JP2011127567A - Exhaust emission control device of internal combustion engine - Google Patents

Exhaust emission control device of internal combustion engine Download PDF

Info

Publication number
JP2011127567A
JP2011127567A JP2009289092A JP2009289092A JP2011127567A JP 2011127567 A JP2011127567 A JP 2011127567A JP 2009289092 A JP2009289092 A JP 2009289092A JP 2009289092 A JP2009289092 A JP 2009289092A JP 2011127567 A JP2011127567 A JP 2011127567A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
temperature
upstream catalyst
bypass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009289092A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Yamashita
嘉之 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009289092A priority Critical patent/JP2011127567A/en
Publication of JP2011127567A publication Critical patent/JP2011127567A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device of an internal combustion engine, using a catalyst bypass system and inhibiting deterioration of an upstream catalyst by preventing temperature of the upstream catalyst from rising unintentionally. <P>SOLUTION: The exhaust emission control device (catalyst bypass system) of the internal combustion engine includes an indication means controlling a bypass opening and closing means so that the flow rate of exhaust gas flowing in a bypass passage is increased as compared with the flow rate of exhaust gas flowing in the upstream catalyst when an oxygen occlusion amount of the upstream catalyst 4 of the internal combustion engine becomes equal to or higher than a predetermined determination value. In the exhaust emission control device, when the internal combustion engine is in an acceleration lean condition, the larger the absolute value of the temperature of the upstream catalyst or a temperature rise is, the smaller the predetermined determination value is set. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、触媒を用いて内燃機関の排気ガスを浄化する排気浄化装置に関し、特に排気通路に複数の触媒を直列に設置したものに関する。   The present invention relates to an exhaust purification device that purifies exhaust gas of an internal combustion engine using a catalyst, and more particularly to an apparatus in which a plurality of catalysts are installed in series in an exhaust passage.

内燃機関の排気浄化装置として排気通路に2つの触媒を直列に設置し、さらに上流の触媒(上流触媒)を迂回するバイパス路と、バイパス路と触媒側通路とに流入する排気ガス流量を調整するバイパス開閉手段を備えたものが知られている(例えば、特許文献1乃至4)。バイパス路は、上流触媒の上流と下流とをつないでいる。特許文献1には、ガス温が上流の触媒の床温よりも低い場合には、バイパスバルブを閉じ、排気ガスを上流触媒に流し、ガス温が上流の触媒の床温よりも高い場合には、バイパスバルブを開き、排気ガスをバイパス路に流すことが記載されている。この他、特許文献2には、エンジン負荷、回転数排気ガス温度に基づいて、排気ガス通路をバイパス通路側と触媒側とで切替えることが記載されている。
特開2007-198297号公報 特開昭61-62219号公報 特開2006-144594号公報 特開2005-315171号公報
As an exhaust gas purification device for an internal combustion engine, two catalysts are installed in series in the exhaust passage, and further, a bypass passage that bypasses the upstream catalyst (upstream catalyst), and an exhaust gas flow rate that flows into the bypass passage and the catalyst side passage are adjusted. One provided with a bypass opening / closing means is known (for example, Patent Documents 1 to 4). The bypass path connects the upstream and downstream of the upstream catalyst. In Patent Document 1, when the gas temperature is lower than the bed temperature of the upstream catalyst, the bypass valve is closed and the exhaust gas is allowed to flow to the upstream catalyst, and when the gas temperature is higher than the bed temperature of the upstream catalyst. It is described that the bypass valve is opened and the exhaust gas is allowed to flow through the bypass passage. In addition, Patent Literature 2 describes that the exhaust gas passage is switched between the bypass passage side and the catalyst side based on the engine load and the rotational speed exhaust gas temperature.
JP 2007-198297 A JP-A 61-62219 JP 2006-144594 A JP 2005-315171 A

しかしながら、上流触媒に流入する排気ガス流量を調整するバイパス開閉手段は、上流触媒に全ての排気ガスを流入させることや、バイパス路に全ての排気ガスを流入することは一般に困難である。すなわち、バイパス開閉手段が例えばバタフライバルブであるとすると、バルブを全閉にしても少量の排気ガス漏れが発生してしまう可能性がある。このため、バルブを制御して、全ての排気ガスをバイパス路に流入させようとしても少量の排気ガス漏れが発生する可能性がある。例えば、図1のようにバイパス路にバタフライバルブ3を備える構成を使って例示すると、バタフライバルブ3を制御して、開度を全開へと変更制御したとしても、全てのガスがバイパス路に流れるわけではなく、少量ながら上流触媒4に流入する。この少量の排気ガスを排気ガス漏れと呼ぶ。一方、図1と異なって、触媒側通路にバタフライバルブ3を備える構成でも同じ。   However, it is generally difficult for the bypass opening / closing means that adjusts the flow rate of the exhaust gas flowing into the upstream catalyst to cause all exhaust gas to flow into the upstream catalyst and all exhaust gas into the bypass path. That is, if the bypass opening / closing means is, for example, a butterfly valve, a small amount of exhaust gas leakage may occur even when the valve is fully closed. For this reason, there is a possibility that a small amount of exhaust gas leakage occurs even if the valve is controlled to allow all exhaust gas to flow into the bypass passage. For example, as illustrated in FIG. 1 using a configuration in which the butterfly valve 3 is provided in the bypass path, even if the butterfly valve 3 is controlled and the opening degree is controlled to be fully opened, all the gas flows through the bypass path. However, it flows into the upstream catalyst 4 with a small amount. This small amount of exhaust gas is called exhaust gas leakage. On the other hand, unlike FIG. 1, the same applies to a configuration in which the butterfly valve 3 is provided in the catalyst side passage.

このような排気ガス漏れが発生すると、少量ではあるものの上流触媒に排気ガスが流入してしまう。このように、意図せず上流触媒に排気ガスが流入してしまうとすると、酸素吸蔵量が上限値近傍である場合に、意図せず上流触媒が劣化する可能性がある。すなわち、酸素吸蔵量が上限値近傍である場合に、意図せず未燃燃料が触媒に流入してしまうと、触媒の温度が急上昇する。このような状況で触媒の温度が急上昇すると、触媒の劣化につながる。   When such an exhaust gas leak occurs, the exhaust gas flows into the upstream catalyst although the amount is small. Thus, if the exhaust gas flows into the upstream catalyst unintentionally, the upstream catalyst may deteriorate unintentionally when the oxygen storage amount is near the upper limit value. That is, when the oxygen storage amount is in the vicinity of the upper limit value and the unburned fuel flows into the catalyst unintentionally, the temperature of the catalyst rapidly increases. If the temperature of the catalyst rises rapidly in such a situation, it will lead to deterioration of the catalyst.

そこで本発明は上記の問題点に鑑み、その目的は、意図せず上流触媒の温度が上昇してしまうことを防止し、上流触媒が劣化を抑制する内燃機関の排気浄化装置を提供することである。   Accordingly, in view of the above problems, the present invention provides an exhaust purification device for an internal combustion engine that prevents the temperature of the upstream catalyst from unintentionally rising and suppresses deterioration of the upstream catalyst. is there.

請求項1に記載の発明によれば、内燃機関が排出する排気ガスの排気通路に配置された触媒と、触媒の上流と下流とをつなぐバイパス路と、バイパス路に流入する排ガス流量を調整するバイパス開閉手段と、触媒の触媒温度を検出する触媒温度検出手段と、検出された触媒温度によるバイパス開条件に基づいて、バイパス開閉手段によるバイパス開を指示する指示手段と、バイパス開後の触媒の温度上昇に相関する指標値に基づいて、バイパス開条件を補正する補正手段とを備えることを特徴とする内燃機関の排気浄化装置が提供される。請求項2に記載の発明によれば、更に該指標値は、酸素吸蔵能を使うことを特徴とする請求項1に記載の内燃機関の排気浄化装置が提供される。 According to the first aspect of the present invention, the catalyst disposed in the exhaust passage of the exhaust gas discharged from the internal combustion engine, the bypass passage connecting the upstream and the downstream of the catalyst, and the exhaust gas flow rate flowing into the bypass passage are adjusted. A bypass opening / closing means; a catalyst temperature detecting means for detecting a catalyst temperature of the catalyst; an instruction means for instructing bypass opening by the bypass opening / closing means based on a bypass opening condition based on the detected catalyst temperature; and An exhaust emission control device for an internal combustion engine is provided, comprising correction means for correcting a bypass opening condition based on an index value correlated with a temperature rise. According to a second aspect of the present invention, there is provided the exhaust gas purification apparatus for an internal combustion engine according to the first aspect, wherein the index value uses an oxygen storage capacity.

バイパス路に流入する排気ガス流量を増大させるようバイパス開閉手段を制御して切替えるための判定値を小さくすることで、バイパス開条件を補正する。このように上流触媒4の酸素吸蔵量に応じてバイパス路に流入する流量を増大させるタイミングを切替えることができる。つまり、上流触媒4の酸素吸蔵量が多い時は、切替え値判定値を小さくして、バルブ切替え後の温度上昇分を見込んだ切替えタイミングとし、上流触媒4の酸素吸蔵量が少ないときには、判定値を大きめにとることで、上流触媒4の温度が適度な値まで上昇できるような切替えタイミングとする。これにより、切換えが行なわれず、触媒に流入する排気ガス流量が調整されない状態が継続された場合に、触媒の温度が所定の上限値(限界値)を越えると推定することができるので、触媒の温度が所定の上限値(限界値)を越えると推定できる場合に、つまり、触媒の温度上昇に相関する指標に基づいて、前もってバイパス路に流入する排気ガス流量を増大させることができる。その結果、意図せず急激な触媒温度上昇を防ぐことができる。特に、触媒の温度が所定の上限値(限界値)を越えてしまうと、触媒の劣化が大幅に進んでしまうおそれがある。そのため、触媒の温度が所定の上限値(限界値)近傍である場合には、より敏感に前もってバイパス路に流入する排気ガス流量を増大させる。こうして、触媒の劣化を防ぐことができる。   The bypass opening condition is corrected by reducing the judgment value for controlling and switching the bypass opening / closing means so as to increase the flow rate of the exhaust gas flowing into the bypass path. In this way, the timing for increasing the flow rate flowing into the bypass passage can be switched according to the oxygen storage amount of the upstream catalyst 4. In other words, when the oxygen storage amount of the upstream catalyst 4 is large, the switching value determination value is made smaller to set the switching timing in consideration of the temperature rise after the valve switching, and when the oxygen storage amount of the upstream catalyst 4 is small, the determination value The switching timing is set so that the temperature of the upstream catalyst 4 can be increased to an appropriate value. As a result, it is possible to estimate that the temperature of the catalyst exceeds a predetermined upper limit (limit value) when switching is not performed and the state in which the flow rate of the exhaust gas flowing into the catalyst is not adjusted is maintained. When it can be estimated that the temperature exceeds a predetermined upper limit (limit value), that is, based on an index correlated with the temperature rise of the catalyst, the flow rate of the exhaust gas flowing into the bypass passage can be increased in advance. As a result, it is possible to prevent an unexpected increase in the catalyst temperature. In particular, when the temperature of the catalyst exceeds a predetermined upper limit value (limit value), the catalyst may be greatly deteriorated. Therefore, when the temperature of the catalyst is in the vicinity of a predetermined upper limit (limit value), the flow rate of the exhaust gas flowing into the bypass path is increased more sensitively in advance. Thus, deterioration of the catalyst can be prevented.

特に内燃機関の運転状態が加速中の場合には、排気ガスの温度上昇の速度が速く(言い換えると、排気ガスの温度上昇率や温度上昇量が大きく)、上流触媒の温度上昇が予想され、上流触媒の温度上昇速度が大きいことが予想される。このように上流触媒の温度上昇が大きいことが予想される場合には、早期にバイパス路に流入する排気ガス流量を増大させるように切替える。   In particular, when the operating state of the internal combustion engine is accelerating, the exhaust gas temperature rise rate is fast (in other words, the exhaust gas temperature rise rate and the amount of temperature rise are large), and the upstream catalyst temperature rise is expected, It is expected that the temperature rise rate of the upstream catalyst is large. When the temperature increase of the upstream catalyst is expected to be large in this way, switching is performed so as to increase the flow rate of the exhaust gas flowing into the bypass passage at an early stage.

請求項に記載の発明によれば、上流触媒の温度上昇が大きいことが予想される場合には、なるべく早期に、バイパス路に流入する排気ガス流量を増大させるようにバイパス開閉手段を切替えるので、意図せず上流触媒の温度が上昇してしまうことを防止し、上流触媒が劣化することを抑制することができる。   According to the invention described in the claims, when the temperature increase of the upstream catalyst is expected to be large, the bypass opening / closing means is switched so as to increase the flow rate of the exhaust gas flowing into the bypass path as soon as possible. It is possible to prevent the temperature of the upstream catalyst from rising unintentionally and to suppress the deterioration of the upstream catalyst.

本発明に係る排気浄化装置を適用する内燃機関の概略構成を示す図The figure which shows schematic structure of the internal combustion engine to which the exhaust gas purification apparatus which concerns on this invention is applied. ECUの内部構成を示すブロック図Block diagram showing internal configuration of ECU 実施例1の制御フローチャートControl flow chart of embodiment 1

以下、図1乃至図3を参照しつつ、本発明の実施例1について説明する。なお、各図において、同一または相当する部分には同一符号を付して説明を簡素化ないし省略する。   Hereinafter, Embodiment 1 of the present invention will be described with reference to FIGS. 1 to 3. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof is simplified or omitted.

図1は、本実施例による内燃機関の排気浄化装置の構成を説明するための全体図である。 FIG. 1 is an overall view for explaining the configuration of an exhaust gas purification apparatus for an internal combustion engine according to this embodiment.

内燃機関の排気浄化装置は、内燃機関1と内燃機関が排出する排気ガスの排気通路に配置された上流触媒4(スタートキャットコンバータ、S/Cともいう)と下流触媒(アンダーフロア触媒、U/F触媒ともいう)6とからなる。上流触媒を迂回するバイパス路上には、上流触媒に流入する排気ガス流量を調整するバイパス開閉手段である制御弁3が設置されている。   The exhaust gas purification apparatus for an internal combustion engine includes an internal combustion engine 1 and an upstream catalyst 4 (also referred to as a start cat converter, S / C) and a downstream catalyst (under floor catalyst, U / C) disposed in an exhaust passage of exhaust gas discharged from the internal combustion engine. (Also called F catalyst). A control valve 3 that is bypass opening / closing means for adjusting the flow rate of exhaust gas flowing into the upstream catalyst is installed on the bypass path that bypasses the upstream catalyst.

この上流触媒4は、排気の流れ方向に沿う貫通孔を複数有するよう格子状に形成されたコージェライトからなるセラミック担体と、セラミック担体の表面にコーティングされた触媒層とから構成され、触媒層は、例えば、多数の細孔を有する多孔質のアルミナ(Al2O3)の表面に白金−ロジウム(Pt−Rh)系の貴金属触媒物質を担持させて構成される。   This upstream catalyst 4 is composed of a ceramic carrier made of cordierite formed in a lattice shape so as to have a plurality of through holes along the exhaust flow direction, and a catalyst layer coated on the surface of the ceramic carrier, For example, a platinum-rhodium (Pt-Rh) noble metal catalyst material is supported on the surface of porous alumina (Al2O3) having a large number of pores.

上流触媒4は、所定温度以上の時に活性化し、流入する排気の空燃比が理論空燃比近傍にあると、排気に含まれる炭化水素(HC)及び一酸化炭素(CO)を排気中の酸素O2と反応させてH2O及びCOへ酸化すると同時に、排気中のNOXを排気中のHC及びCOと反応させてH2O、CO、N2へ還元する。上流触媒4より上流の排気管5には、上流触媒4に流入する排気の空燃比に対応した電気信号を出力する上流側空燃比センサ(不図示)が取り付けられている。   The upstream catalyst 4 is activated when the temperature is equal to or higher than a predetermined temperature, and when the air-fuel ratio of the inflowing exhaust gas is in the vicinity of the stoichiometric air-fuel ratio, the hydrocarbon (HC) and carbon monoxide (CO) contained in the exhaust gas are converted into oxygen O 2 At the same time, NOx in the exhaust is reacted with HC and CO in the exhaust to be reduced to H2O, CO, and N2. An upstream air-fuel ratio sensor (not shown) that outputs an electric signal corresponding to the air-fuel ratio of the exhaust gas flowing into the upstream catalyst 4 is attached to the exhaust pipe 5 upstream of the upstream catalyst 4.

制御弁3は、ステップモータ等からなり、印加電流の大きさに応じて制御弁3を開閉駆動するアクチュエータ(不図示)が取り付けられている。制御弁3はバタフライバルブの他、スイッチングバルブであってもよい。また設置場所はバイパス路に限定されるものではなく、上流触媒4の上流に設置してもよい。   The control valve 3 is composed of a step motor or the like, and an actuator (not shown) that opens and closes the control valve 3 according to the magnitude of the applied current is attached. The control valve 3 may be a switching valve in addition to the butterfly valve. Further, the installation location is not limited to the bypass path, and may be installed upstream of the upstream catalyst 4.

制御弁3を開閉する手段としてアクチュエータによる開閉弁としてもよい。開閉弁の動力は油圧式の他、電動モーターや歯車等機械的に切替える装置を用いてもよい。   As a means for opening and closing the control valve 3, an on-off valve by an actuator may be used. The on-off valve power may be mechanically switched, such as an electric motor or a gear, in addition to the hydraulic power.

内燃機関1には、図示しないクランクシャフトが所定角度(例えば、30度)回転する都度、パルス信号を出力するクランクポジションセンサ21と、内燃機関1の図示しないウォータ・ジャケット内を流れる冷却水の温度に対応した電気信号を出力する水温センサ22とが取り付けられている。   The internal combustion engine 1 includes a crank position sensor 21 that outputs a pulse signal each time a crankshaft (not shown) rotates by a predetermined angle (for example, 30 degrees), and the temperature of cooling water that flows in a water jacket (not shown) of the internal combustion engine 1. A water temperature sensor 22 that outputs an electrical signal corresponding to the above is attached.

そして、クランクポジションセンサ21と水温センサ22とスロットルポジションセンサ7とエアフローメータ8とバキュームセンサ24と上流側空燃比センサ19と下流側空燃比センサ20と温度センサ40とは、それぞれ電気配線を介してエンジンコントロール用の電子制御ユニット(Electronic Control Unit:ECU)25に接続され、各センサの出力信号がECU25に入力されるようになっている。   The crank position sensor 21, the water temperature sensor 22, the throttle position sensor 7, the air flow meter 8, the vacuum sensor 24, the upstream air-fuel ratio sensor 19, the downstream air-fuel ratio sensor 20, and the temperature sensor 40 are respectively connected via electric wiring. It is connected to an engine control electronic control unit (ECU) 25 so that the output signals of the sensors are input to the ECU 25.

ECU25は、各センサからの出力信号をパラメータとして内燃機関1の運転状態を判定し、その運転状態に応じて燃料噴射制御、点火時期制御等の各種制御を行う。ECU25が行う制御弁3の開閉制御は下記にて詳説する。   The ECU 25 determines the operating state of the internal combustion engine 1 using the output signals from the sensors as parameters, and performs various controls such as fuel injection control and ignition timing control according to the operating state. The opening / closing control of the control valve 3 performed by the ECU 25 will be described in detail below.

ここで、ECU25は、図2に示すように、双方向性バス26により相互に接続された、CPU27とROM28とRAM29とバックアップRAM30と入力ポート31と出力ポート32とを備えるとともに、入力ポート31に接続されたA/Dコンバータ33を備えている。   2, the ECU 25 includes a CPU 27, a ROM 28, a RAM 29, a backup RAM 30, an input port 31, and an output port 32, which are connected to each other by a bidirectional bus 26. A connected A / D converter 33 is provided.

入力ポート31は、クランクポジションセンサ21等の出力信号を入力信号とし、それらの出力信号をCPU27やRAM29へ送信する。さらに、入力ポート31は、スロットルポジションセンサ7、エアフローメータ8、上流側空燃比センサ19、下流側空燃比センサ20、水温センサ22、バキュームセンサ24等の出力信号をA/Dコンバータ33を介して入力信号とし、それらの出力信号をCPU27やRAM29へ送信する。   The input port 31 uses output signals from the crank position sensor 21 and the like as input signals, and transmits those output signals to the CPU 27 and the RAM 29. Further, the input port 31 outputs output signals from the throttle position sensor 7, the air flow meter 8, the upstream air-fuel ratio sensor 19, the downstream air-fuel ratio sensor 20, the water temperature sensor 22, the vacuum sensor 24, etc. via the A / D converter 33. The output signals are sent to the CPU 27 and RAM 29 as input signals.

出力ポート32は、CPU27から出力される制御信号を、アクチュエータ18や駆動回路11へ送信する。ROM28は、各燃料噴射弁10から噴射すべき燃料量を決定するための燃料噴射量制御ルーチン、燃料噴射量の空燃比フィードバック制御を行うための空燃比フィードバック制御ルーチン、燃料噴射弁10の燃料噴射時期を決定するための燃料噴射時期制御ルーチン、制御弁3を制御するための開閉制御ルーチン等のアプリケーションプログラムと、各種の制御マップを格納する。   The output port 32 transmits a control signal output from the CPU 27 to the actuator 18 and the drive circuit 11. The ROM 28 is a fuel injection amount control routine for determining the amount of fuel to be injected from each fuel injection valve 10, an air-fuel ratio feedback control routine for performing air-fuel ratio feedback control of the fuel injection amount, and fuel injection of the fuel injection valve 10. Application programs such as a fuel injection timing control routine for determining the timing, an open / close control routine for controlling the control valve 3, and various control maps are stored.

上記の各種の制御マップは、例えば、内燃機関1の運転状態と燃料噴射量との関係を示す燃料噴射量制御マップ、内燃機関1の運転状態と燃料噴射時期との関係を示す燃料噴射時期制御マップ、内燃機関始動時の冷却水の温度と始動時から上流触媒4が活性化するまでにかかる時間(以下、触媒活性時間と記す)との関係を示す活性判定制御マップ等である。   The above-mentioned various control maps are, for example, a fuel injection amount control map showing the relationship between the operating state of the internal combustion engine 1 and the fuel injection amount, and a fuel injection timing control showing the relationship between the operating state of the internal combustion engine 1 and the fuel injection timing. The map is an activity determination control map showing the relationship between the temperature of the cooling water at the start of the internal combustion engine and the time taken from the start to the activation of the upstream catalyst 4 (hereinafter referred to as catalyst activation time).

RAM29は、各センサからの出力信号やクランクポジションセンサ21の出力信号より算出される機関回転数などのCPU27の演算結果等を格納する。そして、各センサからの出力信号やCPU27の演算結果等は、クランクポジションセンサ21が信号を出力する都度、最新のデータに書き換えられる。   The RAM 29 stores the calculation results of the CPU 27 such as the engine speed calculated from the output signals from the sensors and the output signal of the crank position sensor 21. The output signal from each sensor, the calculation result of the CPU 27, and the like are rewritten to the latest data every time the crank position sensor 21 outputs a signal.

バックアップRAM30は、内燃機関1の運転停止後もデータを記憶可能な不揮発性のメモリである。CPU27は、ROM28に記憶されたアプリケーションプログラムに従って動作し、RAM29に記憶された各センサの出力信号より内燃機関1の運転状態を判定し、その運転状態と各制御マップとから燃料噴射量、燃料噴射時期、制御弁3の開閉時期等を算出する。そして、CPU27は、算出した燃料噴射量、燃料噴射時期、制御弁3の開閉時期に従って、駆動回路11及びアクチュエータ18を制御する。   The backup RAM 30 is a non-volatile memory that can store data even after the operation of the internal combustion engine 1 is stopped. The CPU 27 operates in accordance with an application program stored in the ROM 28, determines the operating state of the internal combustion engine 1 from the output signals of the sensors stored in the RAM 29, and determines the fuel injection amount and the fuel injection from the operating state and each control map. The timing, the opening / closing timing of the control valve 3 and the like are calculated. Then, the CPU 27 controls the drive circuit 11 and the actuator 18 according to the calculated fuel injection amount, fuel injection timing, and control valve 3 opening / closing timing.

例えば、CPU27は、燃料噴射制御を実行するにあたり、燃料噴射量制御ルーチンに従って動作し、以下の式に従って燃料噴射量(TAU)を決定する。
TAU=TP*FWL*(FAF+FG)*[FASE+FAE+FOTP+FDE(D)]*FFC+TAUV
(TP:基本噴射量、FWL:暖機増量、FAF:空燃比フィードバック補正係数、FG:空燃比学習係数、FASE:始動後増量、FAE:加速増量、FOTP:OTP増量、FDE(D):減速増量(減量)、FFC:燃料カット復帰時補正係数、TAUV:無効噴射時間)
ここで、一般的な触媒の排気浄化性能について説明する。触媒の排気浄化性能を表す指標として、
「排気浄化性能」=「触媒転化率」×「触媒を通過したガス流量」
を考える。これは、触媒が転化(HC,CO,Noxの三元反応)したガス量(g)を表している。下流触媒6には、ほぼ一定流量のガスが流れるため、排気浄化性能はほぼ一定である。但し、上流触媒4に流れるガス流量が増えると上流触媒4側で排気ガスが転化されるため、下流触媒6の転化効率が低下し、排気浄化性能が若干低下する傾向となる。一方、上流触媒4側の排気浄化性能は、流量が支配的となるため、流量が増加すると大きくなる。従って、ある流量を境に、上流触媒4と下流触媒6の排気浄化性能が逆転することになる。
For example, when executing the fuel injection control, the CPU 27 operates according to the fuel injection amount control routine, and determines the fuel injection amount (TAU) according to the following equation.
TAU = TP * FWL * (FAF + FG) * [FASE + FAE + FOTP + FDE (D)] * FFC + TAUV
(TP: Basic injection amount, FWL: Warm-up increase, FAF: Air-fuel ratio feedback correction coefficient, FG: Air-fuel ratio learning coefficient, FASE: Increase after start, FAE: Acceleration increase, FOTP: OTP increase, FDE (D): Deceleration (Increase (decrease), FFC: Correction coefficient at fuel cut return, TAUV: Invalid injection time)
Here, the exhaust purification performance of a general catalyst will be described. As an index indicating the exhaust purification performance of the catalyst,
"Exhaust gas purification performance" = "Catalyst conversion rate" x "Gas flow rate through the catalyst"
think of. This represents the amount of gas (g) converted by the catalyst (three-way reaction of HC, CO, and Nox). Since an approximately constant flow rate of gas flows through the downstream catalyst 6, the exhaust purification performance is substantially constant. However, since the exhaust gas is converted on the upstream catalyst 4 side when the flow rate of the gas flowing through the upstream catalyst 4 increases, the conversion efficiency of the downstream catalyst 6 decreases and the exhaust purification performance tends to decrease slightly. On the other hand, the exhaust gas purification performance on the upstream catalyst 4 side increases as the flow rate increases because the flow rate becomes dominant. Therefore, the exhaust purification performance of the upstream catalyst 4 and the downstream catalyst 6 is reversed at a certain flow rate.

図3のフローチャートを使ってバイパス開閉手段の制御に関する具体的な説明をする。ステップ(図ではSと記してある。以下同じ)1では、エンジン運転中かどうかが判断される。エンジン運転中でない場合は、本ルーチンを終了する。エンジン運転中の場合には、S2に進み、制御弁3が開いているかが判断される。制御弁3が開いているか否かの判断とは、指示手段(ECU25)が制御弁3(バイパス開閉手段)を制御して、全開となるように指示を出している状態か否かの判断のことである。全開となるような指示とは、指示手段(ECU25)が出す指示で、制御弁3(バイパス開閉手段)を制御して、上流触媒に流入する排気ガス流量と比してバイパス路に流入する排気ガス流量を大きくさせるような指示のことであり、かつ更に指示手段(ECU25)が排気ガス流量のうち全ての排気ガス流量をバイパス路に流入するような指示のことである。一方、このステップ2でNoと判断される条件について、詳細に説明する。このステップ2でNoと判断される条件とは、指示手段(ECU25)が制御弁3(バイパス開閉手段)を制御して、全閉となるように指示を出している条件のことである。全閉となるような指示とは、指示手段(ECU25)が出す指示で、制御弁3(バイパス開閉手段)を制御して、上流触媒に流入する排気ガス流量と比してバイパス路に流入する排気ガス流量を小さくさせるような指示のことであり、かつ更に指示手段(ECU25)が排気ガス流量のうち全ての排気ガス流量を上流触媒に流入するようにする指示のことである。このように指示手段(ECU25)が全閉はたは全開の指示を出しているのにも拘わらず、実際に上流触媒に全ての排気ガス流量を流入させることや、実際にバイパス路に全ての排気ガス流量を流入することは一般に困難である。すなわち、バイパス開閉手段が例えばバタフライバルブであるとすると、バルブを全閉にしても少量の排気ガス漏れが発生してしまう可能性がある。このため、バルブを制御して、全ての排気ガスをバイパス路に流入させようとしても少量の排気ガス漏れが発生する可能性がある。例えば、図1のようにバイパス路にバタフライバルブ3を備える構成を使って例示すると、バタフライバルブ3を制御して、開度を全開へと変更制御したとしても、全てのガスがバイパス路に流れるわけではなく、少量ながら上流触媒4に流入する。この少量の排気ガスを排気ガス漏れと呼ぶ。一方、図1と異なって、触媒側通路にバタフライバルブ3を備える構成でも、同じ。このような排気ガス漏れが発生すると、少量ではあるものの上流触媒に排気ガスが流入してしまう。このように、意図せず上流触媒に排気ガスが流入してしまうとすると、酸素吸蔵量(酸素吸蔵能量を示す指標値の1例)が上限値近傍である場合に、意図せず上流触媒が劣化する可能性がある。そのため、指示手段(ECU25)が全閉、又は全開の指示をだしているにも拘わらず、意図せず上流触媒の温度が上昇してしまう。本実施例1では、このことを課題としている。本実施例1の目的は、このような意図しない上流触媒の温度の絶対値、または温度上昇を防止し、上流触媒が劣化を抑制することである。例えば、制御弁3がバタフライバルブであるとして以下説明する。なお、指示手段(ECU25)が出す指示のうち、全閉とする指示とはバタフライバルブ(制御弁3)の開度を開度0度とする。指示手段(ECU25)が出す指示のうち、全開とする指示とはバタフライバルブ(制御弁3)の開度を開度100度とする。ただし、指示手段(ECU25)が出す指示のうち、全開とする指示を、バタフライバルブの開度90度をもって開状態としてもよい。同様に全閉とする指示を、バタフライバルブの開度10度をもって開状態としてもよい。上流触媒に流入する排気ガス流量と比してバイパス路に流入する排気ガス流量を相対的に変更することが制御弁3を調整することである。そのため、開状態又は閉状態として中間の開度をもつようにしてもよいことは、いうまでもない。   A specific description of the control of the bypass opening / closing means will be given using the flowchart of FIG. In step (denoted as S in the figure, the same applies hereinafter) 1, it is determined whether or not the engine is operating. If the engine is not operating, this routine is terminated. When the engine is operating, the process proceeds to S2 and it is determined whether the control valve 3 is open. The determination as to whether or not the control valve 3 is open refers to the determination as to whether or not the instruction means (ECU 25) controls the control valve 3 (bypass opening / closing means) to issue an instruction to fully open. That is. The instruction to fully open is an instruction issued by the instruction means (ECU 25), which controls the control valve 3 (bypass opening / closing means) and exhausts flowing into the bypass passage compared to the exhaust gas flow rate flowing into the upstream catalyst. This is an instruction to increase the gas flow rate, and further, the instruction means (ECU 25) is an instruction to flow all exhaust gas flow rates out of the exhaust gas flow rate into the bypass passage. On the other hand, the condition determined as No in step 2 will be described in detail. The condition determined as No in step 2 is a condition in which the instruction means (ECU 25) controls the control valve 3 (bypass opening / closing means) to issue an instruction to fully close. The instruction to be fully closed is an instruction issued by the instruction means (ECU 25), which controls the control valve 3 (bypass opening / closing means) and flows into the bypass passage as compared with the exhaust gas flow rate flowing into the upstream catalyst. This is an instruction to decrease the exhaust gas flow rate, and further, the instruction means (ECU 25) is an instruction to cause all the exhaust gas flow rate of the exhaust gas flow rate to flow into the upstream catalyst. Although the instruction means (ECU 25) issues an instruction to fully close or fully open in this way, all exhaust gas flow rates are actually allowed to flow into the upstream catalyst, and It is generally difficult to flow in the exhaust gas flow rate. That is, if the bypass opening / closing means is, for example, a butterfly valve, a small amount of exhaust gas leakage may occur even when the valve is fully closed. For this reason, there is a possibility that a small amount of exhaust gas leakage occurs even if the valve is controlled to allow all exhaust gas to flow into the bypass passage. For example, as illustrated in FIG. 1 using a configuration in which the butterfly valve 3 is provided in the bypass path, even if the butterfly valve 3 is controlled and the opening degree is controlled to be fully opened, all the gas flows through the bypass path. However, it flows into the upstream catalyst 4 with a small amount. This small amount of exhaust gas is called exhaust gas leakage. On the other hand, unlike FIG. 1, the same applies to a configuration in which the butterfly valve 3 is provided in the catalyst side passage. When such an exhaust gas leak occurs, the exhaust gas flows into the upstream catalyst although the amount is small. As described above, if the exhaust gas flows into the upstream catalyst unintentionally, when the oxygen storage amount (an example of an index value indicating the oxygen storage capacity amount) is close to the upper limit value, the upstream catalyst unintentionally There is a possibility of deterioration. For this reason, the temperature of the upstream catalyst unintentionally rises even though the instructing means (ECU 25) gives an instruction to fully close or fully open. This is a problem in the first embodiment. The purpose of the first embodiment is to prevent such an unintended absolute value of the temperature of the upstream catalyst or a temperature rise, and to suppress deterioration of the upstream catalyst. For example, the following description will be made assuming that the control valve 3 is a butterfly valve. Of the instructions issued by the instruction means (ECU 25), the instruction to fully close means that the opening degree of the butterfly valve (control valve 3) is 0 degree. Of the instructions issued by the instruction means (ECU 25), the instruction to fully open means that the opening degree of the butterfly valve (control valve 3) is 100 degrees. However, among the instructions issued by the instruction means (ECU 25), the instruction to fully open may be opened with the opening degree of the butterfly valve being 90 degrees. Similarly, the instruction to fully close may be opened with the opening degree of the butterfly valve being 10 degrees. The relative adjustment of the flow rate of the exhaust gas flowing into the bypass passage relative to the flow rate of the exhaust gas flowing into the upstream catalyst is to adjust the control valve 3. Therefore, it goes without saying that an intermediate opening degree may be provided as an open state or a closed state.

ステップ2でNoと判断された場合はS3に進んで、車両が加速中かどうか判断される。車両が加速中であるとは、クランクポジションセンサで計測したエンジン回転数が増加しているときとする。この他、スロットルポジションセンサ7などから負荷を計測して、負荷が所定値以上のときを加速中としてもよい。   If it is determined No in step 2, the process proceeds to S3 to determine whether the vehicle is accelerating. The vehicle is accelerating when the engine speed measured by the crank position sensor is increasing. In addition, the load may be measured from the throttle position sensor 7 or the like, and the acceleration may be performed when the load is a predetermined value or more.

S3で車両が加速中であると判断された場合には、S4に進んで、上流触媒4の酸素吸蔵量が推定される。上流側空燃比センサ19で検出した空燃比と吸入空気の積算値から上流触媒4に流入した酸素量を検出することで、酸素吸蔵量が推定される。酸素吸蔵能(O2ストレージ)は、酸素吸蔵量(O2ストレージ蓄積量)または酸素吸蔵量変化率を含む。本実施例のS3では、酸素吸蔵量を推定するが、酸素吸蔵量変化率を推定してもよい。上流側空燃比センサ19で検出した空燃比と吸入空気の変化量から上流触媒4に流入する酸素の時間変化を検出して、酸素吸蔵量変化率が推定される。S4で酸素吸蔵量が算出されると、次にS5に進む。 If it is determined in S3 that the vehicle is accelerating, the process proceeds to S4, and the oxygen storage amount of the upstream catalyst 4 is estimated. By detecting the amount of oxygen flowing into the upstream catalyst 4 from the integrated value of the air-fuel ratio detected by the upstream air-fuel ratio sensor 19 and the intake air, the oxygen storage amount is estimated. The oxygen storage capacity (O 2 storage) includes an oxygen storage amount (O 2 storage accumulation amount) or an oxygen storage amount change rate. In S3 of the present embodiment, the oxygen storage amount is estimated, but the oxygen storage amount change rate may be estimated. A time change of oxygen flowing into the upstream catalyst 4 is detected from the change amount of the air-fuel ratio and intake air detected by the upstream air-fuel ratio sensor 19, and the oxygen storage amount change rate is estimated. When the oxygen storage amount is calculated in S4, the process proceeds to S5.

S5では、算出された酸素吸蔵量に対応する上流触媒4の温度の絶対値、または温度上昇(S/C温度の絶対値、または温度上昇分)が算出される。上流触媒4の温度上昇は、温度上昇量または温度上昇率を含む。本実施例では、バイパス開後の触媒の温度上昇に相関のある指標値として上流触媒の酸素吸蔵能に対応する上流触媒の酸素吸蔵量を採用する。S5で上流触媒4の温度の絶対値、または温度上昇量(S/C温度の絶対値、または温度上昇分)が算出されると、次にS6に進む。   In S5, the absolute value of the temperature of the upstream catalyst 4 corresponding to the calculated oxygen storage amount or the temperature increase (the absolute value of the S / C temperature or the temperature increase) is calculated. The temperature increase of the upstream catalyst 4 includes a temperature increase amount or a temperature increase rate. In this embodiment, the oxygen storage amount of the upstream catalyst corresponding to the oxygen storage capacity of the upstream catalyst is adopted as an index value correlated with the temperature rise of the catalyst after the bypass is opened. When the absolute value of the temperature of the upstream catalyst 4 or the temperature increase amount (the absolute value of the S / C temperature or the amount of temperature increase) is calculated in S5, the process proceeds to S6.

S6では、S5で上流触媒4の温度の絶対値、または温度上昇に対して、制御弁3の開条件を変更する。制御弁3の開条件を変更とは、S7で上流触媒4の酸素吸蔵能(酸素吸蔵量)が所定の判定値以上であるときに制御弁3の開くが、S6では、この判定値を補正(補正手段は、バイパス開となるバイパス開条件を補正する)して変更する。上流触媒4の温度の絶対値、または温度上昇が大きいほど、この判定値を小さく補正(補正手段がバイパス開条件を補正)して変更する。より厳密には、上流触媒4の温度の絶対値、または温度上昇が小さいときの判定値と比して、上流触媒4の温度の絶対値、または温度上昇が大きいときの判定値は小さいか同じとする。上流触媒4の温度の絶対値、または温度上昇(S/C温度の絶対値、または温度上昇分)は、酸素吸蔵量に対応して算出される。S6で判定値が補正(補正手段がバイパス開条件を補正)されると、S7に進む。   In S6, the opening condition of the control valve 3 is changed with respect to the absolute value of the temperature of the upstream catalyst 4 or the temperature rise in S5. Changing the opening condition of the control valve 3 means that the control valve 3 is opened when the oxygen storage capacity (oxygen storage amount) of the upstream catalyst 4 is greater than or equal to a predetermined determination value in S7. In S6, the determination value is corrected. (The correction means corrects the bypass opening condition for bypass opening) to change. As the absolute value of the temperature of the upstream catalyst 4 or the temperature rise is larger, the determination value is corrected to be smaller (the correction means corrects the bypass opening condition) and is changed. More precisely, the absolute value of the temperature of the upstream catalyst 4 or the judgment value when the temperature rise is large is smaller or the same as the absolute value of the temperature of the upstream catalyst 4 or the judgment value when the temperature rise is small. And The absolute value of the temperature of the upstream catalyst 4 or the temperature rise (the absolute value of the S / C temperature or the temperature rise) is calculated corresponding to the oxygen storage amount. When the determination value is corrected in S6 (the correction means corrects the bypass opening condition), the process proceeds to S7.

S7では、上流触媒4の酸素吸蔵能(酸素吸蔵量)が該判定値以上であるか否かを判定する。言い換えると、制御弁4の開条件が成立するかを判定する。バイパス開後の上流触媒4の温度上昇に相関のある指標値が該判定値以上である場合には、開条件が成立したとして、制御弁4を開く。こうして、指示手段(ECU25)が、バイパス開閉手段を制御して、排気ガス流量のうち全ての排気ガス流量をバイパス路に流入するように指示(全開指示)する場合であり、かつ内燃機関が加速中の場合には、上流触媒の温度が大きいときの判定値を、上流触媒の温度が小さいときの判定値と比して、小さいか同じとされている。上流触媒に流入する排気ガス流量と比してバイパス路に流入する排気ガス流量を増大させるようにバイパス開閉手段を制御する。S7で制御弁4の開条件が成立しない場合には、このルーチンを終了してS1に戻る。   In S7, it is determined whether or not the oxygen storage capacity (oxygen storage amount) of the upstream catalyst 4 is equal to or greater than the determination value. In other words, it is determined whether the opening condition of the control valve 4 is satisfied. When the index value correlated with the temperature rise of the upstream catalyst 4 after the bypass is opened is equal to or greater than the determination value, the control valve 4 is opened because the opening condition is satisfied. In this way, the instruction means (ECU 25) controls the bypass opening / closing means to instruct that all exhaust gas flows out of the exhaust gas flow rate flow into the bypass passage (full open instruction), and the internal combustion engine is accelerated. In the case of the inside, the determination value when the temperature of the upstream catalyst is high is smaller or the same as the determination value when the temperature of the upstream catalyst is low. The bypass opening / closing means is controlled so as to increase the exhaust gas flow rate flowing into the bypass passage as compared with the exhaust gas flow rate flowing into the upstream catalyst. If the opening condition of the control valve 4 is not satisfied in S7, this routine is terminated and the process returns to S1.

まとめると、S1から6までのステップでは、次の条件(1)(2)(3)を満たしたときに、判定値の補正(補正手段がバイパス開条件を補正すること)が行なわれる。   In summary, in the steps from S1 to S6, when the following conditions (1), (2), and (3) are satisfied, the determination value is corrected (the correction means corrects the bypass opening condition).

・ エンジン運転中である。       ・ The engine is running.

・ 制御弁4が閉じている。       ・ Control valve 4 is closed.

・ 車両が加速中にある。       ・ The vehicle is accelerating.

この各ステップを実行するECU25が推定手段を実現する。この条件(1)(2)(3)を満たしたとき、もし、指示手段による該指示が行なわれず、触媒に流入する排気ガス流量が調整されない状態が継続された場合に、触媒の温度が所定の上限値(限界値)を越えると推定することができる。言い換えると、推定手段が、この条件(1)(2)(3)を満たしているか否かで、もし、指示手段による該指示が行なわれず、触媒に流入する排気ガス流量が調整されない状態が継続された場合に、触媒の温度が所定の上限値(限界値)を越えるか否かが推定できる。そのため、推定手段(ECU25)が、所定の上限値(限界値)を越えると推定するのは、指示手段が該指示をする場合であり、かつ内燃機関が加速中の場合である。   The ECU 25 that executes each step realizes an estimation unit. When the conditions (1), (2), and (3) are satisfied, if the instruction by the instruction means is not performed and the state in which the flow rate of the exhaust gas flowing into the catalyst is not adjusted, the temperature of the catalyst is predetermined. It can be estimated that the upper limit value (limit value) is exceeded. In other words, depending on whether or not the estimation means satisfies the conditions (1), (2), and (3), the instruction by the instruction means is not performed, and the state in which the flow rate of the exhaust gas flowing into the catalyst is not adjusted continues. In this case, it can be estimated whether or not the temperature of the catalyst exceeds a predetermined upper limit (limit value). Therefore, the estimation means (ECU 25) estimates that the predetermined upper limit value (limit value) is exceeded when the instruction means gives the instruction and when the internal combustion engine is accelerating.

S4から6までのステップでは、判定値を補正(補正手段がバイパス開条件を補正)するにあたって、上流触媒の温度の絶対値、または温度上昇が大きいほど、所定の判定値を小さくするよう補正(補正手段がバイパス開条件を補正)する。すなわち、触媒温度、及び酸素吸蔵能(酸素吸蔵量)に基づいてバイパス開後の上流触媒4の温度上昇を予測し、その触媒温上昇量に基づいて、バイパス開条件を補正される。この補正を行うECU25が補正手段を実現する。このようにして、補正手段は、バイパス開後の前記触媒の温度上昇に相関する指標値(酸素吸蔵能(酸素吸蔵量))に基づいて、バイパス開条件を補正する。こうすることで、上流触媒の温度の絶対値、または温度上昇が大きいほど、上流触媒が許容する最大温度に達する可能性が高くなるとして、上流触媒の温度の絶対値、または温度上昇が小さい場合の判定値と比して、上流触媒の温度の絶対値、または温度上昇が大きい場合は、なるべく早期に制御弁4を開弁して、バイパス路に排気ガスを流入させる。こうして、上流触媒が急激に温度の絶対値、または温度上昇して、最大温度に達する可能性を小さくしている。そのため、触媒の温度が所定の上限値(限界値)近傍である場合には、より敏感に前もってバイパス路に流入する排気ガス流量を増大させることになるので、触媒の劣化を防ぐことができる。   In steps S4 to S6, when the determination value is corrected (the correction means corrects the bypass opening condition), the larger the absolute value of the upstream catalyst temperature or the temperature rise, the smaller the predetermined determination value is corrected ( The correction means corrects the bypass opening condition). That is, the temperature increase of the upstream catalyst 4 after the bypass opening is predicted based on the catalyst temperature and the oxygen storage capacity (oxygen storage amount), and the bypass opening condition is corrected based on the catalyst temperature increase amount. The ECU 25 that performs this correction implements a correction means. In this way, the correction means corrects the bypass opening condition based on the index value (oxygen storage capacity (oxygen storage amount)) that correlates with the temperature rise of the catalyst after bypass opening. By doing this, the absolute value of the temperature of the upstream catalyst, or the temperature rise is small, because the possibility that the upstream catalyst will reach the maximum temperature allowed increases as the absolute value of the upstream catalyst increases or the temperature rises. If the absolute value of the temperature of the upstream catalyst or the temperature rise is large, the control valve 4 is opened as soon as possible to cause the exhaust gas to flow into the bypass passage. In this way, the possibility that the upstream catalyst rapidly increases in absolute value or temperature and reaches the maximum temperature is reduced. For this reason, when the temperature of the catalyst is in the vicinity of a predetermined upper limit (limit value), the flow rate of the exhaust gas flowing into the bypass path is increased more sensitively in advance, so that deterioration of the catalyst can be prevented.

以下、図3のフローチャートのうち、言及していないステップについて説明する。S2で制御弁3が開状態の場合はS8に進む。S8では、制御弁4が開条件を満たすかどうか判定する。この開条件は内燃機関1の上流触媒4の酸素吸蔵能が所定の判定値以上になる場合である。判定値の補正(補正手段がバイパス開条件を補正)を行わない。S8で否定的な判定がされたときには、S9に進んで、制御弁4を閉弁する。   Hereinafter, steps that are not mentioned in the flowchart of FIG. 3 will be described. If the control valve 3 is open in S2, the process proceeds to S8. In S8, it is determined whether the control valve 4 satisfies the opening condition. This open condition is when the oxygen storage capacity of the upstream catalyst 4 of the internal combustion engine 1 is equal to or greater than a predetermined determination value. The determination value is not corrected (the correction means corrects the bypass opening condition). When a negative determination is made in S8, the process proceeds to S9 and the control valve 4 is closed.

本実施例では、バイパス開後の上流触媒4の温度上昇に相関する指標値として、酸素吸蔵能(酸素吸蔵量)を採用して説明したが、上流触媒4の酸素吸蔵量、酸素吸蔵量変化率、または対応する上流触媒4の温度としてもよい。   In this embodiment, the oxygen storage capacity (oxygen storage amount) is used as an index value correlated with the temperature increase of the upstream catalyst 4 after the bypass is opened. However, the oxygen storage amount and oxygen storage amount change of the upstream catalyst 4 are described. Or the temperature of the corresponding upstream catalyst 4.

1 内燃機関
2 エキマニ
3 制御弁
4 上流触媒
5 排気管
6 下流触媒
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 2 Exhaust manifold 3 Control valve 4 Upstream catalyst 5 Exhaust pipe 6 Downstream catalyst

Claims (2)

内燃機関が排出する排気ガスの排気通路に配置された触媒と、
前記触媒の上流と下流とをつなぐバイパス路と、
前記バイパス路に流入する前記排ガス流量を調整するバイパス開閉手段と、
前記触媒の触媒温度を検出する触媒温度検出手段と、
検出された触媒温度によるバイパス開条件に基づいて、前記バイパス開閉手段によるバイパス開を指示する指示手段と、
バイパス開後の前記触媒の温度上昇に相関する指標値に基づいて、バイパス開条件を補正する補正手段と
を備えることを特徴とする内燃機関の排気浄化装置。
A catalyst disposed in an exhaust passage of exhaust gas discharged from the internal combustion engine;
A bypass connecting the upstream and downstream of the catalyst;
Bypass opening and closing means for adjusting the flow rate of the exhaust gas flowing into the bypass path;
Catalyst temperature detecting means for detecting the catalyst temperature of the catalyst;
Instructing means for instructing bypass opening by the bypass opening and closing means based on the bypass opening condition by the detected catalyst temperature,
An exhaust gas purification apparatus for an internal combustion engine, comprising: correction means for correcting a bypass opening condition based on an index value correlated with a temperature increase of the catalyst after the bypass is opened.
該指標値は、酸素吸蔵能を使う、
ことを特徴とする請求項1に記載の内燃機関の排気浄化装置。
The index value uses oxygen storage capacity,
The exhaust emission control device for an internal combustion engine according to claim 1.
JP2009289092A 2009-12-21 2009-12-21 Exhaust emission control device of internal combustion engine Pending JP2011127567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009289092A JP2011127567A (en) 2009-12-21 2009-12-21 Exhaust emission control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009289092A JP2011127567A (en) 2009-12-21 2009-12-21 Exhaust emission control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2011127567A true JP2011127567A (en) 2011-06-30

Family

ID=44290403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009289092A Pending JP2011127567A (en) 2009-12-21 2009-12-21 Exhaust emission control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2011127567A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014118892A1 (en) * 2013-01-29 2017-01-26 トヨタ自動車株式会社 Control device for internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014118892A1 (en) * 2013-01-29 2017-01-26 トヨタ自動車株式会社 Control device for internal combustion engine
US9765672B2 (en) 2013-01-29 2017-09-19 Toyota Jidosha Kabushiki Kaisha Control system of internal combustion engine

Similar Documents

Publication Publication Date Title
JP3557925B2 (en) Exhaust gas purification device for internal combustion engine
EP1882088B1 (en) Exhaust gas purification system for internal combustion engine
EP3064729B1 (en) Exhaust gas control system for internal combustion engine
JP2006299936A (en) Exhaust device for internal combustion engine and control method for internal combustion engine
JP4816606B2 (en) Exhaust gas purification system for internal combustion engine
JP2008223592A (en) Exhaust emission control device of internal-combustion engine
JP4811333B2 (en) Exhaust gas purification system for internal combustion engine
JP4978187B2 (en) Control system and control method for internal combustion engine
JP2006348905A (en) Exhaust emission control system for internal combustion engine
JP2011127567A (en) Exhaust emission control device of internal combustion engine
JP2016109026A (en) Exhaust emission control device for internal combustion engine
JP4033189B2 (en) Exhaust gas purification device for internal combustion engine
JP4748102B2 (en) Exhaust gas purification device for internal combustion engine
JP2007162468A (en) Deterioration determination method and deterioration determination system for storage reduction type nox catalyst
JP4032840B2 (en) Exhaust gas purification device for internal combustion engine
JP2004132185A (en) Fuel cutting controller of internal combustion engine
JP2011032997A (en) Air-fuel ratio detection device
JP5141430B2 (en) Exhaust control device and exhaust control method for internal combustion engine
EP1890017A1 (en) Internal combustion engine and method of controlling the same
JP2014001682A (en) Exhaust gas purifier of internal combustion engine
JP2005351108A (en) Exhaust emission control device of internal combustion engine
JP4894622B2 (en) Exhaust gas purification device for internal combustion engine
JP2011032996A (en) Exhaust state acquiring device
JP2005155401A (en) Air fuel ratio control device for internal combustion engine
JP2008019764A (en) Exhaust emission control system of internal combustion engine