JP2008280901A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine Download PDF

Info

Publication number
JP2008280901A
JP2008280901A JP2007125111A JP2007125111A JP2008280901A JP 2008280901 A JP2008280901 A JP 2008280901A JP 2007125111 A JP2007125111 A JP 2007125111A JP 2007125111 A JP2007125111 A JP 2007125111A JP 2008280901 A JP2008280901 A JP 2008280901A
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
upstream catalyst
exhaust
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007125111A
Other languages
Japanese (ja)
Other versions
JP4748102B2 (en
Inventor
Minoru Masuda
稔 益田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007125111A priority Critical patent/JP4748102B2/en
Publication of JP2008280901A publication Critical patent/JP2008280901A/en
Application granted granted Critical
Publication of JP4748102B2 publication Critical patent/JP4748102B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To control an operating valve so that unpurified exhaust gas is prevented from being emitted into the atmosphere due to delay of the operating valve when recovering fuel cut, in an exhaust emission control device for an internal combustion engine employing a catalyst bypass system. <P>SOLUTION: The opening of the operating valve is controlled according to engine speed so that a part of exhaust gas passes through an upstream catalyst in the catalyst bypass system, when not in the condition of operation at high speed and high load but in the condition of deceleration fuel cut and in the condition in which a downstream catalyst in the catalyst bypass system is not yet activated. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、触媒を用いて内燃機関の排気ガスを浄化する排気浄化装置に関し、特に排気通路に複数の触媒を直列に設置したものに関する。 The present invention relates to an exhaust purification device that purifies exhaust gas of an internal combustion engine using a catalyst, and more particularly to an apparatus in which a plurality of catalysts are installed in series in an exhaust passage.

内燃機関の排気浄化装置として排気通路に2つの触媒を直列に設置し、さらに上流の触媒を迂回するバイパス路と、バイパス路と触媒側通路とに流入する排気ガスの流量を調整する開閉弁を備え、触媒温度が所定温度未満では上流触媒に排気を流して当該上流触媒を早期に活性化させ、触媒温度が所定温度以上では、バイパス路を介して上流触媒を迂回させて直接下流触媒に排気を流し、上流触媒の熱劣化を抑制するものが知られている。 As an exhaust purification device for an internal combustion engine, two catalysts are installed in the exhaust passage in series, and a bypass passage that bypasses the upstream catalyst, and an on-off valve that adjusts the flow rate of the exhaust gas flowing into the bypass passage and the catalyst side passage If the catalyst temperature is lower than the predetermined temperature, exhaust gas is sent to the upstream catalyst to activate the upstream catalyst at an early stage.If the catalyst temperature is higher than the predetermined temperature, the upstream catalyst is bypassed via the bypass and exhausted directly to the downstream catalyst. That suppresses thermal deterioration of the upstream catalyst is known.

この構成において燃料カット時の開閉弁の制御に関する技術が知られている(例えば特許文献1)。より詳細には高温で高酸素濃度の排気ガス(空気)が触媒に流入すると、残存していた未反応のHC、COと酸素が反応する事で発生する反応熱により、触媒が異常に高温になって触媒が熱劣化するおそれがあり、これを防止するために燃料カットに移行する時に排気ガス(空気)が触媒を迂回するように開閉弁を制御する。また熱劣化を抑制するために、触媒を冷却するなどの技術についても知られている。 In this configuration, a technique related to control of the on-off valve at the time of fuel cut is known (for example, Patent Document 1). More specifically, when exhaust gas (air) at high temperature and high oxygen concentration flows into the catalyst, the catalyst becomes abnormally hot due to the reaction heat generated by the reaction of unreacted unreacted HC and CO with oxygen. In order to prevent this, the on-off valve is controlled so that the exhaust gas (air) bypasses the catalyst when shifting to fuel cut. In addition, in order to suppress thermal deterioration, a technique such as cooling the catalyst is also known.

特許文献2には特許文献1に開示されている技術に加えて、下流触媒に過剰に吸蔵された酸素を脱離させるために、燃料カット時に触媒に流入した排気ガスの累積量に応じて燃料カット復帰時にリッチな燃料を供給する技術が示されている。 In Patent Document 2, in addition to the technique disclosed in Patent Document 1, in order to desorb oxygen excessively stored in the downstream catalyst, fuel according to the cumulative amount of exhaust gas flowing into the catalyst at the time of fuel cut A technique for supplying a rich fuel at the time of cutting return is shown.

特許文献3には燃料カット時に上流触媒の活性化温度を保つため、流入する排気ガス(空気)が上流触媒を迂回するよう開閉弁を制御する技術が示されている。つまり、残存していた未反応のHC、COが反応してしまった後に、温度の低い排気ガス(空気)が上流触媒に流れ込んでしまうと、上流触媒が冷却されて活性化温度を下回るおそれがあるためである。上流触媒の活性化温度を保つために排気ガスの温度を直接あるいは間接的に検出して、開閉弁の開度を制御するものである。 Patent Document 3 discloses a technique for controlling the on-off valve so that inflowing exhaust gas (air) bypasses the upstream catalyst in order to maintain the activation temperature of the upstream catalyst when the fuel is cut. That is, if exhaust gas (air) having a low temperature flows into the upstream catalyst after the remaining unreacted HC and CO have reacted, the upstream catalyst may be cooled and fall below the activation temperature. Because there is. In order to maintain the activation temperature of the upstream catalyst, the temperature of the exhaust gas is detected directly or indirectly to control the opening degree of the on-off valve.

特開平5-312031号公報JP-A-5-312031 特開2006-144594号公報JP 2006-144594 A 特開平6-346724号公報JP-A-6-346724 特開2000-282849号公報JP 2000-282849 A

ところで、開閉弁を切替える際、動作の遅延が発生することが、例えば特許文献4に示されている。より詳しく言うと、燃料カット復帰時に開閉弁を切替えてバイパス路から触媒側通路に排気ガスの流路を切替える燃料供給再開時切替制御を行う場合、開閉弁の切替動作には遅延が発生する。これにより燃料の燃焼が行われた排気ガスが意図せずバイパス路に流入し、下流触媒が活性化しておらず下流触媒において排気ガスを浄化することができない場合には、未浄化の排気ガスが大気中に排出されてしまうおそれがある。 Incidentally, for example, Patent Document 4 discloses that an operation delay occurs when the on-off valve is switched. More specifically, when the fuel supply resumption switching control is performed in which the on / off valve is switched at the time of fuel cut return to switch the exhaust gas flow path from the bypass path to the catalyst side path, a delay occurs in the switching operation of the on / off valve. As a result, if the exhaust gas after combustion of the fuel unintentionally flows into the bypass passage and the downstream catalyst is not activated and the exhaust gas cannot be purified in the downstream catalyst, the unpurified exhaust gas is There is a risk of being discharged into the atmosphere.

本発明は上記の問題点に鑑みてなされたものであり、その目的は、燃料カット復帰時において、排気ガスをより好適に浄化することができるように排気浄化装置を制御する内燃機関の排気浄化装置を提供することである。 The present invention has been made in view of the above problems, and an object of the present invention is to purify the exhaust gas of an internal combustion engine that controls the exhaust gas purification device so that the exhaust gas can be more suitably purified at the time of fuel cut recovery. Is to provide a device.

上記目的を達成するために、請求項1に係る内燃機関の排気浄化装置は、排気ガスの排気通路上に配置された上流触媒と下流触媒と、上流触媒を有する排気通路である上流触媒側通路と、上流触媒を迂回するバイパス路と、上流触媒に排気ガスが流入する流量を調整する開閉弁とを備え、減速燃料カット後、燃料の供給が再開された場合に、開閉弁を制御して排気ガスが上流触媒側通路を通るように変更する燃料供給再開時切替制御をする内燃機関の排気浄化装置において、減速燃料カット開始から燃料供給再開時切替制御が行われる期間にエンジン回転数に応じて上流触媒に流入する排気ガスの流量を制御することを特徴とする。 In order to achieve the above object, an exhaust gas purification apparatus for an internal combustion engine according to claim 1 is provided with an upstream catalyst side passage which is an exhaust passage having an upstream catalyst and a downstream catalyst, and an upstream catalyst disposed on an exhaust gas exhaust passage. And a bypass passage that bypasses the upstream catalyst and an on-off valve that adjusts the flow rate of exhaust gas flowing into the upstream catalyst, and controls the on-off valve when fuel supply is resumed after the deceleration fuel cut. In an exhaust gas purification apparatus for an internal combustion engine that performs switching control when resuming fuel supply so that the exhaust gas passes through the upstream catalyst side passage, according to the engine speed during the period when switching control when resuming fuel supply is performed from the start of deceleration fuel cut And controlling the flow rate of the exhaust gas flowing into the upstream catalyst.

請求項2に係る内燃機関の排気浄化装置は、請求項1記載の内燃機関の排気浄化装置であって、下流触媒が活性化していない時に、減速燃料カット開始から燃料供給再開時切替制御が行われる期間にエンジン回転数に応じて上流触媒に流入する排気ガスの流量を制御することを特徴とする。 An exhaust gas purification apparatus for an internal combustion engine according to claim 2 is the exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein when the downstream catalyst is not activated, switching control at the time of restart of fuel supply is performed from the start of the deceleration fuel cut. During this period, the flow rate of the exhaust gas flowing into the upstream catalyst is controlled according to the engine speed.

請求項2に係る内燃機関の排気浄化装置は、請求項1記載の内燃機関の排気浄化装置であって、エンジン回転数が大きくなるに従い上流触媒に流入する排気ガスの流量が小さくなるよう制御し、エンジン回転数が減速燃料カットから復帰するエンジン回転数である減速燃料カット閾値Neに近づくにしたがって上流触媒に流入する排気ガスの流量が大きくなるよう制御することを特徴とする。 An exhaust gas purification apparatus for an internal combustion engine according to claim 2 is the exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein control is performed so that the flow rate of exhaust gas flowing into the upstream catalyst decreases as the engine speed increases. The engine speed is controlled such that the flow rate of the exhaust gas flowing into the upstream catalyst increases as the engine speed approaches the deceleration fuel cut threshold value Ne, which is the engine speed at which the engine speed returns from the deceleration fuel cut.

請求項1記載の発明においては、減速燃料カットから復帰して燃料の供給が再開した時に、排気ガスが下流触媒を通過し、未浄化排気ガスが大気中に排出されてしまうことを抑制し、排気ガスをより好適に浄化することが出来る。 In the invention of claim 1, when the fuel supply is resumed after returning from the deceleration fuel cut, the exhaust gas passes through the downstream catalyst, and the unpurified exhaust gas is prevented from being discharged into the atmosphere. Exhaust gas can be purified more suitably.

請求項2記載の発明においては、減速燃料カットから復帰して燃料の供給が再開した時に、排気ガスが活性化していない下流触媒を通過し、未浄化排気ガスが大気中に排出されてしまうことを抑制し、排気ガスをより好適に浄化することが出来る。 In the invention of claim 2, when the fuel supply is resumed after returning from the deceleration fuel cut, the exhaust gas passes through the non-activated downstream catalyst, and the unpurified exhaust gas is discharged into the atmosphere. And the exhaust gas can be purified more suitably.

請求項3記載の発明においては、十分短い時間内に燃料供給再開時切替制御が行われないと予見できる場合や、下流触媒が活性化状態である場合には、上流触媒が熱劣化する事を抑え、上流触媒が冷却されて活性化温度を下回る事を防ぐ事ができる。一方、十分短い時間内に燃料供給再開時切替制御が行われる事が予見できる場合には、燃料供給再開時切替制御が行われた際に発生する開閉弁の動作の遅延を小さくする事で、排気ガスをより好適に浄化することが出来る。 In the invention according to claim 3, when it is foreseen that the switching control at the time of resumption of fuel supply is not performed within a sufficiently short time, or when the downstream catalyst is in an activated state, the upstream catalyst is thermally deteriorated. It is possible to prevent the upstream catalyst from being cooled and below the activation temperature. On the other hand, if it can be predicted that the switching control at the time of resuming the fuel supply will be performed within a sufficiently short time, by reducing the delay in the operation of the on-off valve that occurs when the switching control at the time of restarting the fuel supply is performed, Exhaust gas can be purified more suitably.

以下、添付図面を参照して本発明の好適な実施の形態について詳細に説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を附し、重複する説明は省略する。 DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the accompanying drawings. In order to facilitate understanding of the description, the same components in the drawings are denoted by the same reference numerals as much as possible, and redundant description will be omitted.

〈実施の形態1〉
図1は、本発明に係る排気浄化装置を適用する内燃機関とその吸排気系の概略構成を示す図である。
<Embodiment 1>
FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine to which an exhaust gas purification apparatus according to the present invention is applied and its intake and exhaust system.

図1に示す内燃機関は、4サイクルの4気筒内燃機関1である。この内燃機関1には、吸気枝管2が接続され、吸気枝管2の各枝管は、図示しない吸気ポートを介して各気筒の燃焼室と連通している。 The internal combustion engine shown in FIG. 1 is a four-cycle four-cylinder internal combustion engine 1. An intake branch pipe 2 is connected to the internal combustion engine 1, and each branch pipe of the intake branch pipe 2 communicates with a combustion chamber of each cylinder through an intake port (not shown).

吸気枝管2は、サージタンク3に接続され、このサージタンク3は、吸気管4を介してエアクリーナボックス5に接続されている。吸気管4には、図示しないアクセルペダルと連動して、吸気管4内を流れる吸気流量を調節するスロットル弁6が設けられ、このスロットル弁6には、スロットル弁6の開度に応じた電気信号を出力するスロットルポジションセンサ7が取り付けられている。 The intake branch pipe 2 is connected to a surge tank 3, and the surge tank 3 is connected to an air cleaner box 5 via an intake pipe 4. The intake pipe 4 is provided with a throttle valve 6 that adjusts the flow rate of intake air flowing through the intake pipe 4 in conjunction with an accelerator pedal (not shown). The throttle valve 6 has an electric valve according to the opening of the throttle valve 6. A throttle position sensor 7 for outputting a signal is attached.

吸気管4には、吸気管4内を流れる吸入空気質量に対応した電気信号を出力するエアフローメータ8が取り付けられ、サージタンク3には、サージタンク3内の圧力に応じた電気信号を出力するバキュームセンサ24が取り付けられている。 An air flow meter 8 that outputs an electric signal corresponding to the mass of intake air flowing in the intake pipe 4 is attached to the intake pipe 4, and an electric signal corresponding to the pressure in the surge tank 3 is output to the surge tank 3. A vacuum sensor 24 is attached.

また、吸気枝管2の各枝管には、燃料噴射弁10a、10b、10c、10d(以下、燃料噴射弁10と総称する)が取り付けられ、これらの燃料噴射弁10は、燃料分配管9と接続されている。燃料分配管9は、図示しない燃料ポンプより圧送された燃料を各燃料噴射弁10に分配するものである。 In addition, fuel injection valves 10 a, 10 b, 10 c, and 10 d (hereinafter collectively referred to as fuel injection valves 10) are attached to the branch pipes of the intake branch pipe 2, and these fuel injection valves 10 are connected to a fuel distribution pipe 9. Connected with. The fuel distribution pipe 9 distributes fuel pumped from a fuel pump (not shown) to each fuel injection valve 10.

各燃料噴射弁10には、駆動回路11a、11b、11c、11d(以下、駆動回路11と総称する)が取り付けられ、これら駆動回路11からの駆動電流が燃料噴射弁10に印加されると、燃料噴射弁10が開弁して燃料分配管9より供給された燃料が各気筒の吸気ポートへ向けて噴射されるようになっている。 Each fuel injection valve 10 is provided with drive circuits 11a, 11b, 11c, and 11d (hereinafter collectively referred to as drive circuit 11), and when a drive current from these drive circuits 11 is applied to the fuel injection valve 10, The fuel injection valve 10 is opened and the fuel supplied from the fuel distribution pipe 9 is injected toward the intake port of each cylinder.

一方、内燃機関1には、排気枝管12が接続され、その排気枝管12の各枝管が図示しない排気ポートを介して各気筒の燃焼室と連通している。排気枝管12は、排気管13に接続され、この排気管13は、下流にて図示しないマフラに接続されている。 On the other hand, an exhaust branch pipe 12 is connected to the internal combustion engine 1, and each branch pipe of the exhaust branch pipe 12 communicates with a combustion chamber of each cylinder via an exhaust port (not shown). The exhaust branch pipe 12 is connected to an exhaust pipe 13, and this exhaust pipe 13 is connected downstream to a muffler (not shown).

排気管13の途中には、本発明にかかる排気浄化を目的とした触媒としての三元触媒である上流触媒16が上流触媒側通路15上に設けられている。上流触媒側通路15には排気流入部15aと排気流出部15bがあり、排気流入部15aと排気流出部15bとの間に上流触媒16が位置する。この上流触媒16は、排気の流れ方向に沿う貫通孔を複数有するよう格子状に形成されたコージェライトからなるセラミック担体と、セラミック担体の表面にコーティングされた触媒層とから構成され、触媒層は、例えば、多数の細孔を有する多孔質のアルミナ(Al2O3)の表面に白金−ロジウム(Pt−Rh)系の貴金属触媒物質を担持させて構成される。 An upstream catalyst 16, which is a three-way catalyst as a catalyst for purifying exhaust gas according to the present invention, is provided on the upstream catalyst side passage 15 in the middle of the exhaust pipe 13. The upstream catalyst side passage 15 has an exhaust inflow portion 15a and an exhaust outflow portion 15b, and the upstream catalyst 16 is located between the exhaust inflow portion 15a and the exhaust outflow portion 15b. This upstream catalyst 16 is composed of a ceramic carrier made of cordierite formed in a lattice shape so as to have a plurality of through holes along the exhaust flow direction, and a catalyst layer coated on the surface of the ceramic carrier, For example, a platinum-rhodium (Pt-Rh) noble metal catalyst material is supported on the surface of porous alumina (Al2O3) having a large number of pores.

上流触媒16は、所定温度以上の時に活性化し、流入する排気の空燃比が理論空燃比近傍にあると、排気に含まれる炭化水素(HC)及び一酸化炭素(CO)を排気中の酸素O2と反応させてH2O及びCOへ酸化すると同時に、排気中のNOXを排気中のHC及びCOと反応させてH2O、CO、N2へ還元する。 The upstream catalyst 16 is activated when the temperature is equal to or higher than a predetermined temperature. When the air-fuel ratio of the inflowing exhaust gas is in the vicinity of the stoichiometric air-fuel ratio, the hydrocarbon (HC) and carbon monoxide (CO) contained in the exhaust gas are converted into oxygen O 2 in the exhaust gas. At the same time, NOx in the exhaust is reacted with HC and CO in the exhaust to be reduced to H2O, CO, and N2.

上流触媒16より上流の排気管13には、上流触媒16に流入する排気の空燃比に対応した電気信号を出力する上流側空燃比センサ19が取り付けられ、上流触媒16より下流の排気管13には、上流触媒16から流出した排気の空燃比に対応した電気信号を出力する下流側空燃比センサ20が取り付けられている。 An upstream air-fuel ratio sensor 19 that outputs an electrical signal corresponding to the air-fuel ratio of the exhaust flowing into the upstream catalyst 16 is attached to the exhaust pipe 13 upstream of the upstream catalyst 16, and the exhaust pipe 13 downstream of the upstream catalyst 16 is connected to the exhaust pipe 13. Is provided with a downstream air-fuel ratio sensor 20 that outputs an electrical signal corresponding to the air-fuel ratio of the exhaust gas flowing out from the upstream catalyst 16.

上流側空燃比センサ19及び下流側空燃比センサ20は、例えば、ジルコニア(ZrO2)を筒状に焼成した固体電解質部と、この固体電解質部の外面を覆う外側白金電極と、固体電解質部の内面を覆う内側白金電極とから形成され、電極間に電圧が印加された場合に、酸素イオンの移動に伴って排気ガス中の酸素濃度(理論空燃比よりもリッチ側の時は未燃ガス成分の濃度)に比例した値の電流を出力するセンサである。 The upstream air-fuel ratio sensor 19 and the downstream air-fuel ratio sensor 20 are, for example, a solid electrolyte portion obtained by firing zirconia (ZrO2) into a cylindrical shape, an outer platinum electrode that covers the outer surface of the solid electrolyte portion, and an inner surface of the solid electrolyte portion. When the voltage is applied between the electrodes, the oxygen concentration in the exhaust gas (when richer than the stoichiometric air-fuel ratio, the unburned gas component This sensor outputs a current having a value proportional to (concentration).

上流触媒16の下流には、上流触媒16と同じく排気浄化を目的とした三元触媒である下流触媒14が設けられている。排気管13には、上流触媒16を迂回するバイパス路22が接続されている。 Downstream of the upstream catalyst 16, a downstream catalyst 14, which is a three-way catalyst for the purpose of exhaust purification, is provided in the same manner as the upstream catalyst 16. A bypass path 22 that bypasses the upstream catalyst 16 is connected to the exhaust pipe 13.

図1の触媒の付近を拡大した図4について説明する。バイパス路22には、その流路を開閉する開閉弁17が設けられている。開閉弁17には、ステッパモータ等からなり、印加電流の大きさに応じて開閉弁17を開閉駆動するアクチュエータ18が取り付けられている。 FIG. 4 is an enlarged view of the vicinity of the catalyst in FIG. The bypass passage 22 is provided with an opening / closing valve 17 for opening and closing the passage. The on-off valve 17 is composed of a stepper motor or the like, and an actuator 18 that opens and closes the on-off valve 17 according to the magnitude of the applied current is attached.

図4記載の開閉弁17はバタフライバルブであるが、スイッチングバルブであっても良いし、排気流入部15aもしくは排気流出部15bの位置に開閉弁を設けても良い。開閉弁17を開閉する手段としてアクチュエータを例示したが、動力は油圧式の他、電動モーターや歯車等機械的に切替える装置を用いてもよく、負圧アクチュエータ、油圧アクチュエータであってもよい。 The on-off valve 17 illustrated in FIG. 4 is a butterfly valve, but may be a switching valve, or may be provided at the position of the exhaust inflow portion 15a or the exhaust outflow portion 15b. Although an actuator is exemplified as means for opening and closing the on-off valve 17, the power may be a hydraulic type, a mechanically switching device such as an electric motor or a gear, or a negative pressure actuator or a hydraulic actuator.

尚、上流触媒側通路15の排気流入部15aと排気流出部15bの配置は、開閉弁17が全開状態にある時に、排気流入部15a近傍の排気圧力と排気流出部15b近傍の排気圧力との差が2KPa以下、好ましくは1KPa以下となるようにする。 The arrangement of the exhaust inflow portion 15a and the exhaust outflow portion 15b of the upstream catalyst side passage 15 is such that the exhaust pressure in the vicinity of the exhaust inflow portion 15a and the exhaust pressure in the vicinity of the exhaust outflow portion 15b when the on-off valve 17 is fully open. The difference is set to 2 KPa or less, preferably 1 KPa or less.

内燃機関1には、図示しないクランクシャフトが所定角度(例えば、30度)回転する都度、パルス信号を出力するクランクポジションセンサ21と、内燃機関1の図示しないウォータ・ジャケット内を流れる冷却水の温度に対応した電気信号を出力する水温センサ22とが取り付けられている。 The internal combustion engine 1 includes a crank position sensor 21 that outputs a pulse signal each time a crankshaft (not shown) rotates by a predetermined angle (for example, 30 degrees), and the temperature of cooling water that flows in a water jacket (not shown) of the internal combustion engine 1. A water temperature sensor 22 that outputs an electrical signal corresponding to the above is attached.

そして、クランクポジションセンサ21と水温センサ22とスロットルポジションセンサ7とエアフローメータ8とバキュームセンサ24と上流側空燃比センサ19と下流側空燃比センサ20と温度センサ40とは、それぞれ電気配線を介してエンジンコントロール用の電子制御ユニット(Electronic Control Unit:ECU)25に接続され、各センサの出力信号がECU25に入力されるようになっている。 The crank position sensor 21, the water temperature sensor 22, the throttle position sensor 7, the air flow meter 8, the vacuum sensor 24, the upstream air-fuel ratio sensor 19, the downstream air-fuel ratio sensor 20, and the temperature sensor 40 are respectively connected via electric wiring. It is connected to an engine control electronic control unit (ECU) 25 so that the output signals of the sensors are input to the ECU 25.

ECU25は、各センサからの出力信号をパラメータとして内燃機関1の運転状態を判定し、その運転状態に応じて燃料噴射制御、点火時期制御、開閉弁17の開閉制御等の各種制御を行う。 The ECU 25 determines the operating state of the internal combustion engine 1 using the output signals from the sensors as parameters, and performs various controls such as fuel injection control, ignition timing control, and opening / closing control of the on-off valve 17 in accordance with the operating state.

ここで、ECU25は、図2に示すように、双方向性バス26により相互に接続された、CPU27とROM28とRAM29とバックアップRAM30と入力ポート31と出力ポート32とを備えるとともに、入力ポート31に接続されたA/Dコンバータ33を備えている。 2, the ECU 25 includes a CPU 27, a ROM 28, a RAM 29, a backup RAM 30, an input port 31, and an output port 32, which are connected to each other by a bidirectional bus 26. A connected A / D converter 33 is provided.

入力ポート31は、クランクポジションセンサ21等の出力信号を入力信号とし、それらの出力信号をCPU27やRAM29へ送信する。さらに、入力ポート31は、スロットルポジションセンサ7、エアフローメータ8、上流側空燃比センサ19、下流側空燃比センサ20、水温センサ22、バキュームセンサ24等の出力信号をA/Dコンバータ33を介して入力信号とし、それらの出力信号をCPU27やRAM29へ送信する。 The input port 31 uses output signals from the crank position sensor 21 and the like as input signals, and transmits those output signals to the CPU 27 and the RAM 29. Further, the input port 31 outputs output signals from the throttle position sensor 7, the air flow meter 8, the upstream air-fuel ratio sensor 19, the downstream air-fuel ratio sensor 20, the water temperature sensor 22, the vacuum sensor 24, etc. via the A / D converter 33. The output signals are sent to the CPU 27 and RAM 29 as input signals.

出力ポート32は、CPU27から出力される制御信号を、アクチュエータ18や駆動回路11へ送信する。ROM28は、各燃料噴射弁10から噴射すべき燃料量を決定するための燃料噴射量制御ルーチン、燃料噴射量の空燃比フィードバック制御を行うための空燃比フィードバック制御ルーチン、燃料噴射弁10の燃料噴射時期を決定するための燃料噴射時期制御ルーチン、開閉弁17を制御するための流路切換制御ルーチン等のアプリケーションプログラムと、各種の制御マップを格納する。 The output port 32 transmits a control signal output from the CPU 27 to the actuator 18 and the drive circuit 11. The ROM 28 is a fuel injection amount control routine for determining the amount of fuel to be injected from each fuel injection valve 10, an air-fuel ratio feedback control routine for performing air-fuel ratio feedback control of the fuel injection amount, and fuel injection of the fuel injection valve 10. Application programs such as a fuel injection timing control routine for determining the timing, a flow path switching control routine for controlling the on-off valve 17, and various control maps are stored.

上記の各種の制御マップは、例えば、内燃機関1の運転状態と燃料噴射量との関係を示す燃料噴射量制御マップ、内燃機関1の運転状態と燃料噴射時期との関係を示す燃料噴射時期制御マップ、内燃機関始動時の冷却水の温度と始動時から上流触媒16が活性化するまでにかかる時間(以下、触媒活性時間と記す)との関係を示す活性判定制御マップ等である。 The above-mentioned various control maps are, for example, a fuel injection amount control map showing the relationship between the operating state of the internal combustion engine 1 and the fuel injection amount, and a fuel injection timing control showing the relationship between the operating state of the internal combustion engine 1 and the fuel injection timing. The map is an activity determination control map showing the relationship between the temperature of the cooling water at the start of the internal combustion engine and the time taken from the start to the activation of the upstream catalyst 16 (hereinafter referred to as catalyst activation time).

RAM29は、各センサからの出力信号やクランクポジションセンサ21の出力信号より算出される機関回転数などのCPU27の演算結果等を格納する。そして、各センサからの出力信号やCPU27の演算結果等は、クランクポジションセンサ21が信号を出力する都度、最新のデータに書き換えられる。 The RAM 29 stores the calculation results of the CPU 27 such as the engine speed calculated from the output signals from the sensors and the output signal of the crank position sensor 21. The output signal from each sensor, the calculation result of the CPU 27, and the like are rewritten to the latest data every time the crank position sensor 21 outputs a signal.

バックアップRAM30は、内燃機関1の運転停止後もデータを記憶可能な不揮発性のメモリである。CPU27は、ROM28に記憶されたアプリケーションプログラムに従って動作し、RAM29に記憶された各センサの出力信号より内燃機関1の運転状態を判定し、その運転状態と各制御マップとから燃料噴射量、燃料噴射時期、開閉弁17の開閉時期等を算出する。そして、CPU27は、算出した燃料噴射量、燃料噴射時期、開閉弁17の開閉時期に従って、駆動回路11及びアクチュエータ18を制御する。 The backup RAM 30 is a non-volatile memory that can store data even after the operation of the internal combustion engine 1 is stopped. The CPU 27 operates in accordance with an application program stored in the ROM 28, determines the operating state of the internal combustion engine 1 from the output signals of the sensors stored in the RAM 29, and determines the fuel injection amount and the fuel injection from the operating state and each control map. The timing, the opening / closing timing of the on-off valve 17 and the like are calculated. Then, the CPU 27 controls the drive circuit 11 and the actuator 18 according to the calculated fuel injection amount, fuel injection timing, and opening / closing timing of the on-off valve 17.

例えば、CPU27は、燃料噴射制御を実行するにあたり、燃料噴射量制御ルーチンに従って動作し、以下の式に従って燃料噴射量(TAU)を決定する。
TAU=TP*FWL*(FAF+FG)*[FASE+FAE+FOTP+FDE(D)]*FFC+TAUV
(TP:基本噴射量、FWL:暖機増量、FAF:空燃比フィードバック補正係数、FG:空燃比学習係数、FASE:始動後増量、FAE:加速増量、FOTP:OTP増量、FDE(D):減速増量(減量)、FFC:燃料カット復帰時補正係数、TAUV:無効噴射時間)
その際、CPU27は、各種センサの出力信号値をパラメータとして内燃機関の運転状態を判別し、判別された機関運転状態とROM28の燃料噴射量制御マップとに基づいて、上記した基本噴射量(TP)、暖機増量(FWL)、始動後増量(FASE)、加速増量(FAE)、OTP増量(FOTP)、減速増量(FDE(D))、燃料カット復帰時補正係数(FFC)、無効噴射時間(TAUV)等を算出する。
For example, when executing the fuel injection control, the CPU 27 operates according to the fuel injection amount control routine, and determines the fuel injection amount (TAU) according to the following equation.
TAU = TP * FWL * (FAF + FG) * [FASE + FAE + FOTP + FDE (D)] * FFC + TAUV
(TP: Basic injection amount, FWL: Warm-up increase, FAF: Air-fuel ratio feedback correction coefficient, FG: Air-fuel ratio learning coefficient, FASE: Increase after start, FAE: Acceleration increase, FOTP: OTP increase, FDE (D): Deceleration (Increase (decrease), FFC: Correction coefficient at fuel cut return, TAUV: Invalid injection time)
At that time, the CPU 27 determines the operating state of the internal combustion engine using the output signal values of various sensors as parameters, and based on the determined engine operating state and the fuel injection amount control map in the ROM 28, the basic injection amount (TP) described above. ), Warm-up increase (FWL), post-start increase (FASE), acceleration increase (FAE), OTP increase (FOTP), deceleration increase (FDE (D)), fuel cut recovery factor (FFC), invalid injection time Calculate (TAUV) etc.

ここで、一般的な触媒の排気浄化性能について説明する。触媒の排気浄化性能を表す指標として、
「排気浄化性能」=「触媒転化率」×「触媒を通過したガス流量」
を考える。これは、触媒が転化したガス量(g)を表している。図5に上流触媒16側に流れる排気ガス流量に対する上流触媒16と下流触媒14の排気浄化性能を示す。下流触媒14には、ほぼ一定流量のガスが流れるため、排気浄化性能はほぼ一定である。但し、上流触媒16に流れるガス流量が増えると上流触媒16側で排気ガスが転化されるため、下流触媒14の転化効率が低下し、排気浄化性能が若干低下する傾向となる。一方、上流触媒16側の排気浄化性能は、流量が支配的となるため、流量が増加すると大きくなる。従って、ある流量を境に、上流触媒16と下流触媒14の排気浄化性能が逆転することになる。
Here, the exhaust purification performance of a general catalyst will be described. As an index indicating the exhaust purification performance of the catalyst,
"Exhaust gas purification performance" = "Catalyst conversion rate" x "Gas flow rate through the catalyst"
think of. This represents the amount of gas (g) converted by the catalyst. FIG. 5 shows the exhaust purification performance of the upstream catalyst 16 and the downstream catalyst 14 with respect to the exhaust gas flow rate flowing to the upstream catalyst 16 side. Since the gas at a substantially constant flow rate flows through the downstream catalyst 14, the exhaust purification performance is substantially constant. However, since the exhaust gas is converted on the upstream catalyst 16 side when the flow rate of the gas flowing through the upstream catalyst 16 increases, the conversion efficiency of the downstream catalyst 14 decreases and the exhaust purification performance tends to decrease slightly. On the other hand, the exhaust gas purification performance on the upstream catalyst 16 side becomes larger as the flow rate increases because the flow rate becomes dominant. Accordingly, the exhaust purification performance of the upstream catalyst 16 and the downstream catalyst 14 is reversed at a certain flow rate.

よって、上流触媒16へ流入するガス流量によって主に排気浄化を行っている触媒を判断し、その触媒のすぐ上流に設けられた空燃比センサの信号を基に、空燃比フィードバック制御を行うことにより、触媒を有効に活用することができる。 Therefore, by determining the catalyst mainly performing exhaust purification based on the gas flow rate flowing into the upstream catalyst 16, and performing air-fuel ratio feedback control based on the signal of the air-fuel ratio sensor provided immediately upstream of the catalyst. The catalyst can be used effectively.

次に、下流触媒14が活性状態であるか不活性状態であるかを判別する活性化判定手段について説明する。温度センサ40を下流触媒14に設置して、触媒温度を計測し、活性化温度に達しているか否かを判断して活性状態を判定する。 Next, an activation determination unit that determines whether the downstream catalyst 14 is in an active state or an inactive state will be described. The temperature sensor 40 is installed in the downstream catalyst 14, the catalyst temperature is measured, and it is determined whether or not the activation temperature has been reached, thereby determining the active state.

図3は本実施例における燃料制御の領域図であって、縦軸に負荷(吸気管負圧)をとり横軸にエンジン回転数をとって、空燃比リーン設定のフィードバック(リーンF/B)、高負荷・高回転増量、アイドル増量、減速燃料カットおよび過回転燃料カット(オーバーレブ燃料カット)の各ゾーンを示している。 FIG. 3 is an area diagram of the fuel control in this embodiment. The vertical axis represents the load (intake pipe negative pressure), the horizontal axis represents the engine speed, and the air-fuel ratio lean setting feedback (lean F / B). Each zone of high load / high rotation increase, idle increase, deceleration fuel cut and over-rotation fuel cut (over-rev fuel cut) is shown.

上記リーンF/Bゾーンでは、空燃比が理論空燃比よりも大きくされ、かつ、その設定値はエンジン回転数と負荷に応じたものとされる。このリーンF/Bゾーンにおいては、エンジン回転数と吸入空気量に基づいて燃料の基本噴射量が設定され、それに水温等による各種補正が加えられ、さらに、酸素濃度信号に基づいたフィードバック補正が加えられて最終噴射量とされる。そして、この最終噴射量に相当する制御パルスが上記燃料噴射弁5に印加され、それによってエンジン1の空燃比が所定の値に制御される。また、高負荷・高回転増量ゾーンおよびアイドル増量ゾーンでは、フィードバック制御が停止されて所要の燃料増量が行われ、減速燃料カットゾーンおよびオーバーレブ燃料カットゾーン(例えばエンジン回転数が7000rpm以上)では燃料の供給が停止される。また、上記領域図には表れないが、車速が所定値(例えば180km/h)を越える時にも燃料の供給は停止される。 In the lean F / B zone, the air-fuel ratio is made larger than the stoichiometric air-fuel ratio, and the set value is determined according to the engine speed and load. In this lean F / B zone, the basic fuel injection amount is set based on the engine speed and the intake air amount, various corrections based on the water temperature, etc. are added to it, and feedback correction based on the oxygen concentration signal is added. To the final injection amount. Then, a control pulse corresponding to this final injection amount is applied to the fuel injection valve 5, whereby the air-fuel ratio of the engine 1 is controlled to a predetermined value. Further, in the high load / high rotation increase zone and the idle increase zone, the feedback control is stopped and the required fuel increase is performed. In the deceleration fuel cut zone and the overrev fuel cut zone (for example, the engine speed is 7000 rpm or more), the fuel is increased. Supply is stopped. Further, although not shown in the above region diagram, the fuel supply is also stopped when the vehicle speed exceeds a predetermined value (for example, 180 km / h).

本実施例では上流触媒16の温度が耐熱温度より低い時に開閉弁17を閉じ、上流触媒16が耐熱温度以上となった時に開閉弁17を開くことによって、上流触媒16の温度を耐熱温度範囲にコントロールするようにしている。また、上記減速燃料カットゾーンあるいはオーバーレブ燃料カットゾーンにおいて、あるいは車速が所定値を越える領域においては、開閉弁17が開かれる。 In this embodiment, the on-off valve 17 is closed when the temperature of the upstream catalyst 16 is lower than the heat-resistant temperature, and the on-off valve 17 is opened when the upstream catalyst 16 becomes equal to or higher than the heat-resistant temperature. I try to control it. Further, the open / close valve 17 is opened in the deceleration fuel cut zone or the overrev fuel cut zone or in a region where the vehicle speed exceeds a predetermined value.

ここで、図7のフローチャートを使って開閉弁の制御に関する具体的な説明をする。ステップ(図ではSと記してある。以下同じ)1では、高速高負荷の運転状態であるか否かを判定する。つまり、スロットル弁6の開度に応じた電気信号を出力するスロットルポジションセンサ7の値が所定値以上であり、エンジン回転数が所定値以上であった場合、高速高負荷の運転状態であると判定する。高速高負荷の運転状態であると判定された場合はこのルーチンを終了し、否定された場合はステップ2に進む。 Here, a specific description of the control of the on-off valve will be given using the flowchart of FIG. In step (denoted as S in the figure, the same applies hereinafter) 1, it is determined whether or not the vehicle is in a high speed and high load operation state. That is, when the value of the throttle position sensor 7 that outputs an electric signal corresponding to the opening degree of the throttle valve 6 is equal to or greater than a predetermined value and the engine speed is equal to or greater than the predetermined value, the driving state is high speed and high load. judge. If it is determined that the vehicle is operating at a high speed and a high load, this routine is terminated.

ステップ2では減速燃料カット状態であるか否かを判定する。すなわち、スロットルポジションセンサ7の値(吸気管負圧)とエンジン回転数で図3のマップから減速燃料カット状態であるかを判定する。減速燃料カット状態ではないと判定された場合には、このルーチンを終了する。減速燃料カット状態と判定された場合にはステップ3に進む。 In step 2, it is determined whether or not a deceleration fuel cut state is present. That is, it is determined from the map in FIG. 3 based on the value of the throttle position sensor 7 (intake pipe negative pressure) and the engine speed whether the fuel is in a deceleration fuel cut state. If it is determined that the vehicle is not in the deceleration fuel cut state, this routine is terminated. If it is determined that the fuel is being decelerated, the process proceeds to step 3.

ステップ3では、下流触媒14が上記の方法で活性状態であるか否かを判定する。下流触媒14が活性状態であると判定された場合には、ルーチンを終了する。 In Step 3, it is determined whether or not the downstream catalyst 14 is in an active state by the above method. When it is determined that the downstream catalyst 14 is in the active state, the routine is terminated.

ステップ3で下流触媒14が不活性状態であると判定された場合には、ステップ4に進み、検出したエンジン回転数に基づいて、図8に示す実線の通り開閉弁17の開度を設定する。減速燃料カットから復帰するエンジン回転数(減速燃料カット閾値Neと言う)に近づくにつれ、全開状態であった開閉弁17の開度を徐々に小さくし、排気ガスがバイパス路22を通る排気ガスの流量を少なくする。 If it is determined in step 3 that the downstream catalyst 14 is in an inactive state, the process proceeds to step 4 where the opening degree of the on-off valve 17 is set based on the detected engine speed as shown by the solid line in FIG. . As the engine speed that returns from the deceleration fuel cut (referred to as the deceleration fuel cut threshold value Ne) is approached, the opening of the on-off valve 17 that has been fully opened is gradually reduced, and the exhaust gas passes through the bypass passage 22. Reduce the flow rate.

開閉弁17の開度について説明する。バイパス路に流れる排気ガスの流量が最も多い全開の時の開度を100とし、最も少ない全閉の時の開度を1と定義して、開閉弁の開度をバイパス路に流れる流量に対応して定義をする。開閉弁の開度とバイパス路に流れる流量は図6記載の関係にある。例えば開度が50の半開きの状態であるとは、一部排気ガスが上流触媒側通路15を通り、一部排気ガスがバイパス路22を通るようにする。開閉弁としてバタフライバルブを用いる時には図9(c)の通りであり、全開の状態である図9(a)と全閉の状態である図9(b)の中間の状態である。なお、バタフライバルブに換えてスイッチングバルブを用いた場合には、図10(b)が半開きである。 The opening degree of the on-off valve 17 will be described. By defining the opening when the exhaust gas flowing through the bypass line is the largest at the fully open position as 100 and opening the opening when the smallest fully closed as 1 the opening and closing valve opening corresponds to the flow rate through the bypass path. And define it. The opening degree of the on-off valve and the flow rate flowing through the bypass path have the relationship shown in FIG. For example, when the opening degree is 50, the exhaust gas partially passes through the upstream catalyst side passage 15 and the exhaust gas passes through the bypass passage 22. When a butterfly valve is used as the on-off valve, it is as shown in FIG. 9 (c), which is an intermediate state between FIG. 9 (a), which is fully opened, and FIG. 9 (b), which is fully closed. When a switching valve is used instead of the butterfly valve, FIG. 10 (b) is half open.

減速燃料カットから復帰した場合には、燃料の供給によって燃焼された排気ガスが開閉弁に達する前に、開閉弁を制御して排気ガスが上流触媒側通路を通るように変更する燃料供給再開時切替制御をして、全ての排気ガスを上流触媒で浄化する事が理想的であるのだが、上述の通り、開閉弁には動作の遅延が発生するおそれがあり、遅延が発生した場合には排気ガスを上流触媒に誘導する事ができず、活性化していない下流触媒を通過し排気ガスを浄化できずに大気中に排出されるおそれがあった。 When returning from deceleration fuel cut, before the exhaust gas burned by the fuel supply reaches the on-off valve, the on-off valve is controlled so that the exhaust gas passes through the upstream catalyst side passage. Ideally, the exhaust gas should be purified by the upstream catalyst by switching control. However, as described above, there is a risk that the on-off valve may be delayed in operation. The exhaust gas cannot be guided to the upstream catalyst, and there is a possibility that the exhaust gas may pass through the non-activated downstream catalyst and be exhausted to the atmosphere without being purified.

そこで、図7の通り制御をすれば、減速燃料カット復帰時には開閉弁の動作の遅延は小さく抑えられる。そのために減速燃料カット復帰時に発生する排気ガスは上流触媒で浄化することができ、未浄化排気ガスが大気中に排出される事を抑制できる。 Therefore, if the control is performed as shown in FIG. 7, the delay in the operation of the on-off valve can be kept small when returning to the deceleration fuel cut. For this reason, the exhaust gas generated when the deceleration fuel cut is restored can be purified by the upstream catalyst, and the unpurified exhaust gas can be prevented from being discharged into the atmosphere.

減速燃料カットが行われている場合に高酸素濃度の排気ガス(空気)が上流触媒に流入すると、残存していた未反応のHC、COと酸素が反応する事で発生する反応熱により、上流触媒が異常に高温になり、上流触媒が熱劣化するおそれがある。また、残存していた未反応のHC、COが反応してしまった後は、温度の低い排気ガス(空気)が流入する事により、上流触媒の活性化温度を保てないという問題が生じる。そのため、なるべく上流触媒には排気ガス(空気)を流入させたくない。減速燃料カットの状態であり、下流触媒が活性化状態である場合に燃料供給再開時切替制御が行われた場合は、開閉弁の遅延による問題は発生した時であっても下流触媒で十分に排気ガスを浄化できる。そのため、上流触媒に排気ガス(空気)を誘導せず、バイパス路に全ての排気ガス(空気)が流入するように開閉弁を全開にする。すなわち、図8に示す破線の通り開度を調整する。 If exhaust gas (air) with a high oxygen concentration flows into the upstream catalyst when deceleration fuel cut is performed, the reaction heat generated by the reaction of the remaining unreacted HC, CO and oxygen causes upstream The catalyst may become abnormally hot and the upstream catalyst may be thermally degraded. Further, after the remaining unreacted HC and CO have reacted, there is a problem that the activation temperature of the upstream catalyst cannot be maintained due to the flow of exhaust gas (air) having a low temperature. For this reason, it is desirable to prevent the exhaust gas (air) from flowing into the upstream catalyst as much as possible. When switching control is performed when the fuel supply is resumed when the fuel is decelerated and the downstream catalyst is in the activated state, the downstream catalyst is sufficient even if a problem due to the delay of the on-off valve occurs. Exhaust gas can be purified. Therefore, the exhaust valve (air) is not guided to the upstream catalyst, and the on-off valve is fully opened so that all the exhaust gas (air) flows into the bypass passage. That is, the opening is adjusted as shown by the broken line in FIG.

ここで、上記制御が行われてエンジン回転数に応じて開閉弁の開度を図8に示す実線の通り設定することについて説明する。エンジン回転数が減速燃料カット閾値Neに近い時は、十分近い時間内に減速燃料カットから復帰する燃料供給再開時切替制御が行われる事が予見される期間とみなすことができる。この場合、上述した通り、開閉弁の動作遅延の問題を優先して考えて、開閉弁の開度を小さくする。一方、エンジン回転数が減速燃料カット閾値Neに比して十分大きい時は、一定の期間は減速燃料カットから復帰することはなく燃料供給再開時切替制御が行われない期間と予見することができる。この場合、上述した通りなるべく上流触媒には排気ガス(空気)を流入させたくないため、開閉弁を十分大きな開度で開弁する。エンジン回転数を計測して減速燃料カット閾値Neと比べる事で燃料供給再開時切替制御が行われる直前であるか否かをより確実に予見でき、上流触媒の熱劣化と温度低下を許容できる範囲に留める事ができる。 Here, it will be described that the above control is performed and the opening degree of the on-off valve is set as shown by the solid line in FIG. 8 according to the engine speed. When the engine speed is close to the deceleration fuel cut threshold value Ne, it can be regarded as a period during which it is predicted that the fuel supply restart switching control for returning from the deceleration fuel cut will be performed within a sufficiently close time. In this case, as described above, the opening degree of the on-off valve is reduced by giving priority to the problem of operation delay of the on-off valve. On the other hand, when the engine speed is sufficiently larger than the deceleration fuel cut threshold value Ne, it can be foreseen that the fixed period will not return from the deceleration fuel cut and the switching control at the time of resumption of fuel supply is not performed. . In this case, since the exhaust gas (air) is not desired to flow into the upstream catalyst as much as possible, the on-off valve is opened with a sufficiently large opening. By measuring the engine speed and comparing it with the deceleration fuel cut threshold value Ne, it is possible to more reliably foresee whether it is immediately before the fuel supply restart switching control is performed, and the range in which the thermal deterioration and temperature decrease of the upstream catalyst can be tolerated Can be stopped.

図8に示す実線のエンジン回転数と開度の関係は、減速燃料カット閾値Neで開閉弁を閉弁として、エンジン回転数が大きくなるにしたがって開度を大きくなるようにして、グラフは上に凸な非線形グラフとする。これは、上述の通り上流触媒に排気ガス(空気)をなるべく流入させないようにするためである。燃料供給再開時切替制御が行われる直前であるか否かを予見でき、上流触媒の熱劣化と温度低下を許容できる範囲に留める事がより好適に実現できる。 The relationship between the engine speed and the opening shown by the solid line in FIG. 8 is such that the opening / closing valve is closed at the deceleration fuel cut threshold value Ne so that the opening increases as the engine speed increases. Let it be a convex nonlinear graph. This is to prevent exhaust gas (air) from flowing into the upstream catalyst as much as possible as described above. It can be foreseen whether it is immediately before the fuel supply resumption switching control is performed, and it is possible to more suitably realize that the thermal deterioration and temperature decrease of the upstream catalyst are allowed.

上述の通り本実施の形態では、エンジン回転数を測定して十分短い時間内に燃料供給再開時切替制御が行われないと予見できる場合や、下流触媒が活性化状態である場合には、上流触媒が熱劣化する事を抑え、そして上流触媒が冷却されて活性化温度を下回る事を防ぎつつ、エンジン回転数を測定して十分短い時間内に燃料供給再開時切替制御が行われる事が予見できる場合には、開閉弁の動作遅延を適時的確に小さくすることにより、排気ガスをより好適に浄化することが出来る。 As described above, in the present embodiment, when the engine speed is measured and it can be predicted that the switching control at the time of restarting the fuel supply will not be performed within a sufficiently short time, or when the downstream catalyst is in the activated state, It is foreseen that switching control at the time of resuming fuel supply will be performed within a sufficiently short time by measuring the engine speed while preventing the catalyst from thermal degradation and preventing the upstream catalyst from cooling down below the activation temperature. If possible, exhaust gas can be purified more appropriately by reducing the operation delay of the on-off valve in a timely and accurate manner.

本発明に係る排気浄化装置を適用する内燃機関の概略構成を示す図The figure which shows schematic structure of the internal combustion engine to which the exhaust gas purification apparatus which concerns on this invention is applied. ECUの内部構成を示すブロック図Block diagram showing internal configuration of ECU 本発明の一実施例における燃料制御の領域図Region diagram of fuel control in one embodiment of the present invention 開閉弁の動作を説明する図Diagram explaining the operation of the on-off valve 上流触媒へ流入する排気流量に対する各触媒の排気浄化性能を比較した図Comparison of exhaust purification performance of each catalyst with respect to the exhaust flow rate flowing into the upstream catalyst 開閉弁開度と上流触媒へ流入する排気流量との関係を説明する図The figure explaining the relationship between the opening / closing valve opening and the exhaust flow rate flowing into the upstream catalyst 実施の形態1の制御フローチャートControl flowchart of Embodiment 1 エンジン回転数Neと開閉弁の開度の関係Relationship between engine speed Ne and opening / closing valve opening 開閉弁(バタフライバルブ)の開度を示した図(a)全開、(b)全閉、(c)半開きDiagram showing the opening of the on-off valve (butterfly valve) (a) fully open, (b) fully closed, (c) half open 開閉弁(スイッチングバルブ)の開度を示した図(a)全開、(b)半開きFigure showing the opening of the on-off valve (switching valve) (a) fully open, (b) half open

符号の説明Explanation of symbols

1・・・・内燃機関
13・・・排気管
13a・・上流側排気管
13b・・下流側排気管
14・・・下流触媒
15・・・上流触媒側通路
15a・・排気流入部
15b・・排気流出部
16・・・上流触媒
17・・・開閉弁
18・・・アクチュエータ
19・・・上流側空燃比センサ
20・・・下流側空燃比センサ
22・・・バイパス路
40・・・温度センサ
DESCRIPTION OF SYMBOLS 1 ...... Internal combustion engine 13 ... Exhaust pipe 13a ... Upstream exhaust pipe 13b ... Downstream exhaust pipe 14 ... Downstream catalyst 15 ... Upstream catalyst side passage 15a ... Exhaust inflow part 15b ... Exhaust outlet 16 ... Upstream catalyst 17 ... On-off valve 18 ... Actuator 19 ... Upstream air-fuel ratio sensor 20 ... Downstream air-fuel ratio sensor 22 ... Bypass path 40 ... Temperature sensor

Claims (3)

内燃機関が排出する排気ガスの排気通路上に配置された上流触媒と下流触媒と、
前記上流触媒を有する排気通路である上流触媒側通路と、
前記上流触媒を迂回するバイパス路と、
前記上流触媒に流入する前記排気ガスの流量を調整する開閉弁とを備え、
減速燃料カット後、燃料の供給が再開された場合に、
前記開閉弁を制御して前記排気ガスが前記上流触媒側通路を通るように変更する燃料供給再開時切替制御をする
内燃機関の排気浄化装置において、
減速燃料カット開始から前記燃料供給再開時切替制御が行われる期間に
エンジン回転数に応じて
前記上流触媒に流入する前記排気ガスの流量を制御する上流触媒流量制御を行う
ことを特徴とする内燃機関の排気浄化装置。
An upstream catalyst and a downstream catalyst disposed on an exhaust passage of exhaust gas discharged from the internal combustion engine;
An upstream catalyst side passage which is an exhaust passage having the upstream catalyst;
A bypass that bypasses the upstream catalyst;
An on-off valve for adjusting the flow rate of the exhaust gas flowing into the upstream catalyst,
When the fuel supply is resumed after the deceleration fuel cut,
In an exhaust gas purification apparatus for an internal combustion engine that performs switching control at the time of resumption of fuel supply that changes the exhaust gas to pass through the upstream catalyst side passage by controlling the on-off valve,
An internal combustion engine that performs upstream catalyst flow rate control for controlling a flow rate of the exhaust gas flowing into the upstream catalyst according to an engine speed during a period in which the fuel supply resumption switching control is performed from the start of deceleration fuel cut Exhaust purification equipment.
前記下流触媒が活性化いないことを判定する活性化判定手段を更に備え、
前記下流触媒が活性化していないと判定した時に
前記上流触媒流量制御を行う
ことを特徴とする請求項1記載の内燃機関の排気浄化装置。
An activation determination means for determining that the downstream catalyst is not activated;
The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the upstream catalyst flow rate control is performed when it is determined that the downstream catalyst is not activated.
エンジン回転数が大きくなるに従い
前記上流触媒に流入する前記排気ガスの流量が少なくなるよう制御し、
エンジン回転数が減速燃料カットから復帰するエンジン回転数に近づくにしたがって
前記上流触媒に流入する前記排気ガスの流量が多くなるよう制御する
前記上流触媒流量制御を行う
ことを特徴とする請求項1乃至2の何れか一項記載内燃機関の排気浄化装置。
Control so that the flow rate of the exhaust gas flowing into the upstream catalyst decreases as the engine speed increases,
2. The upstream catalyst flow rate control is performed, wherein the flow rate of the exhaust gas flowing into the upstream catalyst is increased as the engine speed approaches the engine speed at which the engine returns from the deceleration fuel cut. 3. An exhaust emission control device for an internal combustion engine according to claim 2.
JP2007125111A 2007-05-10 2007-05-10 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP4748102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007125111A JP4748102B2 (en) 2007-05-10 2007-05-10 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007125111A JP4748102B2 (en) 2007-05-10 2007-05-10 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2008280901A true JP2008280901A (en) 2008-11-20
JP4748102B2 JP4748102B2 (en) 2011-08-17

Family

ID=40141934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007125111A Expired - Fee Related JP4748102B2 (en) 2007-05-10 2007-05-10 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4748102B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108952973A (en) * 2017-05-17 2018-12-07 现代自动车株式会社 Engine system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06346724A (en) * 1993-06-14 1994-12-20 Nippondenso Co Ltd Exhaust gas purifying device
JP2000234511A (en) * 1999-02-12 2000-08-29 Toyota Motor Corp Adsorption rate calculator for non-combustible fuel component adsorbent of internal combustion engine
WO2006006385A1 (en) * 2004-07-07 2006-01-19 Sango Co., Ltd. Exhaust device of internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06346724A (en) * 1993-06-14 1994-12-20 Nippondenso Co Ltd Exhaust gas purifying device
JP2000234511A (en) * 1999-02-12 2000-08-29 Toyota Motor Corp Adsorption rate calculator for non-combustible fuel component adsorbent of internal combustion engine
WO2006006385A1 (en) * 2004-07-07 2006-01-19 Sango Co., Ltd. Exhaust device of internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108952973A (en) * 2017-05-17 2018-12-07 现代自动车株式会社 Engine system

Also Published As

Publication number Publication date
JP4748102B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
JP3649188B2 (en) Internal combustion engine with exhaust purification device
JP3557925B2 (en) Exhaust gas purification device for internal combustion engine
JP3680244B2 (en) Adsorption amount calculation device for unburned fuel component adsorbent of internal combustion engine
JP4656193B2 (en) Catalyst warm-up controller
JP5664884B2 (en) Air-fuel ratio control device for internal combustion engine
US6370872B1 (en) Exhaust gas purifier for internal combustion engine
JP3988518B2 (en) Exhaust gas purification device for internal combustion engine
JP2008223592A (en) Exhaust emission control device of internal-combustion engine
JP4748102B2 (en) Exhaust gas purification device for internal combustion engine
JP4987354B2 (en) Catalyst early warm-up control device for internal combustion engine
JP2007009887A (en) Exhaust emission control device
JP4103759B2 (en) Exhaust gas purification device for internal combustion engine
JP2005240716A (en) Deterioration diagnostic device for catalyst
JP2008255972A (en) Air-fuel ratio control device
JP2003065027A (en) Control device for exhaust air temperature sensor for internal combustion engine
JP4148122B2 (en) Air-fuel ratio control device for internal combustion engine
JP2011127567A (en) Exhaust emission control device of internal combustion engine
JPH07208153A (en) Exhaust emission control device of internal combustion engine
JP2005351108A (en) Exhaust emission control device of internal combustion engine
JP7204426B2 (en) Fuel injection control device for internal combustion engine
JPH0763046A (en) Catalytic warm-up device of internal combustion engine
JPH11182296A (en) Air-fuel ratio control device for internal combustion engine
JP2006291836A (en) Exhaust emission control device of internal combustion engine
JPH11343913A (en) Air-fuel ratio controller for internal combustion engine
JP4013771B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110328

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110328

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110502

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees