JP2008281582A - Particle size distribution measuring device - Google Patents

Particle size distribution measuring device Download PDF

Info

Publication number
JP2008281582A
JP2008281582A JP2008185478A JP2008185478A JP2008281582A JP 2008281582 A JP2008281582 A JP 2008281582A JP 2008185478 A JP2008185478 A JP 2008185478A JP 2008185478 A JP2008185478 A JP 2008185478A JP 2008281582 A JP2008281582 A JP 2008281582A
Authority
JP
Japan
Prior art keywords
sample
groove
particle size
size distribution
sample cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008185478A
Other languages
Japanese (ja)
Inventor
Akihiro Fukai
秋博 深井
Takeshi Akasaka
剛 赤坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2008185478A priority Critical patent/JP2008281582A/en
Publication of JP2008281582A publication Critical patent/JP2008281582A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Measuring Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily and accurately perform measurement of a high-concentration sample by forming a sample layer having an appropriate thickness which never causes multiple scattering. <P>SOLUTION: A sample cell used in a laser diffraction scattering particle size distribution measuring device includes a groove 61 formed in a transparent plate to extend from one end to the other end thereof as a sample storage part for high-concentration sample. The width W of the groove is set larger than the width of laser beam, and the height of the groove is set almost equal to the size of the largest particle contained in a measurement sample group. A sample layer having an appropriate thickness which causes multiple scattering can be formed by placing a sample on the groove 61 and removing the excess sample by a scraper. After completion of one sample measurement, the sample left in the groove can be easily removed by a brush or the like. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は粉体粒子の大きさの分布を測定する粒度分布測定装置に関する。なかでも、液体中等に分散している試料粒子群にレーザ光を照射し、その試料粒子群からの回折光あるいは散乱光の空間強度分布を測定し、その分布からフラウンホーファの回折理論あるいはミーの散乱理論に基づく演算により試料粒子群の粒度分布を算出するレーザ回折散乱式粒度分布測定装置に関する。   The present invention relates to a particle size distribution measuring apparatus for measuring the size distribution of powder particles. In particular, a sample particle group dispersed in a liquid is irradiated with laser light, and the spatial intensity distribution of diffracted light or scattered light from the sample particle group is measured, and Fraunhofer's diffraction theory or Mie scattering is determined from the distribution. The present invention relates to a laser diffraction scattering type particle size distribution measuring apparatus for calculating a particle size distribution of a sample particle group by calculation based on theory.

レーザ回折散乱式粒度分布測定装置を用いてペーストやスラリー等の高濃度試料の粒度分布を測定する場合、多重散乱光の発生を低減するためレーザ光の光軸方向について高濃度試料の厚さを極めて薄くする必要がある。   When measuring the particle size distribution of high-concentration samples such as pastes and slurries using a laser diffraction / scattering particle size distribution measuring device, the thickness of the high-concentration sample is adjusted in the optical axis direction of the laser light to reduce the generation of multiple scattered light. It needs to be very thin.

そこで試料セルとして、透光性の2枚のガラスプレートに高濃度試料を挟持して、圧縮して試料を引き伸ばし薄い層にする方法(特許文献1)があるが、高濃度試料を挟み込む力の大きさによって試料層の厚さが異なるので測定データが大きくばらつく。またガラスプレートに凹部を形成し、そこに高濃度試料を収容する方法(特許文献2)も提案されている。   Therefore, as a sample cell, there is a method (Patent Document 1) in which a high-concentration sample is sandwiched between two light-transmitting glass plates and compressed to stretch the sample into a thin layer. Since the thickness of the sample layer varies depending on the size, the measurement data varies greatly. There has also been proposed a method (Patent Document 2) in which a concave portion is formed in a glass plate and a high concentration sample is accommodated therein.

実用新案登録第2598857号公報(図1)Utility Model Registration No. 2598857 (FIG. 1) 特開平9−72841号公報(図1)JP-A-9-72841 (FIG. 1)

上記特許文献2に記載された試料セルは高濃度試料を測定するという点では申し分ないが、試料セルの作りやすさおよび使用段階における清掃のしやすさの点においてやや問題がある。すなわち、特許文献2に記載された試料セルでは、1枚のプレートに例えば円形の孔を穿設し、それと同一形状に形成した他のプレートを嵌め合わせて構成している。これは2つのプレート間で嵌め合わせの精度が必要である点でやや製作しにくい。   The sample cell described in Patent Document 2 is satisfactory in terms of measuring a high-concentration sample, but is somewhat problematic in terms of ease of making the sample cell and ease of cleaning at the stage of use. That is, in the sample cell described in Patent Document 2, for example, a circular hole is formed in one plate and another plate formed in the same shape as that is fitted. This is somewhat difficult to manufacture in that the accuracy of fitting between the two plates is required.

また、特許文献2に記載された試料セルは最終的には1枚のプレートの中央に形成された窪みが試料の収容部となる。次の測定に同じ試料セルを利用しようとした場合に、窪みの内部はどうしても清掃しづらい部分が残るので、清掃に手間がかかるという問題がある。   Further, in the sample cell described in Patent Document 2, a recess formed in the center of one plate finally becomes a sample storage portion. When trying to use the same sample cell for the next measurement, there is a problem in that the inside of the recess is inevitably difficult to clean, so that it takes time for cleaning.

さらに、厚さの薄い試料収容部に試料を入れる場合には、どうしても試料の入れ方が不均一になりがちである。とくに測定粒子群が媒液に分散されているのではなく、粉体のまま試料セルの収容部に載せる場合には、試料の分布が試料セルの上で均等にならない場合が多いと考えられる。   Furthermore, when a sample is put into a thin sample container, the sample is apt to be unevenly placed. In particular, when the measurement particle group is not dispersed in the liquid medium but placed on the sample cell holding portion as a powder, it is considered that the distribution of the sample is often not uniform on the sample cell.

本発明は上記課題に鑑みてなされたものであり、高濃度試料を簡単で高精度に測定できるようにすること、さらに、試料セルの清掃を簡単にすることを目的とする。また、試料セル上で試料が均一に分布していない場合でも正確な粒度分布が測定できるようにすることを目的とする。   The present invention has been made in view of the above problems, and an object thereof is to make it possible to measure a high-concentration sample easily and with high accuracy, and to simplify the cleaning of a sample cell. It is another object of the present invention to enable accurate particle size distribution measurement even when the sample is not uniformly distributed on the sample cell.

本発明は、上記課題を解決するために、試料粒子群を収容した試料セルにレーザ光を照射し、その試料群から回折または散乱される光の空間強度分布を測定して試料粒子群の粒度分布を演算する粒度分布測定装置において、前記試料セルは透光性の板材で構成し、その板材の表面には板材の一端から他端まで貫通し底面を有する溝の形状をした試料粒子群の収容部を有し、その溝の底面は光学的な平面であることを特徴とする(請求項1)。   In order to solve the above problems, the present invention irradiates a sample cell containing a sample particle group with laser light, measures the spatial intensity distribution of light diffracted or scattered from the sample group, and determines the particle size of the sample particle group. In the particle size distribution measuring apparatus for calculating the distribution, the sample cell is composed of a translucent plate material, and the surface of the plate material is a sample particle group having a groove shape having a bottom surface penetrating from one end of the plate material to the other end. It has an accommodating part, The bottom face of the groove | channel is an optical plane (Claim 1), It is characterized by the above-mentioned.

試料セルに形成された溝に試料セルを収容し余分な試料は容易に排除することができるのでレーザ光の光軸方向の試料厚さを高濃度試料にとって適当な厚さとすることができる。またこの溝は試料セルを構成する板材の一端から他端まで貫通しているので、この試料セルを次に使用する際に、前回の試料を容易に掃き出すことができ清掃が容易である。   Since the sample cell is accommodated in the groove formed in the sample cell and the excess sample can be easily removed, the sample thickness in the optical axis direction of the laser beam can be set to an appropriate thickness for the high concentration sample. Further, since this groove penetrates from one end of the plate material constituting the sample cell to the other end, the previous sample can be easily swept out when the sample cell is used next time, and cleaning is easy.

上記の試料セルに形成された溝の深さは試料粒子群に含まれる粒子の最大粒子直径と略同一か、または、最大粒子直径の数倍程度とすることができる。そのようにすることで溝の深さ方向、すなわち、レーザ光の光軸方向に粒子が積み重なることが実質上少なくなり、多重散乱を大幅に低減することができる。   The depth of the groove formed in the sample cell can be approximately the same as the maximum particle diameter of the particles contained in the sample particle group, or about several times the maximum particle diameter. By doing so, it is possible to substantially reduce the accumulation of particles in the depth direction of the groove, that is, in the optical axis direction of the laser beam, and to greatly reduce multiple scattering.

上記の試料セルの溝は例えば1枚のガラス材の表面を研磨して溝として形成することができる。1枚の板の中央のみを光学的に研磨して窪みを形成することはやや難しいが、本発明の溝は板材の一端から他端まで貫通しているので研磨用具の逃げ道ができ光学的研磨によって溝を形成することは容易である。   The groove of the sample cell can be formed as a groove by polishing the surface of one glass material, for example. Although it is somewhat difficult to optically polish only the center of a single plate to form a recess, the groove of the present invention penetrates from one end of the plate material to the other, so that the polishing tool can escape and optical polishing is performed. It is easy to form a groove.

また上記の試料セルの溝は、溝の底面を形成する1枚の光学的平面を有する板材と、他の2枚の板材を貼り合わせて溝を形成することができる(請求項2)。より具体的には、中央に置く1枚の板材に対して、溝の深さ分だけ厚さの大きい板材を左右から挟むように接着して試料セルを構成することができる。別の方法として、1枚の板材の1つの表面に溝の深さ分の厚さを持った板材を2枚接着して、その2枚の板材の間を溝としてもよい。このような試料セルの制作方法は研磨で溝を形成する方法に比較して一般的に安価であり、しかも光学的な平面としての精度を高くすることができる。   Moreover, the groove | channel of said sample cell can form a groove | channel by bonding together the board | plate material which has one optical plane which forms the bottom face of a groove | channel, and the other two board | plate materials (Claim 2). More specifically, the sample cell can be configured by adhering a plate material having a thickness corresponding to the depth of the groove so as to be sandwiched from the left and right with respect to one plate material placed in the center. As another method, two plate members having a thickness corresponding to the depth of the groove may be bonded to one surface of one plate member, and a groove may be formed between the two plate members. Such a method for producing a sample cell is generally cheaper than a method for forming grooves by polishing, and the accuracy as an optical plane can be increased.

さらにまた本発明の粒度分布測定装置は、前記試料セルに照射される前記レーザ光の照射位置を前記溝の内部で相対的に移動させる照射位置移動部を備え、回折または散乱される光の空間強度分布を測定する際に前記照射位置移動部を働かせて測定強度を平均化することを特徴とする(請求項3)。本発明で使用する試料セルは板材の一端から他端まで貫通した溝を有しているので平均化のための距離を十分に確保することができる。試料収容部である溝の内部に試料が均一にばら撒かれていない場合でも照射位置移動部を駆動ながら散乱光を測定するので散乱光強度が平均化され、ひいては正しい粒度分布を得ることができる。   Furthermore, the particle size distribution measuring apparatus of the present invention further includes an irradiation position moving unit that relatively moves the irradiation position of the laser light irradiated to the sample cell inside the groove, and a space of light to be diffracted or scattered. When measuring the intensity distribution, the irradiation position moving unit is operated to average the measured intensity (Claim 3). Since the sample cell used in the present invention has a groove penetrating from one end to the other end of the plate material, a sufficient distance for averaging can be secured. Even when the sample is not evenly distributed in the groove that is the sample storage unit, the scattered light intensity is averaged and the correct particle size distribution can be obtained because the scattered light is measured while driving the irradiation position moving unit. .

請求項1に係る粒度分布測定装置では、試料収容部である溝が試料セルを構成する板材の一端から他端まで貫通した形状をしているので製作が容易であり、使用に際しても清掃が容易である。   In the particle size distribution measuring apparatus according to claim 1, since the groove that is the sample storage portion has a shape penetrating from one end to the other end of the plate material constituting the sample cell, it is easy to manufacture and easy to clean even when used. It is.

また、この溝の深さは試料粒子群に含まれる粒子の最大粒子直径と略同一または数倍程度としたので、たとえば、溝の高さからはみ出した試料をスクレイパーで排除することなどで容易にレーザ光の光軸方向の試料厚さを高濃度試料に適した厚さとすることができる。   In addition, since the depth of the groove is substantially the same as the maximum particle diameter of the particles contained in the sample particle group or about several times, for example, the sample protruding from the groove height can be easily removed with a scraper. The sample thickness in the optical axis direction of the laser beam can be set to a thickness suitable for a high concentration sample.

また、請求項2に係る粒度分布測定装置では、3枚の板材の組み合わせだけで溝を形成したので、溝を形成しその底面を光学的平面とするための光学的研磨を必要とせず安価に試料セルを製作することができる。   Further, in the particle size distribution measuring apparatus according to claim 2, since the groove is formed only by the combination of the three plates, the groove is formed and optical polishing for making the bottom surface an optical plane is not necessary and inexpensive. A sample cell can be fabricated.

さらに、請求項3に係る粒度分布測定装置では、試料セルの溝の長さを利用して様々な部分に存在する粒子にレーザ光を照射し、それらの散乱光を平均化して取り込むので、試料粒子群の正しい粒度分布を得ることができる。   Further, in the particle size distribution measuring apparatus according to claim 3, since the laser light is irradiated to particles existing in various parts using the groove length of the sample cell and the scattered light is averaged and taken in, the sample A correct particle size distribution of the particle group can be obtained.

本発明の粒度分布装置を図1に示す概略構成図によって説明する。この構成例では、レーザビームの光軸10がほぼ鉛直方向に配置され、レーザ光は下から上方に向かって放射されている。レーザ光源1から発射されたレーザ光はコリメータ2によって所定の大きさのビーム径を持つ平行ビームに形成されたのち防塵のための透明なカバー3を通って試料セル6に照射される。この防塵のためのカバー3は必ずしも必要ではない。後述する試料セル6の試料収納部には測定対象の粒子群が媒液中に分散され試料が載せられている。試料に照射されたレーザ光は試料に含まれる粉体粒子により散乱あるいは回折の作用により光軸10から離れた方向に放射され、その散乱光が集光レンズ7によってリングディテクタ8の表面に集光される。   The particle size distribution apparatus of the present invention will be described with reference to the schematic configuration diagram shown in FIG. In this configuration example, the optical axis 10 of the laser beam is arranged in a substantially vertical direction, and the laser light is emitted from the bottom to the top. The laser light emitted from the laser light source 1 is formed into a parallel beam having a predetermined beam diameter by the collimator 2 and then irradiated to the sample cell 6 through the transparent cover 3 for dust prevention. The dust-proof cover 3 is not always necessary. In a sample storage section of a sample cell 6 described later, a group of particles to be measured is dispersed in a liquid medium and a sample is placed. The laser light applied to the sample is emitted in a direction away from the optical axis 10 by scattering or diffraction by the powder particles contained in the sample, and the scattered light is condensed on the surface of the ring detector 8 by the condenser lens 7. Is done.

リングディテクタ8は光軸10を中心にしてリング状に配置された多数の光検出素子から構成され、試料セル6内の粉体粒子によって生じた散乱光の強度を散乱角度ごとに検出することができる。リングディテクタ8の出力は散乱角度ごとにデータサンプリング回路などを介して制御装置9に取り込まれる。制御装置9はコンピュータを含む装置であり、上述のようにして取得された散乱光の空間強度分布からミーの散乱理論あるいはフラウンホーファの回折理論に基づく演算を行って試料セル6の中に分散されている粉体試料の粒度分布を算出する。   The ring detector 8 is composed of a large number of light detection elements arranged in a ring shape with the optical axis 10 as the center, and can detect the intensity of scattered light generated by the powder particles in the sample cell 6 for each scattering angle. it can. The output of the ring detector 8 is taken into the control device 9 via a data sampling circuit or the like for each scattering angle. The control device 9 is a device including a computer. The control device 9 performs an operation based on the Mie scattering theory or the Fraunhofer diffraction theory from the spatial intensity distribution of the scattered light obtained as described above, and is dispersed in the sample cell 6. The particle size distribution of the powder sample is calculated.

試料セル6はレーザ光が透過できる穴の開いた設置台4の上に載せられることで測定に供されることとなるが、この設置台4は駆動部5によって矢印Aで示す一方向に移動可能となっている。設置台4が移動することでその上に載置されている試料セルが光軸10に対して移動し、試料セル内のいろいろな場所にある試料からの散乱光を測定し平均化することができる。   The sample cell 6 is used for measurement by being placed on a mounting base 4 having a hole through which laser light can pass, and this mounting base 4 is moved in one direction indicated by an arrow A by the drive unit 5. It is possible. The sample cell placed thereon moves with respect to the optical axis 10 by moving the mounting table 4, and the scattered light from samples at various locations in the sample cell can be measured and averaged. it can.

図2は試料セル6の形状を説明する図であって、(a)は斜視図であり、(b)は方向Bから見た図である。試料セル6は透光性のある透明なガラスなどを材料として、およそ直方体の板状の形状をしており、その表面には測定試料を収納する収納部である溝61が形成されている。試料セルの材料としては石英ガラスが望ましいが、アクリル板などの透明プラスチックを使用することも可能である。試料セル全体の大きさはとくには限定されないが、幅30mm、長さ50mm、厚さ2mm程度である。溝61は、その断面が幅W、高さ(深さ)Hの長方形であって、試料セル6の一端から他端まで貫通している。溝61の底面62は研磨され、光学的に滑らかな平面であって透明とされている。溝61は両端が試料セルの端まで貫通しているので研磨用具の逃げ場が存在し容易に底面62を研磨することができる。   2A and 2B are diagrams for explaining the shape of the sample cell 6, where FIG. 2A is a perspective view and FIG. The sample cell 6 has a substantially rectangular parallelepiped plate shape made of translucent transparent glass or the like, and a groove 61 serving as a storage portion for storing a measurement sample is formed on the surface thereof. The material of the sample cell is preferably quartz glass, but it is also possible to use a transparent plastic such as an acrylic plate. The overall size of the sample cell is not particularly limited, but is about 30 mm wide, 50 mm long, and 2 mm thick. The cross section of the groove 61 is a rectangle having a width W and a height (depth) H, and penetrates from one end of the sample cell 6 to the other end. The bottom surface 62 of the groove 61 is polished, is an optically smooth flat surface, and is transparent. Since both ends of the groove 61 penetrate to the end of the sample cell, there is a clearance for the polishing tool, and the bottom surface 62 can be easily polished.

溝61の幅Wは照射されるレーザビームの直径よりも大きな寸法とされ、5〜20mm程度である。溝61の高さHはごく浅いものとするが、測定対象の試料粒子群のうちもっとも大きい粒子の直径と同程度ないしその数倍程度とすることが望ましい。そうすれば測定粒子の全てを溝61内に収容することができ、なおかつ多重散乱を少なくすることができる。具体的には、測定対象試料により異なるが、0.05〜0.5mm程度となる。ここに記載した溝61の寸法は一例であって、レーザビーム径および測定対象試料に応じて適切に決定される。   The width W of the groove 61 is larger than the diameter of the irradiated laser beam and is about 5 to 20 mm. Although the height H of the groove 61 is extremely shallow, it is desirable that the height H be approximately the same as or several times the diameter of the largest particle in the sample particle group to be measured. By doing so, all of the measurement particles can be accommodated in the groove 61, and multiple scattering can be reduced. Specifically, although it varies depending on the sample to be measured, it is about 0.05 to 0.5 mm. The dimension of the groove | channel 61 described here is an example, Comprising: It determines suitably according to a laser beam diameter and a measuring object sample.

測定対象試料を測定する際には、試料収容部である溝61に試料粒子群を含む懸濁液を適量だけ載せる。その後直線的なエッジを持つスクレイパーなどにより試料セル6の溝61が形成された面をなぞると溝61からはみ出した懸濁液は排除され溝61に中だけに測定対象試料が残ることとなる。このとき溝61の両端には壁が存在せず開放されているが、無理に反転などをしない限り試料媒液の表面張力などにより測定対象試料がこぼれ落ちることはない。   When measuring the sample to be measured, an appropriate amount of the suspension containing the sample particle group is placed in the groove 61 which is the sample storage unit. Thereafter, when the surface of the sample cell 6 on which the groove 61 is formed is traced by a scraper having a straight edge, the suspension protruding from the groove 61 is removed, and the sample to be measured remains in the groove 61 only. At this time, there are no walls at both ends of the groove 61 and they are open. However, the sample to be measured will not spill out due to the surface tension of the sample liquid unless it is reversed.

測定対象試料が媒液に分散されているのではなく、ペースト状やスラリー状であっても同様な操作で溝61に収容することができる。また、測定対象試料が粉体そのものであった場合には、適当な量の粉体が溝61の底面にばら撒かれるようにふりかけた後、上記と同様にスクレイパーなどで余分な試料を取り除けばよい。   The sample to be measured is not dispersed in the liquid medium but can be accommodated in the groove 61 by the same operation even if it is in the form of paste or slurry. If the sample to be measured is the powder itself, after sprinkling an appropriate amount of powder so that it is scattered on the bottom surface of the groove 61, the excess sample can be removed with a scraper or the like as described above. Good.

一つの測定が終わり次の測定に試料セルを再利用する場合には、試料セルには前回の試料が残っていてはならないのはもちろんである。図2に示された試料セル6を使用すれば試料収容部である溝61が一端から他端まで貫通しているから、この溝61に残っている前回の試料を取り除くためにはブラシや布で溝をこすればよいだけなので、試料セル6の清掃が非常に簡単で確実に隅々まできれいにすることができる。   When one measurement is completed and the sample cell is reused for the next measurement, it is a matter of course that the previous sample should not remain in the sample cell. If the sample cell 6 shown in FIG. 2 is used, the groove 61 which is a sample accommodating portion penetrates from one end to the other end. In order to remove the previous sample remaining in the groove 61, a brush or cloth is used. Therefore, the sample cell 6 can be cleaned very easily and surely to every corner.

試料セル6は試料収容部となる溝を研磨して製作するだけでなく3枚の板を組み合わせて構成することもできる。板の材質は透明なガラス板やプラスチックの板を使用することができる。図3を用いて試料セルの製作法の一例を説明する。   The sample cell 6 can be formed not only by polishing a groove serving as a sample storage part but also by combining three plates. The material of the plate can be a transparent glass plate or a plastic plate. An example of a sample cell manufacturing method will be described with reference to FIG.

図3(a)は溝73の底面となる板71の両側にそれよりも厚さの大きい他の板72を両側から接着して溝つきの1枚の試料セルを構成している。板72の高さは板71の高さより溝73の高さ分だけ大きくなっており、それらを1つのの面を共通として左右から貼り合わせることにより溝73が形成される。溝73の幅は板71の幅と同一であり、溝73の高さは板72と板71の高さの差となる。   In FIG. 3A, one plate cell with a groove is formed by bonding another plate 72 having a larger thickness to both sides of a plate 71 serving as a bottom surface of the groove 73 from both sides. The height of the plate 72 is larger than the height of the plate 71 by the height of the groove 73, and the groove 73 is formed by sticking them together from the left and right with one surface as a common surface. The width of the groove 73 is the same as the width of the plate 71, and the height of the groove 73 is the difference between the height of the plate 72 and the plate 71.

図3(b)は溝76の底面となる板74の表面に溝の高さと同じ厚さの2枚の板75を両端に離して接着して溝つきの1枚の試料セルを構成している。板75の高さは作りたい溝の高さと同じ厚さを選び、それらを板74の一面の左右に適当な間隔をあけて貼りつけることにより溝76が形成される。溝76の幅は2つの板75の間隔と同一であり、溝76の高さは板75の厚さと同一となる。   In FIG. 3B, one sample cell with a groove is formed by bonding two plates 75 having the same thickness as the height of the groove to the surface of the plate 74 serving as the bottom surface of the groove 76 and separating them at both ends. . The height of the plate 75 is selected to be the same as the height of the groove to be formed, and the grooves 76 are formed by adhering them to the left and right sides of one surface of the plate 74 at an appropriate interval. The width of the groove 76 is the same as the distance between the two plates 75, and the height of the groove 76 is the same as the thickness of the plate 75.

図3(b)の構造の試料セルを製作する場合に、板75として最終的に目標とする溝の高さよりも厚さの厚い材料を用いて板74に貼り付け、その後に板75の表面を研削して希望する厚さとするようにしてもよい。この場合、試料セルの外表面となる板75の表面を研削することは比較的容易である。   When the sample cell having the structure shown in FIG. 3B is manufactured, the plate 75 is pasted to the plate 74 using a material that is thicker than the target groove height, and then the surface of the plate 75 is adhered. May be ground to a desired thickness. In this case, it is relatively easy to grind the surface of the plate 75 which is the outer surface of the sample cell.

図3に示すように3枚の板を貼り合わせて試料セルを製作すると、製作コストの点でメリットがある。すなわち、一般に溝の内部を光学研磨するよりも板の表面を光学的に滑らかな平面にするほうが容易である。図3の試料セルの場合には溝の底面となる面は1つの板の表面そのものであるから、あらかじめ光学的に滑らかな平面を持つ板を用いて試料セルを製作すれば後工程における光学研磨の手間をかける必要がない。したがって低コストで試料セルを製作することができる。溝の底面とならない他の2枚の板は必ずしも光学的な平面を持つ板でなくてもよい。場合によっては材質も底面を構成する板と同じでなくてもよい。さらには溝の底面とならない板は透明でなくてもよい。   As shown in FIG. 3, when a sample cell is manufactured by bonding three plates, there is a merit in terms of manufacturing cost. That is, it is generally easier to make the surface of the plate optically smooth than to optically polish the inside of the groove. In the case of the sample cell of FIG. 3, since the surface which becomes the bottom surface of the groove is the surface of one plate itself, if the sample cell is manufactured using a plate having an optically smooth plane in advance, optical polishing in the subsequent process will be performed. There is no need to spend time. Therefore, the sample cell can be manufactured at a low cost. The other two plates that do not become the bottom surfaces of the grooves are not necessarily plates having an optical plane. In some cases, the material may not be the same as the plate constituting the bottom surface. Furthermore, the plate which does not become the bottom surface of the groove may not be transparent.

照射位置移動部について説明する。図1で説明した例では、駆動部5と設置台4が請求項における照射位置移動部を形成しており、固定されたレーザビームに対して試料セルを移動するようにしている。この移動の方向Aは、図2で説明した試料セルの溝61の長手方向と一致するように試料セルが設置台4に載置される。このようにすることで、レーザビームが照射される照射位置は溝61の中を相対的に移動することになる。散乱光の強度分布を測定する際に、駆動部5によって設置台4を移動させながら散乱光を測定すると、溝61に入っている試料に仮に偏りがあったとしてもデータが積算されて平均化され、結果として試料全体の粒度分布を正しく測定することができる。   The irradiation position moving unit will be described. In the example described with reference to FIG. 1, the drive unit 5 and the installation base 4 form the irradiation position moving unit in the claims, and the sample cell is moved with respect to the fixed laser beam. The sample cell is placed on the installation table 4 so that the moving direction A coincides with the longitudinal direction of the groove 61 of the sample cell described in FIG. By doing so, the irradiation position irradiated with the laser beam relatively moves in the groove 61. When measuring the scattered light intensity distribution, if the scattered light is measured while moving the installation base 4 by the drive unit 5, even if the sample in the groove 61 is biased, the data is integrated and averaged. As a result, the particle size distribution of the entire sample can be measured correctly.

照射位置の移動については、試料セルを移動させて変更させる方法だけでなく、試料セルは固定しておいてレーザ光を移動させるようにしてもよい。例えばレーザ光源やコリメータを含むレーザ光の照射系を試料セルに対して駆動するようにしてもよい。   Regarding the movement of the irradiation position, not only a method of moving and changing the sample cell but also the laser beam may be moved while the sample cell is fixed. For example, a laser light irradiation system including a laser light source and a collimator may be driven with respect to the sample cell.

図1を用いて説明した装置は、レーザビームの光軸方向が鉛直方向を向いている縦形の粒度分布測定装置であるが、本発明はレーザビームの光軸方向が水平方向である横型の粒度分布測定装置にも適用できる。ペースト状試料やスラリー試料では上述の試料セルをそのまま使用できる。媒体に分散された試料の場合には試料セルの上面に透明なカバー板をかぶせることで試料懸濁液の落下を防止することができる。   The apparatus described with reference to FIG. 1 is a vertical particle size distribution measuring apparatus in which the optical axis direction of the laser beam is oriented in the vertical direction, but the present invention is a horizontal particle size distribution in which the optical axis direction of the laser beam is the horizontal direction. It can also be applied to a distribution measuring device. The above sample cell can be used as it is for a paste-like sample or a slurry sample. In the case of a sample dispersed in a medium, the sample suspension can be prevented from falling by covering the upper surface of the sample cell with a transparent cover plate.

本発明の粒度分布測定装置の概略構成図である。It is a schematic block diagram of the particle size distribution measuring apparatus of this invention. 本発明に使用する試料セルの図である。It is a figure of the sample cell used for this invention. 試料セルの製作方法を説明する図である。It is a figure explaining the manufacturing method of a sample cell.

符号の説明Explanation of symbols

1…レーザ光源、2…コリメータ、3…カバー、4…設置台、5…駆動部、6…試料セル、7…集光レンズ、8…リングディテクタ、9…制御装置、10…光軸、61…溝 DESCRIPTION OF SYMBOLS 1 ... Laser light source, 2 ... Collimator, 3 ... Cover, 4 ... Installation stand, 5 ... Drive part, 6 ... Sample cell, 7 ... Condensing lens, 8 ... Ring detector, 9 ... Control apparatus, 10 ... Optical axis, 61 …groove

Claims (3)

試料粒子群を収容した試料セルにレーザ光を照射し、その試料群から回折または散乱される光の空間強度分布を測定して試料粒子群の粒度分布を演算する粒度分布測定装置において、前記試料セルは透光性の板材で構成し、その板材の表面には板材の一端から他端まで貫通し底面を有する溝の形状をした試料粒子群の収容部を有し、その溝の底面は光学的な平面であることを特徴とする粒度分布測定装置。   In the particle size distribution measuring apparatus for irradiating the sample cell containing the sample particle group with laser light, measuring the spatial intensity distribution of light diffracted or scattered from the sample group, and calculating the particle size distribution of the sample particle group, the sample The cell is composed of a light-transmitting plate material, and the surface of the plate material has a sample particle group containing portion in the shape of a groove that penetrates from one end to the other end of the plate material and has a bottom surface, and the bottom surface of the groove is optical. Particle size distribution measuring apparatus characterized by being a flat surface. 請求項1に記載の粒度分布測定装置において、前記試料セルは、前記溝の底面を形成する1枚の板材と、他の2枚の板材を貼り合わせて溝を形成したものであることを特徴とする粒度分布測定装置。   2. The particle size distribution measuring apparatus according to claim 1, wherein the sample cell is formed by bonding a single plate material forming the bottom surface of the groove and the other two plate materials to form a groove. A particle size distribution measuring device. 請求項1または2に記載の粒度分布測定装置において、前記試料セルに照射される前記レーザ光の照射位置を前記溝の内部で相対的に移動させる照射位置移動部を備え、回折または散乱される光の空間強度分布を測定する際に前記照射位置移動部を働かせて測定強度を平均化することを特徴とする粒度分布測定装置。   3. The particle size distribution measuring apparatus according to claim 1, further comprising an irradiation position moving unit that relatively moves an irradiation position of the laser light irradiated to the sample cell inside the groove, and is diffracted or scattered. A particle size distribution measuring apparatus characterized in that when the spatial intensity distribution of light is measured, the irradiation position moving unit is operated to average the measured intensity.
JP2008185478A 2008-07-17 2008-07-17 Particle size distribution measuring device Pending JP2008281582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008185478A JP2008281582A (en) 2008-07-17 2008-07-17 Particle size distribution measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008185478A JP2008281582A (en) 2008-07-17 2008-07-17 Particle size distribution measuring device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005007121U Continuation JP3116264U (en) 2005-08-30 2005-08-30 Particle size distribution measuring device

Publications (1)

Publication Number Publication Date
JP2008281582A true JP2008281582A (en) 2008-11-20

Family

ID=40142483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008185478A Pending JP2008281582A (en) 2008-07-17 2008-07-17 Particle size distribution measuring device

Country Status (1)

Country Link
JP (1) JP2008281582A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013061357A (en) * 2013-01-08 2013-04-04 Shimadzu Corp Sample cell and particle size distribution measurement apparatus using the same
CN104296988A (en) * 2014-10-31 2015-01-21 江西稀有稀土金属钨业集团有限公司 Method for verifying standard sieve through laser particle size

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4912996B1 (en) * 1969-08-16 1974-03-28
JPS62195540A (en) * 1986-02-24 1987-08-28 Toonichi Consultant:Kk Optical measuring instrument for dispersibility of particles in liquid
JPH0227111A (en) * 1988-07-13 1990-01-29 Kubota Ltd Oil cooling device for oil cooled engine
JPH0972841A (en) * 1995-09-04 1997-03-18 Shimadzu Corp Laser diffraction-type particle-size-distribution measuring apparatus
JP2598857Y2 (en) * 1993-12-30 1999-08-23 株式会社堀場製作所 Sample cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4912996B1 (en) * 1969-08-16 1974-03-28
JPS62195540A (en) * 1986-02-24 1987-08-28 Toonichi Consultant:Kk Optical measuring instrument for dispersibility of particles in liquid
JPH0227111A (en) * 1988-07-13 1990-01-29 Kubota Ltd Oil cooling device for oil cooled engine
JP2598857Y2 (en) * 1993-12-30 1999-08-23 株式会社堀場製作所 Sample cell
JPH0972841A (en) * 1995-09-04 1997-03-18 Shimadzu Corp Laser diffraction-type particle-size-distribution measuring apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013061357A (en) * 2013-01-08 2013-04-04 Shimadzu Corp Sample cell and particle size distribution measurement apparatus using the same
CN104296988A (en) * 2014-10-31 2015-01-21 江西稀有稀土金属钨业集团有限公司 Method for verifying standard sieve through laser particle size

Similar Documents

Publication Publication Date Title
US8383042B2 (en) Methods and apparatus for imaging and processing of samples in biological sample containers
EP2912440B1 (en) Optical quality control device
US9766179B2 (en) Chemical characterization of surface features
TWI622763B (en) Surface enhanced Raman scattering unit and Raman spectroscopic analysis method
US9036142B2 (en) Surface features mapping
JP6274104B2 (en) Laminar flow monitoring method, fine particle analysis method, and fine particle measurement device in fine particle measurement device
JP2008281582A (en) Particle size distribution measuring device
JP3116264U (en) Particle size distribution measuring device
CN106796185A (en) Waffer edge inspection with the track for following edge contour
CN101241870A (en) Device for measuring the wafer film thickness
WO2014055962A1 (en) Imaging a transparent article
JP5360391B2 (en) Particle measuring method and apparatus
JP4920758B2 (en) On-site detection analyzer for membrane filtration process
JP2011075476A (en) Inspection device using chip
WO2016093039A1 (en) Detection chip and detection method
KR101617360B1 (en) Apparatus processing and inspecting apparatus
CN208672536U (en) A kind of dark field defect detecting device of heavy caliber ultra-precision surface
JP2010249607A (en) Particle detector
JP2985745B2 (en) Laser diffraction particle size distribution analyzer
JP2013061357A (en) Sample cell and particle size distribution measurement apparatus using the same
CN217277839U (en) Haze analysis and detection device
JP2008177317A (en) Substrate supporting device, surface potential measuring device, film thickness measuring device and substrate inspection apparatus
JPH09281026A (en) Laser diffraction-type measuring apparatus for particle size distribution
RU193305U1 (en) DEVICE FOR X-RAY FLUORESCENT-OPTICAL CONTROL OF BULK SAMPLES
JPH09222309A (en) Method and device for selecting shape of of uneven shape

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110412