JP2008282192A - Pressure reducing valve - Google Patents

Pressure reducing valve Download PDF

Info

Publication number
JP2008282192A
JP2008282192A JP2007125383A JP2007125383A JP2008282192A JP 2008282192 A JP2008282192 A JP 2008282192A JP 2007125383 A JP2007125383 A JP 2007125383A JP 2007125383 A JP2007125383 A JP 2007125383A JP 2008282192 A JP2008282192 A JP 2008282192A
Authority
JP
Japan
Prior art keywords
pressure
valve
fluid
valve body
pressure reducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007125383A
Other languages
Japanese (ja)
Inventor
Shigeru Takagi
茂 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daisen Co Ltd
Original Assignee
Daisen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daisen Co Ltd filed Critical Daisen Co Ltd
Priority to JP2007125383A priority Critical patent/JP2008282192A/en
Publication of JP2008282192A publication Critical patent/JP2008282192A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Safety Valves (AREA)
  • Control Of Fluid Pressure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pressure reducing valve for setting a variable range of a secondary side fluid pressure due to the pressure fluctuation of fluid supplied to the primary side within a desired range. <P>SOLUTION: When a primary pressure is defined as P<SB>1</SB>, and a secondary pressure is defined as P<SB>2</SB>, and the area receiving a pressure from fluid in a pressure chamber 51 by a piston 35 is defined as A<SB>1</SB>, and the area receiving a pressure from fluid in a communication path 16 by a valve body 26 is defined as A<SB>2</SB>, and the area receiving a pressure from fluid in a primary side fluid passage by the valve body 26 is defined as A<SB>3</SB>, and the area of an external pressure reception face 34 of the valve body 26 is defined as A<SB>4</SB>, and the spring load of a load spring 45 is defined as F<SB>1</SB>, and a spring load of a valve spring 33 is defined as F<SB>2</SB>, following formula is established. In the formula, P<SB>1</SB>×(A<SB>3</SB>-A<SB>4</SB>) affects the secondary pressure P<SB>2</SB>depending on the primary pressure P<SB>1</SB>. Therefore, it is possible to obtain desired secondary pressure characteristics by controlling the factor. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、1次側に供給された流体の圧力変動に起因する2次側の流体圧力の変動域を所望の範囲に設定することができる、減圧弁に関するものである。   The present invention relates to a pressure reducing valve that can set the fluctuation range of the fluid pressure on the secondary side caused by the pressure fluctuation of the fluid supplied to the primary side to a desired range.

特開2003−104495号公報には、ガスボンベを有する一次側の圧力の変動が飲料容器を含む二次側に影響を与えることのないコンパクトな減圧弁が提案されている(同公報0011段落参照)。この減圧弁は、二次側回路の圧力を所定の圧力に維持するために、一次側回路から供給されるガスの量を制御する減圧弁であって、その一次側シリンダ(22)には、その内外を貫通する開放孔(36)が形成され、弁体(28)はこの開放孔(36)の内部に摺動可能に挿入され、この弁体(28)が一次側シリンダ(22)の外部雰囲気に接触するように構成されている(同公報0012段落参照)。   Japanese Patent Application Laid-Open No. 2003-104495 proposes a compact pressure reducing valve in which fluctuations in the pressure on the primary side having a gas cylinder do not affect the secondary side including the beverage container (see paragraph 0011 of the same publication). . This pressure reducing valve is a pressure reducing valve that controls the amount of gas supplied from the primary side circuit in order to maintain the pressure of the secondary side circuit at a predetermined pressure. The primary side cylinder (22) includes An open hole (36) penetrating the inside and the outside is formed, and the valve body (28) is slidably inserted into the open hole (36), and the valve body (28) is inserted into the primary side cylinder (22). It is configured to come into contact with an external atmosphere (see paragraph 0012 of the same publication).

この減圧弁によれば、ガス供給源と連通している一次側シリンダ(22)の内圧が弁体(28)だけでなく外部雰囲気側にも作用するため、弁体(28)に作用する一次側シリンダ(22)の内圧と、外部雰囲気に作用する差内圧とが相互に相殺されるから、ガス供給源から一次側シリンダ(22)までの一次側回路の圧力変動が二次側に影響することがなく、ディスペンサ(1,50)は、常に、安定した条件の下で飲料容器(2)に収容された飲料を抽出することができる(同公報0013段落参照)。   According to this pressure reducing valve, since the internal pressure of the primary cylinder (22) communicating with the gas supply source acts not only on the valve body (28) but also on the external atmosphere side, the primary acting on the valve body (28). Since the internal pressure of the side cylinder (22) and the differential internal pressure acting on the external atmosphere cancel each other, the pressure fluctuation of the primary side circuit from the gas supply source to the primary side cylinder (22) affects the secondary side. In other words, the dispenser (1, 50) can always extract the beverage contained in the beverage container (2) under stable conditions (see paragraph 0013 of the publication).

そして、上記ディスペンサ(1,50)の減圧弁(20,66)において、開放孔(36)に挿入される弁体(28)の部分(30)が開放孔(36)内におけるその横断面積が連通路(26)の横断面積と同値になるように形成することで、弁体(28)に作用する一次側シリンダ(22)の内圧と、外部雰囲気側に作用する差内圧とを確実に相殺させることができる(同公報0014段落参照)。したがって、これら二つの横断面積に差異があるときには、前述の内圧と差内圧とは相殺されず、一次側の圧力変動が二次側に影響すると理解される。
特開2003−104495号公報
And in the pressure-reducing valve (20, 66) of the dispenser (1, 50), the portion (30) of the valve body (28) inserted into the opening hole (36) has a transverse area in the opening hole (36). By forming it so as to have the same value as the cross-sectional area of the communication passage (26), the internal pressure of the primary cylinder (22) acting on the valve body (28) and the differential internal pressure acting on the external atmosphere side can be surely offset. (See paragraph 0014 of the same publication). Therefore, when there is a difference between these two cross-sectional areas, it is understood that the aforementioned internal pressure and the differential internal pressure are not canceled out, and that the pressure fluctuation on the primary side affects the secondary side.
JP 2003-104495 A

本願の出願人は、流体通路の1次側に供給された流体の圧力が弁体を弁座に密着させようとする力と、流体通路の1次側に供給された流体の圧力が弁体を弁座から離隔させようとする力とが互いに打ち消し合うように、弁体に流体通路の外部の圧力が作用する外圧受圧面を形成したことを特徴とする、圧力制御弁を提案した(特願2005−319520号)。しかしながら、圧力制御弁の使用目的によっては、これらの2方向の力が厳密に打ち消される必要がない場合がある。例えば、この圧力制御弁を、エア工具に圧縮空気を供給するために、空気圧縮機のエアタンクの吐出口に取り付けられる、減圧弁として使用する場合である。このような減圧弁では、1次側の流体圧力が変動したとき、2次側の流体圧力の変動域を所定の範囲に収めれば、エア工具の駆動に支障を生じない場合が多い。   The applicant of the present application states that the pressure of the fluid supplied to the primary side of the fluid passage causes the valve body to be in close contact with the valve seat, and the pressure of the fluid supplied to the primary side of the fluid passage is the valve body. We proposed a pressure control valve characterized in that an external pressure receiving surface on which the pressure outside the fluid passage acts was formed on the valve body so that the forces that would cause the valve to separate from the valve seat would cancel each other out. Application No. 2005-319520). However, depending on the intended use of the pressure control valve, these two forces may not need to be strictly canceled out. For example, this pressure control valve is used as a pressure reducing valve attached to the discharge port of an air tank of an air compressor in order to supply compressed air to an air tool. In such a pressure reducing valve, when the fluid pressure on the primary side fluctuates, if the fluctuation range of the fluid pressure on the secondary side falls within a predetermined range, there is often no problem in driving the air tool.

本発明の目的は、1次側に供給された流体の圧力変動に起因する2次側の流体圧力の変動域を所望の範囲に設定することができる減圧弁を提供することにある。   An object of the present invention is to provide a pressure reducing valve that can set a fluctuation range of a secondary-side fluid pressure caused by pressure fluctuation of a fluid supplied to a primary side within a desired range.

本発明の減圧弁は、1次側に供給された流体を2次側に導く流体通路と、前記流体通路に形成された弁座と、前記流体通路の1次側に配置され、かつ、前記弁座と協働して前記流体通路の断面積の大きさを規制する、弁体と、前記弁体と前記弁座のシート圧力を規制するバルブスプリングと、前記流体通路の2次側に配置され、かつ、前記流体通路の2次側の圧力変動に応じて前記弁体を前記弁座に関して変位させる、弁体駆動部材と、前記弁体駆動部材を前記弁体に向けて付勢する荷重スプリングとを有し、前記流体通路の1次側に供給された流体を減圧して2次側に吐出する、減圧弁において、前記流体通路の1次側に供給された流体の圧力によって前記弁体が前記弁座に押し付けられる力を減殺するように、前記弁体に前記流体通路の外部の圧力が作用する外圧受圧面を形成し、これにより、前記1次側に供給された流体の圧力変動に起因する前記2次側の流体圧力の変動域を所定の範囲に規制したことを特徴とする。   The pressure reducing valve of the present invention is disposed on the primary side of the fluid passage, the fluid passage for guiding the fluid supplied to the primary side to the secondary side, the valve seat formed in the fluid passage, and A valve body that regulates the size of the cross-sectional area of the fluid passage in cooperation with the valve seat, a valve spring that regulates the seat pressure of the valve body and the valve seat, and a secondary side of the fluid passage And a valve body driving member that displaces the valve body with respect to the valve seat in accordance with a pressure fluctuation on the secondary side of the fluid passage, and a load that biases the valve body driving member toward the valve body A pressure reducing valve that decompresses the fluid supplied to the primary side of the fluid passage and discharges the fluid to the secondary side, wherein the valve is controlled by the pressure of the fluid supplied to the primary side of the fluid passage. In order to reduce the force with which the body is pressed against the valve seat, Forming an external pressure receiving surface on which the pressure of the portion acts, thereby restricting the fluctuation range of the fluid pressure on the secondary side caused by the pressure fluctuation of the fluid supplied to the primary side to a predetermined range. Features.

本発明の減圧弁は、また、前記1次側に供給された流体の圧力変動に起因する前記2次側の流体圧力の変動域を、前記弁体が前記弁座に密着したときに当該密着部の外縁によって画成される面積と前記外圧受圧面の面積との差によって規制することを特徴とする。   The pressure reducing valve according to the present invention is further configured so that when the valve body comes into close contact with the valve seat, the fluctuation range of the secondary fluid pressure caused by the pressure fluctuation of the fluid supplied to the primary side. The area is defined by the difference between the area defined by the outer edge of the portion and the area of the external pressure receiving surface.

本発明の減圧弁は、更に、前記荷重スプリングのバネ荷重を変化させる2次圧設定機構を有することを特徴とする。   The pressure reducing valve of the present invention further includes a secondary pressure setting mechanism for changing a spring load of the load spring.

本発明の減圧弁は、更に、前記荷重スプリングのバネ荷重を変化させる2次圧設定機構を有することを特徴とする。   The pressure reducing valve of the present invention further includes a secondary pressure setting mechanism for changing a spring load of the load spring.

本発明の減圧弁は、1次側に供給された流体の圧力変動に起因する2次側の流体圧力の変動域を所定の範囲に規制することができるから、汎用性の高い減圧弁を提供することができる。   The pressure reducing valve of the present invention provides a highly versatile pressure reducing valve because the fluctuation range of the fluid pressure on the secondary side caused by the pressure fluctuation of the fluid supplied to the primary side can be regulated within a predetermined range. can do.

本発明の減圧弁は、閉弁時に弁体と弁座の密着部の外縁によって画成される面積と弁体の外圧受圧面の面積との差によって、1次側の流体圧力が弁体を弁座に関して相対変位させようとする力を制御するから、弁体が1次側の流体圧力によって受ける開弁方向又は閉弁方向の力を正確に設定することができる。よって、減圧弁の2次側の流体圧力の変動域を所望の範囲に正確に設定することができる。   According to the pressure reducing valve of the present invention, when the valve is closed, the fluid pressure on the primary side causes the valve body to be affected by the difference between the area defined by the outer edge of the contact portion between the valve body and the valve seat and the area of the external pressure receiving surface of the valve body. Since the force to be relatively displaced with respect to the valve seat is controlled, the force in the valve opening direction or the valve closing direction that the valve body receives by the fluid pressure on the primary side can be set accurately. Therefore, the fluctuation range of the fluid pressure on the secondary side of the pressure reducing valve can be accurately set within a desired range.

また、減圧弁の2次側の流体圧力は、弁体が1次側の流体圧力によって受ける開弁方向又は閉弁方向の力と、荷重スプリング及びバルブスプリングのバネ荷重とによって定めることができるから、これらの力のうち、弁体が1次側の流体圧力によって受ける力を正確に設定することができれば、荷重スプリング及びバルブスプリングのバネ荷重の設定が容易になる。これにより、減圧弁の2次側の流体圧力の変動域を正確にかつ容易に設定することができる。   Further, the fluid pressure on the secondary side of the pressure reducing valve can be determined by the force in the valve opening direction or the valve closing direction received by the valve body by the fluid pressure on the primary side, and the spring load of the load spring and the valve spring. Of these forces, if the force that the valve body receives due to the fluid pressure on the primary side can be set accurately, setting of the spring load of the load spring and the valve spring becomes easy. Thereby, the fluctuation range of the fluid pressure on the secondary side of the pressure reducing valve can be set accurately and easily.

更に、本発明の減圧弁では、弁体と弁体駆動部材とを別体とし、弁体と弁体駆動部材とを互いに別個に変位可能に構成することができる。したがって、2次側の流体圧力が予め設定された2次圧の変動域よりも高圧になったときに、弁体駆動部材が弁体から離隔して単独で変位し、弁体駆動部材に形成されたリリーフ通路が開放して、2次側の流体通路を大気中に連通させるように構成すれば、減圧弁を使用する上での安全性を高めることができる。   Furthermore, in the pressure reducing valve of the present invention, the valve body and the valve body driving member can be separated, and the valve body and the valve body driving member can be configured to be displaceable separately from each other. Therefore, when the fluid pressure on the secondary side becomes higher than the preset secondary pressure fluctuation range, the valve body drive member is separated from the valve body and displaced alone to form the valve body drive member. If the relief passage formed is opened and the secondary fluid passage is communicated with the atmosphere, the safety in using the pressure reducing valve can be improved.

本発明のその他の特徴は、図を参照して記述された、以下の実施例の説明から明らかになる。   Other features of the present invention will become apparent from the following description of embodiments, described with reference to the drawings.

図1乃至4は、本発明の第一実施例の直動型減圧弁1を示す。   1 to 4 show a direct acting pressure reducing valve 1 according to a first embodiment of the present invention.

図1及び2に示すように、減圧弁1の器体は、基底部材2、シリンダ部材3、弁体支持部材4及び荷重スプリング用ハウジング5を基本的な構成部材として組立てられている。   As shown in FIGS. 1 and 2, the body of the pressure reducing valve 1 is assembled with a base member 2, a cylinder member 3, a valve body support member 4 and a load spring housing 5 as basic constituent members.

基底部材2の中心部には軸線方向に延在する貫通孔6が形成され、基底部材2の側面には、流体供給源(図示せず。)に連結される1次側ポート7と、流体機器等(図示せず。)に連結される2次側ポート8が開口する。1次側ポート7は貫通孔6に連通し、2次側ポート8は、基底部材2の上面に形成された凹部9の底面に開口部を有する縦方向穴10に連通する。   A through hole 6 extending in the axial direction is formed in the center of the base member 2, and a primary port 7 connected to a fluid supply source (not shown) is formed on the side surface of the base member 2, and the fluid A secondary port 8 connected to a device or the like (not shown) opens. The primary side port 7 communicates with the through hole 6, and the secondary side port 8 communicates with a vertical hole 10 having an opening at the bottom surface of the recess 9 formed on the upper surface of the base member 2.

基底部材2の下面には、貫通孔6に螺合した弁体支持部材4が装着され、弁体支持部材4は貫通孔6の下端の開口部を閉塞する。弁体支持部材4の軸心に沿って弁体挿入孔11が形成され、弁体挿入孔11の軸心と貫通孔6の軸心とは一致する。弁体支持部材4は貫通孔6に螺合しているから、弁体支持部材4を回転させることにより、基底部材2に関し弁体支持部材4を軸心方向に相対的に変位させることができる。   A valve body support member 4 screwed into the through hole 6 is mounted on the lower surface of the base member 2, and the valve body support member 4 closes the opening at the lower end of the through hole 6. A valve element insertion hole 11 is formed along the axis of the valve element support member 4, and the axis of the valve element insertion hole 11 coincides with the axis of the through hole 6. Since the valve body support member 4 is screwed into the through hole 6, the valve body support member 4 can be relatively displaced in the axial direction with respect to the base member 2 by rotating the valve body support member 4. .

基底部材2の上面に形成された凹部9にはシリンダ部材3が嵌合する。このとき、シリンダ部材14の底部の中央部に形成された突起部12は、貫通孔6の上端の開口部に嵌合する。基底部材2とシリンダ部材3の間にはシールリング13、14が介装され、基底部材2とシリンダ部材3の間隙は気密状態に保持される。シリンダ部材3の内面にはシリンダ部15が形成されている。シリンダ部15の軸心は貫通孔6の軸心と一致する。突起部12の軸心に沿って連通孔16が形成され、連通孔16は貫通孔6とシリンダ部15の間に延在する。連通孔16の軸心は貫通孔6の軸心と一致する。シリンダ部15の底部には貫通路17が形成され、貫通路17は縦方向穴10に連通する。   The cylinder member 3 is fitted in the recess 9 formed on the upper surface of the base member 2. At this time, the projection 12 formed at the center of the bottom of the cylinder member 14 is fitted into the opening at the upper end of the through hole 6. Seal rings 13 and 14 are interposed between the base member 2 and the cylinder member 3, and the gap between the base member 2 and the cylinder member 3 is maintained in an airtight state. A cylinder portion 15 is formed on the inner surface of the cylinder member 3. The axis of the cylinder portion 15 coincides with the axis of the through hole 6. A communication hole 16 is formed along the axial center of the protrusion 12, and the communication hole 16 extends between the through hole 6 and the cylinder portion 15. The axial center of the communication hole 16 coincides with the axial center of the through hole 6. A through passage 17 is formed at the bottom of the cylinder portion 15, and the through passage 17 communicates with the vertical hole 10.

基底部材2の上面には荷重スプリング用ハウジング5が複数本のボルト18、19によって固定される。ハウジング5は、その下面に開口部20を有する中空体で構成される。ハウジング5の開口部20の周縁部にはフランジ部21が形成される。ハウジング5をボルト18、19で基底部材2に固定すると、フランジ部21の下面がシリンダ部材3の上面に係合し、これによってシリンダ部材3は基底部材2の凹部9の内部に固定される。ハウジング5の天井部21の中心部にはネジ孔22が形成される。ネジ孔22の軸線はハウジング5の軸線に一致すると共に連通孔16の軸線及び貫通孔6の軸線に一致する。ハウジング5の側面部23には、ハウジング5の内部空間24を大気中に連通させる大気連通孔25が形成される。   A load spring housing 5 is fixed to the upper surface of the base member 2 by a plurality of bolts 18 and 19. The housing 5 is configured by a hollow body having an opening 20 on the lower surface thereof. A flange portion 21 is formed on the peripheral edge portion of the opening 20 of the housing 5. When the housing 5 is fixed to the base member 2 with the bolts 18 and 19, the lower surface of the flange portion 21 is engaged with the upper surface of the cylinder member 3, whereby the cylinder member 3 is fixed inside the recess 9 of the base member 2. A screw hole 22 is formed at the center of the ceiling 21 of the housing 5. The axis of the screw hole 22 coincides with the axis of the housing 5 and coincides with the axis of the communication hole 16 and the axis of the through hole 6. An air communication hole 25 that allows the internal space 24 of the housing 5 to communicate with the atmosphere is formed in the side surface portion 23 of the housing 5.

図3に示すように、貫通孔6に弁体26を配置する。弁体26は弁頭部27と弁支持部28とによって構成され、弁頭部27は弁支持部28に固定される。弁頭部27は、減圧弁の使用目的に適合する材料によって構成され、シリンダ部材3の突起部12の下面に形成された弁座29に着座することができる。弁座29は、突起部12の下面から貫通路6の内部に向かって突出形成され、連通路16の貫通孔6の側の開口部を囲繞して、環状に延在する。弁頭部27の上面の中央部に凹部30が形成され、弁頭部27は凹部30の外周部で弁座29に着座する。弁体26の弁支持部28は貫通孔6の軸線に沿って延在する。弁支持部28の下方部位に摺動部31が形成され、摺動部31は弁体支持部材4の弁体挿入孔11に摺動自在に嵌合される。摺動部31の周面にはシールリング32が装着され、シールリング32によって、摺動部31と弁体挿入孔11の間隙は気密状態を保持する。弁体26の弁支持部28と弁体支持部材4の間にバルブスプリング33が介装され、弁体26は、バルブスプリング33の弾発力によって、弁頭部27が弁座29に着座する方向に常時付勢される。弁支持部28の摺動部31の下端面34は弁体挿入孔11から弁体支持部材4の外部に露出し、大気圧を受ける外圧受圧面を構成する。   As shown in FIG. 3, the valve body 26 is disposed in the through hole 6. The valve body 26 includes a valve head 27 and a valve support 28, and the valve head 27 is fixed to the valve support 28. The valve head 27 is made of a material suitable for the purpose of use of the pressure reducing valve, and can be seated on a valve seat 29 formed on the lower surface of the protrusion 12 of the cylinder member 3. The valve seat 29 is formed so as to protrude from the lower surface of the projection 12 toward the inside of the through passage 6, and extends in an annular shape so as to surround the opening on the through hole 6 side of the communication passage 16. A recess 30 is formed at the center of the upper surface of the valve head 27, and the valve head 27 is seated on the valve seat 29 at the outer periphery of the recess 30. The valve support portion 28 of the valve body 26 extends along the axis of the through hole 6. A sliding portion 31 is formed below the valve support portion 28, and the sliding portion 31 is slidably fitted into the valve body insertion hole 11 of the valve body support member 4. A seal ring 32 is attached to the peripheral surface of the sliding portion 31, and the gap between the sliding portion 31 and the valve body insertion hole 11 is kept airtight by the seal ring 32. A valve spring 33 is interposed between the valve support portion 28 of the valve body 26 and the valve body support member 4, and the valve head 27 is seated on the valve seat 29 by the elastic force of the valve spring 33. Always biased in the direction. A lower end surface 34 of the sliding portion 31 of the valve support portion 28 is exposed to the outside of the valve body support member 4 from the valve body insertion hole 11 and constitutes an external pressure receiving surface that receives atmospheric pressure.

図1及び3に示すように、シリンダ部材3のシリンダ部15にはピストン35が摺動自在に嵌合する。ピストン35の周面にはシールリング36が装着され、シールリング36によって、ピストン35の周面とシリンダ部15の間隙は気密状態に保持される。ピストン35の前面37の中央部には突出部38が形成され、突出部38は、シリンダ部材3の連通孔16を通って、弁体26の弁頭部27まで延在する。ピストン35にはリリーフ通路39が形成される。リリーフ通路39はピストン35の軸心に沿って延在し、突出部38の先端面40とピストン35の背面41とに開口する。図1に示すように、ハウジング5の天井部21に形成されたネジ孔22にはボルト42が螺合し、ボルト42の先端部はハウジング5に収容されたバネ受け43の中央部に当接し、バネ受け43を支持する。ピストン35の背面41に装着されたワッシャ44とバネ受け43の間には、荷重スプリング45が介装され、荷重スプリング45の弾発力によってピストン35は弁体26の方向に常時付勢される。   As shown in FIGS. 1 and 3, a piston 35 is slidably fitted into the cylinder portion 15 of the cylinder member 3. A seal ring 36 is attached to the peripheral surface of the piston 35, and the gap between the peripheral surface of the piston 35 and the cylinder portion 15 is maintained in an airtight state by the seal ring 36. A protrusion 38 is formed at the center of the front surface 37 of the piston 35, and the protrusion 38 extends to the valve head 27 of the valve body 26 through the communication hole 16 of the cylinder member 3. A relief passage 39 is formed in the piston 35. The relief passage 39 extends along the axial center of the piston 35 and opens to the front end surface 40 of the protrusion 38 and the back surface 41 of the piston 35. As shown in FIG. 1, a bolt 42 is screwed into a screw hole 22 formed in the ceiling portion 21 of the housing 5, and a tip end portion of the bolt 42 abuts a central portion of a spring receiver 43 accommodated in the housing 5. The spring receiver 43 is supported. A load spring 45 is interposed between the washer 44 mounted on the back surface 41 of the piston 35 and the spring receiver 43, and the piston 35 is always urged in the direction of the valve body 26 by the elastic force of the load spring 45. .

図1、2及び3に示すように、ハウジング5の天井部21の外面には、減圧弁1で利用可能な設定圧が記載された圧力指示板46が固定ネジ47で固定されている。図4(a)の圧力指示板46には0.0乃至1.0MPaの範囲の設定圧が0.1MPaごとに目盛られている。また、図4(b)の圧力指示板46には0.0乃至2.5MPaの範囲の設定圧が0.25MPaごとに目盛られている。圧力指示板46の上部には圧力設定つまみ47が配置され、圧力設定つまみ47は固定ネジ49によってボルト42に固定される。例えば、図4(a)の圧力指示板46が装着された減圧弁1において、圧力設定つまみ47を回転させ、圧力設定つまみ48の指示線50を圧力指示板46の0.4MPaに合わせると、圧力設定つまみ47の回転に伴ってボルト42が回転し、バネ受け43がハウジング5の内部で上下動し、荷重スプリング45の弾発力を変化させる。これにより、減圧弁1の設定圧は0.4MPaとなり、2次側ポート8から流出する流体の圧力は0.4MPaとなる。圧力指示板46に目盛られた他の圧力値についても同様である。圧力指示板46に記載された圧力値は2次側の目安値であり、2次側の流体圧力はこの目安値を含む変動域内で変動することができる。2次側の流体圧力の変動域は減圧弁毎に設定される。   As shown in FIGS. 1, 2, and 3, a pressure indicator plate 46 on which a set pressure usable by the pressure reducing valve 1 is described is fixed to the outer surface of the ceiling portion 21 of the housing 5 with a fixing screw 47. A set pressure in the range of 0.0 to 1.0 MPa is graduated every 0.1 MPa on the pressure indicator plate 46 in FIG. Further, the pressure indicating plate 46 in FIG. 4B is graduated with a set pressure in the range of 0.0 to 2.5 MPa every 0.25 MPa. A pressure setting knob 47 is disposed above the pressure indicating plate 46, and the pressure setting knob 47 is fixed to the bolt 42 by a fixing screw 49. For example, in the pressure reducing valve 1 equipped with the pressure indicator plate 46 of FIG. 4A, when the pressure setting knob 47 is rotated and the indication line 50 of the pressure setting knob 48 is adjusted to 0.4 MPa of the pressure indicator plate 46, As the pressure setting knob 47 rotates, the bolt 42 rotates, and the spring receiver 43 moves up and down inside the housing 5 to change the resilience of the load spring 45. Thereby, the set pressure of the pressure reducing valve 1 becomes 0.4 MPa, and the pressure of the fluid flowing out from the secondary side port 8 becomes 0.4 MPa. The same applies to other pressure values calibrated on the pressure indicating plate 46. The pressure value described on the pressure indicator plate 46 is a secondary-side reference value, and the secondary-side fluid pressure can fluctuate within a fluctuation range including this reference value. The fluctuation range of the fluid pressure on the secondary side is set for each pressure reducing valve.

以下、図4(a)の圧力指示板46が装着された減圧弁1において、圧力設定つまみ48の指示線50を圧力指示板46の0.4MPaに合わせた場合について説明する。この状態において、減圧弁1のピストン35は荷重スプリング45の弾発力によって弁体26の方向に変位し、ピストン35の突出部38を弁体26に係合させている。すなわち、ピストン35の突出部38の先端面40は、弁体26の弁頭部27に形成された凹部30の底面に密着し、弁体26をバルブスプリング33の弾発力に抗して図3中の下方へ押し下げている。この結果、弁頭部27は弁座29から離隔し、1次側ポート7は連通孔16を介して2次側ポート8に連通すると共に、リリーフ通路39は弁頭部27によって閉鎖される。ここで、1次側ポート7を空気圧縮機等の流体供給源(図示せず。)に連結し、2次側ポート8をエア工具等の流体機器(図示せず。)に連結して、この流体機器を作動させると、1次側ポート7に流入した流体は、弁頭部27と弁座29の間隙を通って連通路16に流入し、次いで、ピストン35の前面37とシリンダ部15によって画成される圧力室51に流入する。圧力室51に流入した流体は、貫通路17及び縦方向穴10を通って2次側ポート8に供給され、2次側ポート8に連結された流体機器で使用される。   Hereinafter, a case where the indicating line 50 of the pressure setting knob 48 is set to 0.4 MPa of the pressure indicating plate 46 in the pressure reducing valve 1 equipped with the pressure indicating plate 46 of FIG. In this state, the piston 35 of the pressure reducing valve 1 is displaced in the direction of the valve body 26 by the elastic force of the load spring 45, and the protruding portion 38 of the piston 35 is engaged with the valve body 26. That is, the front end surface 40 of the protruding portion 38 of the piston 35 is in close contact with the bottom surface of the recess 30 formed in the valve head 27 of the valve body 26, and the valve body 26 is resisted against the elastic force of the valve spring 33. 3 is pushed downward. As a result, the valve head 27 is separated from the valve seat 29, the primary side port 7 communicates with the secondary side port 8 through the communication hole 16, and the relief passage 39 is closed by the valve head 27. Here, the primary side port 7 is connected to a fluid supply source (not shown) such as an air compressor, and the secondary side port 8 is connected to a fluid device (not shown) such as an air tool, When this fluid device is operated, the fluid that has flowed into the primary port 7 flows into the communication passage 16 through the gap between the valve head 27 and the valve seat 29, and then the front surface 37 of the piston 35 and the cylinder portion 15. Into the pressure chamber 51 defined by The fluid that has flowed into the pressure chamber 51 is supplied to the secondary port 8 through the through passage 17 and the vertical hole 10, and is used in the fluid device connected to the secondary port 8.

このような流体機器の使用中に、又は、流体機器の停止及び再起動等により、圧力室51の流体圧力が設定圧である0.4MPaになると、ピストン35は荷重スプリング45の弾発力に抗して上方へ変位し、図1又は3に示すように、弁頭部27が弁座29に着座する。これによって、連通路16は閉鎖され、圧力室51の流体圧力の上昇は停止する。また、2次側ポート8の流体圧力が低下すると、ピストン35は荷重スプリング45の弾発力によって弁体26の方向に変位し、ピストン35の突出部38が弁頭部27を弁座29から離隔させ、連通路16を1次側ポート7に連通させる。これにより、圧力室51に流体が流入し、圧力室51の流体圧力が設定圧まで上昇する。この動作を繰り返すことにより、減圧弁1は、弁座29から2次側ポート8まで延在する2次側流体通路の流体圧力を現在の設定圧である0.4MPaを含む変動域内に保持しようとする。   When the fluid pressure in the pressure chamber 51 becomes 0.4 MPa, which is the set pressure, during use of such a fluid device or due to the stop and restart of the fluid device, the piston 35 is brought into the elasticity of the load spring 45. Accordingly, the valve head 27 is seated on the valve seat 29 as shown in FIG. As a result, the communication passage 16 is closed, and the increase of the fluid pressure in the pressure chamber 51 is stopped. When the fluid pressure at the secondary port 8 decreases, the piston 35 is displaced in the direction of the valve body 26 by the elastic force of the load spring 45, and the protruding portion 38 of the piston 35 moves the valve head 27 from the valve seat 29. The communication path 16 is communicated with the primary side port 7. Thereby, the fluid flows into the pressure chamber 51, and the fluid pressure in the pressure chamber 51 rises to the set pressure. By repeating this operation, the pressure reducing valve 1 keeps the fluid pressure in the secondary fluid passage extending from the valve seat 29 to the secondary port 8 within a fluctuation range including 0.4 MPa that is the current set pressure. And

なお、弁体26の弁頭部27が弁座29に着座した状態で、圧力室51の流体圧力が予め設定された変動域よりも高圧になったときには、ピストン35が荷重スプリング45の弾発力に抗して後退し、ピストン35の突出部38の先端面40を弁頭部27から離隔させる。これにより、リリーフ通路39が開放し、圧力室51を大気連通孔25に連通させ、圧力室51の流体圧力を変動域内まで低下させる。   When the fluid pressure in the pressure chamber 51 becomes higher than a preset fluctuation range with the valve head 27 of the valve body 26 seated on the valve seat 29, the piston 35 is elastically released from the load spring 45. Retreating against the force, the front end surface 40 of the protrusion 38 of the piston 35 is separated from the valve head 27. As a result, the relief passage 39 is opened, the pressure chamber 51 is communicated with the atmospheric communication hole 25, and the fluid pressure in the pressure chamber 51 is lowered to the fluctuation range.

弁座29から2次側ポート8まで延在する2次側流体通路の流体圧力(以下、2次圧という。)は、1次側ポート7から弁座29まで延在する1次側流体通路の流体圧力(以下、1次圧という。)の変動によって変化する。すなわち、1次圧をP、2次圧をP、ピストン35が圧力室51内の流体から受ける圧力の受圧面積をA、弁体26が連通路16内の流体から受ける圧力の受圧面積をA、弁体26が1次側流体通路内の流体から受ける圧力の受圧面積をA、弁体26の下端面(外圧受圧面)34の面積をA、荷重スプリング45のバネ荷重をF、バルブスプリング33のバネ荷重をFとする。また、図3に示すように、ピストン35の直径をD、連通路16の直径をD、ピストン35の突出部38の外周の直径をD、弁体26の弁頭部27が弁座29に密着したときの密着部の外縁の径をD、弁体26の下端面(外圧受圧面)34の直径をDとする。 The fluid pressure in the secondary fluid passage extending from the valve seat 29 to the secondary port 8 (hereinafter referred to as secondary pressure) is the primary fluid passage extending from the primary port 7 to the valve seat 29. The fluid pressure (hereinafter referred to as primary pressure) varies. That, P 1 the primary pressure, the secondary pressure P 2, the pressure receiving of receiving the pressure receiving area of the pressure piston 35 receives from the fluid in the pressure chamber 51 A 1, the valve body 26 from the fluid in the communication passage 16 The area is A 2 , the pressure receiving area of the pressure received by the valve body 26 from the fluid in the primary fluid passage is A 3 , the area of the lower end surface (external pressure receiving surface) 34 of the valve body 26 is A 4 , and the spring of the load spring 45 The load is F 1 and the spring load of the valve spring 33 is F 2 . 3, the diameter of the piston 35 is D 1 , the diameter of the communication passage 16 is D 2 , the diameter of the outer periphery of the protruding portion 38 of the piston 35 is D 3 , and the valve head 27 of the valve body 26 is The diameter of the outer edge of the contact portion when it is in close contact with the seat 29 is D 4 , and the diameter of the lower end surface (external pressure receiving surface) 34 of the valve body 26 is D 5 .

は次の数式で表される。

Figure 2008282192
A 1 is expressed by the following equation.
Figure 2008282192

は次の数式で表される。

Figure 2008282192
A 2 is represented by the following formula.
Figure 2008282192

は次の数式で表される。

Figure 2008282192
A 3 is expressed by the following equation.
Figure 2008282192

は次の数式で表される。

Figure 2008282192
A 4 is represented by the following formula.
Figure 2008282192

2次圧Pは次の数式で表される。

Figure 2008282192
Secondary pressure P 2 is expressed by the following equation.
Figure 2008282192

数式5から、2次圧Pが1次圧Pによって影響を受ける因子は、数式5中のP×(A−A)の項であることが解る。 From Equation 5, it can be seen that the factor that the secondary pressure P 2 is influenced by the primary pressure P 1 is a term of P 1 × (A 3 −A 4 ) in Equation 5.

すなわち、2次圧Pが1次圧Pから無関係に定まるためには、弁体26の弁頭部27が弁座29に密着したときの密着部の外縁の径をDと、弁体26の下端面(外圧受圧面)34の直径Dとを同値にすれば達成される。 That is, in order for the secondary pressure P 2 to be determined independently from the primary pressure P 1 , the diameter of the outer edge of the contact portion when the valve head 27 of the valve body 26 is in close contact with the valve seat 29 is set to D 4 , This is achieved by making the diameter D 5 of the lower end surface (external pressure receiving surface) 34 of the body 26 equal.

同様に、1次圧Pと、弁体26の弁頭部27が弁座29に密着したときの密着部の外縁の径をDと、弁体26の下端面(外圧受圧面)34の直径Dとにより、数式5に従って、1次圧Pが2次圧Pに与える影響を正確に制御し、所望の2次圧特性を有する減圧弁1を提供することができる。 Similarly, the diameter of the outer edge of the contact portion when the primary pressure P 1 and the valve head 27 of the valve body 26 are in close contact with the valve seat 29 is D 4, and the lower end surface (external pressure receiving surface) 34 of the valve body 26. the diameter D 5 of, according to equation 5, can be primary pressure P 1 is accurately control the effect on the secondary pressure P 2, provides a pressure reducing valve 1 having a desired secondary pressure characteristics.

なお、弁体支持部材4を基底部材2に関して回転させ、これによって、バルブスプリング33のバネ荷重を変化させることによって、弁体26と弁座29のシート圧力を設定することができる。   Note that the seat pressure of the valve body 26 and the valve seat 29 can be set by rotating the valve body support member 4 with respect to the base member 2 and thereby changing the spring load of the valve spring 33.

図5は、本発明の減圧弁の第2実施例を示す。この実施例の減圧弁100の特徴は、圧力設定つまみ52の形状を変更して、減圧弁100をより小型化すると共に、基底部材53にシリンダ部54を形成することにより、部品点数の減少を図ったことにある。圧力設定つまみ52の形状を変更したことにより、第1実施例の圧力指示板46を廃し、圧力指示板46に記載されていた目盛りは荷重スプリング用ハウジング55の外側面に記載される。その他の構成は、第1実施例の減圧弁1と同様であり、図5中、図1乃至4で使用された参照番号と同一の番号は、基本的に同一の機能を果たす構成要素を示す。   FIG. 5 shows a second embodiment of the pressure reducing valve of the present invention. The feature of the pressure reducing valve 100 of this embodiment is that the pressure setting knob 52 is changed in shape to reduce the size of the pressure reducing valve 100 and to form a cylinder portion 54 on the base member 53, thereby reducing the number of parts. It is in the plan. By changing the shape of the pressure setting knob 52, the pressure indicator plate 46 of the first embodiment is eliminated, and the scale described on the pressure indicator plate 46 is indicated on the outer surface of the load spring housing 55. Other configurations are the same as those of the pressure reducing valve 1 of the first embodiment. In FIG. 5, the same reference numerals as those used in FIGS. 1 to 4 indicate components that basically perform the same functions. .

図6及び7は、本発明の減圧弁の第3実施例を示す。この実施例の減圧弁200の特徴は、回転式の圧力設定つまみの代わりにカム56を利用した圧力設定レバー57で構成すると共に、第1実施例の基底部材2とシリンダ部材3と荷重スプリング用ハウジング5を一体化した器体部材58を用いた点にある。図中の参照番号59は、圧力設定レバー57の回転軸を示す。このような構成を採ることにより、部品点数の更なる減少を図ることができると共に、製品の組立効率が大幅に増加する。その他の構成は、第1実施例の減圧弁1と同様であり、図6及び図7中、図1乃至4で使用された参照番号と同一の番号は、基本的に同一の機能を果たす構成要素を示す。   6 and 7 show a third embodiment of the pressure reducing valve of the present invention. The pressure reducing valve 200 of this embodiment is characterized by a pressure setting lever 57 using a cam 56 instead of a rotary pressure setting knob, and for the base member 2, the cylinder member 3 and the load spring of the first embodiment. This is in the point of using a container member 58 in which the housing 5 is integrated. Reference numeral 59 in the figure indicates the rotation axis of the pressure setting lever 57. By adopting such a configuration, the number of parts can be further reduced, and the assembly efficiency of the product is greatly increased. The other configuration is the same as that of the pressure reducing valve 1 of the first embodiment. In FIGS. 6 and 7, the same reference numerals as those used in FIGS. 1 to 4 basically perform the same function. Indicates an element.

本発明の減圧弁の縦断面図である。(実施例1)It is a longitudinal cross-sectional view of the pressure-reduction valve of this invention. Example 1 図1の減圧弁の正面図である。(実施例1)It is a front view of the pressure reducing valve of FIG. Example 1 図1の要部を拡大した断面図である。(実施例1)It is sectional drawing to which the principal part of FIG. 1 was expanded. Example 1 図4(a)は図1の減圧弁の上面図であり、図4(b)は図1の減圧弁の変更例の上面図である。4A is a top view of the pressure reducing valve of FIG. 1, and FIG. 4B is a top view of a modification of the pressure reducing valve of FIG. 本発明の減圧弁の他の実施例の縦断面図である。(実施例2)It is a longitudinal cross-sectional view of the other Example of the pressure-reduction valve of this invention. (Example 2) 本発明の減圧弁の更に他の実施例の縦断面図である。(実施例3)It is a longitudinal cross-sectional view of further another embodiment of the pressure reducing valve of the present invention. (Example 3) 図6の減圧弁の作用を示す縦断面図である。(実施例3)It is a longitudinal cross-sectional view which shows the effect | action of the pressure reducing valve of FIG. (Example 3)

符号の説明Explanation of symbols

4 弁体支持部材
7 1次側ポート
8 2次側ポート
16 連通路
25 大気連通孔
26 弁体
27 弁頭部
28 弁支持部材
29 弁座
33 バルブスプリング
34 弁支持部材の下端面(外圧受圧面)
35 ピストン
39 リリーフ通路
42 ボルト
45 荷重スプリング
48 圧力設定つまみ
46 圧力指示板
51 圧力室
4 Valve body support member 7 Primary side port 8 Secondary side port 16 Communication path 25 Atmospheric communication hole 26 Valve body 27 Valve head 28 Valve support member 29 Valve seat 33 Valve spring 34 Lower end surface of valve support member (external pressure receiving surface) )
35 Piston 39 Relief passage 42 Bolt 45 Load spring 48 Pressure setting knob 46 Pressure indicating plate 51 Pressure chamber

Claims (4)

1次側に供給された流体を2次側に導く流体通路と、前記流体通路に形成された弁座と、前記流体通路の1次側に配置され、かつ、前記弁座と協働して前記流体通路の断面積の大きさを規制する、弁体と、前記弁体と前記弁座のシート圧力を規制するバルブスプリングと、前記流体通路の2次側に配置され、かつ、前記流体通路の2次側の圧力変動に応じて前記弁体を前記弁座に関して変位させる、弁体駆動部材と、前記弁体駆動部材を前記弁体に向けて付勢する荷重スプリングとを有し、前記流体通路の1次側に供給された流体を減圧して2次側に吐出する、減圧弁において、前記流体通路の1次側に供給された流体の圧力によって前記弁体が前記弁座に押し付けられる力を減殺するように、前記弁体に前記流体通路の外部の圧力が作用する外圧受圧面を形成し、これにより、前記1次側に供給された流体の圧力変動に起因する前記2次側の流体圧力の変動域を所定の範囲に規制したことを特徴とする、減圧弁。   A fluid passage for guiding the fluid supplied to the primary side to the secondary side; a valve seat formed in the fluid passage; and a primary side of the fluid passage, and in cooperation with the valve seat A valve body that regulates the size of a cross-sectional area of the fluid passage, a valve spring that regulates a seat pressure of the valve body and the valve seat, and a fluid passage disposed on the secondary side of the fluid passage. A valve body driving member that displaces the valve body with respect to the valve seat in accordance with a pressure fluctuation on the secondary side of the valve, and a load spring that biases the valve body driving member toward the valve body, In the pressure reducing valve, the pressure supplied to the primary side of the fluid passage is decompressed and discharged to the secondary side, and the valve body is pressed against the valve seat by the pressure of the fluid supplied to the primary side of the fluid passage. The pressure outside the fluid passage acts on the valve body so as to reduce the generated force. A pressure reducing valve characterized in that an external pressure receiving surface is formed, thereby restricting a fluctuation range of the fluid pressure on the secondary side caused by pressure fluctuation of the fluid supplied to the primary side to a predetermined range. . 請求項1に記載の減圧弁において、前記1次側に供給された流体の圧力変動に起因する前記2次側の流体圧力の変動域を、前記弁体が前記弁座に密着したときに当該密着部の外縁によって画成される面積と前記外圧受圧面の面積との差によって規制することを特徴とする、前記減圧弁。   2. The pressure reducing valve according to claim 1, wherein a fluctuation range of the fluid pressure on the secondary side caused by a pressure fluctuation of the fluid supplied to the primary side is determined when the valve body is in close contact with the valve seat. The pressure reducing valve is regulated by a difference between an area defined by an outer edge of the contact portion and an area of the external pressure receiving surface. 請求項1又は2に記載の減圧弁において、前記減圧弁は、更に、前記荷重スプリングのバネ荷重を変化させる2次圧設定機構を有することを特徴とする、前記減圧弁。   3. The pressure reducing valve according to claim 1, wherein the pressure reducing valve further includes a secondary pressure setting mechanism that changes a spring load of the load spring. 4. 請求項1乃至3のうちのいずれか一項に記載の減圧弁において、前記減圧弁は、更に、前記バルブスプリングのバネ荷重を変化させるシート圧力設定機構を有することを特徴とする、前記減圧弁。   The pressure reducing valve according to any one of claims 1 to 3, wherein the pressure reducing valve further includes a seat pressure setting mechanism for changing a spring load of the valve spring. .
JP2007125383A 2007-05-10 2007-05-10 Pressure reducing valve Pending JP2008282192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007125383A JP2008282192A (en) 2007-05-10 2007-05-10 Pressure reducing valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007125383A JP2008282192A (en) 2007-05-10 2007-05-10 Pressure reducing valve

Publications (1)

Publication Number Publication Date
JP2008282192A true JP2008282192A (en) 2008-11-20

Family

ID=40142959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007125383A Pending JP2008282192A (en) 2007-05-10 2007-05-10 Pressure reducing valve

Country Status (1)

Country Link
JP (1) JP2008282192A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015080216A1 (en) * 2013-11-28 2015-06-04 愛三工業 株式会社 Pressure regulating valve
CN106246972A (en) * 2016-10-11 2016-12-21 沈阳航天新光集团有限公司 Discharging type decompressor
CN110486511A (en) * 2019-09-06 2019-11-22 新乡航空工业(集团)有限公司 A kind of pressure regulator valve

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4410240Y1 (en) * 1964-10-26 1969-04-24

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4410240Y1 (en) * 1964-10-26 1969-04-24

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015080216A1 (en) * 2013-11-28 2015-06-04 愛三工業 株式会社 Pressure regulating valve
JP2015106187A (en) * 2013-11-28 2015-06-08 愛三工業株式会社 Pressure control valve
CN105765477A (en) * 2013-11-28 2016-07-13 爱三工业株式会社 Pressure regulating valve
CN106246972A (en) * 2016-10-11 2016-12-21 沈阳航天新光集团有限公司 Discharging type decompressor
CN110486511A (en) * 2019-09-06 2019-11-22 新乡航空工业(集团)有限公司 A kind of pressure regulator valve

Similar Documents

Publication Publication Date Title
JP4996990B2 (en) Relief valve
EP2629169B1 (en) Balanced valve cartridge
US9092035B2 (en) Internal pilot type pressure regulator
JP2006177543A (en) Valve device for high pressure gas
WO2006070909A1 (en) Pressure reducer
US9453587B2 (en) Flow rate adjusting device
JP6346907B2 (en) Overflow valve
JP2008282192A (en) Pressure reducing valve
US6820641B2 (en) Internally piloted dome loaded regulator
JP4614103B2 (en) Pressure reducing valve for fine pressure
JP2003322276A (en) Flow control valve with indicator
JP5384303B2 (en) Pressure reducing valve
JP4801375B2 (en) Air operated valve
JP2018055476A (en) Pressure reduction valve device
US20120018658A1 (en) Pressure reducing valve
US10088066B2 (en) Hydraulic valve
WO2017194429A1 (en) Compressed gas regulator with integrated pressure relief valve
JP4464259B2 (en) Pressure reducing valve
US6695006B2 (en) Flow control providing stable fluid flow
JP6623664B2 (en) Pressure regulator
US20140290759A1 (en) Pressure reducing valve
JP2019199926A (en) Valve gear
JP2011106576A (en) Fluid control valve
JP2007128228A (en) Pressure control valve
JP2007048130A (en) Pressure reducing valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Written amendment

Effective date: 20120104

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120529