JP2008281068A - Fluid bearing device - Google Patents

Fluid bearing device Download PDF

Info

Publication number
JP2008281068A
JP2008281068A JP2007124699A JP2007124699A JP2008281068A JP 2008281068 A JP2008281068 A JP 2008281068A JP 2007124699 A JP2007124699 A JP 2007124699A JP 2007124699 A JP2007124699 A JP 2007124699A JP 2008281068 A JP2008281068 A JP 2008281068A
Authority
JP
Japan
Prior art keywords
bearing
sleeve portion
circulation path
bearing device
hydrodynamic bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007124699A
Other languages
Japanese (ja)
Inventor
Tatsuo Nakajima
達雄 中島
Fumihiro Isobe
史浩 磯部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2007124699A priority Critical patent/JP2008281068A/en
Priority to PCT/JP2008/056970 priority patent/WO2008139797A1/en
Publication of JP2008281068A publication Critical patent/JP2008281068A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluid bearing device at a low cost which can stably keep a required bearing performance. <P>SOLUTION: The fluid bearing device 1 comprises a bearing member 6 having a sleeve portion 8 forming a radial bearing clearance between the sleeve portion 8 and a shaft member 2 retained in the inner circumference of the sleeve portion 8 and having a housing portion 7 retaining the sleeve portion 8 in the inner circumference of the housing portion 7, and lubricating oil for filling the radial bearing clearance. The lubricating oil can circularly flow through an axial circulation passage 11 formed in the bearing member 6. The circulation passage 11 is formed by being irradiated with a laser beam after the sleeve portion 8 has been inserted and the housing portion 7 has been formed by the injection molding. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、流体軸受装置に関するものである。   The present invention relates to a hydrodynamic bearing device.

流体軸受装置は、軸部材と軸受部材の相対回転により、軸受隙間に形成される油膜で軸部材を回転自在に支持する軸受装置である。この流体軸受装置は、高速回転、高回転精度、低騒音等の特徴を有するものであり、近年ではその特徴を活かして、情報機器をはじめ種々の電気機器に搭載されるモータ用の軸受装置として、より具体的には、HDD等の磁気ディスク装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置、MD、MO等の光磁気ディスク装置等のスピンドルモータ、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、ファンモータなどのモータ用軸受装置として好適に使用されている。   The hydrodynamic bearing device is a bearing device that rotatably supports a shaft member with an oil film formed in a bearing gap by relative rotation between the shaft member and the bearing member. This hydrodynamic bearing device has characteristics such as high-speed rotation, high rotation accuracy, and low noise. In recent years, the hydrodynamic bearing device has been utilized as a motor bearing device for motors mounted on various electrical devices including information devices. More specifically, magnetic disk devices such as HDDs, optical disk devices such as CD-ROM, CD-R / RW, DVD-ROM / RAM, spindle motors such as magneto-optical disk devices such as MD and MO, laser beams, etc. It is suitably used as a bearing device for a motor such as a polygon scanner motor or a fan motor of a printer (LBP).

この種の流体軸受装置は、軸受隙間を満たす潤滑油に動圧を発生させるための動圧発生部を備えた動圧軸受と、動圧発生部を有さない真円軸受(軸受断面が真円形状である軸受)とに大別される。   This type of hydrodynamic bearing device includes a hydrodynamic bearing having a dynamic pressure generating portion for generating dynamic pressure in lubricating oil that fills the bearing gap, and a true circular bearing having no dynamic pressure generating portion (the bearing cross section is true). It is roughly divided into a circular bearing.

ところで、流体軸受装置の運転中、様々な要因によって内部空間を満たす潤滑油がその一部領域で負圧になる場合がある。かかる負圧の発生は、気泡の発生や潤滑油の漏れ、あるいは振動の発生等を招き、軸受性能低下の一因となる。この種の不具合を回避するには流体軸受装置の内部で潤滑油を流動循環させるのが有効である。かかる潤滑油の流動循環を実現する目的で、スリーブ部の外周面に軸方向の溝を設け、当該溝とハウジング部の内周面とで潤滑油の流動循環を可能とする軸方向の循環路を形成した構成が公知である(例えば、特許文献1を参照)。   By the way, during the operation of the hydrodynamic bearing device, the lubricating oil that fills the internal space may become negative pressure in some areas due to various factors. The generation of such a negative pressure causes the generation of bubbles, the leakage of lubricating oil, the generation of vibrations, etc., and causes a decrease in bearing performance. In order to avoid this type of trouble, it is effective to flow and circulate the lubricating oil inside the hydrodynamic bearing device. For the purpose of realizing the flow circulation of the lubricating oil, an axial groove is provided on the outer peripheral surface of the sleeve portion, and the lubricating oil can be flow-circulated between the groove and the inner peripheral surface of the housing portion. The structure which formed this is well-known (for example, refer patent document 1).

一方、流体軸受装置に対するコスト低減の要請が近年益々厳しさを増しており、この要請に対応するためにスリーブ部をインサートしてハウジング部を射出成形する場合がある。しかしながらこの場合、スリーブ部の表面に、循環路を構成する溝を予め設けた状態でハウジング部を射出成形しても、射出成形時に供給される樹脂等の溶融材料によって溝が埋められてしまうため循環路を形成することができない。そこで、スリーブ部の表面に設けた溝に循環路形成材を供給した状態でハウジング部を射出成形し、その後、循環路形成材を溶解させることで循環路を形成したものが提案されている(例えば、特許文献2を参照)。
特開2003−232353号公報 特開2006−300178号公報
On the other hand, the demand for cost reduction of the hydrodynamic bearing device has become increasingly severe in recent years, and in order to meet this demand, there is a case where the sleeve portion is inserted and the housing portion is injection molded. However, in this case, even if the housing part is injection-molded in a state where the groove constituting the circulation path is provided in advance on the surface of the sleeve part, the groove is filled with a molten material such as resin supplied at the time of injection molding. A circuit cannot be formed. Then, what formed the circulation path by inject-molding the housing part in the state which supplied the circulation path formation material to the groove | channel provided in the surface of the sleeve part, and melt | dissolving the circulation path formation material after that is proposed ( For example, see Patent Document 2).
JP 2003-232353 A JP 2006-300188 A

しかしながら、循環路は一般に数十μm〜数百μm程度の微小な孔径とされるので、かかる孔径に対応した精度で循環路形成材を供給するのは容易ではない。また、循環路形成材を完全に除去できないと、潤滑油の流動循環が円滑に行われないおそれがある他、残存した循環路形成材がコンタミとなって軸受性能に悪影響を及ぼすおそれもあるため、循環路形成材は入念に除去する必要がある。このように従来構成では、循環路形成材の供給および除去の双方に格別の配慮を要すため、スリーブ部をインサートしてハウジング部を射出成形することによるコストメリットを十分に享受できない場合があった。   However, since the circulation path generally has a minute hole diameter of about several tens of μm to several hundreds of μm, it is not easy to supply the circulation path forming material with an accuracy corresponding to the hole diameter. In addition, if the circulation path forming material cannot be completely removed, the lubricating oil may not flow smoothly, and the remaining circulation path forming material may become contaminated and adversely affect the bearing performance. The circuit forming material must be carefully removed. As described above, the conventional configuration requires special consideration for both supply and removal of the circulation path forming material. Therefore, there are cases where the cost merit of inserting the sleeve portion and injection molding the housing portion cannot be fully enjoyed. It was.

本発明の課題は、所望の軸受性能を安定維持可能な流体軸受装置を低コストに提供することにある。   An object of the present invention is to provide a hydrodynamic bearing device capable of stably maintaining desired bearing performance at low cost.

上記課題を解決するため、本発明では、内周に収容した軸部材との間にラジアル軸受隙間を形成するスリーブ部およびスリーブ部を内周に配置したハウジング部を有する軸受部材と、ラジアル軸受隙間を満たす潤滑油とを備え、軸受部材に形成した循環路で潤滑油の流動循環を可能とした流体軸受装置において、循環路が、スリーブ部をインサートしてハウジング部を射出成形した後、レーザを照射して形成されていることを特徴とする流体軸受装置を提供する。   In order to solve the above-described problems, in the present invention, a bearing member having a sleeve portion that forms a radial bearing gap between the shaft member housed in the inner periphery and a housing portion in which the sleeve portion is arranged on the inner periphery, and the radial bearing gap In the hydrodynamic bearing device that allows the lubricating oil to flow and circulate in the circulation path formed in the bearing member, the circulation path inserts the sleeve portion and injection-molds the housing portion, A hydrodynamic bearing device characterized by being formed by irradiation is provided.

上記のように、本発明は、循環路が、スリーブ部をインサートしてハウジング部を射出成形した後、レーザを照射して形成されていることを特徴とするものである。かかる構成であれば、スリーブ部をインサートしてハウジング部が射出成形されるので高精度な軸受部材が低コストに得られる一方で、レーザを照射する一工程を経るだけで微小径の循環路を高精度に形成することができる。そのため、循環路の形成に、ハウジング部の射出成形工程を除いて少なくとも2工程を要し、かつその2工程に格別の配慮を要した従来構成に比べ、製造コストの低廉化を図ることができる。   As described above, the present invention is characterized in that the circulation path is formed by irradiating a laser after inserting the sleeve portion and injection molding the housing portion. With such a configuration, the sleeve portion is inserted and the housing portion is injection-molded, so that a highly accurate bearing member can be obtained at a low cost. On the other hand, a small-diameter circulation path can be formed by only one step of laser irradiation. It can be formed with high accuracy. For this reason, the formation of the circulation path requires at least two steps except for the injection molding step of the housing portion, and the manufacturing cost can be reduced as compared with the conventional configuration that requires special consideration for the two steps. .

また、上記構成であれば、循環路は軸受部材の任意の部位に形成することができる。すなわち、循環路は、スリーブ部に設けることができる他、ハウジング部に設けることも、またあるいはスリーブ部およびハウジング部に設けることも可能である。これらは、流体軸受装置の構造(用途)等に応じて適宜変更可能である。なお、循環路を「スリーブ部およびハウジング部に設ける」とは、スリーブ部とハウジング部の境界面に循環路を形成する場合と、両部にそれぞれ循環路を形成する場合とを含む概念である。   Moreover, if it is the said structure, a circulation path can be formed in the arbitrary site | parts of a bearing member. That is, the circulation path can be provided in the sleeve portion, in the housing portion, or in the sleeve portion and the housing portion. These can be appropriately changed according to the structure (use) of the hydrodynamic bearing device. Note that “providing the circulation path in the sleeve part and the housing part” is a concept including a case where the circulation path is formed on the boundary surface between the sleeve part and the housing part and a case where the circulation path is formed in both parts. .

上記構成において、循環路は、炭酸ガスレーザ、YAGレーザ、ファイバレーザ等公知の各種レーザを用いて形成することが可能であるが、レーザ光(レーザビーム)の品質が高く、循環路の形成に必要な出力を容易かつ安定して得られることから、炭酸ガスレーザが特に好適である。   In the above configuration, the circulation path can be formed by using various known lasers such as a carbon dioxide laser, YAG laser, fiber laser, etc., but the quality of the laser beam (laser beam) is high and necessary for the formation of the circulation path. A carbon dioxide laser is particularly suitable because it is possible to obtain a stable output easily and stably.

上記のように、本発明の構成を採用すれば、循環路を軸受部材の任意の部位に形成することができるので、射出成形されるハウジング部の形状に特段の制約が生じない。すなわち、例えば、スリーブ部とハウジング部とが軸方向で相互に係合するようにハウジング部を射出成形することも可能である。かかる構成とすれば、スリーブ部とハウジング部間での結合強度を高めることができるので、流体軸受装置の耐衝撃性を高めることができる。   As described above, if the configuration of the present invention is adopted, the circulation path can be formed at an arbitrary portion of the bearing member, so that there is no particular restriction on the shape of the housing part to be injection-molded. That is, for example, the housing portion can be injection molded so that the sleeve portion and the housing portion are engaged with each other in the axial direction. With such a configuration, since the coupling strength between the sleeve portion and the housing portion can be increased, the impact resistance of the hydrodynamic bearing device can be increased.

以上より、本発明によれば、軸受性能の安定維持に必要不可欠な循環路を高精度かつ低コストに形成することができ、従って、所望の軸受性能を安定維持可能な流体軸受装置を低コストに提供することができる。   As described above, according to the present invention, the circulation path indispensable for maintaining stable bearing performance can be formed with high accuracy and at low cost. Therefore, a fluid bearing device capable of stably maintaining desired bearing performance can be manufactured at low cost. Can be provided.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、流体軸受装置を組み込んだ情報機器用スピンドルモータの一構成例を概念的に示している。このスピンドルモータは、HDD等のディスク駆動装置に用いられるもので、軸部材2を回転自在に支持する流体軸受装置1と、軸部材2に装着されたディスクハブ3と、例えば半径方向のギャップを介して対向させたステータコイル4aおよびロータマグネット4bとを備えている。ステータコイル4aはブラケット5の外周に取付けられ、ロータマグネット4bはディスクハブ3の内周に取付けられる。流体軸受装置1の軸受部材6は、ブラケット5の内周に装着される。ディスクハブ3には、磁気ディスク等のディスクDが一又は複数枚保持される。ステータコイル4aに通電すると、ステータコイル4aとロータマグネット4bとの間の電磁力でロータマグネット4bが回転し、それによって、ディスクハブ3および軸部材2が一体となって回転する。   FIG. 1 conceptually shows one configuration example of a spindle motor for information equipment incorporating a fluid dynamic bearing device. This spindle motor is used for a disk drive device such as an HDD, and has a hydrodynamic bearing device 1 that rotatably supports a shaft member 2, a disk hub 3 mounted on the shaft member 2, and a radial gap, for example. And a stator coil 4a and a rotor magnet 4b that are opposed to each other. The stator coil 4 a is attached to the outer periphery of the bracket 5, and the rotor magnet 4 b is attached to the inner periphery of the disk hub 3. The bearing member 6 of the hydrodynamic bearing device 1 is mounted on the inner periphery of the bracket 5. The disk hub 3 holds one or more disks D such as magnetic disks. When the stator coil 4a is energized, the rotor magnet 4b is rotated by the electromagnetic force between the stator coil 4a and the rotor magnet 4b, whereby the disk hub 3 and the shaft member 2 are rotated together.

図2は、本発明に係る流体軸受装置の第1実施形態を示すものである。同図に示す流体軸受装置1は、軸受部材6と、軸受部材6の内周に挿入された軸部材2と、軸受部材6の一端開口をシールするシール部材9と、軸受部材6の他端開口を封止する蓋部材10とを主要な構成部品として備える。軸受部材6は、内周に軸部材2を収容したスリーブ部8と、スリーブ部8を内周に配置したハウジング部7とで構成される。なお、以下では、説明の便宜上、シール部材9の側を上側、これと軸方向反対側(蓋部材10の側)を下側として説明を進める。   FIG. 2 shows a first embodiment of a hydrodynamic bearing device according to the present invention. The hydrodynamic bearing device 1 shown in FIG. 1 includes a bearing member 6, a shaft member 2 inserted into the inner periphery of the bearing member 6, a seal member 9 that seals one end opening of the bearing member 6, and the other end of the bearing member 6. A lid member 10 that seals the opening is provided as a main component. The bearing member 6 includes a sleeve portion 8 that houses the shaft member 2 on the inner periphery, and a housing portion 7 that arranges the sleeve portion 8 on the inner periphery. In the following description, for convenience of explanation, the description will be made with the seal member 9 side as the upper side and the axially opposite side (the lid member 10 side) as the lower side.

軸部材2は、例えば、ステンレス鋼等の金属材料で形成され、軸部2aと、軸部2aの下端に一体又は別体に設けられたフランジ部2bとを備えている。軸部材2は、その全体を金属材料で形成する他、例えばフランジ部2bの全体あるいはその一部(例えば両端面)を樹脂で構成し、金属と樹脂のハイブリッド構造とすることもできる。   The shaft member 2 is formed of, for example, a metal material such as stainless steel, and includes a shaft portion 2a and a flange portion 2b provided integrally or separately at the lower end of the shaft portion 2a. The shaft member 2 may be entirely formed of a metal material, or may be a hybrid structure of metal and resin, for example, the entire flange portion 2b or a part thereof (for example, both end surfaces) made of resin.

軸受部材6を構成するスリーブ部8は、焼結金属からなる多孔質体、特に銅を主成分とする焼結金属の多孔質体で円筒状に形成される。なお、焼結金属に限らず、多孔質体ではない他の金属材料、例えば黄銅等の軟質金属でスリーブ部8を形成することも可能である。また、焼結金属以外の多孔質体で形成することも可能である。   The sleeve portion 8 constituting the bearing member 6 is formed in a cylindrical shape with a porous body made of sintered metal, in particular, a sintered metal porous body mainly containing copper. Note that the sleeve portion 8 can be formed of not only a sintered metal but also a metal material other than a porous body, for example, a soft metal such as brass. Moreover, it is also possible to form with porous bodies other than a sintered metal.

スリーブ部8の内周面8aには、第1ラジアル軸受部R1と第2ラジアル軸受部R2のラジアル軸受面となる上下2つの領域が軸方向に離隔して設けられ、該2つの領域には、例えば図3(a)に示すようなヘリングボーン状に配列された複数の動圧溝8a1、8a2がそれぞれ形成されている。上側の動圧溝8a1は、軸方向中心m(上下の傾斜溝間領域の軸方向中央)に対して軸方向非対称に形成されており、軸方向中心mより上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている。動圧溝は、軸部2aの外周面2a1に形成することもでき、またその形状は、スパイラル状等、公知のその他の形状とすることもできる。   The inner peripheral surface 8a of the sleeve portion 8 is provided with two upper and lower regions that are radial bearing surfaces of the first radial bearing portion R1 and the second radial bearing portion R2, and are separated in the axial direction. For example, a plurality of dynamic pressure grooves 8a1 and 8a2 arranged in a herringbone shape as shown in FIG. 3A are formed. The upper dynamic pressure groove 8a1 is formed axially asymmetric with respect to the axial center m (the axial center of the upper and lower inclined groove regions), and the axial dimension X1 of the upper region is lower than the axial center m. It is larger than the axial dimension X2 of the side region. The dynamic pressure groove may be formed on the outer peripheral surface 2a1 of the shaft portion 2a, and the shape thereof may be other known shapes such as a spiral shape.

スリーブ部8の下側端面8bには第1スラスト軸受部T1のスラスト軸受面となる領域が設けられ、該領域には、図3(b)に示すように、例えばスパイラル状に配列された複数の動圧溝8b1が形成されている。動圧溝8b1は、フランジ部2bの上側端面2b1に形成することもでき、またその形状は、へリングボーン状等、公知のその他の形状とすることもできる。   The lower end surface 8b of the sleeve portion 8 is provided with a region to be a thrust bearing surface of the first thrust bearing portion T1, and, as shown in FIG. The dynamic pressure groove 8b1 is formed. The dynamic pressure groove 8b1 may be formed on the upper end surface 2b1 of the flange portion 2b, and the shape thereof may be other known shapes such as a herringbone shape.

スリーブ部8の上側端面8cの半径方向略中央部には円周溝8c1が形成され、円周溝8c1よりも内径側の領域には、一又は複数の半径方向溝8c2が形成されている。本実施形態で、半径方向溝8c2は、円周方向の三箇所に等配されている。   A circumferential groove 8c1 is formed in a substantially central portion in the radial direction of the upper end surface 8c of the sleeve portion 8, and one or a plurality of radial grooves 8c2 are formed in a region on the inner diameter side of the circumferential groove 8c1. In the present embodiment, the radial grooves 8c2 are equally arranged at three locations in the circumferential direction.

スリーブ部8には、その両端面8b、8cを連通させる一又は複数の循環路11が設けられ、本実施形態では図3(b)にも示すように円周方向の3箇所に等配されている。   The sleeve portion 8 is provided with one or a plurality of circulation paths 11 for communicating the both end faces 8b and 8c. In the present embodiment, the sleeve portion 8 is equally distributed at three places in the circumferential direction as shown in FIG. ing.

ハウジング部7は略円筒状をなし、スリーブ部8をインサートして樹脂で射出成形される。樹脂以外にも、例えばアルミニウム合金等の低融点金属でハウジング部7を射出成形することも可能である。   The housing part 7 has a substantially cylindrical shape, and the sleeve part 8 is inserted to be injection-molded with resin. In addition to the resin, the housing part 7 can be injection-molded with a low melting point metal such as an aluminum alloy.

ハウジング部7の下端開口部は、円盤部10aおよび円筒部10bを一体に有する有底筒状の蓋部材10で封止される。円盤部10aの内底面10a1には、第2スラスト軸受部T2のスラスト軸受面となる領域が設けられ、該領域には、図示は省略するが、例えばスパイラル状に配列された複数の動圧溝が形成されている。動圧溝は、フランジ部2bの下側端面2b2に形成することもでき、またその形状は、ヘリングボーン状等、公知のその他の形状とすることができる。円筒部10bの上側端面10b1には、一又は複数の半径方向溝10b11が形成されている。   The lower end opening of the housing part 7 is sealed with a bottomed cylindrical lid member 10 integrally having a disk part 10a and a cylindrical part 10b. The inner bottom surface 10a1 of the disk portion 10a is provided with a region to be a thrust bearing surface of the second thrust bearing portion T2, and although not shown in the drawing, for example, a plurality of dynamic pressure grooves arranged in a spiral shape Is formed. The dynamic pressure groove may be formed on the lower end surface 2b2 of the flange portion 2b, and the shape thereof may be other known shapes such as a herringbone shape. One or more radial grooves 10b11 are formed on the upper end face 10b1 of the cylindrical portion 10b.

シール部材9は、例えば、黄銅等の軟質金属材料やその他の金属材料、あるいは樹脂材料でリング状に形成される。シール部材9の内周面9aは、軸部2aの外周面2a1と所定のシール空間S1を介して対向する。シール部材9の下側端面9bの外径側領域9b1は、内径側領域よりも僅かに軸方向上方に後退させた状態に形成されている。   The seal member 9 is formed in a ring shape from a soft metal material such as brass, other metal materials, or a resin material, for example. The inner peripheral surface 9a of the seal member 9 faces the outer peripheral surface 2a1 of the shaft portion 2a via a predetermined seal space S1. The outer diameter side region 9b1 of the lower end surface 9b of the seal member 9 is formed in a state of being slightly retreated upward in the axial direction from the inner diameter side region.

上記の構成部材からなる流体軸受装置1の製造工程を、軸受部材6の製造工程を中心に以下説明する。なお、軸受部材6は、スリーブ部8をインサートしてハウジング部7を射出成形する(A)射出成形工程と、スリーブ部8に循環路11を形成する(B)循環路形成工程とを経て製造される。   The manufacturing process of the hydrodynamic bearing device 1 composed of the above constituent members will be described below with a focus on the manufacturing process of the bearing member 6. The bearing member 6 is manufactured through an injection molding step (A) in which the sleeve portion 8 is inserted and the housing portion 7 is injection molded, and a circulation path 11 is formed in the sleeve portion 8 (B). Is done.

(A)射出成形工程
この工程では、図4(a)に示す金型を用いて、スリーブ部8をインサートしてハウジング部7を射出成形する。この段階で、スリーブ部8に循環路11は形成されていない。同図に示す金型は、主に可動側の上型12および固定側の下型13からなり、両型12,13でハウジング部7形状に対応したキャビティ15が構成される。上型12には、キャビティ15内に溶融樹脂Pを射出するゲート16が設けられる。ゲート16形状は、成形すべきハウジング部7の形状に対応させた任意形状のものが選択可能である。下型13の軸線上には固定ピン14が設けられ、スリーブ部8は固定ピン14の外周に位置決め配置される。固定ピン14の外周面14aは、例えばスリーブ部8を弾性的に保持可能な程度の外径に設定されている。
(A) Injection molding step In this step, the housing portion 7 is injection molded by inserting the sleeve portion 8 using the mold shown in FIG. At this stage, the circulation path 11 is not formed in the sleeve portion 8. The mold shown in the figure is mainly composed of an upper mold 12 on the movable side and a lower mold 13 on the fixed side, and a cavity 15 corresponding to the shape of the housing part 7 is constituted by both molds 12 and 13. The upper mold 12 is provided with a gate 16 for injecting the molten resin P into the cavity 15. As the shape of the gate 16, an arbitrary shape corresponding to the shape of the housing part 7 to be molded can be selected. A fixing pin 14 is provided on the axis of the lower mold 13, and the sleeve portion 8 is positioned on the outer periphery of the fixing pin 14. The outer peripheral surface 14a of the fixing pin 14 is set to an outer diameter that can elastically hold the sleeve portion 8, for example.

上記構成の金型において、下側端面8bを下型13の内底面13aに当接させるようにしてスリーブ部8を位置決め配置した後、上型12を下型13に接近させて型締めする。型締め完了後、ゲート16を介してキャビティ15内に溶融樹脂Pを射出・充填し、ハウジング部7をスリーブ部8と一体に型成形する。溶融樹脂Pの固化完了後型開きを行うと、ハウジング部7およびスリーブ部8が一体となった軸受部材6が得られる。   In the mold having the above-described configuration, after the sleeve portion 8 is positioned and disposed so that the lower end surface 8b is in contact with the inner bottom surface 13a of the lower mold 13, the upper mold 12 is brought close to the lower mold 13 and clamped. After completion of the mold clamping, the molten resin P is injected and filled into the cavity 15 through the gate 16, and the housing part 7 is molded integrally with the sleeve part 8. When the mold opening is performed after the solidification of the molten resin P is completed, the bearing member 6 in which the housing portion 7 and the sleeve portion 8 are integrated is obtained.

溶融樹脂Pを構成するベース樹脂としては、非晶性樹脂あるいは結晶性樹脂の何れも使用可能である。使用可能な非晶性樹脂としては、例えば、ポリサルフォン(PSU)、ポリエーテルサルフォン(PES)、ポリフェニルサルフォン(PPSU)、ポリエーテルイミド(PEI)等を挙げることができる。また使用可能な結晶性樹脂としては、例えば、液晶ポリマー(LCP)、ポリエーテルエーテルケトン(PEEK)、ポリブチレンテレフタレート(PBT)、ポリフェニレンサルファイド(PPS)等を挙げることができる。上記のベース樹脂には、これに種々の特性を付与する充填材を添加することができる。使用可能な充填材の種類にも特段の限定はないが、例えば、ガラス繊維等の繊維状充填材、チタン酸カリウム等のウィスカー状充填材、マイカ等の鱗片状充填材、カーボンファイバー、カーボンブラック、黒鉛、カーボンナノマテリアル、金属粉末等の繊維状又は粉末状の導電性充填材を用いることができる。これらの充填材は、単独で用いる他、二種以上を混合して使用しても良い。   As the base resin constituting the molten resin P, either an amorphous resin or a crystalline resin can be used. Examples of the amorphous resin that can be used include polysulfone (PSU), polyethersulfone (PES), polyphenylsulfone (PPSU), and polyetherimide (PEI). Examples of the crystalline resin that can be used include liquid crystal polymer (LCP), polyether ether ketone (PEEK), polybutylene terephthalate (PBT), polyphenylene sulfide (PPS), and the like. The above base resin can be added with a filler that imparts various properties thereto. The type of filler that can be used is not particularly limited. For example, fibrous fillers such as glass fibers, whisker-like fillers such as potassium titanate, scaly fillers such as mica, carbon fibers, and carbon black Fibrous or powdery conductive fillers such as graphite, carbon nanomaterial, and metal powder can be used. These fillers may be used alone or in combination of two or more.

(B)循環路形成工程
以上のようにして形成された軸受部材6は、図4(b)に示す循環路11の形成工程に移送され、この工程ではレーザを照射することによりスリーブ部8に循環路11が形成される。同図に示す循環路11の形成装置は、軸受部材6を支持する固定ピン17と、軸受部材6の一端側(図示例は上端側)に配設されたレーザ照射装置18とを主要な構成として備える。
(B) Circulation path formation process The bearing member 6 formed as described above is transferred to the formation process of the circulation path 11 shown in FIG. 4B. In this process, the sleeve portion 8 is irradiated by irradiating a laser. A circulation path 11 is formed. The apparatus for forming the circulation path 11 shown in FIG. 1 mainly includes a fixing pin 17 that supports the bearing member 6 and a laser irradiation device 18 that is disposed on one end side (the upper end side in the illustrated example) of the bearing member 6. Prepare as.

レーザ照射装置18は、放電ランプや半導体レーザ等の励起源を備え、その先端部から軸受部材6(本実施形態ではスリーブ部8)に向けて所定パワーのレーザビーム19を照射するものであり、軸線と平行な方向のレーザビーム19を照射するように配設される。レーザとしては、炭酸ガスレーザ、YAGレーザ、ファイバレーザ等公知の種々のレーザが使用可能であるが、レーザビーム19の品質が高く、循環路11の形成に必要な出力を容易かつ安定して得られることから、炭酸ガスレーザを用いている。レーザ照射装置18におけるレーザビーム19の照射方式としては、連続式またはパルス式の何れであっても良いが特に連続式が好適である。また照射するレーザビーム19のパワーは任意に調整可能である。   The laser irradiation device 18 includes an excitation source such as a discharge lamp or a semiconductor laser, and irradiates a laser beam 19 having a predetermined power from the tip portion thereof toward the bearing member 6 (sleeve portion 8 in the present embodiment). It arrange | positions so that the laser beam 19 of a direction parallel to an axis line may be irradiated. As the laser, various known lasers such as a carbon dioxide laser, a YAG laser, and a fiber laser can be used. However, the quality of the laser beam 19 is high, and an output necessary for forming the circulation path 11 can be obtained easily and stably. For this reason, a carbon dioxide laser is used. The irradiation method of the laser beam 19 in the laser irradiation device 18 may be either a continuous type or a pulse type, but a continuous type is particularly preferable. The power of the laser beam 19 to be irradiated can be arbitrarily adjusted.

図示は省略しているが、レーザ照射装置18と軸受部材6との間に、凸レンズや凹レンズを有するビーム径調整手段を配設することも可能である。かかるビーム径調整手段を設けることにより、形成すべき循環路11の孔径等に応じてビーム径を簡便に調整することが可能となる。   Although not shown, a beam diameter adjusting means having a convex lens or a concave lens can be disposed between the laser irradiation device 18 and the bearing member 6. By providing such a beam diameter adjusting means, it becomes possible to easily adjust the beam diameter according to the hole diameter of the circulation path 11 to be formed.

以上の構成からなる循環路11の形成装置において、固定ピン17で軸受部材6を保持した状態でレーザ照射装置18からレーザビーム19を照射し、スリーブ部8の両端面8b、8cを連通する1本の循環路11を形成する。1本の循環路11を形成した後、軸受部材6とレーザ照射装置18とを相対回転させてスリーブ部8に2本目の循環路11を形成する。さらに同様にして3本目の循環路11を形成する。このようにしてスリーブ部8の円周方向3箇所に循環路11を形成した後、軸受部材6を固定ピン17から取り外すと、図2および図3に示す完成品としての軸受部材6が得られる。   In the apparatus for forming the circulation path 11 having the above configuration, the laser beam 19 is irradiated from the laser irradiation device 18 in a state where the bearing member 6 is held by the fixing pin 17, and the both end surfaces 8b and 8c of the sleeve portion 8 are communicated. A book circulation path 11 is formed. After forming one circulation path 11, the bearing member 6 and the laser irradiation device 18 are rotated relative to each other to form the second circulation path 11 in the sleeve portion 8. Further, a third circulation path 11 is formed in the same manner. After the circulation path 11 is formed in three places in the circumferential direction of the sleeve portion 8 in this way, when the bearing member 6 is removed from the fixing pin 17, the finished bearing member 6 shown in FIGS. 2 and 3 is obtained. .

なお、以上では、レーザ照射装置18を円周方向の一箇所に配設し、レーザ照射装置18と軸受部材6とを相対回転させることによって、スリーブ部8に3本の循環路11を形成する構成としたが、レーザ照射装置18を円周方向の3箇所に配設し、3本の循環路11を同時形成することも可能である。   In the above, the laser irradiation device 18 is disposed at one place in the circumferential direction, and the three irradiation paths 11 are formed in the sleeve portion 8 by rotating the laser irradiation device 18 and the bearing member 6 relative to each other. Although the configuration is adopted, it is also possible to arrange the laser irradiation devices 18 at three locations in the circumferential direction and simultaneously form the three circulation paths 11.

以上のようにして製造された軸受部材6(スリーブ部8)の内周に軸部材2を挿入し、ハウジング部7の上端開口および下端開口に、シール部材9および蓋部材10をそれぞれ接着、圧入等適宜の手段で固定する。その後、シール部材9で密封された軸受部材6の内部空間にスリーブ部8の内部空孔も含め潤滑油を充満させることにより、図2に示す流体軸受装置1が完成する。なお、本実施形態では、蓋部材10を構成する円筒部10bの上側端面10b1と円盤部10aの内底面10a1との軸方向離間距離が、フランジ部2bの幅と両スラスト軸受隙間の軸方向寸法とを合算した値に設定されている。従って、円筒部10bの上側端面10b1をスリーブ部8の下側端面8bに当接させるようにして蓋部材10をハウジング部7の内周に固定するだけで、両スラスト軸受部T1、T2のスラスト軸受隙間幅が精度良く設定される。   The shaft member 2 is inserted into the inner periphery of the bearing member 6 (sleeve portion 8) manufactured as described above, and the seal member 9 and the lid member 10 are bonded and press-fitted into the upper end opening and the lower end opening of the housing portion 7, respectively. Etc. are fixed by appropriate means. Then, the hydrodynamic bearing device 1 shown in FIG. 2 is completed by filling the internal space of the bearing member 6 sealed with the seal member 9 with lubricating oil including the internal holes of the sleeve portion 8. In the present embodiment, the axial distance between the upper end surface 10b1 of the cylindrical portion 10b constituting the lid member 10 and the inner bottom surface 10a1 of the disc portion 10a is the width of the flange portion 2b and the axial dimension of both thrust bearing gaps. It is set to the sum of and. Therefore, the thrust members of both thrust bearing portions T1 and T2 are fixed by simply fixing the lid member 10 to the inner periphery of the housing portion 7 so that the upper end surface 10b1 of the cylindrical portion 10b is brought into contact with the lower end surface 8b of the sleeve portion 8. The bearing gap width is set with high accuracy.

以上の構成からなる流体軸受装置1において、軸部材2が回転すると、スリーブ部8の内周面8aのラジアル軸受面となる上下2箇所の領域は、それぞれ、軸部2aの外周面2a1とラジアル軸受隙間を介して対向する。そして、軸部材2の回転に伴って、各ラジアル軸受隙間に形成される油膜は、ラジアル軸受面にそれぞれ形成された動圧溝8a1、8a2の動圧作用によってその油膜剛性を高められ、この圧力によって軸部材2がラジアル方向に回転自在に非接触支持される。これにより、軸部材2をラジアル方向に回転自在に非接触支持する第1ラジアル軸受部R1と第2ラジアル軸受部R2とが形成される。   In the hydrodynamic bearing device 1 having the above-described configuration, when the shaft member 2 rotates, the upper and lower two regions serving as the radial bearing surface of the inner peripheral surface 8a of the sleeve portion 8 are different from the outer peripheral surface 2a1 of the shaft portion 2a. Opposing through the bearing gap. As the shaft member 2 rotates, the oil film formed in each radial bearing gap has its oil film rigidity increased by the dynamic pressure action of the dynamic pressure grooves 8a1 and 8a2 respectively formed on the radial bearing surfaces. Thus, the shaft member 2 is supported in a non-contact manner so as to be rotatable in the radial direction. As a result, the first radial bearing portion R1 and the second radial bearing portion R2 that support the shaft member 2 in a non-contact manner so as to be rotatable in the radial direction are formed.

また、軸部材2が回転すると、スリーブ部8の下側端面8bのスラスト軸受面となる領域は、フランジ部2bの上側端面2b1とスラスト軸受隙間を介して対向し、蓋部材10の内底面10a1のスラスト軸受面となる領域は、フランジ部2bの下側端面2b2とスラスト軸受隙間を介して対向する。そして、軸部材2の回転に伴って、各スラスト軸受隙間に形成される油膜は、スラスト軸受面にそれぞれ形成された動圧溝の動圧作用によってその油膜剛性を高められ、この圧力によって軸部材2が両スラスト方向に回転自在に非接触支持される。これにより、軸部材2を両スラスト方向に回転自在に非接触支持する第1スラスト軸受部T1と第2スラスト軸受部T2とが形成される。   Further, when the shaft member 2 rotates, the region that becomes the thrust bearing surface of the lower end surface 8b of the sleeve portion 8 faces the upper end surface 2b1 of the flange portion 2b via the thrust bearing gap, and the inner bottom surface 10a1 of the lid member 10 is formed. The region serving as the thrust bearing surface is opposed to the lower end surface 2b2 of the flange portion 2b via the thrust bearing gap. As the shaft member 2 rotates, the oil film formed in the thrust bearing gaps has its oil film rigidity increased by the dynamic pressure action of the dynamic pressure grooves formed on the thrust bearing surfaces. 2 is supported in a non-contact manner so as to be rotatable in both thrust directions. Thereby, the 1st thrust bearing part T1 and the 2nd thrust bearing part T2 which non-contact-support the shaft member 2 rotatably in both thrust directions are formed.

また、軸部材2の回転時には、上述のように、シール空間S1が、軸受部材6の内部側に向かって漸次縮小したテーパ形状を呈しているため、シール空間S1内の潤滑油は毛細管力による引き込み作用により、シール空間が狭くなる方向、すなわち軸受部材6の内部側に向けて引き込まれる。これにより、軸受部材6の内部からの潤滑油の漏れ出しが効果的に防止される。また、シール空間S1は、軸受部材6の内部空間に充満された潤滑油の温度変化に伴う容積変化量を吸収するバッファ機能を有し、想定される温度変化の範囲内では、潤滑油の油面は常にシール空間S1内にある。   Further, when the shaft member 2 rotates, as described above, the seal space S1 has a tapered shape that gradually decreases toward the inner side of the bearing member 6, so that the lubricating oil in the seal space S1 is caused by capillary force. By the pulling-in action, the seal space is pulled in the direction of narrowing, that is, toward the inside of the bearing member 6. Thereby, the leakage of the lubricating oil from the inside of the bearing member 6 is effectively prevented. Further, the seal space S1 has a buffer function of absorbing a volume change amount accompanying a temperature change of the lubricating oil filled in the internal space of the bearing member 6, and within the range of the assumed temperature change, the oil of the lubricating oil The face is always in the seal space S1.

また、上側の動圧溝8a1は、軸方向中心mに対して軸方向非対称に形成されており、軸方向中心mより上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている。そのため、軸部材2の回転時、動圧溝8a1による潤滑油の引き込み力(ポンピング力)は上側領域が下側領域に比べて相対的に大きくなる。そして、この引き込み力の差圧によって、スリーブ部8の内周面8aと軸部2aの外周面2a1との間の隙間に満たされた潤滑油は、第1スラスト軸受部T1のスラスト軸受隙間→蓋部材10の上側端面10b1の半径方向溝10b11→循環路11→シール部材9の下側端面9bの外径側領域9b1とスリーブ部8の上側端面8cとの間の環状隙間→スリーブ部8の上側端面8cの円周溝8c1→スリーブ部8の上側端面8cの半径方向溝8c2という経路を循環して、第1ラジアル軸受部R1のラジアル軸受隙間に再び引き込まれる。   The upper dynamic pressure groove 8a1 is formed axially asymmetric with respect to the axial center m, and the axial dimension X1 in the upper region from the axial center m is larger than the axial dimension X2 in the lower region. It has become. Therefore, when the shaft member 2 rotates, the lubricating oil pulling force (pumping force) by the dynamic pressure groove 8a1 is relatively larger in the upper region than in the lower region. The lubricating oil filled in the gap between the inner peripheral surface 8a of the sleeve portion 8 and the outer peripheral surface 2a1 of the shaft portion 2a due to the differential pressure of the pulling force becomes the thrust bearing gap of the first thrust bearing portion T1. The radial groove 10b11 of the upper end surface 10b1 of the lid member 10 → the circulation path 11 → the annular gap between the outer diameter side region 9b1 of the lower end surface 9b of the seal member 9 and the upper end surface 8c of the sleeve portion 8 → the sleeve portion 8 It circulates along the path of the circumferential groove 8c1 on the upper end face 8c and the radial groove 8c2 on the upper end face 8c of the sleeve portion 8, and is drawn again into the radial bearing gap of the first radial bearing portion R1.

このように、潤滑油が軸受部材6の内部空間を流動循環するように構成することで、内部空間内の潤滑油の圧力が局部的に負圧になる現象を防止して、負圧発生に伴う気泡の生成、気泡の生成に起因する潤滑油の漏れや軸受性能の劣化、振動の発生等の問題を解消することができる。また、何らかの理由で潤滑油中に気泡が混入した場合でも、気泡が潤滑油に伴って循環する際にシール空間S1内の潤滑油の油面(気液界面)から外気に排出されるので、気泡による悪影響はより一層効果的に防止される。   In this way, by configuring the lubricating oil to flow and circulate in the internal space of the bearing member 6, the phenomenon that the pressure of the lubricating oil in the internal space becomes a negative pressure locally is prevented, and negative pressure is generated. It is possible to solve problems such as generation of bubbles, leakage of lubricating oil, deterioration of bearing performance, generation of vibrations, and the like due to generation of bubbles. Further, even if bubbles are mixed in the lubricating oil for some reason, when the bubbles circulate with the lubricating oil, it is discharged from the oil surface (gas-liquid interface) of the lubricating oil in the seal space S1 to the outside air. The adverse effects due to the bubbles are more effectively prevented.

以上に示すように、本発明では、循環路11が、スリーブ部8をインサートしてハウジング部7を射出成形した後、レーザ加工を施して形成される。かかる構成であれば、スリーブ部6をインサートしてハウジング部7が射出成形されるので高精度な軸受部材6が低コストに得られる一方で、レーザ(レーザビーム19)を照射する工程を経るだけで高精度な循環路11を形成することができる。これにより、循環路11の形成に、ハウジング部7を射出成形する工程を除いて少なくとも2工程を必要とし、かつその2工程に格別の配慮を要した従来構成に比べ、製造コストの低廉化を図ることができる。従って、軸受性能を安定維持可能な流体軸受装置1を低コストに提供することができる。   As described above, in the present invention, the circulation path 11 is formed by laser processing after the sleeve portion 8 is inserted and the housing portion 7 is injection-molded. With this configuration, since the housing portion 7 is injection-molded by inserting the sleeve portion 6, a highly accurate bearing member 6 can be obtained at a low cost, but only through a step of irradiating a laser (laser beam 19). Thus, the highly accurate circulation path 11 can be formed. As a result, the formation of the circulation path 11 requires at least two steps, excluding the step of injection molding the housing portion 7, and the manufacturing cost is reduced compared to the conventional configuration that requires special consideration for the two steps. Can be planned. Therefore, the hydrodynamic bearing device 1 capable of stably maintaining the bearing performance can be provided at a low cost.

以上本発明に係る流体軸受装置の一実施形態について説明を行ったが、本発明は上記構成の流体軸受装置に限定適用されるものではない。以下、本発明を適用した流体軸受装置の他の実施形態について説明を行うが、図2に示す流体軸受装置1に準じる構成には共通の参照番号を付して重複説明を省略する。   Although one embodiment of the hydrodynamic bearing device according to the present invention has been described above, the present invention is not limited to the hydrodynamic bearing device configured as described above. Hereinafter, other embodiments of the hydrodynamic bearing device to which the present invention is applied will be described. However, the configuration according to the hydrodynamic bearing device 1 shown in FIG.

図5は、本発明に係る流体軸受装置の第2実施形態を示している。同図に示す流体軸受装置1が図2に示す流体軸受装置と異なる主な点は、第2スラスト軸受部T2が、軸部材2に固定されたディスクハブ3の下側端面3aとハウジング部7の上側端面7bとの間に設けられた点、およびシール空間S1がハウジング部7の上部外周面7cとディスクハブ3の内周面3bとの間に形成された点にある。   FIG. 5 shows a second embodiment of a hydrodynamic bearing device according to the present invention. The main difference between the hydrodynamic bearing device 1 shown in FIG. 2 and the hydrodynamic bearing device shown in FIG. 2 is that the second thrust bearing portion T2 has a lower end surface 3a of the disk hub 3 fixed to the shaft member 2 and a housing portion 7. And the seal space S1 is formed between the upper outer peripheral surface 7c of the housing portion 7 and the inner peripheral surface 3b of the disk hub 3.

図6は、本発明に係る流体軸受装置の第3実施形態を示している。同図に示す流体軸受装置1は、図5に示す流体軸受装置1の変形例であり、図5に示す流体軸受装置に比べ循環路11を内径側に設けた点で図5に示すものと構成を異にする。   FIG. 6 shows a third embodiment of the hydrodynamic bearing device according to the present invention. The hydrodynamic bearing device 1 shown in FIG. 5 is a modification of the hydrodynamic bearing device 1 shown in FIG. 5 and is different from the hydrodynamic bearing device shown in FIG. 5 in that the circulation path 11 is provided on the inner diameter side. Make the configuration different.

図7は、本発明に係る流体軸受装置の第4実施形態を示している。同図に示す流体軸受装置1が図2に示す流体軸受装置1と異なる主な点は、スリーブ部8の上側端面8cと軸部材2に固定した第1シール部材29の下側端面29bとの間、およびスリーブ部8の下側端面8bと軸部材2に固定した第2シール部材30の上側端面30bとの間にそれぞれ第1および第2スラスト軸受部T1、T2を設けた点、またハウジング部7に内周小径部71と内周大径部72とを設け、内周大径部72の第1内周面72aと第1シール部材29の外周面29aとの間、および内周大径部72の第2内周面72bと第2シール部材30の外周面30aとの間にシール空間S1、S2を設けた点にある。本実施形態では、スラスト軸受部T1、T2の軸方向離間距離が図2に示す流体軸受装置1に比べ長大化するので、モーメント荷重に対する負荷能力(モーメント剛性)を高めることができる。なお、本実施形態では、循環路11を、軸受部材6のうち、ハウジング部7の内周小径部71の上下端面71b、71cを連通するように設けている。   FIG. 7 shows a fourth embodiment of the hydrodynamic bearing device according to the present invention. The main difference between the hydrodynamic bearing device 1 shown in FIG. 2 and the hydrodynamic bearing device 1 shown in FIG. 2 is that the upper end surface 8 c of the sleeve portion 8 and the lower end surface 29 b of the first seal member 29 fixed to the shaft member 2. A first thrust bearing portion T1 and a second thrust bearing portion T2 are provided between the lower end surface 8b of the sleeve portion 8 and the upper end surface 30b of the second seal member 30 fixed to the shaft member 2, respectively. The inner peripheral small diameter portion 71 and the inner peripheral large diameter portion 72 are provided in the portion 7, and between the first inner peripheral surface 72 a of the inner peripheral large diameter portion 72 and the outer peripheral surface 29 a of the first seal member 29, and the large inner periphery. The seal space S1, S2 is provided between the second inner peripheral surface 72b of the diameter portion 72 and the outer peripheral surface 30a of the second seal member 30. In the present embodiment, the axial separation distance between the thrust bearing portions T1 and T2 is longer than that of the hydrodynamic bearing device 1 shown in FIG. 2, so that the load capacity (moment rigidity) against the moment load can be increased. In the present embodiment, the circulation path 11 is provided so as to communicate with the upper and lower end surfaces 71 b and 71 c of the inner peripheral small diameter portion 71 of the housing portion 7 in the bearing member 6.

図8は、本発明に係る流体軸受装置の第5実施形態を示している。同図に示す流体軸受装置1は、図7に示す流体軸受装置の変形例であり、ハウジング部7を構成する内周小径部71の上下端面71b、71cのうち、循環路11の形成部位に凹状の逃げ部71d、71eをそれぞれ設けている。かかる構成は、レーザビーム19の照射に伴って、上側端面71bおよび下側端面71c近傍に肉の盛り上がり(バリ)が形成される場合に有効である。すなわち、例えば、バリが上下端面71b、71cを超えて形成されると、スラスト軸受隙間の幅精度に悪影響を及ぼすおそれがあるため、これを除去する必要が生じるが、上記の逃げ部71d、71eをハウジング部7の射出成形と同時に形成しておくことでバリを当該逃げ部71d、71eで吸収することができ、その結果バリの除去を行う必要が生じなくなる。なお、図示例では逃げ部71d、71eを円周方向で間欠的に設けた構成としているが、これを全周に亘って、すなわち円環状に設けることも可能である。また、図示例では逃げ部を断面矩形状としているが、これをいわゆる面取りで構成することも可能である。逃げ部は、スリーブ部8に設けることも可能である。   FIG. 8 shows a fifth embodiment of a hydrodynamic bearing device according to the present invention. The hydrodynamic bearing device 1 shown in the figure is a modification of the hydrodynamic bearing device shown in FIG. 7, and the upper and lower end surfaces 71 b and 71 c of the inner peripheral small-diameter portion 71 constituting the housing portion 7 are formed at the formation site of the circulation path 11. Recessed relief portions 71d and 71e are provided, respectively. Such a configuration is effective when a bulge (burr) of meat is formed in the vicinity of the upper end surface 71b and the lower end surface 71c as the laser beam 19 is irradiated. That is, for example, if the burr is formed beyond the upper and lower end surfaces 71b and 71c, the width accuracy of the thrust bearing gap may be adversely affected. Therefore, it is necessary to remove this, but the above-described escape portions 71d and 71e are required. Is formed at the same time as the injection molding of the housing portion 7, so that the burrs can be absorbed by the relief portions 71d and 71e. As a result, it is not necessary to remove the burrs. In the illustrated example, the relief portions 71d and 71e are provided intermittently in the circumferential direction, but it is also possible to provide them over the entire circumference, that is, in an annular shape. In the illustrated example, the escape portion has a rectangular cross section, but it may be formed by so-called chamfering. The escape portion can be provided in the sleeve portion 8.

図9は、本発明に係る流体軸受装置の第6実施形態を示している。同図に示す流体軸受装置1が以上に示す流体軸受装置と異なる主な点は、ハウジング部7の内周面を大径内周面7a1と小径内周面7a2とに区画し、大径内周面7a1の内周にスリーブ部8を配置した点、換言するとスリーブ部8とハウジング部7とを軸方向で相互に係合させた点にある。かかる構成とすれば、スリーブ部8とハウジング部7間における結合強度を高めることができるので、流体軸受装置1の耐衝撃性を高めることができる。   FIG. 9 shows a sixth embodiment of the hydrodynamic bearing device according to the present invention. The main difference between the hydrodynamic bearing device 1 shown in the figure and the hydrodynamic bearing device shown above is that the inner peripheral surface of the housing portion 7 is divided into a large-diameter inner peripheral surface 7a1 and a small-diameter inner peripheral surface 7a2, The sleeve portion 8 is disposed on the inner periphery of the peripheral surface 7a1, in other words, the sleeve portion 8 and the housing portion 7 are engaged with each other in the axial direction. With this configuration, since the coupling strength between the sleeve portion 8 and the housing portion 7 can be increased, the impact resistance of the hydrodynamic bearing device 1 can be increased.

以上では、スリーブ部8あるいはハウジング部7に循環路11を設けた流体軸受装置について説明を行ったが、循環路11の形成部位は任意に選択することができる。例えば、図示は省略するが、スリーブ部8とハウジング部7の固定界面に循環路11を設ける他、スリーブ部8およびハウジング部7の双方に循環路11を設けることもできる。   In the above, the hydrodynamic bearing device in which the circulation path 11 is provided in the sleeve portion 8 or the housing portion 7 has been described. However, the formation site of the circulation path 11 can be arbitrarily selected. For example, although not shown, the circulation path 11 can be provided on both the sleeve part 8 and the housing part 7 in addition to the circulation path 11 provided on the fixed interface between the sleeve part 8 and the housing part 7.

また、以上では、ラジアル軸受部R1、R2およびスラスト軸受部T1、T2として、ヘリングボーン形状やスパイラル形状の動圧溝により潤滑油の動圧作用を発生させる構成を例示しているが、ラジアル軸受部R1、R2として、いわゆるステップ軸受、多円弧軸受、あるいは非真円軸受を、スラスト軸受部T1、T2として、いわゆるステップ軸受や波型軸受を採用しても良い。また、以上では、ラジアル軸受部を軸方向2箇所に設けた構成を例示しているが、ラジアル軸受部を軸方向の1箇所あるいは3箇所以上に設けることもできる。   In the above description, the radial bearing portions R1 and R2 and the thrust bearing portions T1 and T2 are exemplified by the configuration in which the dynamic pressure action of the lubricating oil is generated by the dynamic pressure grooves having a herringbone shape or a spiral shape. So-called step bearings, multi-arc bearings, or non-circular bearings may be used as the portions R1 and R2, and so-called step bearings and wave bearings may be employed as the thrust bearing portions T1 and T2. Moreover, although the structure which provided the radial bearing part in the axial direction two places was illustrated above, a radial bearing part can also be provided in the axial direction one place or three places or more.

また、以上では、ラジアル軸受部R1、R2の双方を動圧軸受で構成した場合について説明を行ったが、ラジアル軸受部R1、R2の一方又は双方をこれ以外の軸受で構成することもできる。例えば図示は省略するが、軸部材2の外周面2a1を真円状外周面に形成すると共に、この外周面と対向する軸受スリーブ8の内周面8aを真円状内周面とすることで、いわゆる真円軸受を構成することもできる。   Moreover, although the case where both radial bearing part R1, R2 was comprised with the dynamic pressure bearing was demonstrated above, one or both of radial bearing part R1, R2 can also be comprised with a bearing other than this. For example, although illustration is omitted, the outer peripheral surface 2a1 of the shaft member 2 is formed in a perfect circular outer peripheral surface, and the inner peripheral surface 8a of the bearing sleeve 8 facing the outer peripheral surface is made a perfect circular inner peripheral surface. A so-called perfect circle bearing can also be configured.

また、以上の説明では、スラスト軸受部T1、T2の双方を動圧軸受で構成したが、例えば図2、図5等に示す構成の流体軸受装置1では、軸部材2の下端を凸球状に形成することにより、スラスト軸受部をピボット軸受で構成することもできる。   In the above description, both the thrust bearing portions T1 and T2 are configured by dynamic pressure bearings. However, in the hydrodynamic bearing device 1 having the configuration shown in FIGS. 2 and 5, for example, the lower end of the shaft member 2 is formed in a convex spherical shape. By forming, the thrust bearing portion can be constituted by a pivot bearing.

流体軸受装置を組み込んだ情報機器用スピンドルモータの一例を概念的に示す断面図である。It is sectional drawing which shows notionally an example of the spindle motor for information devices incorporating the hydrodynamic bearing apparatus. 本発明に係る流体軸受装置の第1実施形態を示す断面図である。It is sectional drawing which shows 1st Embodiment of the hydrodynamic bearing apparatus which concerns on this invention. (a)図は軸受部材の断面図、(b)図は軸受部材を下方から見た図である。(A) A figure is sectional drawing of a bearing member, (b) figure is the figure which looked at the bearing member from the downward direction. (a)図はハウジング部を射出成形する工程を概念的に示す断面図、(b)図は軸受部材に循環路を形成する工程を概念的に示す断面図である。FIG. 4A is a sectional view conceptually showing a process of injection molding a housing portion, and FIG. 4B is a sectional view conceptually showing a process of forming a circulation path in a bearing member. 本発明に係る流体軸受装置の第2実施形態を示す断面図である。It is sectional drawing which shows 2nd Embodiment of the hydrodynamic bearing apparatus which concerns on this invention. 本発明に係る流体軸受装置の第3実施形態を示す断面図である。It is sectional drawing which shows 3rd Embodiment of the hydrodynamic bearing apparatus which concerns on this invention. 本発明に係る流体軸受装置の第4実施形態を示す断面図である。It is sectional drawing which shows 4th Embodiment of the hydrodynamic bearing apparatus which concerns on this invention. 本発明に係る流体軸受装置の第5実施形態を示す断面図である。It is sectional drawing which shows 5th Embodiment of the hydrodynamic bearing apparatus which concerns on this invention. 本発明に係る流体軸受装置の第6実施形態を示す断面図である。It is sectional drawing which shows 6th Embodiment of the hydrodynamic bearing apparatus which concerns on this invention.

符号の説明Explanation of symbols

1 流体軸受装置
2 軸部材
6 軸受部材
7 ハウジング部
8 スリーブ部
11 循環路
12 上型
13 下型
15 キャビティ
18 レーザ照射装置
19 レーザビーム
R1、R2 ラジアル軸受部
T1、T2 スラスト軸受部
S1、S2 シール空間
DESCRIPTION OF SYMBOLS 1 Fluid dynamic bearing apparatus 2 Shaft member 6 Bearing member 7 Housing part 8 Sleeve part 11 Circulation path 12 Upper mold | type 13 Lower mold | type 15 Cavity 18 Laser irradiation apparatus 19 Laser beam R1, R2 Radial bearing part T1, T2 Thrust bearing part S1, S2 Seal space

Claims (6)

内周に収容した軸部材との間にラジアル軸受隙間を形成するスリーブ部およびスリーブ部を内周に配置したハウジング部を有する軸受部材と、ラジアル軸受隙間を満たす潤滑油とを備え、軸受部材に形成した軸方向の循環路で潤滑油の流動循環を可能とした流体軸受装置において、
循環路が、スリーブ部をインサートしてハウジング部を射出成形した後、レーザを照射して形成されていることを特徴とする流体軸受装置。
A bearing member having a sleeve portion that forms a radial bearing gap between the shaft member housed in the inner circumference and a housing portion in which the sleeve portion is arranged on the inner circumference, and lubricating oil that fills the radial bearing gap is provided. In the hydrodynamic bearing device that enables the flow circulation of the lubricating oil in the formed axial circulation path,
A hydrodynamic bearing device, wherein the circulation path is formed by irradiating a laser after inserting a sleeve portion and injection molding a housing portion.
スリーブ部に循環路が設けられた請求項1記載の流体軸受装置。   The hydrodynamic bearing device according to claim 1, wherein a circulation path is provided in the sleeve portion. ハウジング部に循環路が設けられた請求項1記載の流体軸受装置。   The hydrodynamic bearing device according to claim 1, wherein a circulation path is provided in the housing portion. スリーブ部およびハウジング部に循環路が設けられた請求項1記載の流体軸受装置。   The hydrodynamic bearing device according to claim 1, wherein a circulation path is provided in the sleeve portion and the housing portion. レーザとして、炭酸ガスレーザを用いた請求項1記載の流体軸受装置。   2. The hydrodynamic bearing device according to claim 1, wherein a carbon dioxide laser is used as the laser. スリーブ部とハウジング部とを軸方向で相互に係合させた請求項1記載の流体軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the sleeve portion and the housing portion are engaged with each other in the axial direction.
JP2007124699A 2007-05-09 2007-05-09 Fluid bearing device Withdrawn JP2008281068A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007124699A JP2008281068A (en) 2007-05-09 2007-05-09 Fluid bearing device
PCT/JP2008/056970 WO2008139797A1 (en) 2007-05-09 2008-04-09 Fluid bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007124699A JP2008281068A (en) 2007-05-09 2007-05-09 Fluid bearing device

Publications (1)

Publication Number Publication Date
JP2008281068A true JP2008281068A (en) 2008-11-20

Family

ID=40142063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007124699A Withdrawn JP2008281068A (en) 2007-05-09 2007-05-09 Fluid bearing device

Country Status (1)

Country Link
JP (1) JP2008281068A (en)

Similar Documents

Publication Publication Date Title
KR20080013863A (en) Dynamic pressure bearing device
JP2005321089A (en) Dynamic pressure bearing device
JP2007024146A (en) Dynamic pressure bearing device
JP4874004B2 (en) Hydrodynamic bearing device
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
JP2008138713A (en) Fluid bearing device and method of manufacturing same
JP2008111448A (en) Dynamic pressure bearing device
JP2008130208A (en) Hydrodynamic bearing device and its manufacturing method
JP2005282779A (en) Fluid bearing device
JP4916673B2 (en) Hydrodynamic bearing device
JP2009108877A (en) Fluid bearing device and its manufacturing method
JP2009103280A (en) Dynamic pressure bearing device and its manufacturing method
JP2009097672A (en) Manufacturing method of bearing parts
JP2006194384A (en) Dynamic pressure bearing device
JP2008298238A (en) Fluid bearing device
JP2008281068A (en) Fluid bearing device
JP2005265119A (en) Fluid bearing device and its manufacturing method
JP2007100802A (en) Fluid bearing device
JP2009011018A (en) Fluid bearing device, and manufacturing method thereof
JP2006300178A (en) Fluid bearing device
JP5231095B2 (en) Hydrodynamic bearing device
JP2009079679A (en) Fluid bearing device
JP4937524B2 (en) Hydrodynamic bearing device
JP2010096202A (en) Fluid bearing device and method of manufacturing the same
JP2008128332A (en) Fluid bearing device and its manufacturing method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091104

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100803