67が印刷された集電燃料極層テープ63を、それぞれ前記仮焼した多孔質支持基板成形体61の対応する箇所(A,B,C及びD)に貼り付ける。即ち、前記仮焼した多孔質支持基板成形体61の表裏面(A,C)に活性燃料極ペースト層63aの対応する部分A,Cを、前記仮焼した多孔質支持基板成形体61の両側面(B,D)に集電体ペースト層67の対応する部分B,Dが積層されるように貼り付ける[図8(b)参照。ただし、図8中で、63a及び67のハッチングは断面でなく、領域を意味する。]。このように、順次、絶縁部の箇所を素子部間に設けながら、複数の素子部を横縞状に貼り付ける。これを繰り返し行い、多孔質支持基板成形体61の表裏面に複数の、活性燃料極ペースト層63aと集電体ペースト層67がそれぞれ印刷積層された集電燃料極層テープ63を貼り付ける。
図8に印刷後の積層用の集電燃料極層テープ63を多孔質支持基板成形体61表面へ貼り付けた状態を、従来構造と比較して示した。
次に、この活性燃料極ペースト層63a及び集電体ペースト層67を積層した集電燃料極層テープ63を貼り付けた状態で乾燥し、その後、900〜1100℃の温度範囲で仮焼する。
Thereafter, the current collector fuel electrode layer tape 63 on which the active fuel electrode paste layer 63a and the current collector paste layer 67 are printed is respectively applied to the corresponding portions (A, B, C) of the calcined porous support substrate molded body 61. And D). That is, corresponding portions A and C of the active fuel electrode paste layer 63a are formed on the front and back surfaces (A, C) of the calcined porous support substrate molded body 61 on both sides of the calcined porous support substrate molded body 61. Affixed so that the corresponding parts B and D of the current collector paste layer 67 are laminated on the surfaces (B and D) [see FIG. However, in FIG. 8, the hatching 63a and 67 means a region, not a cross section. ]. In this manner, the plurality of element portions are attached in a horizontal stripe shape while sequentially providing the insulating portions between the element portions. This is repeated, and the current collector fuel electrode layer tape 63 in which a plurality of active fuel electrode paste layers 63a and current collector paste layers 67 are respectively printed and laminated is attached to the front and back surfaces of the porous support substrate molded body 61.
FIG. 8 shows a state where the current collecting fuel electrode layer tape 63 for lamination after printing is attached to the surface of the porous support substrate molded body 61 in comparison with the conventional structure.
Next, it dries in the state which affixed the current collection fuel electrode layer tape 63 which laminated | stacked this active fuel electrode paste layer 63a and the current collector paste layer 67, and calcined in the temperature range of 900-1100 degreeC after that.

次に、この積層体の表裏面、及び集電体ペースト層67表面をマスクした両側面に、8YSZにアクリル系バインダーとトルエンを加えてスラリーとした固体電解質溶液を印刷し、この後、マスクを剥離する。この印刷により、この積層体の表裏面の全面に、例えば、厚さ30〜60μmの固体電解質スラリーの層が塗布されるとともに、隣接素子部間の絶縁部の箇所にも固体電解質スラリーが充填される。
この状態で、1450〜1500℃、2〜4時間焼成する。
Next, the solid electrolyte solution made into a slurry by adding acrylic binder and toluene to 8YSZ was printed on the front and back surfaces of this laminate and both sides of the surface of the current collector paste layer 67 masked. Peel off. By this printing, for example, a layer of a solid electrolyte slurry having a thickness of 30 to 60 μm is applied to the entire front and back surfaces of the laminate, and the solid electrolyte slurry is also filled in the insulating portion between adjacent element portions. The
In this state, firing is performed at 1450 to 1500 ° C. for 2 to 4 hours.

次に、得られた積層体の表裏面にランタンコバルタイト(LaCoO3)とイソプロピルアルコールとを混合したスラリーを印刷し、厚さ10〜100μmの空気極層13cを形成する。そして、950〜1150℃、2〜5時間焼き付ける。
最後に、集電体17表面と空気極層13c表面に、例えば厚さ150〜400μmの素子間接続部材18となるペーストを塗布し、さらに前記両表面間を素子間接続部材18を接続し、前記横縞型燃料電池セルを得ることができる。
Next, a slurry in which lanthanum cobaltite (LaCoO 3 ) and isopropyl alcohol are mixed is printed on the front and back surfaces of the obtained laminate to form an air electrode layer 13c having a thickness of 10 to 100 μm. Then, baking is performed at 950 to 1150 ° C. for 2 to 5 hours.
Finally, a paste to be an inter-element connection member 18 having a thickness of 150 to 400 μm, for example, is applied to the surface of the current collector 17 and the air electrode layer 13c, and the inter-element connection member 18 is connected between the both surfaces. The horizontal stripe fuel cell can be obtained.

なお、前記した各層の積層方法については、テープ積層、ペースト印刷、ディップ、及び、スプレー吹きつけのいずれの積層法を用いてもよい。   In addition, about the lamination | stacking method of each above-mentioned layer, you may use any lamination method of tape lamination | stacking, paste printing, dipping, and spray spraying.

(他の実施形態)
本発明に係る他の実施形態は、図6(a)、(b)に示すように、隣接し合う発電素子間を接続するための素子間接続部材18は、素子部の空気極層13c表面と該素子部の集電体17表面とを接続するように形成した。このとき、図6(a)に示すように、発電素子13に隣接する他の発電素子13の集電燃料極層23が前記素子部側の多孔質支持基板11の側面まで延設されており、前記素子部の集電体17が、前記延設された集電燃料極層23の延設部23’と接続している。図中の矢印は電気(電子e-)の移動する方向を示す。即ち、図6(b)に示すように、隣接する前記他の発電素子13で発生した電子はその同一素子部の活性燃料極13aから集電燃料極層23を介して前記素子部の集電体17に移動し、ついで該集電体17の表面に接続された素子間接続部材18を介して、前記発電素子13の空気極13cに送られる。これにより、発電素子13同士が直列に電気的に接続される。
製造に際しては、以下に示す工程以外は上記した一実施形態と同様の製造方法により作製することができる。図7に示すように、一実施形態の場合と同様に集電燃料極層テープ63に、所定のメッシュ製版を用いて前記活性燃料極ペースト層63a及び集電体ペースト層67を印刷して形成し、当該貼り合わせたテープを発電素子13の形状Sにあわせて切断する。そして、絶縁部を形成する部分Rは、活性燃料極13aと隣接する列にある他の集電体17が繋がるように打ち抜く[図7の一点鎖線部。ただし、図7中で、63a及び67のハッチングは断面でなく、領域を意味する。]
(Other embodiments)
In another embodiment according to the present invention, as shown in FIGS. 6A and 6B, the inter-element connection member 18 for connecting adjacent power generating elements is the surface of the air electrode layer 13c of the element portion. And the current collector 17 surface of the element part. At this time, as shown in FIG. 6A, the current collecting fuel electrode layer 23 of the other power generation element 13 adjacent to the power generation element 13 extends to the side surface of the porous support substrate 11 on the element side. The current collector 17 of the element portion is connected to the extended portion 23 ′ of the extended current collecting fuel electrode layer 23. The arrow in the figure indicates the direction of movement of electricity (electron e ). That is, as shown in FIG. 6 (b), the electrons generated in the other power generating element 13 adjacent to each other are collected from the active fuel electrode 13a of the same element part through the current collecting fuel electrode layer 23 and collected in the element part. It moves to the body 17 and then is sent to the air electrode 13 c of the power generating element 13 through the inter-element connection member 18 connected to the surface of the current collector 17. Thereby, the power generation elements 13 are electrically connected in series.
At the time of production, it can be produced by the same production method as in the above-described embodiment except for the steps shown below. As shown in FIG. 7, the active fuel electrode paste layer 63a and the current collector paste layer 67 are formed on the current collecting fuel electrode layer tape 63 by using a predetermined mesh plate as in the case of the embodiment. Then, the bonded tape is cut according to the shape S of the power generating element 13. And the part R which forms an insulation part is punched out so that the other collector 17 in the row | line | column adjacent to the active fuel electrode 13a may be connected [the dashed-dotted line part of FIG. However, in FIG. 7, the hatched lines 63a and 67 indicate regions rather than cross sections. ]

以上で、本発明の実施の形態を説明したが、本発明は、前記の形態に限定されるものではない。例えば、図9に示すように、隣接する発電素子同士を電気的に接続するために、素子間接続部材を延設して他の発電素子の集電体17と接続させた前記実施形態と、集電燃料極23を延設して他の発電素子の集電体17と接続させた前記他の実施形態とを組み合せた構成としてもよい。なお、図9は多孔質支持基板11の片面に発電素子等を配設した例を示したが、両面に配設してもよいことはいうまでもない。
また、前記の製造例では素子間接続部材18は、空気極層13cの表面に積層する部分と集電体17の表面に積層する部分とにペーストを塗布した後、同じペーストを塗布して接続したが、金属等電気的に接続可能な部材で接続してもよい。あるいは、前記素子間接続部材18は前記両表面及び接続部分を含めて一体的に作製したものを貼り付けてもよい。
さらに、上記形態では、活性燃料極層13aと集電燃料極層23を有する場合について説明したが、活性燃料極層13aだけの場合であっても、同様の効果を有する。
また、上記形態では、多孔質支持基板11、集電体17、素子間接続部材18等について、材料、寸法等について記載したが、本発明では、上記形態に記載した材料、寸法等に限定されるものではない。
Although the embodiment of the present invention has been described above, the present invention is not limited to the above embodiment. For example, as shown in FIG. 9, in order to electrically connect adjacent power generation elements, the above-described embodiment in which an inter-element connection member is extended and connected to the current collector 17 of another power generation element; A configuration in which the current collecting fuel electrode 23 is extended and connected to the current collector 17 of another power generation element may be combined. Although FIG. 9 shows an example in which the power generation element or the like is arranged on one side of the porous support substrate 11, it goes without saying that it may be arranged on both sides.
In the above manufacturing example, the inter-element connection member 18 is applied by applying the same paste to the portion laminated on the surface of the air electrode layer 13c and the portion laminated on the surface of the current collector 17, and then connecting the same. However, it may be connected by an electrically connectable member such as metal. Alternatively, the inter-element connecting member 18 may be affixed integrally including the both surfaces and the connecting portion.
Further, in the above embodiment, the case where the active fuel electrode layer 13a and the current collecting fuel electrode layer 23 are provided has been described, but the same effect can be obtained even when only the active fuel electrode layer 13a is provided.
Moreover, in the said form, although the material, the dimension, etc. were described about the porous support substrate 11, the electrical power collector 17, the element connection member 18, etc., in this invention, it is limited to the material, the dimension, etc. which were described in the said form. It is not something.

本発明の燃料電池セルの構造を示す一部破断斜視図である。It is a partially broken perspective view which shows the structure of the fuel battery cell of this invention. 図1の平面図である。It is a top view of FIG. 図1の横縞型燃料電池セルのセルスタックを示す縦断面図である。It is a longitudinal cross-sectional view which shows the cell stack of the horizontal stripe type fuel cell of FIG. 本発明の多孔質支持基板の製造工程図である。It is a manufacturing-process figure of the porous support substrate of this invention. 本発明の燃料電池セルの製造工程図である。It is a manufacturing-process figure of the fuel battery cell of this invention. (a)は本発明に係る他の実施形態の燃料電池セルの平面図、(b)は(a)のB−B線断面図である。(A) is a top view of the fuel cell of other embodiment concerning the present invention, (b) is a BB line sectional view of (a). 本発明に係る他の実施形態の燃料電池セルの製造工程図である。It is a manufacturing-process figure of the fuel battery cell of other embodiment which concerns on this invention. 従来の横縞型燃料電池セル(a)と本発明の横縞型燃料電池セル(b)の製造工程の一部及び構造について比較した図である。It is the figure which compared about a part and structure of the manufacturing process of the conventional horizontal stripe type fuel cell (a) and the horizontal stripe type fuel cell (b) of this invention. 本発明に係る一実施形態と他の実施形態とを組み合せた燃料電池セルの平面図である。It is a top view of the fuel cell which combined one embodiment and other embodiments concerning the present invention. 従来のセルスタック間接続部材の接続構造の一例を示す斜視図である。It is a perspective view which shows an example of the connection structure of the conventional connection member between cell stacks. 従来の横縞型の固体電解質形燃料電池セルの一例を示す縦断面の拡大図である。It is an enlarged view of a longitudinal section showing an example of a conventional horizontal stripe type solid electrolyte fuel cell.

符号の説明Explanation of symbols

1 燃料電池セル
11 多孔質支持基板
12 燃料ガス流路
13 発電素子(13a:活性燃料極層、13b:固体電解質、13c:空気極層)
17 集電体
18 素子間接続部材
DESCRIPTION OF SYMBOLS 1 Fuel cell 11 Porous support substrate 12 Fuel gas flow path 13 Electric power generation element (13a: Active fuel electrode layer, 13b: Solid electrolyte, 13c: Air electrode layer)
17 Current collector 18 Inter-element connection member

Claims (6)

ガス流路を内部に備えた電気絶縁性の多孔質支持基板の表面に、内側電極、固体電解質及び外側電極が順次積層された発電素子を複数並設し、前記発電素子の内側電極と、該発電素子に隣接する他の発電素子の外側電極とが集電体を介して電気的に接続されている横縞型燃料電池セルであって、前記集電体が前記多孔質支持基板の側面に形成されていることを特徴とする横縞型燃料電池セル。   A plurality of power generation elements in which an inner electrode, a solid electrolyte, and an outer electrode are sequentially stacked are arranged in parallel on the surface of an electrically insulating porous support substrate having a gas flow path therein, and the inner electrode of the power generation element, A horizontal stripe fuel cell in which an outer electrode of another power generation element adjacent to the power generation element is electrically connected via a current collector, and the current collector is formed on a side surface of the porous support substrate A horizontally-striped fuel cell characterized by being made. 前記発電素子が前記多孔質支持基板の表裏面にそれぞれ複数並設されており、前記多孔質支持基板の両側面に前記集電体がそれぞれ形成されていることを特徴とする請求項1記載の横縞型燃料電池セル。   2. The power generation element according to claim 1, wherein a plurality of the power generation elements are arranged side by side on the front and back surfaces of the porous support substrate, and the current collectors are formed on both side surfaces of the porous support substrate. Horizontal stripe fuel cell. 前記発電素子の内側電極が該発電素子を設けた部位の前記多孔質支持基板の側面まで延設され、延設された該内側電極の延設部の表面に前記集電体が形成され、該集電体と前記発電素子に隣接する他の発電素子の外側電極とが電気的に接続されていることを特徴とする請求項1又は2記載の横縞型燃料電池セル。   The inner electrode of the power generation element is extended to the side surface of the porous support substrate at the site where the power generation element is provided, and the current collector is formed on the surface of the extended portion of the extended inner electrode, The horizontal stripe fuel cell according to claim 1 or 2, wherein a current collector and an outer electrode of another power generation element adjacent to the power generation element are electrically connected. 前記発電素子の内側電極が、隣接する前記他の発電素子を設けた部位の前記多孔質支持基板の側面まで延設され、延設された該内側電極の延設部の表面に前記集電体が形成され、該集電体と、前記他の発電素子の外側電極とが電気的に接続されていることを特徴とする請求項1又は2記載の横縞型燃料電池セル。   An inner electrode of the power generation element extends to a side surface of the porous support substrate at a portion where the other power generation element adjacent to the power generation element is provided, and the current collector is formed on the surface of the extended portion of the extended inner electrode. The horizontal stripe fuel cell according to claim 1, wherein the current collector is electrically connected to an outer electrode of the other power generation element. 前記集電体の表面と、前記他の発電素子の外側電極の表面とが素子間接続部材を介して接続されていることを特徴とする請求項2〜4のいずれかに記載の横縞型燃料電池セル。   The horizontal stripe fuel according to any one of claims 2 to 4, wherein a surface of the current collector and a surface of an outer electrode of the other power generation element are connected via an inter-element connection member. Battery cell. 請求項1〜5のいずれかに記載の横縞型燃料電池セルを、収納容器内に複数収納してなることを特徴とする燃料電池。   A fuel cell comprising a plurality of horizontally-striped fuel cells according to claim 1 in a storage container.
JP2007125314A 2007-05-10 2007-05-10 Horizontally-striped fuel cell and fuel cell Active JP5192723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007125314A JP5192723B2 (en) 2007-05-10 2007-05-10 Horizontally-striped fuel cell and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007125314A JP5192723B2 (en) 2007-05-10 2007-05-10 Horizontally-striped fuel cell and fuel cell

Publications (2)

Publication Number Publication Date
JP2008282653A true JP2008282653A (en) 2008-11-20
JP5192723B2 JP5192723B2 (en) 2013-05-08

Family

ID=40143298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007125314A Active JP5192723B2 (en) 2007-05-10 2007-05-10 Horizontally-striped fuel cell and fuel cell

Country Status (1)

Country Link
JP (1) JP5192723B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010198889A (en) * 2009-02-25 2010-09-09 Kyocera Corp Cell stack of segmented-in-series solid oxide fuel cell and fuel cell
JP2012009226A (en) * 2010-06-23 2012-01-12 Kyocera Corp Horizontal-stripe solid oxide type fuel battery cell stack, horizontal-stripe solid oxide type fuel battery bundle and fuel battery
JP2012009228A (en) * 2010-06-23 2012-01-12 Kyocera Corp Horizontal-stripe solid oxide type fuel battery cell stack, horizontal-stripe solid oxide type fuel battery bundle and fuel battery
JP4864170B1 (en) * 2011-08-29 2012-02-01 日本碍子株式会社 Solid oxide fuel cell
JP4864171B1 (en) * 2011-08-29 2012-02-01 日本碍子株式会社 Solid oxide fuel cell
JP4904436B1 (en) * 2011-08-29 2012-03-28 日本碍子株式会社 Solid oxide fuel cell
JP2012084508A (en) * 2010-10-11 2012-04-26 Samsung Electro-Mechanics Co Ltd Fuel battery and method for manufacturing the same
JP2018041561A (en) * 2016-09-05 2018-03-15 日本碍子株式会社 Fuel battery cell

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05166519A (en) * 1991-12-12 1993-07-02 Yoshida Kogyo Kk <Ykk> Manufacture of solid electrolyte fuel cell
JPH10189019A (en) * 1996-12-25 1998-07-21 Kyocera Corp Solid electrolyte fuel cell
JP2002329513A (en) * 2001-05-01 2002-11-15 Nissan Motor Co Ltd Single cell for fuel cell and solid electrolyte fuel cell
JP2005222774A (en) * 2004-02-04 2005-08-18 Dainippon Printing Co Ltd Solid oxide fuel cell
JP2005346991A (en) * 2004-05-31 2005-12-15 Kyocera Corp Solid electrolyte fuel cell cell stack, bundle, fuel cell, and manufacturing method of fuel cell cell stack
JP2006019059A (en) * 2004-06-30 2006-01-19 Kyocera Corp Solid electrolyte fuel battery cell, cell stack, and fuel battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05166519A (en) * 1991-12-12 1993-07-02 Yoshida Kogyo Kk <Ykk> Manufacture of solid electrolyte fuel cell
JPH10189019A (en) * 1996-12-25 1998-07-21 Kyocera Corp Solid electrolyte fuel cell
JP2002329513A (en) * 2001-05-01 2002-11-15 Nissan Motor Co Ltd Single cell for fuel cell and solid electrolyte fuel cell
JP2005222774A (en) * 2004-02-04 2005-08-18 Dainippon Printing Co Ltd Solid oxide fuel cell
JP2005346991A (en) * 2004-05-31 2005-12-15 Kyocera Corp Solid electrolyte fuel cell cell stack, bundle, fuel cell, and manufacturing method of fuel cell cell stack
JP2006019059A (en) * 2004-06-30 2006-01-19 Kyocera Corp Solid electrolyte fuel battery cell, cell stack, and fuel battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010198889A (en) * 2009-02-25 2010-09-09 Kyocera Corp Cell stack of segmented-in-series solid oxide fuel cell and fuel cell
JP2012009226A (en) * 2010-06-23 2012-01-12 Kyocera Corp Horizontal-stripe solid oxide type fuel battery cell stack, horizontal-stripe solid oxide type fuel battery bundle and fuel battery
JP2012009228A (en) * 2010-06-23 2012-01-12 Kyocera Corp Horizontal-stripe solid oxide type fuel battery cell stack, horizontal-stripe solid oxide type fuel battery bundle and fuel battery
JP2012084508A (en) * 2010-10-11 2012-04-26 Samsung Electro-Mechanics Co Ltd Fuel battery and method for manufacturing the same
JP4864170B1 (en) * 2011-08-29 2012-02-01 日本碍子株式会社 Solid oxide fuel cell
JP4864171B1 (en) * 2011-08-29 2012-02-01 日本碍子株式会社 Solid oxide fuel cell
JP4904436B1 (en) * 2011-08-29 2012-03-28 日本碍子株式会社 Solid oxide fuel cell
JP2018041561A (en) * 2016-09-05 2018-03-15 日本碍子株式会社 Fuel battery cell

Also Published As

Publication number Publication date
JP5192723B2 (en) 2013-05-08

Similar Documents

Publication Publication Date Title
JP5132878B2 (en) Fuel cell, fuel cell stack and fuel cell
JP5175527B2 (en) Cell stack and fuel cell
JP5175461B2 (en) Horizontally-striped fuel cell and fuel cell
JP4718959B2 (en) Horizontal stripe fuel cell
JP5080951B2 (en) Horizontal stripe fuel cell stack and fuel cell
JP5118865B2 (en) Horizontally-striped fuel cell and method for producing the same
JP4741815B2 (en) Cell stack and fuel cell
JP5192723B2 (en) Horizontally-striped fuel cell and fuel cell
JP5192702B2 (en) Horizontally-striped fuel cell, cell stack, and fuel cell
JP5241663B2 (en) Solid electrolyte fuel cell stack, bundle and fuel cell
JP5444022B2 (en) Horizontally-striped solid oxide fuel cell stack and fuel cell
JP5417543B1 (en) Horizontal stripe fuel cell
JP2004179071A (en) Cell for fuel cell, and fuel cell
JP5437169B2 (en) Horizontally Striped Solid Oxide Fuel Cell Stack, Horizontally Striped Solid Oxide Fuel Cell Bundle, and Fuel Cell
JP4851692B2 (en) Solid electrolyte fuel cell stack, bundle and fuel cell
JP5132879B2 (en) Horizontal stripe fuel cell and fuel cell
JP2005093241A (en) Solid oxide fuel cell
JP2007250368A (en) Lateral stripe type fuel cell and fuel cell
JP5179131B2 (en) Horizontal stripe fuel cell and fuel cell
JP4465175B2 (en) Solid electrolyte fuel cell
JP5449076B2 (en) Fuel cell
JP5437152B2 (en) Horizontally-striped solid oxide fuel cell stack and fuel cell
JP5179153B2 (en) Horizontally-striped fuel cell, cell stack, and fuel cell
JP5352285B2 (en) Horizontally-striped solid oxide fuel cell stack and fuel cell
JP5198108B2 (en) Horizontally-striped solid oxide fuel cell stack and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5192723

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160208

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350