JP2008279061A - Biosignal detecting device - Google Patents

Biosignal detecting device Download PDF

Info

Publication number
JP2008279061A
JP2008279061A JP2007125754A JP2007125754A JP2008279061A JP 2008279061 A JP2008279061 A JP 2008279061A JP 2007125754 A JP2007125754 A JP 2007125754A JP 2007125754 A JP2007125754 A JP 2007125754A JP 2008279061 A JP2008279061 A JP 2008279061A
Authority
JP
Japan
Prior art keywords
band
electric motor
biological signal
gear
fpc board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007125754A
Other languages
Japanese (ja)
Inventor
Satoshi Saito
聡 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2007125754A priority Critical patent/JP2008279061A/en
Publication of JP2008279061A publication Critical patent/JP2008279061A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To miniaturize and simplify a biosignal detecting device and automatically apply an appropriate pressure to a human body which is necessary for the detection of a biosignal. <P>SOLUTION: This biosignal detecting device 1 is configured to use a FPC (Flexible Printed Circuit) board 2 as a band 1a wound around a human body, and is miniaturized and simplified by electrically connecting a light emitting sensor 13, a light receiving sensor 14 and the like for detecting the biosignal to a control unit 12 via the FPC board 2. The band 1a is wound around by an electric motor 7 based on the control of the control unit 12 to automatically apply the appropriate pressure necessary for the detection of the biosignal, to the human body. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、生体信号の検出の際、人体の一部に巻き付けるバンドに、導電ラインを形成した帯状体を用いることにより、装置構造を簡略化した生体信号検出装置に関する。   The present invention relates to a biological signal detection apparatus that simplifies the structure of a device by using a band-like body in which a conductive line is formed in a band wound around a part of a human body when detecting a biological signal.

従来、血圧値の測定装置では、人体の腕に巻回されるバンドに膨張袋を設け、その膨張袋にエアポンプを用いて気体を供給し適正な圧力を人体の腕に加えることで、測定を行っていた(下記の特許文献1、2参照)。なお、このような血圧値の測定装置に適用されるバンドは、布製または合成樹脂製であった。   Conventionally, in a blood pressure measurement device, an inflatable bag is provided on a band wound around a human arm, and an air pump is used to supply gas to the inflatable bag to apply an appropriate pressure to the human arm. (See Patent Documents 1 and 2 below). Note that the band applied to such a blood pressure measurement device was made of cloth or synthetic resin.

また、人体の血圧、脈拍および血中酸素飽和度などを測定するために、人体に対する生体信号を検出素子(発光素子・受光素子)で検出する生体信号検出装置が存在する(下記の特許文献3〜5参照)。これらの生体信号検出装置では通常、人体の指などに装着するバンドの内周面に検出素子を設けている。なお、生体信号の検出精度を高めるためには、所定の圧力を人体の指などに加える必要があるため、バンドを締め付け可能にした構造を採用する装置が多い。
実開平7−39801号公報 特開平10−314125号公報 特開2006−239114号公報 特開平11−332840号公報 特開2006−247133号公報
Also, there is a biological signal detection device that detects a biological signal for the human body with a detection element (light emitting element / light receiving element) in order to measure the blood pressure, pulse, blood oxygen saturation, etc. of the human body (Patent Document 3 below) To 5). In these biological signal detection devices, a detection element is usually provided on the inner peripheral surface of a band worn on a human finger or the like. Note that in order to increase the detection accuracy of the biological signal, it is necessary to apply a predetermined pressure to a human finger or the like, and thus there are many apparatuses that employ a structure in which a band can be tightened.
Japanese Utility Model Publication No. 7-39801 Japanese Patent Laid-Open No. 10-314125 JP 2006-239114 A JP-A-11-332840 JP 2006-247133 A

従来の血圧値の測定装置では、膨張袋への気体供給を行うため、エアポンプに加えて、エアポンプと膨張袋を繋ぐエアチューブなどが必要となるので、測定装置全体が大型化する問題があると共に、適正な圧力を得るためのエアポンプの操作に習熟が必要であった。また、生体信号の検出により血圧、脈拍および血中酸素飽和度等を測定する生体信号検出装置では、生体信号の処理を行う信号処理部とバンド部に設けられた検出素子を、電気的に接続する接続線をバンドに沿って配置する必要があるため、装置の製造段階においてバンドへの接続線の配置および接続等の作業に手間がかかると云う問題があった。特に、生体信号検出装置の仕様を、指より太い箇所(例えば、腕など)で検出するタイプにした場合、接続線が長くなるので、上述した問題が顕著になる。   In the conventional blood pressure measurement device, in order to supply gas to the expansion bag, in addition to the air pump, an air tube that connects the air pump and the expansion bag is required. In order to obtain an appropriate pressure, it was necessary to master the operation of the air pump. In addition, in a biological signal detection apparatus that measures blood pressure, pulse, blood oxygen saturation, etc. by detecting a biological signal, the signal processing unit for processing the biological signal is electrically connected to the detection element provided in the band unit. Since it is necessary to arrange the connecting line along the band, there is a problem that it takes time and labor to arrange and connect the connecting line to the band in the manufacturing stage of the apparatus. In particular, when the specification of the biological signal detection device is a type that detects a part thicker than a finger (for example, an arm or the like), the connection line becomes long, so the above-described problem becomes significant.

本発明は、かかる問題に鑑みてなされたものであり、生体信号の検出素子を用いた装置で、バンドの少なくとも一部に、導電ラインを形成した帯状体を用いることで、装置構造を全体的に小型簡略化した生体信号検出装置を提供することを目的とする。
また、本発明は、電動モータの駆動力を帯状体を介在させてバンドの巻回方向に係る移動力へと変換して、生体信号の検出の際に必要な所定の圧力を自動で得られるようにした生体信号検出装置を提供することを目的とする。
The present invention has been made in view of such a problem, and is an apparatus using a biosignal detection element. By using a band-shaped body in which a conductive line is formed in at least a part of a band, the entire apparatus structure is obtained. Another object of the present invention is to provide a biological signal detection device that is compact and simplified.
In addition, the present invention can automatically obtain a predetermined pressure required for detecting a biological signal by converting the driving force of the electric motor into a moving force related to the winding direction of the band through the band-like body. It is an object of the present invention to provide a biological signal detection apparatus.

上記課題を解決するため、本発明に係る生体信号検出装置は、人体の一部に巻回されて巻回箇所の締め付けを行うバンドと、生体信号を検出する検出素子と、前記検出素子で検出された生体信号に係る処理を行う信号処理部とを備える生体信号検出装置において、前記バンドの少なくとも一部は、導電ラインを含む可撓性の帯状体で形成してあり、前記検出素子と前記信号処理部とは、前記帯状体の導電ラインで電気的に接続してあることを特徴とする。   In order to solve the above-described problems, a biological signal detection device according to the present invention is detected by a band wound around a part of a human body and tightening a wound portion, a detection element that detects a biological signal, and the detection element. And a signal processing unit that performs processing related to the biosignal, wherein at least a part of the band is formed of a flexible belt-like body including a conductive line, and the detection element and the The signal processing unit is electrically connected by a conductive line of the band-shaped body.

本発明にあっては、バンドの少なくとも一部を形成する可撓性の帯状体を含む導電ラインを通じて検出素子と信号処理部とを電気的に接続するので、バンドに別途、電気接続線を配置する必要がなくなり、生体信号検出装置の構造の簡略化の実現ができるようになる。また、帯状体はバンドの少なくとも一部を形成するので、電気的な接続を行う以外に、人体へ巻回される部材の本来の役割も果たし、帯状体は生体信号検出装置の中で有効に活用される。   In the present invention, since the detection element and the signal processing unit are electrically connected through the conductive line including the flexible band-shaped body forming at least a part of the band, an electric connection line is separately provided in the band. Therefore, the structure of the biological signal detection device can be simplified. In addition, since the band-shaped body forms at least a part of the band, in addition to making an electrical connection, the band-shaped body also plays an original role of a member wound around the human body. Be utilized.

また、本発明に係る生体信号検出装置は、前記帯状体は、可撓性を有する補強部材を備えることを特徴とする。   Moreover, the biological signal detection apparatus according to the present invention is characterized in that the belt-like body includes a flexible reinforcing member.

本発明にあっては、帯状体が可撓性を有する補強部材を備えるので、人体の一部への良好な巻き付け性を確保した上で、帯状体の耐引っ張り強度が全体的に向上し、帯状体をバンドの少なくとも一部に用いても通常通りに締め付けを行えると共に、バンドの適正な使用寿命も維持できる。   In the present invention, since the belt-shaped body is provided with a flexible reinforcing member, the tensile strength of the belt-shaped body is improved as a whole after ensuring good winding properties to a part of the human body, Even if the belt-like body is used for at least a part of the band, the band can be tightened as usual and the proper service life of the band can be maintained.

さらに、本発明に係る生体信号検出装置は、電動モータと、前記電動モータにより回動する歯車と、前記歯車に噛合するように前記帯状体に形成された被噛合部とを備え、前記電動モータによる前記歯車の回動を、前記歯車の前記被噛合部への噛合を介して前記バンドの巻回方向に係る移動に変換することを特徴とする。   Furthermore, the biological signal detection apparatus according to the present invention includes an electric motor, a gear that is rotated by the electric motor, and a meshed portion that is formed on the belt-like body so as to mesh with the gear. The rotation of the gear due to is converted into a movement in the winding direction of the band through meshing of the gear with the meshed portion.

本発明にあっては、電動モータによる歯車の回動を、歯車と被噛合部の噛合を介してバンドに伝えるので、良好な伝達効率でバンドの締め付けに係る調整が行えるようになる。すなわち、電動モータの駆動により歯車が回動すると、歯車はバンドに設けられた被噛合部と噛合しているので、バンドがバンドの長さ方向に移動し、バンドの締め付けに係る調整が自動的に行えるようになる。さらに、電動モータの駆動に基づきバンドを人体の一部へ締め付けて、生体信号の検出に適正な圧力を得られるため、従来の血圧測定装置で用いていたエアポンプなどが不要になり、生体信号検出装置全体の小型化の実現ができると共に、どこでも簡易に生体信号の検出ができるようになる。   In the present invention, since the rotation of the gear by the electric motor is transmitted to the band through the engagement of the gear and the engaged portion, the adjustment related to the tightening of the band can be performed with good transmission efficiency. In other words, when the gear is rotated by driving the electric motor, the gear is engaged with the meshed portion provided on the band, so the band moves in the length direction of the band, and the adjustment related to the tightening of the band is automatically performed. Will be able to do. In addition, the band can be tightened to a part of the human body based on the drive of the electric motor to obtain an appropriate pressure for detecting the biological signal, eliminating the need for an air pump or the like used in conventional blood pressure measuring devices, and detecting the biological signal. The entire apparatus can be reduced in size, and a biological signal can be easily detected anywhere.

さらにまた、本発明に係る生体信号検出装置は、前記帯状体は、可撓性を有する補強部材を備えており、電動モータと、前記電動モータにより回動する歯車と、前記歯車に噛合するように前記帯状体の前記補強部材に形成された被噛合部とを備え、前記電動モータによる前記歯車の回動を、前記歯車の前記被噛合部への噛合を介して前記バンドの巻回方向に係る移動に変換することを特徴とする。   Furthermore, in the biological signal detection device according to the present invention, the band-shaped body includes a flexible reinforcing member, and meshes with the electric motor, a gear rotated by the electric motor, and the gear. And a meshed portion formed on the reinforcing member of the belt-like body, and the rotation of the gear by the electric motor is caused in the winding direction of the band through meshing with the meshed portion of the gear. It is characterized by converting into such movement.

本発明にあっては、被噛合部を剛性の高い補強部材に設けるので、歯車と噛合する被噛合部の剛性も高まり、電動モータの駆動力を一段と良好な伝達効率で、締め付けに係る方向へ移動するバンドへ伝えられるようになる。また、バンドの少なくとも一部を形成する帯状体が補強部材を備えるので、バンドの適正な使用寿命も確保できる。   In the present invention, since the engaged portion is provided on the highly rigid reinforcing member, the rigidity of the engaged portion that meshes with the gear is also increased, and the driving force of the electric motor is further improved in the direction of tightening with better transmission efficiency. It will be communicated to the moving band. Moreover, since the strip | belt-shaped body which forms at least one part of a band is provided with a reinforcement member, the appropriate use life of a band is also securable.

くわえて、本発明に係る生体信号検出装置は、電動モータと、巻回された状態の前記バンドへ当接可能にしてあり、前記電動モータにより回動する摩擦ローラとを備え、前記電動モータによる前記摩擦ローラの回動を、前記摩擦ローラの前記バンドへの当接を介して前記バンドの巻回方向に係る移動に変換することを特徴とする。   In addition, the biological signal detection apparatus according to the present invention includes an electric motor and a friction roller that is capable of contacting the wound band and is rotated by the electric motor. The rotation of the friction roller is converted into movement in the winding direction of the band through contact of the friction roller with the band.

本発明にあっては、電動モータによる摩擦ローラの回動を、摩擦ローラのバンドへの当接を介してバンドに伝えるので、バンドに特別な加工を施すことなく、バンドの締め付けに係る調整が行えるようになる。また、電動モータの駆動に基づきバンドを人体の一部へ締め付けて、生体信号の検出に適正な圧力を得られるため、従来の血圧測定装置で用いていたエアポンプなどが不要になり、生体信号検出装置全体の小型化の実現ができると共に、どこでも簡易に生体信号の検出ができるようになる。   In the present invention, since the rotation of the friction roller by the electric motor is transmitted to the band through contact with the band of the friction roller, the adjustment related to the tightening of the band can be performed without performing special processing on the band. You can do it. In addition, the band is fastened to a part of the human body based on the drive of the electric motor, and an appropriate pressure can be obtained for detection of a biological signal. The entire apparatus can be reduced in size, and a biological signal can be easily detected anywhere.

また、本発明に係る生体信号検出装置は、負荷閾値を記憶する手段と、前記電動モータの負荷に係る値を検出する値検出手段と、前記値検出手段の検出値及び前記負荷閾値を比較する比較手段と、前記検出値が前記負荷閾値を超えた場合に前記電動モータの作動を停止する制御を行う手段とを備えることを特徴とする。   In addition, the biological signal detection apparatus according to the present invention compares the means for storing the load threshold value, the value detection means for detecting the value relating to the load of the electric motor, and the detection value and the load threshold value of the value detection means. Comparing means and means for controlling to stop the operation of the electric motor when the detected value exceeds the load threshold value.

本発明にあっては、電動モータが作動してバンドによる人体の一部への締め付けが進むと、バンドの締め付けがきつくなるに伴い電動モータの駆動に対する負荷が増大することから、負荷に係る値を随時検出し、検出値が負荷閾値を超えた場合、電動モータの作動を停止させる制御を行うので、バンドによる締め付け状態が常に同様になる。その結果、生体信号の検出の際に必要な所定の圧力が自動で得られるようになり、検出精度が向上する。   In the present invention, when the electric motor is actuated and the tightening of a part of the human body by the band proceeds, the load on the drive of the electric motor increases as the tightening of the band becomes tight. When the detected value exceeds the load threshold, control to stop the operation of the electric motor is performed, so that the tightening state by the band is always the same. As a result, a predetermined pressure necessary for detecting a biological signal can be automatically obtained, and detection accuracy is improved.

さらに、本発明に係る生体信号検出装置は、圧力閾値を記憶する手段と、前記バンドが巻回された状態で内側になる面に設けられた圧力検出素子と、前記圧力検出素子が検出した検出値及び前記圧力閾値を比較する比較手段と、前記検出値が前記圧力閾値を超えた場合に前記電動モータの作動を停止する制御を行う手段とを備えることを特徴とする。   Furthermore, the biological signal detection apparatus according to the present invention includes a means for storing a pressure threshold, a pressure detection element provided on an inner surface in a state where the band is wound, and a detection detected by the pressure detection element. Comparing means for comparing the value and the pressure threshold value, and means for performing control to stop the operation of the electric motor when the detected value exceeds the pressure threshold value.

本発明にあっては、電動モータが作動してバンドによる人体の一部へ締め付けが進むと、バンドの内側になる面にかかる圧力が高まることから、バンドの内側になる面の圧力を検出し、検出値が圧力閾値を超えると、電動モータの作動を停止させる制御を行うので、バンドによる締め付け圧が一様となる。その結果、生体信号の検出に適正な圧力が自動で得られるようになり、検出精度が向上する。   In the present invention, when the electric motor is operated and tightening to a part of the human body by the band increases, the pressure applied to the surface inside the band increases, so the pressure on the surface inside the band is detected. When the detected value exceeds the pressure threshold value, control to stop the operation of the electric motor is performed, so that the tightening pressure by the band becomes uniform. As a result, a pressure appropriate for detection of a biological signal can be automatically obtained, and detection accuracy is improved.

本発明にあっては、バンドの少なくとも一部を形成する帯状体の導電ラインで検出素子と信号処理部とを電気的に接続するので、装置構造の小型簡略化の実現できると共に、ユーザが、どのような場所にいても容易に生体信号を検出できる。
また、本発明にあっては、帯状体が可撓性を有する補強部材を備えるので、帯状体の耐引っ張り強度が向上し、帯状体をバンドの少なくとも一部に用いても、生体信号に検出に必要な圧力で締め付けを行える。
In the present invention, the detection element and the signal processing unit are electrically connected by the conductive line of the band-shaped body that forms at least a part of the band. A biological signal can be easily detected at any location.
In the present invention, since the band-shaped body includes a flexible reinforcing member, the tensile strength of the band-shaped body is improved, and even if the band-shaped body is used for at least a part of the band, it is detected as a biological signal. Tightening can be performed with the pressure required for

さらに、本発明にあっては、電動モータによる歯車の回動を、歯車と被噛合部の噛合を介してバンドに伝えるので、電動モータにより確実にバンドの自動締め付けに係る調整を行える。
さらにまた、本発明にあっては、電動モータにより回動する歯車が噛合する被噛合部を剛性の高い補強部材に設けるので、被噛合部の剛性も高まり、電動モータの駆動力の伝達効率を向上できる。
Furthermore, in the present invention, since the rotation of the gear by the electric motor is transmitted to the band through the engagement of the gear and the engaged portion, the adjustment related to the automatic tightening of the band can be surely performed by the electric motor.
Furthermore, in the present invention, since the meshed portion where the gear rotated by the electric motor meshes is provided in the highly rigid reinforcing member, the rigidity of the meshed portion is increased, and the transmission efficiency of the driving force of the electric motor is increased. It can be improved.

くわえて、本発明にあっては、電動モータによる摩擦ローラの回動を、摩擦ローラのバンドへの当接を介してバンドに伝えるので、バンドに特別な加工を施すことなく、バンドの締め付けに係る調整が行える。   In addition, in the present invention, the rotation of the friction roller by the electric motor is transmitted to the band through contact with the band of the friction roller, so that the band can be tightened without special processing. Such adjustments can be made.

また、本発明にあっては、電動モータに対する負荷に係る値を随時検出し、検出値が負荷閾値を超えた場合、電動モータの作動を停止させる制御を行うので、バンドによる締め付け状態が常に同様になり、生体信号の検出精度を向上できる。
さらに、本発明にあっては、バンドの内側になる面の圧力を検出し、検出値が圧力閾値を超えると、電動モータの作動を停止させる制御を行うので、バンドによる締め付け圧を一様にでき、生体信号検出に対して適正な圧力を自動で得ることができる。
Further, in the present invention, the value related to the load on the electric motor is detected at any time, and when the detected value exceeds the load threshold value, control is performed to stop the operation of the electric motor. Thus, the detection accuracy of the biological signal can be improved.
Furthermore, in the present invention, the pressure on the surface inside the band is detected, and when the detected value exceeds the pressure threshold value, control is performed to stop the operation of the electric motor. It is possible to automatically obtain an appropriate pressure for detecting a biological signal.

図1及び図2は、本発明の実施形態に係る生体信号検出装置1の外観を示している。本実施形態の生体信号検出装置1は、人体の脈拍又は血液中の酸素飽和濃度等に係る生体信号の検出を行うものであり、特に人体の一部(本実施形態では、図2に示すように人体の腕)に巻回するバンド1aをFPC(Flexible Printed Circuits)基板2で形成することで、装置構造の小型簡略化を図ると共に、バンド1aの締め付けを行う電動モータ7の作動停止を自動制御して、生体信号の検出精度を向上させたことを特徴とする。   FIG.1 and FIG.2 has shown the external appearance of the biosignal detection apparatus 1 which concerns on embodiment of this invention. The biological signal detection apparatus 1 according to the present embodiment detects a biological signal related to the pulse of the human body or the oxygen saturation concentration in blood, and in particular, a part of the human body (in this embodiment, as shown in FIG. 2). The band 1a that is wound around the arm of the human body is formed of an FPC (Flexible Printed Circuits) substrate 2, thereby simplifying the size of the device and automatically stopping the operation of the electric motor 7 that tightens the band 1a. Control is performed to improve the detection accuracy of the biological signal.

生体信号検出装置1は、バンド1aの全体をFPC基板2で形成している。FPC基板2は、一方の端側部分2aにベース基板3を設ける一方、他方の端部2bをベース基板3に重ねるように一周して巻回できる可撓性を有する。また、生体信号検出装置1は、FPC基板2の一方の端側部分2aに設けたベース基板3の上面の一部分にベース基板3と隙間をあけてモータ配置板4を積層配置し、他部分に複数の電子・電気部品(制御ユニット12、モータドライバ19、コンデンサ、各種IC、電源装着部等)を実装し、ボックス状のカバー6で全体(ベース基盤3、モータ配置板4等)を被う構造にしている。以下、生体信号検出装置1を構成する各部材・部品等について説明する。   In the biological signal detection device 1, the entire band 1 a is formed of the FPC board 2. The FPC board 2 is flexible so that the base board 3 is provided on one end side portion 2 a and the other end 2 b is wound around the base board 3 so as to overlap the base board 3. In addition, the biological signal detection device 1 has a motor placement plate 4 stacked on a portion of the upper surface of the base substrate 3 provided on one end portion 2a of the FPC board 2 with a gap between the base substrate 3 and the other portion. A plurality of electronic / electrical components (control unit 12, motor driver 19, capacitor, various ICs, power supply mounting portion, etc.) are mounted, and the entire cover (base board 3, motor arrangement plate 4 etc.) is covered with a box-shaped cover 6. It has a structure. Hereinafter, each member and parts constituting the biological signal detection apparatus 1 will be described.

図3は、生体信号検出装置1を分解し、巻回していたFPC基板2を伸ばした状態を示す。FPC基板2は、所要の導電ラインを形成する薄膜状の導電材を、絶縁性のシート材で両面から被覆した帯状体であり、所定の湾曲性および可撓性を有する。FPC基板2の一方の端側部分2aの端部2cの所要範囲は、硬質多層基板で形成されたベース基板3(フレックスリジット基板)の層間に挟んで、FPC基盤2にベース基板3を取り付けている。また、ベース基板3の硬質多層基板の複数箇所には、FPC基板2へ届くスルーホールが形成されており、このスルーホールを通じて、FPC基板の導電ライン(導電回路)が、ベース基板3に形成された所要のプリント回路とコネクタレスで電気的に接続されている。   FIG. 3 shows a state in which the biological signal detection device 1 is disassembled and the wound FPC board 2 is stretched. The FPC board 2 is a belt-like body in which a thin film-like conductive material forming a required conductive line is covered with an insulating sheet material from both sides, and has a predetermined curvature and flexibility. The required range of the end portion 2c of the one end portion 2a of the FPC board 2 is that the base board 3 is attached to the FPC board 2 by sandwiching it between the layers of the base board 3 (flexible board) formed of a hard multilayer board. Yes. In addition, through holes reaching the FPC board 2 are formed at a plurality of locations on the hard multilayer board of the base board 3, and conductive lines (conductive circuits) of the FPC board are formed in the base board 3 through the through holes. It is electrically connected to the required printed circuit without a connector.

さらに、FPC基板2は、一方の端側部分2aから他方の端部2bまでに至る途中の3箇所に、ベース基板3と同様の構造で第1中間基板21、第2中間基板22および第3中間基板23を設けている。各中間基板21、22、23は、FPC基板2が人体の腕に巻き付けられた際に内周側となる面21a、22a、23aにセンサチップを実装している。第1中間基板21に実装したセンサチップは、生体信号検出のために光を発する発光センサ13(発光ダイオード等の発光素子)であり、この発光センサ13を所定の光量で光らせる駆動回路部(駆動IC)16(図5参照)と共に半田付けで第1中間基板21に実装される。このように実装されることで、発光センサ13とFPC基板2の導電ラインは電気的に接続される。   Further, the FPC board 2 has the same structure as that of the base board 3 at the three locations on the way from the one end side portion 2a to the other end portion 2b, and the first intermediate board 21, the second intermediate board 22 and the third board. An intermediate substrate 23 is provided. Each of the intermediate substrates 21, 22, and 23 has sensor chips mounted on the surfaces 21 a, 22 a, and 23 a that are on the inner peripheral side when the FPC substrate 2 is wound around the arm of a human body. The sensor chip mounted on the first intermediate substrate 21 is a light emitting sensor 13 (light emitting element such as a light emitting diode) that emits light for detecting a biological signal, and a driving circuit unit (driving) that causes the light emitting sensor 13 to emit light with a predetermined light amount. IC) 16 (see FIG. 5) and mounted on first intermediate substrate 21 by soldering. By mounting in this way, the light emitting sensor 13 and the conductive line of the FPC board 2 are electrically connected.

第2中間基板22に実装したセンサチップは、発光センサ13で発せられた光を受光して所定レベルの電気信号(本実施形態では生体信号)に変換する受光センサ14(フォトダイオード等の受光素子)であり、この受光センサ14が生成する電気信号の増幅およびノイズ成分の除去等を行う増幅処理部17(図5参照)と共に半田付けで第2中間基板22に実装される。このように実装されることで、受光センサ14とFPC基板2の導電ラインは電気的に接続される。なお、発光センサ13および受光センサ14が、生体信号検出装置1における検出素子に該当する。   The sensor chip mounted on the second intermediate substrate 22 receives light emitted from the light emitting sensor 13 and converts it into an electrical signal of a predetermined level (biological signal in this embodiment) (light receiving element such as a photodiode). ) And mounted on the second intermediate substrate 22 by soldering together with the amplification processing unit 17 (see FIG. 5) that amplifies the electrical signal generated by the light receiving sensor 14 and removes noise components. By mounting in this way, the light receiving sensor 14 and the conductive line of the FPC board 2 are electrically connected. The light emitting sensor 13 and the light receiving sensor 14 correspond to detection elements in the biological signal detection device 1.

また、第3中間基板23に実装したセンサチップは、圧力センサ15(圧力検出素子に該当)であり、FPC基板2が巻回されて締め付けられたときに、FPC基板2の内面側に係る圧力を検出し、検出した圧力値に応じたレベルの電気信号を出力する。なお、この圧力センサ15も、出力する電気信号の増幅等を行う増幅回路部18(図5参照)と共に半田付けで第3中間基板23に実装されて、FPC基板2の導電ラインは電気的に接続される。   The sensor chip mounted on the third intermediate substrate 23 is a pressure sensor 15 (corresponding to a pressure detection element), and the pressure applied to the inner surface side of the FPC substrate 2 when the FPC substrate 2 is wound and tightened. And an electric signal having a level corresponding to the detected pressure value is output. The pressure sensor 15 is also mounted on the third intermediate board 23 by soldering together with the amplifier circuit section 18 (see FIG. 5) for amplifying the output electric signal, and the conductive line of the FPC board 2 is electrically connected. Connected.

また、FPC基板2は、第3中間基板23から他方の端部2bにかけて、矩形状の孔30a、30b・・・30nを所定の間隔で直列的に複数穿設し、これら複数の孔30a、30b・・・30nを後述する歯車9に対する被噛合部30にしている。なお、被噛合部30は、FPC基板2の幅方向における真ん中ではなく、一方の端側へオフセットして形成される(図3参照)。   Further, the FPC board 2 has a plurality of rectangular holes 30a, 30b,..., 30n formed in series at a predetermined interval from the third intermediate board 23 to the other end 2b, and the plurality of holes 30a, 30b ... 30n is a meshed portion 30 with respect to the gear 9 described later. In addition, the to-be-engaged part 30 is formed not in the middle in the width direction of the FPC board 2 but offset to one end side (see FIG. 3).

上述したFPC基板2の一方の端側部分2aに設けられたベース基板3は、FPC基板2の一方の端部2cを複数の硬質基板でサンドイッチ加工した積層構造になっており、層ごとに所要のプリント回路を形成し、スルーホールを通じて異層間のプリント回路等の接続を行っている。また、ベース基板3は、上面3aに直方体状の第1ガイド部材5aおよび第2ガイド部材5bを配置固定している(図1および図3参照)。   The base substrate 3 provided on one end portion 2a of the FPC board 2 described above has a laminated structure in which one end portion 2c of the FPC board 2 is sandwiched with a plurality of hard substrates, and each layer is required for each layer. The printed circuit between the different layers is connected through the through hole. The base substrate 3 has a rectangular parallelepiped first guide member 5a and a second guide member 5b arranged and fixed on the upper surface 3a (see FIGS. 1 and 3).

第1ガイド部材5aおよび第2ガイド部材5bは、ベース基板3の上方に積層配置するモータ配置板4の支持部材になっており、ベース基板3とモータ配置板4との間に、FPC基板2の厚み寸法の約3倍程度の寸法の隙間S(図4参照)を形成して、FPC基板2の巻回された他方の端部2bがスムーズに通過できるようにしている。また、第1ガイド部材5aおよび第2ガイド部材5bは図3にも示すように、FPC基板2の端部2cを挟み込んだ箇所に対応する上面3a部分に固定されており、対向する両ガイド部材5a、5bの間隔を丁度、FPC基板2の幅寸法より少しだけ広い寸法に設定して、巻回されたFPC基板2の他方の端部2b側の部分を、両ガイド部材5a、5bの間で案内できるようにしている。   The first guide member 5 a and the second guide member 5 b serve as a support member for the motor arrangement plate 4 that is stacked on the base substrate 3, and the FPC board 2 is interposed between the base substrate 3 and the motor arrangement plate 4. A gap S (see FIG. 4) having a size of about 3 times the thickness of the FPC board 2 is formed so that the other end 2b wound around the FPC board 2 can pass smoothly. Further, as shown in FIG. 3, the first guide member 5a and the second guide member 5b are fixed to the upper surface 3a portion corresponding to the portion sandwiching the end 2c of the FPC board 2, and both guide members facing each other. The interval between the guide members 5a and 5b is set so that the interval between the guide members 5a and 5b is set so that the interval between the 5a and 5b is set slightly larger than the width of the FPC board 2. You can guide with

さらに、ベース基板3は、両ガイド部材5a、5bの間の上面3aで、巻回されたFPC基板2の端部2bに形成された被噛合部30と対応する箇所に、歯車9との干渉を防ぐ溝3bを凹設している。なお、ベース基板3は、図1に示すネジN1、N2等を挿通させる計4個の貫通穴3c〜3fを両ガイド部材5a、5bの周囲に穿設している。さらにまた、ベース基板3は、図3において第2ガイド部材5bの右横方の領域に、マイコンICである制御ユニット12、モータドライバ19、および各種電子・電気部品(表示パネル20の接続コネクタ32、電源となるボタン電池の装着部、コンデンサ、抵抗等)を実装している。   Further, the base substrate 3 interferes with the gear 9 at a position corresponding to the meshed portion 30 formed on the end portion 2b of the wound FPC substrate 2 on the upper surface 3a between the guide members 5a and 5b. A groove 3b is provided to prevent this. The base substrate 3 has a total of four through holes 3c to 3f through which the screws N1, N2, etc. shown in FIG. 1 are inserted, around both guide members 5a, 5b. Furthermore, the base substrate 3 has a control unit 12, which is a microcomputer IC, a motor driver 19, and various electronic / electrical components (connecting connectors 32 of the display panel 20) in a right lateral region of the second guide member 5b in FIG. , Button battery mounting parts, capacitors, resistors, etc., which become power sources, are mounted.

制御ユニット12は、ベース基板3に実装されることで、ベース基板3におけるFPC基板2の導電ラインと繋がったプリント回路と接続され、その結果、制御ユニット12は、FPC基板2の導電ラインを通じて、FPC基板2の各中間基板21、22、23に実装された発光センサ13、受光センサ14および圧力センサ15と電気的に接続される。なお、ベース基板3に実装された接続コネクタ32には、図1に示す表示パネル20から延出する接続ケーブル20aの端部が接続されている。   The control unit 12 is mounted on the base substrate 3 so as to be connected to a printed circuit connected to the conductive line of the FPC board 2 in the base substrate 3, and as a result, the control unit 12 passes through the conductive line of the FPC board 2. The FPC board 2 is electrically connected to the light emitting sensor 13, the light receiving sensor 14, and the pressure sensor 15 mounted on the intermediate boards 21, 22, and 23 of the FPC board 2. Note that an end of a connection cable 20 a extending from the display panel 20 shown in FIG. 1 is connected to the connection connector 32 mounted on the base substrate 3.

図1及び図4に示すベース基板3に積層されるモータ配置板4は、電動モータ7をブラケット11で板上面4aに固定すると共に、板上面4aから対向的に立設させた回動支持部10a、10bで歯車9を回動可能に支持しており、歯車9との干渉を避けるため、矩形状の貫通孔4bを形成し、歯車9の外周の一部分が下面側より突出するようにしている。回動支持部10a、10bで支持された歯車9は、小径および大径の二段ギアを一体的に設けた形状であり、小径の第1ギア9aは電動モータ7のモータ軸7aに取り付けられたピニオンギア8と噛合しており、この噛合で電動モータ7の駆動により歯車9が回動するようになっている。また、歯車9の大径の第2ギア9bは、第1ギア部9aのギア径より大きい径寸法にして、モータ配置板4の貫通孔4bを通じて下面側へ突出している。第2ギア9bの周囲に設けられた各ギア部は、FPC基板2の端部2b側に設けられた被噛合部30の各孔30a、30b・・・30nと噛合できるピッチで形成されている。   The motor arrangement plate 4 stacked on the base substrate 3 shown in FIGS. 1 and 4 has a rotation support portion in which the electric motor 7 is fixed to the plate upper surface 4a by the bracket 11 and is erected oppositely from the plate upper surface 4a. The gear 9 is rotatably supported by 10a and 10b, and in order to avoid interference with the gear 9, a rectangular through hole 4b is formed so that a part of the outer periphery of the gear 9 protrudes from the lower surface side. Yes. The gear 9 supported by the rotation support portions 10a and 10b has a shape in which a small-diameter and large-diameter two-stage gear is integrally provided, and the small-diameter first gear 9a is attached to the motor shaft 7a of the electric motor 7. The gear 9 is engaged with the pinion gear 8, and the gear 9 is rotated by driving the electric motor 7 by this engagement. The second gear 9b having a large diameter of the gear 9 has a diameter larger than the gear diameter of the first gear portion 9a and protrudes to the lower surface side through the through hole 4b of the motor arrangement plate 4. The gear portions provided around the second gear 9b are formed at a pitch that can mesh with the holes 30a, 30b,..., 30n of the meshed portion 30 provided on the end 2b side of the FPC board 2. .

なお、モータ配置板4に固定された電動モータ7は、図1に示すモータドライバ19とリード線(図示せず)により接続されて、モータ軸7aの回転が制御される。また、モータ配置板4の四隅には、計4個のネジ穴4c、4d、4e等が形成されており、モータ配置板4が、ベース基板3の両ガイド部材5a、5bに載置された状態で、ベース基板3の貫通穴3c〜3fを挿通したネジN1、N2、N3等をネジ穴4c、4d、4e等に螺合してベース基板3に固定される。このように固定された状態では、両ガイド部材5a、5bの高さ分だけ、ベース基板3とモータ配置板4との間に、FPC基板2の端部2b側が通過できる隙間S(図4参照)が形成される。この隙間Sを巻回されて一周した端部2bを通過させると共に、端部2b側に設けられた被噛合部30のいずれかの孔30a、30b等に第2ギア9bのギア部を噛合させて、FPC基板2(バンド1a)の巻回状態を形成する。生体信号検出装置1は、この巻回状態で、電動モータ7による歯車9の回動を、FPC基板2の被噛合部30と第2ギア9bのギア部との噛合を介して、FPC基板2(バンド1a)の巻回方向(締付方向または弛緩方向)に係る移動へ変換できる。   The electric motor 7 fixed to the motor arrangement plate 4 is connected to the motor driver 19 shown in FIG. 1 by a lead wire (not shown), and the rotation of the motor shaft 7a is controlled. Also, a total of four screw holes 4c, 4d, 4e, etc. are formed at the four corners of the motor arrangement plate 4, and the motor arrangement plate 4 is placed on both guide members 5a, 5b of the base substrate 3. In this state, the screws N1, N2, N3 and the like inserted through the through holes 3c to 3f of the base substrate 3 are screwed into the screw holes 4c, 4d, 4e and the like and fixed to the base substrate 3. In such a fixed state, a gap S (see FIG. 4) through which the end 2b side of the FPC board 2 can pass between the base board 3 and the motor arrangement plate 4 by the height of both the guide members 5a and 5b. ) Is formed. The end portion 2b wound around the gap S is passed through, and the gear portion of the second gear 9b is engaged with any one of the holes 30a, 30b, etc. of the engaged portion 30 provided on the end portion 2b side. Thus, the winding state of the FPC board 2 (band 1a) is formed. In this winding state, the biological signal detection device 1 causes the FPC board 2 to rotate the gear 9 by the electric motor 7 through the meshing between the meshed part 30 of the FPC board 2 and the gear part of the second gear 9b. The movement can be converted into a movement in the winding direction (tightening direction or relaxation direction) of the (band 1a).

これらのベース基板3およびモータ配置板4などを被うカバー6は、図1および図4に示すように、下面を開放した合成樹脂製のボックス状の部材であり、上板部6aに表示パネル20の配置用窓6bを開口すると共に、制御ユニット12に設けられた第1操作キー12a、第2操作キー12b、第3操作キー12cを表出させる穴部6c〜6eを穿設している。また、カバー6は、両側の側板部6f、6gに、FPC基板2を通過させる切欠部6h、6iを形成している。   As shown in FIGS. 1 and 4, the cover 6 covering the base substrate 3 and the motor arrangement plate 4 is a box-shaped member made of a synthetic resin having an open lower surface, and a display panel on the upper plate portion 6a. The 20 arrangement windows 6b are opened, and holes 6c to 6e for exposing the first operation key 12a, the second operation key 12b, and the third operation key 12c provided in the control unit 12 are formed. . Further, the cover 6 is formed with notches 6h and 6i through which the FPC board 2 passes in the side plate portions 6f and 6g on both sides.

図5は、生体信号検出装置1における制御ユニット12(信号処理部に該当)を中心とした電気的な構成を示すブロック図であり、制御ユニット12は、生体信号の検出を行う処理、信号処理部として検出された生体信号に係る処理(生体信号に基づく演算など)および電動モータ7の作動制御のためにモータドライバ19と連携した制御処理等を行う。なお、ブロック図が煩雑になるのを避けるため電源(電池)および電源との接続線の図示は省略している。   FIG. 5 is a block diagram showing an electrical configuration centering on a control unit 12 (corresponding to a signal processing unit) in the biological signal detection apparatus 1, and the control unit 12 performs processing for detecting a biological signal, signal processing. For example, a process related to a biological signal detected as a unit (calculation based on the biological signal, etc.) and a control process in cooperation with the motor driver 19 for controlling the operation of the electric motor 7 are performed. In addition, in order to avoid that a block diagram becomes complicated, illustration of the connection line with a power supply (battery) and a power supply is abbreviate | omitted.

制御ユニット12は、ユーザからの操作を受け付けるために、第1操作キー12a〜第3操作キー12cが接続されており、検出された生体信号より求めた脈拍及び血中の酸素飽和濃度等の数値をユーザに提示するために、ベース基板3のプリント回路および接続ケーブル20a等と接続されている。また、制御ユニット12は、第1中間基板21に実装された駆動回路部(駆動IC)16を介して発光センサ13と繋がっていると共に、受光センサ14とは、アンプ17aおよびフィルタ17bを含む増幅処理部17(第2中間基板22に実装)を介して繋がっている。さらに、制御ユニット12は圧力センサ15と、第3中間基板23に実装された増幅回路部18を介して繋がっており、電動モータ7と接続されているモータドライバ19とは、ベース基板3のプリント回路を介して繋がっている。   The control unit 12 is connected to the first operation key 12a to the third operation key 12c in order to receive an operation from the user, and numerical values such as a pulse and blood oxygen saturation concentration obtained from the detected biological signal. Is connected to the printed circuit of the base substrate 3, the connection cable 20a, and the like. The control unit 12 is connected to the light emission sensor 13 via a drive circuit unit (drive IC) 16 mounted on the first intermediate substrate 21, and the light reception sensor 14 is an amplification including an amplifier 17a and a filter 17b. It is connected via the processing unit 17 (mounted on the second intermediate substrate 22). Further, the control unit 12 is connected to the pressure sensor 15 via the amplification circuit unit 18 mounted on the third intermediate board 23, and the motor driver 19 connected to the electric motor 7 is connected to the printed circuit board 3. It is connected through a circuit.

制御ユニット12は、内部メモリ12dを内蔵しており、この内部メモリ12dに制御ユニット12の処理内容を規定したプログラムと、圧力センサ15で検出された検出値との比較用の圧力閾値を予め記憶している。なお、内蔵メモリ12dに記憶される圧力閾値には、人体の生体信号を高い精度で検出する際に人体へ加える圧力の最適値になっている。次に、内蔵メモリ12dに記憶されたプログラムによる制御ユニット12の処理内容等を説明する。   The control unit 12 has a built-in internal memory 12d, and prestores a pressure threshold value for comparison between a program that defines the processing content of the control unit 12 and a detected value detected by the pressure sensor 15 in the internal memory 12d. is doing. The pressure threshold value stored in the built-in memory 12d is an optimum value of the pressure applied to the human body when detecting a biological signal of the human body with high accuracy. Next, the processing contents of the control unit 12 by the program stored in the built-in memory 12d will be described.

先ず、第1操作キー12aが押圧される操作を受け付けると、制御ユニット12は、FPC基板2(バンド1a)を締め付ける方向(図6(a)に示す矢印方向)へ電動モータ7のモータ軸7aを回転させる指示をモータドライバ19へ出力する。なお、モータドライバ19は、制御ユニット12からの指示を受けて、電動モータ7を一方向(例えば、時計回転方向)へ回転させる駆動電流を電動モータ7へ出力する。電動モータ7が回転作動を開始した後、制御ユニット12は、増幅回路部18を介して圧力センサ15から送られてくる検出値(圧力の検出値)と、内部メモリ12dに記憶された圧力閾値との比較を随時行う。比較の結果、検出値が圧力閾値を超えた場合、制御ユニット12は、電動モータ7の回転作動を停止する指示をモータドライバ19へ出力する。モータドライバ19は、制御ユニット12からの回転作動停止の指示を受けると、電動モータ7への駆動電流の出力を停止する(図6(b)に示す状態)。   First, upon receiving an operation in which the first operation key 12a is pressed, the control unit 12 moves the motor shaft 7a of the electric motor 7 in the direction in which the FPC board 2 (band 1a) is tightened (the arrow direction shown in FIG. 6A). Is output to the motor driver 19. In response to an instruction from the control unit 12, the motor driver 19 outputs a drive current for rotating the electric motor 7 in one direction (for example, clockwise direction) to the electric motor 7. After the electric motor 7 starts rotating, the control unit 12 detects the detection value (pressure detection value) sent from the pressure sensor 15 via the amplification circuit unit 18 and the pressure threshold value stored in the internal memory 12d. Comparison with is made at any time. If the detected value exceeds the pressure threshold value as a result of the comparison, the control unit 12 outputs an instruction to stop the rotation operation of the electric motor 7 to the motor driver 19. When the motor driver 19 receives an instruction to stop the rotation operation from the control unit 12, the motor driver 19 stops the output of the drive current to the electric motor 7 (state shown in FIG. 6B).

回転作動停止の指示の出力後、制御ユニット12はプログラムの規定に基づき、発光センサ13の発光指示を自動で駆動回路部16へ出力する。駆動回路部16は、発光指示を受け付けると、発光センサ13から所定の光量で発光させる電力を発光センサ13へ出力し、発光センサ13を発光させる。発光センサ13から発せられた光は、測定対象の人体の血管等を通過、反射して受光センサ14で受光される。受光センサ14は光を受けると、受光した光量等に応じた電気的な信号(生体信号に該当)を生成して増幅処理部17へ送る。増幅処理部17では、送られてきた生体信号をアンプ17で増幅すると共に、フィルタ17bでノイズ成分を除去して制御ユニット12へ送る。   After outputting the rotation operation stop instruction, the control unit 12 automatically outputs the light emission instruction of the light emission sensor 13 to the drive circuit unit 16 based on the definition of the program. When the drive circuit unit 16 receives the light emission instruction, the drive circuit unit 16 outputs electric power for causing the light emission sensor 13 to emit light with a predetermined amount of light to the light emission sensor 13 to cause the light emission sensor 13 to emit light. The light emitted from the light emitting sensor 13 passes through and reflects the blood vessel of the human body to be measured and is received by the light receiving sensor 14. When the light receiving sensor 14 receives light, the light receiving sensor 14 generates an electrical signal (corresponding to a biological signal) corresponding to the received light amount and sends it to the amplification processing unit 17. In the amplification processing unit 17, the transmitted biological signal is amplified by the amplifier 17, and the noise component is removed by the filter 17 b and sent to the control unit 12.

制御ユニット12は、増幅処理部17から生体信号が送られてくると、その生体信号に基づき所定の演算を行って脈拍および血中の酸素飽和濃度等の複数の数値を算出し、算出した数値を表示部20へ出力して、表示部20で表示する。また、表示部20で算出結果が表示された状態で、第2操作キー12bが押圧される操作を受け付けると、制御ユニット12は、算出した各数値を切り替えて表示部20に表示する。   When a biological signal is sent from the amplification processing unit 17, the control unit 12 performs a predetermined calculation based on the biological signal to calculate a plurality of numerical values such as a pulse and a saturated oxygen concentration in blood, and the calculated numerical value. Is output to the display unit 20 and displayed on the display unit 20. In addition, when an operation for pressing the second operation key 12 b is received in a state where the calculation result is displayed on the display unit 20, the control unit 12 switches the calculated numerical values and displays them on the display unit 20.

さらに、検出した生体信号に基づく算出値を表示部20に表示した状態で、第3操作キー12cが押圧される操作を受け付けると、制御ユニット12は、FPC基板2を緩める方向へ電動モータ7のモータ軸7aを回転させる指示をモータドライバ19へ出力する。それにより、モータドライバ19は、制御ユニット12からの指示を受けて、電動モータ7を他方向(例えば、反時計回転方向)へ回転させる駆動電流を電動モータ7へ出力して、電動モータ7を回転作動させる。   Further, when an operation of pressing the third operation key 12c is received in a state where the calculated value based on the detected biological signal is displayed on the display unit 20, the control unit 12 causes the electric motor 7 to loosen the FPC board 2. An instruction to rotate the motor shaft 7 a is output to the motor driver 19. Accordingly, the motor driver 19 receives an instruction from the control unit 12 and outputs a driving current for rotating the electric motor 7 in the other direction (for example, counterclockwise direction) to the electric motor 7. Rotate.

よって、本実施形態の生体信号検出装置1のユーザは、図6(a)に示すように、巻回された状態のFPC基板2(バンド1a)の内側へ一方の腕Uを通した状態で、第1操作キー12aを操作するだけで、FPC基板2の巻き締めが開始され図6(b)に示すように、測定に適正な巻き締め状態を得られ、さらに、巻き締めの自動停止に伴い測定が行われ、脈拍等の測定結果を確認できる。また、測定結果を確認後、ユーザが第3操作キー13cを操作すれば、FPC基板2の巻き締めが解除されて、腕Uを抜くことができる。   Therefore, as shown in FIG. 6A, the user of the biological signal detection device 1 of the present embodiment passes the one arm U inside the wound FPC board 2 (band 1a). By simply operating the first operation key 12a, the winding of the FPC board 2 is started, and as shown in FIG. 6B, a winding tightening state suitable for measurement can be obtained, and further, the winding tightening can be automatically stopped. Measurement is performed, and measurement results such as pulse can be confirmed. If the user operates the third operation key 13c after confirming the measurement result, the winding of the FPC board 2 is released and the arm U can be pulled out.

このように本発明の生体信号検出装置1は、導電ラインを含むFPC基板2をバンド1aとして用いるので、バンド1aに設けた各種素子(発光センサ13、受光センサ14、圧力センサ15)と、ベース基板3に設けた制御ユニット12との電気的な接続を容易に行うことができ、装置構造の小型簡略化を実現している。さらに、本発明の生体信号検出装置1は、常に適正な圧力が加えられた状態で生体信号の検出が行われるので、どのようなユーザに対しても一定レベルの良好な測定精度(生体信号の検出精度)を確保できる。   Thus, since the biological signal detection apparatus 1 of the present invention uses the FPC board 2 including the conductive line as the band 1a, various elements (light emitting sensor 13, light receiving sensor 14, pressure sensor 15) provided on the band 1a, and the base Electrical connection with the control unit 12 provided on the substrate 3 can be easily performed, and the apparatus structure can be reduced in size and simplified. Furthermore, since the biological signal detection apparatus 1 of the present invention always detects a biological signal in a state where an appropriate pressure is applied, it can provide a certain level of good measurement accuracy (biological signal detection) for any user. Detection accuracy).

なお、本発明に係る生体信号検出装置1は、上述した形態に限定されるものではなく、種々の変形例が存在する。例えば、図7(a)(b)に示すように、バンドとして用いるFPC基板35に合成樹脂製の可撓性を有する薄板の補強板38(補強部材に該当)を含ませてもよい。詳しくは、図7(b)に示すように、変形例のFPC基板35は、導電ラインを形成する薄膜状の導電材36に補強板38を積層し、両面を絶縁性の樹脂フィルム37a、37bで被覆している。また、FPC基板35は、複数の孔40a、40b、40c等からなる被噛合部40を補強板38が存在する箇所に形成している。このような構造のFPC基板35は、補強板38が存在することで、耐引っ張り強度が増しており、生体信号の検出ごとに繰り返される締め付け荷重に対しても充分に耐え得ることができ、また、被噛合部40の剛性も向上しているので、電動モータ7の駆動力を効率よく伝達できる。なお、補強板38は、FPC基板35の必要な箇所に対して部分的に設けるようにしてもよい。   In addition, the biological signal detection apparatus 1 according to the present invention is not limited to the above-described form, and there are various modifications. For example, as shown in FIGS. 7A and 7B, the FPC board 35 used as a band may include a synthetic resin flexible thin plate 38 (corresponding to a reinforcing member). Specifically, as shown in FIG. 7B, a modified FPC board 35 is formed by laminating a reinforcing plate 38 on a thin-film conductive material 36 forming a conductive line, and insulating resin films 37a and 37b on both sides. It is covered with. Further, the FPC board 35 is formed with a meshed portion 40 including a plurality of holes 40a, 40b, 40c and the like at a location where the reinforcing plate 38 is present. The FPC board 35 having such a structure has an increased tensile strength due to the presence of the reinforcing plate 38, and can sufficiently withstand a tightening load repeated every time a biological signal is detected. Since the rigidity of the engaged portion 40 is also improved, the driving force of the electric motor 7 can be transmitted efficiently. Note that the reinforcing plate 38 may be partially provided on a necessary portion of the FPC board 35.

また、図8は、別の変形例のFPC基板45を示している。この変形例のFPC基板45は、長さ方向に沿った一辺側45aに、所定の間隔で矩形状の切欠50a、50b、50c・・・を複数形成し、これらの切欠50a、50b、50c・・・を被噛合部50にしている。このような切欠50a、50b等からなる被噛合部50でも、図1に示す歯車9の第2ギア9bの周囲に設けられた各ギア部と噛合することができる。なお、図8に示す変形例のFPC基板45にも、図7(a)(b)に示す補強板38を組み合わせることが可能であり、補強板38を設けた箇所に被噛合部50を設けると、剛性が向上し好適である。   FIG. 8 shows an FPC board 45 of another modification. The FPC board 45 of this modification is formed with a plurality of rectangular cutouts 50a, 50b, 50c,... At a predetermined interval on one side 45a along the length direction, and these cutouts 50a, 50b, 50c,. .. is the meshed portion 50. Even the meshed portion 50 made up of such notches 50a, 50b, etc. can mesh with each gear portion provided around the second gear 9b of the gear 9 shown in FIG. Note that the FPC board 45 of the modified example shown in FIG. 8 can be combined with the reinforcing plate 38 shown in FIGS. 7A and 7B, and the meshed portion 50 is provided at the place where the reinforcing plate 38 is provided. This is preferable because the rigidity is improved.

さらに、図9は別の変形例に関する概略図を示しており、この変形例では、バンドに相当するFPC基板55に被噛合部を設けない代わりに、電動モータ57で摩擦ローラ59を回動させ、摩擦ローラ59の外周面59aを、ベース基板53の上面53aに位置するFPC基板55の表面55aに押し当てる。よって、電動モータ57による摩擦ローラ59の回動は、当接する摩擦ローラ59の外周面59aとFPC基板55の表面55aとの摩擦力により、FPC基板55の巻回方向に係る移動に変換されて、FPC基板55での締め付け又は締め付け状態からの弛緩が行われる。この図9に示す変形例では、FPC基板55に被噛合部を設けずに済むため、FPC基板55に係る加工が不要になると共に、FPC基板55の耐引っ張り強度も被噛合部が無いため、全体的に一様にできる。なお、摩擦ローラ59の回動力をFPC基板55へ伝達する効率を高めるためには、表面55aの摩擦係数が大きいFPC基板55を用いることが重要となる。   Further, FIG. 9 shows a schematic view of another modified example. In this modified example, the friction roller 59 is rotated by the electric motor 57 instead of providing the meshed portion on the FPC board 55 corresponding to the band. The outer peripheral surface 59 a of the friction roller 59 is pressed against the surface 55 a of the FPC board 55 located on the upper surface 53 a of the base board 53. Therefore, the rotation of the friction roller 59 by the electric motor 57 is converted into a movement in the winding direction of the FPC board 55 by the frictional force between the outer peripheral surface 59a of the friction roller 59 and the surface 55a of the FPC board 55. Then, the FPC board 55 is tightened or relaxed from the tightened state. In the modification shown in FIG. 9, since it is not necessary to provide the meshed portion on the FPC board 55, the processing related to the FPC board 55 is not required, and the tensile strength of the FPC board 55 is also free from the meshed part. Can be uniform throughout. In order to increase the efficiency of transmitting the rotational force of the friction roller 59 to the FPC board 55, it is important to use the FPC board 55 having a large friction coefficient on the surface 55a.

また、バンド1aの締め付け方向の移動を自動停止する制御処理は、上述したように、圧力センサ15で検出した検出値と、圧力閾値との比較で行う代わりに、電動モータ7に係る電気的な負荷を検出して行うことも可能である。   In addition, as described above, the control process for automatically stopping the movement of the band 1a in the tightening direction is performed by comparing the detection value detected by the pressure sensor 15 with the pressure threshold value, instead of performing the electrical process related to the electric motor 7. It is also possible to carry out by detecting the load.

図10は、本発明におけるバンド1aの締め付けを行う電動モータ7にかかる電流値の時間の経過に伴う波形特性を示しており、時間T1の回動開始時には、突入電流により一時的に電流値が増加するが、一旦、回動を開始すると電流値は、ほぼ一定値に安定する。その後、電動モータ7の回動が進行して、バンド1aに人体の腕が接触してバンド1aが圧力を受けながら締め付けを開始すると、時間T2で電動モータ7に対する負荷がかかり始め、電動モータ7にかかる電流値が増加を始める。電流値の増加後は、時間T3で適正な圧力値になると、電動モータ7は回動を停止する。   FIG. 10 shows the waveform characteristics of the current value applied to the electric motor 7 for tightening the band 1a according to the present invention over time. At the start of rotation at time T1, the current value is temporarily changed by the inrush current. Although increasing, once the rotation is started, the current value is stabilized at a substantially constant value. Thereafter, when the rotation of the electric motor 7 proceeds and the arm of the human body comes into contact with the band 1a and the band 1a starts tightening while receiving pressure, a load is applied to the electric motor 7 at time T2, and the electric motor 7 The current value applied to starts to increase. After the increase in the current value, when the pressure value reaches an appropriate value at time T3, the electric motor 7 stops rotating.

よって、変形例の自動停止に係る制御処理では、図10の時間T3に応じた電流値Xを負荷閾値として、図5に示す制御ユニット12の内部メモリ12dに予め記憶させると共に、モータドライバ19で電動モータ7に係る電流値を随時検出させて、検出値を制御ユニット12へ出力するようにする。また、内部メモリ12dに記憶させたプログラムは、制御ユニット12に対して以下のような処理を規定することになる。即ち、電動モータ7の回動作動の開始後、制御ユニット12は、モータドライバ19から送られてくる検出値と、内部メモリ12dに記憶した負荷閾値を随時比較する。比較の結果、検出値が負荷閾値を超えた場合、制御ユニット12は、電動モータ7の回転作動を停止する指示をモータドライバ19へ出力する。この停止指示の出力により、モータドライバ19は、電動モータ7への駆動電流の出力を停止するので、電気的な負荷の検出によっても、バンド1aの締め付けを自動停止でき、しかも、この場合は、圧力センサ15も不要になり、装置構造を一段と簡略化できる。   Therefore, in the control process related to the automatic stop of the modified example, the current value X corresponding to the time T3 in FIG. 10 is stored in advance in the internal memory 12d of the control unit 12 shown in FIG. The current value related to the electric motor 7 is detected at any time, and the detected value is output to the control unit 12. The program stored in the internal memory 12d defines the following processing for the control unit 12. That is, after the rotation operation of the electric motor 7 is started, the control unit 12 compares the detection value sent from the motor driver 19 with the load threshold value stored in the internal memory 12d as needed. As a result of the comparison, when the detected value exceeds the load threshold, the control unit 12 outputs an instruction to stop the rotation operation of the electric motor 7 to the motor driver 19. The motor driver 19 stops the output of the drive current to the electric motor 7 by the output of the stop instruction, so that the tightening of the band 1a can be automatically stopped by detecting the electric load. In this case, The pressure sensor 15 is also unnecessary, and the device structure can be further simplified.

なお、図11(a)〜(c)に示すように、ハード的な構成により、バンド1aの締め付けを自動停止させることも可能である。この構成において用いるFPC基板(バンド1aに相当)65は、他方の端部65b側の樹脂フィルム66の一部に開口66aを設けて、内部の導電材67に形成した導電ライン68を露出させている。この導電ライン68は、図11(a)〜(c)では図示しない電動モータの電力回路の一部を構成するようにしており、一部に屈曲部68aを形成している。   In addition, as shown to Fig.11 (a)-(c), the clamp | tightening of the band 1a can also be automatically stopped by a hardware structure. The FPC board (corresponding to the band 1a) 65 used in this configuration is provided with an opening 66a in a part of the resin film 66 on the other end 65b side to expose the conductive line 68 formed in the internal conductive material 67. Yes. The conductive lines 68 constitute a part of a power circuit of an electric motor (not shown in FIGS. 11A to 11C), and a bent portion 68a is formed in a part.

また、電動モータが配置されるモータ配置板74には、導電性のプランジャ75をコイルバネ76によりベース基板73上に位置するFPC基板65の方へ付勢させて、FPC基板65の導電ライン68と接触させる。プランジャ75は、モータ配置板74に配置される電動モータと接続線77により電気的に接続されるため、プランジャ75と導電ライン68との接触で、電動モータに係る電力回路は閉じた状態となり、電動モータへ電流は流れるようになる。   In addition, a conductive plunger 75 is urged toward the FPC board 65 located on the base board 73 by a coil spring 76 on the motor arrangement board 74 on which the electric motor is arranged, and the conductive line 68 of the FPC board 65 is connected to the motor arrangement board 74. Make contact. Since the plunger 75 is electrically connected to the electric motor arranged on the motor arrangement plate 74 by the connection line 77, the power circuit related to the electric motor is closed by the contact between the plunger 75 and the conductive line 68. Current flows to the electric motor.

電動モータへ電流が流れて、電動モータが回動し、FPC基板65が図11(a)の矢印方向へ移動が進むと、プランジャ75は導電ライン68の屈曲部68aに近づき、ついには、図11(c)に示すように、屈曲部68aを超えてしまう。この図11(c)に示す状態では、プランジャ75は、導電ライン68と接触しないため、電動モータに係る電力回路は開いた状態となり、電動モータへ電流は流れなくなり、自然と電動モータの回動が自動停止する。なお、電動モータを、バンド1aが緩む方向へ回動させるには、手動でバンド1aを図11(a)の矢印方向と反対方向へ移動させて、プランジャ75と導電ライン68を接触させてから、第3操作キーを操作する必要がある。   When a current flows to the electric motor, the electric motor rotates, and the FPC board 65 moves in the direction of the arrow in FIG. 11A, the plunger 75 approaches the bent portion 68a of the conductive line 68, and finally, FIG. As shown in FIG. 11C, the bent portion 68a is exceeded. In the state shown in FIG. 11 (c), since the plunger 75 does not contact the conductive line 68, the power circuit related to the electric motor is opened, no current flows to the electric motor, and the electric motor rotates naturally. Automatically stops. In order to rotate the electric motor in the direction in which the band 1a is loosened, the band 1a is manually moved in the direction opposite to the arrow direction in FIG. 11A, and the plunger 75 and the conductive line 68 are brought into contact with each other. It is necessary to operate the third operation key.

また、別の変形例としては、図1等に示す生体信号検出装置1では、バンド1aの全体にFPC基板2を用いたが、少なくともバンド1aの一部分にだけFPC基板2を用いる構成にしてもよい。例えば、図3においてベース基板3から第3中間基板15までをFPC基板2を用いる一方、第3中間基板15から端までは、非導電性の帯状部材(例えば、合成樹脂製、布製などの帯状部材)を用いることも可能である。この場合でも、ベース基板3から第3中間基板15まではFPC基板2を用いることで、制御ユニット12と各センサ13〜15との電気的な接続をFPC基板2が含む導電ラインで行うことができる。さらに、導電ラインを含む帯状体には、FPC基板以外に、複数の被覆電線を平板状に束ねたリボンケーブル(フラットケーブル)を適用することも可能である。   As another modification, in the biological signal detection apparatus 1 shown in FIG. 1 and the like, the FPC board 2 is used for the entire band 1a, but the FPC board 2 is used only for at least a part of the band 1a. Good. For example, in FIG. 3, while the FPC board 2 is used from the base board 3 to the third intermediate board 15, the non-conductive band-like member (for example, a belt made of synthetic resin, cloth, etc.) is used from the third intermediate board 15 to the end. It is also possible to use a member. Even in this case, by using the FPC board 2 from the base board 3 to the third intermediate board 15, the electrical connection between the control unit 12 and the sensors 13 to 15 can be performed by a conductive line included in the FPC board 2. it can. Furthermore, in addition to the FPC board, a ribbon cable (flat cable) in which a plurality of covered electric wires are bundled in a flat plate shape can be applied to the band-like body including the conductive lines.

さらにまた、生体信号の検出時に、局所的に圧力を高めて検出精度を高めるためには、バンド1aの内面側に、突起を設けてもよい。この突起により、血管の中を流れる血流が遮られ、血管の脈動波が大きくなり、受光センサー14での受光が行いやすくなる。また、発光センサ13と受光センサ14との位置関係は、図1に示すような位置関係以外にも、各センサー仕様等に応じて適宜配置箇所を変更することが可能である。さらに、生体信号の検出に用いる発光センサ13及び受光センサ14は、発光センサ13と受光センサ14がワンユニット化されたタイプのものを用いることも可能である。   Furthermore, a protrusion may be provided on the inner surface side of the band 1a in order to increase the pressure locally and increase the detection accuracy when detecting a biological signal. The protrusion blocks the blood flow flowing through the blood vessel, increases the pulsating wave of the blood vessel, and facilitates light reception by the light receiving sensor 14. Further, the positional relationship between the light emitting sensor 13 and the light receiving sensor 14 can be appropriately changed in accordance with the specifications of each sensor other than the positional relationship as shown in FIG. Further, the light emitting sensor 13 and the light receiving sensor 14 used for detecting the biological signal may be a type in which the light emitting sensor 13 and the light receiving sensor 14 are integrated into one unit.

また、図1等に示す生体信号検出装置1は、人体の腕に装着する仕様にしているが、適宜寸法を変更することで、腕以外でも、胴体や脚部等へ装着する仕様にすることも可能であり、各部の寸法を小型化することで、指へ装着するタイプにしてもよい。さらに、上述した生体信号検出装置1では、検出した生体信号に基づき制御ユニット12が脈拍または血中の飽和酸素度等を算出しているが、制御ユニット12に、無線又は有線による通信機能を具備させて、生体信号に係る検出処理の結果を、外部の装置へ出力して、外部の装置で脈拍等を算出させる仕様にしてもよく、この仕様は、生体信号検出装置1を小型化した場合(例えば、指への装着タイプ)に好適である。さらにまた、生体信号検出装置1の更なる構造の簡略化を進める場合は、電動モータに関する構造を省略し、ユーザが自らバンド1aの端(FPC基板2の端部2b)を引っ張って、FPC基板2を締め付ける構成にしてもよく、この場合は、ベルトのバックルのような係止片を被噛合部30に係止させるようにすれば、引っ張りにより生じた圧力が解放されず好ましい。   In addition, the biological signal detection device 1 shown in FIG. 1 and the like is designed to be worn on the human arm, but by changing the dimensions as appropriate, the biological signal detecting device 1 is designed to be worn on the body, legs, etc. other than the arm. It is also possible, and it may be a type to be worn on the finger by reducing the size of each part. Furthermore, in the above-described biological signal detection device 1, the control unit 12 calculates the pulse or blood saturation oxygen level based on the detected biological signal, but the control unit 12 has a wireless or wired communication function. The result of the detection processing related to the biological signal may be output to an external device so that the pulse or the like is calculated by the external device. This specification is used when the biological signal detection device 1 is downsized. (For example, it is suitable for a finger wearing type). Furthermore, when the simplification of the further structure of the biological signal detection device 1 is promoted, the structure relating to the electric motor is omitted, and the user pulls the end of the band 1a (the end 2b of the FPC board 2) by himself, In this case, if a locking piece such as a belt buckle is locked to the meshed portion 30, the pressure generated by the tension is not released, which is preferable.

本発明の実施形態に係る生体信号検出装置の分解斜視図である。It is a disassembled perspective view of the biological signal detection apparatus which concerns on embodiment of this invention. ユーザの腕に装着した生体信号検出装置を示す概略図である。It is the schematic which shows the biosignal detection apparatus with which the user's arm was mounted | worn. FPC基板を伸ばした状態を示す平面図である。It is a top view which shows the state which extended the FPC board | substrate. 生体信号検出装置のカバー内部を示す断面図である。It is sectional drawing which shows the cover inside of a biosignal detection apparatus. 生体信号検出装置の制御ユニットを中心とした電気的構成を示すブロック図である。It is a block diagram which shows the electrical structure centering on the control unit of a biosignal detection apparatus. (a)は生体信号検出装置の締め付け開始状態を示す概略断面図であり、(b)は締め付け完了状態を示す概略断面図である。(A) is a schematic sectional drawing which shows the fastening start state of a biological signal detection apparatus, (b) is a schematic sectional drawing which shows the fastening completion state. (a)FPC基板に補強板を備えた変形例のバンドの要部を示す平面図であり、(b)は(a)のA−A線における断面図である。(A) It is a top view which shows the principal part of the band of the modification provided with the reinforcement board in the FPC board | substrate, (b) is sectional drawing in the AA of (a). FPC基板に切欠を形成した変形例のバンドの要部を示す平面図である。It is a top view which shows the principal part of the band of the modification which formed the notch in the FPC board | substrate. 摩擦ローラを備えた変形例の生体信号装置の要部を示す斜視図である。It is a perspective view which shows the principal part of the biosignal apparatus of the modification provided with the friction roller. 電動モータにかかる電流値の時間の経過に伴う波形特性を示すグラフである。It is a graph which shows the waveform characteristic with progress of time of the electric current value concerning an electric motor. FPC基板を被う樹脂フィルムの一部に開口部を設けた変形例であり、(a)はFPC基板等の要部を示す平面図、(b)は(a)のB−B線における断面図、(c)はプランジャとFPC基板の導電ラインが接触しない状態を示す平面図である。It is the modification which provided the opening part in a part of resin film which covers a FPC board | substrate, (a) is a top view which shows principal parts, such as a FPC board | substrate, (b) is the cross section in the BB line of (a). FIG. 4C is a plan view showing a state where the plunger and the conductive line of the FPC board do not contact each other.

符号の説明Explanation of symbols

1 生体信号検出装置
1a バンド
2 FPC基板
7 電動モータ
9 歯車
12 制御ユニット
13 発光センサ
14 受光センサ
15 圧力センサ
30a、30b 孔
DESCRIPTION OF SYMBOLS 1 Biosignal detection apparatus 1a Band 2 FPC board 7 Electric motor 9 Gear 12 Control unit 13 Light emission sensor 14 Light reception sensor 15 Pressure sensor 30a, 30b Hole

Claims (7)

人体の一部に巻回されて巻回箇所の締め付けを行うバンドと、生体信号を検出する検出素子と、前記検出素子で検出された生体信号に係る処理を行う信号処理部とを備える生体信号検出装置において、
前記バンドの少なくとも一部は、導電ラインを含む可撓性の帯状体で形成してあり、
前記検出素子と前記信号処理部とは、前記帯状体の導電ラインで電気的に接続してあることを特徴とする生体信号検出装置。
A biological signal comprising a band wound around a part of a human body and tightening a wound portion, a detection element that detects a biological signal, and a signal processing unit that performs processing related to the biological signal detected by the detection element In the detection device,
At least a part of the band is formed of a flexible band including a conductive line,
The biological signal detection apparatus, wherein the detection element and the signal processing unit are electrically connected by a conductive line of the strip-shaped body.
前記帯状体は、可撓性を有する補強部材を備える請求項1に記載の生体信号検出装置。   The biological signal detection device according to claim 1, wherein the belt-like body includes a reinforcing member having flexibility. 電動モータと、
前記電動モータにより回動する歯車と、
前記歯車に噛合するように前記帯状体に形成された被噛合部と
を備え、
前記電動モータによる前記歯車の回動を、前記歯車の前記被噛合部への噛合を介して前記バンドの巻回方向に係る移動に変換する請求項1又は請求項2に記載の生体信号検出装置。
An electric motor;
A gear rotated by the electric motor;
A meshed portion formed on the belt-shaped body so as to mesh with the gear,
The biological signal detection device according to claim 1, wherein the rotation of the gear by the electric motor is converted into movement in the winding direction of the band via meshing of the gear with the meshed portion. .
前記帯状体は、可撓性を有する補強部材を備えており、
電動モータと、
前記電動モータにより回動する歯車と、
前記歯車に噛合するように前記帯状体の前記補強部材に形成された被噛合部と
を備え、
前記電動モータによる前記歯車の回動を、前記歯車の前記被噛合部への噛合を介して前記バンドの巻回方向に係る移動に変換する請求項1に記載の生体信号検出装置。
The belt-like body includes a flexible reinforcing member,
An electric motor;
A gear rotated by the electric motor;
A meshed portion formed on the reinforcing member of the belt-shaped body so as to mesh with the gear,
The biological signal detection device according to claim 1, wherein the rotation of the gear by the electric motor is converted into movement in the winding direction of the band through meshing of the gear with the meshed portion.
電動モータと、
巻回された状態の前記バンドへ当接可能にしてあり、前記電動モータにより回動する摩擦ローラと
を備え、
前記電動モータによる前記摩擦ローラの回動を、前記摩擦ローラの前記バンドへの当接を介して前記バンドの巻回方向に係る移動に変換する請求項1又は請求項2に記載の生体信号検出装置。
An electric motor;
A friction roller that can be brought into contact with the wound band and rotated by the electric motor;
The biological signal detection according to claim 1, wherein the rotation of the friction roller by the electric motor is converted into a movement in the winding direction of the band through contact of the friction roller with the band. apparatus.
負荷閾値を記憶する手段と、
前記電動モータの負荷に係る値を検出する値検出手段と、
前記値検出手段の検出値及び前記負荷閾値を比較する比較手段と、
前記検出値が前記負荷閾値を超えた場合に前記電動モータの作動を停止する制御を行う手段と
を備える請求項3乃至請求項5のいずれか1項に記載の生体信号検出装置。
Means for storing a load threshold;
Value detecting means for detecting a value related to a load of the electric motor;
Comparison means for comparing the detection value of the value detection means and the load threshold;
The biological signal detection device according to any one of claims 3 to 5, further comprising: a unit that performs control to stop the operation of the electric motor when the detection value exceeds the load threshold.
圧力閾値を記憶する手段と、
前記バンドが巻回された状態で内側になる面に設けられた圧力検出素子と、
前記圧力検出素子が検出した検出値及び前記圧力閾値を比較する比較手段と、
前記検出値が前記圧力閾値を超えた場合に前記電動モータの作動を停止する制御を行う手段と
を備える請求項3乃至請求項5のいずれか1項に記載の生体信号検出装置。
Means for storing a pressure threshold;
A pressure detecting element provided on a surface that becomes an inner side in a state where the band is wound;
A comparison means for comparing the detected value detected by the pressure detection element and the pressure threshold;
The biological signal detection device according to any one of claims 3 to 5, further comprising: a unit configured to perform control to stop the operation of the electric motor when the detection value exceeds the pressure threshold value.
JP2007125754A 2007-05-10 2007-05-10 Biosignal detecting device Pending JP2008279061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007125754A JP2008279061A (en) 2007-05-10 2007-05-10 Biosignal detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007125754A JP2008279061A (en) 2007-05-10 2007-05-10 Biosignal detecting device

Publications (1)

Publication Number Publication Date
JP2008279061A true JP2008279061A (en) 2008-11-20

Family

ID=40140389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007125754A Pending JP2008279061A (en) 2007-05-10 2007-05-10 Biosignal detecting device

Country Status (1)

Country Link
JP (1) JP2008279061A (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011032345A1 (en) * 2009-09-21 2011-03-24 上海道生医疗科技有限公司 Pulse condition acquisition apparatus and method
JP2011189080A (en) * 2010-03-16 2011-09-29 Toyama Univ Finger-tip pulse wave analyzer and vascular endothelium function evaluation system using the same
CN104352223A (en) * 2014-12-05 2015-02-18 王永忠 Pressure regulating type smart watch for measuring pulse condition and measurement method
CN104352227A (en) * 2014-11-07 2015-02-18 英华达(南京)科技有限公司 Annular wearable device and method for controlling tightness of annular wearable device
WO2016019002A1 (en) * 2014-07-30 2016-02-04 Valencell, Inc. Physiological monitoring devices with adjustable stability
US9289135B2 (en) 2009-02-25 2016-03-22 Valencell, Inc. Physiological monitoring methods and apparatus
US9289175B2 (en) 2009-02-25 2016-03-22 Valencell, Inc. Light-guiding devices and monitoring devices incorporating same
EP3017715A1 (en) * 2014-11-07 2016-05-11 LG Electronics Inc. Wearable watch type mobile terminal
JP2016073338A (en) * 2014-10-02 2016-05-12 シャープ株式会社 Biological information measurement device
JP2016086873A (en) * 2014-10-30 2016-05-23 ローム株式会社 Vital sensor module and operation method for the same
US9427191B2 (en) 2011-07-25 2016-08-30 Valencell, Inc. Apparatus and methods for estimating time-state physiological parameters
US9538921B2 (en) 2014-07-30 2017-01-10 Valencell, Inc. Physiological monitoring devices with adjustable signal analysis and interrogation power and monitoring methods using same
CN106999070A (en) * 2014-10-31 2017-08-01 欧姆龙健康医疗事业株式会社 Blood pressure measuring device
US9750462B2 (en) 2009-02-25 2017-09-05 Valencell, Inc. Monitoring apparatus and methods for measuring physiological and/or environmental conditions
US9794653B2 (en) 2014-09-27 2017-10-17 Valencell, Inc. Methods and apparatus for improving signal quality in wearable biometric monitoring devices
US9801552B2 (en) 2011-08-02 2017-10-31 Valencell, Inc. Systems and methods for variable filter adjustment by heart rate metric feedback
US9808204B2 (en) 2007-10-25 2017-11-07 Valencell, Inc. Noninvasive physiological analysis using excitation-sensor modules and related devices and methods
WO2017219496A1 (en) * 2016-06-21 2017-12-28 中兴通讯股份有限公司 Electronic device and signal detection method
WO2018063473A1 (en) * 2016-09-30 2018-04-05 Intel Corporation Blood pressure apparatus using active materials and related methods
JP2018055690A (en) * 2013-09-27 2018-04-05 ノキア テクノロジーズ オーユー Wearable electronic device
US10015582B2 (en) 2014-08-06 2018-07-03 Valencell, Inc. Earbud monitoring devices
US10076253B2 (en) 2013-01-28 2018-09-18 Valencell, Inc. Physiological monitoring devices having sensing elements decoupled from body motion
US10258243B2 (en) 2006-12-19 2019-04-16 Valencell, Inc. Apparatus, systems, and methods for measuring environmental exposure and physiological response thereto
US10413197B2 (en) 2006-12-19 2019-09-17 Valencell, Inc. Apparatus, systems and methods for obtaining cleaner physiological information signals
JP2019192702A (en) * 2018-04-20 2019-10-31 新光電気工業株式会社 Semiconductor device and sensor modular
US10610158B2 (en) 2015-10-23 2020-04-07 Valencell, Inc. Physiological monitoring devices and methods that identify subject activity type
EP3654140A3 (en) * 2014-10-28 2020-08-19 Samsung Electronics Co., Ltd. Wearable electronic device
US10827979B2 (en) 2011-01-27 2020-11-10 Valencell, Inc. Wearable monitoring device
US10945618B2 (en) 2015-10-23 2021-03-16 Valencell, Inc. Physiological monitoring devices and methods for noise reduction in physiological signals based on subject activity type
US10966662B2 (en) 2016-07-08 2021-04-06 Valencell, Inc. Motion-dependent averaging for physiological metric estimating systems and methods
CN112938653A (en) * 2021-01-26 2021-06-11 珠海格力智能装备有限公司 First-aid ring

Cited By (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11272849B2 (en) 2006-12-19 2022-03-15 Valencell, Inc. Wearable apparatus
US11412938B2 (en) 2006-12-19 2022-08-16 Valencell, Inc. Physiological monitoring apparatus and networks
US11295856B2 (en) 2006-12-19 2022-04-05 Valencell, Inc. Apparatus, systems, and methods for measuring environmental exposure and physiological response thereto
US11109767B2 (en) 2006-12-19 2021-09-07 Valencell, Inc. Apparatus, systems and methods for obtaining cleaner physiological information signals
US11083378B2 (en) 2006-12-19 2021-08-10 Valencell, Inc. Wearable apparatus having integrated physiological and/or environmental sensors
US11350831B2 (en) 2006-12-19 2022-06-07 Valencell, Inc. Physiological monitoring apparatus
US11324407B2 (en) 2006-12-19 2022-05-10 Valencell, Inc. Methods and apparatus for physiological and environmental monitoring with optical and footstep sensors
US10716481B2 (en) 2006-12-19 2020-07-21 Valencell, Inc. Apparatus, systems and methods for monitoring and evaluating cardiopulmonary functioning
US11272848B2 (en) 2006-12-19 2022-03-15 Valencell, Inc. Wearable apparatus for multiple types of physiological and/or environmental monitoring
US10595730B2 (en) 2006-12-19 2020-03-24 Valencell, Inc. Physiological monitoring methods
US10413197B2 (en) 2006-12-19 2019-09-17 Valencell, Inc. Apparatus, systems and methods for obtaining cleaner physiological information signals
US11000190B2 (en) 2006-12-19 2021-05-11 Valencell, Inc. Apparatus, systems and methods for obtaining cleaner physiological information signals
US10258243B2 (en) 2006-12-19 2019-04-16 Valencell, Inc. Apparatus, systems, and methods for measuring environmental exposure and physiological response thereto
US11395595B2 (en) 2006-12-19 2022-07-26 Valencell, Inc. Apparatus, systems and methods for monitoring and evaluating cardiopulmonary functioning
US11399724B2 (en) 2006-12-19 2022-08-02 Valencell, Inc. Earpiece monitor
US10987005B2 (en) 2006-12-19 2021-04-27 Valencell, Inc. Systems and methods for presenting personal health information
US9808204B2 (en) 2007-10-25 2017-11-07 Valencell, Inc. Noninvasive physiological analysis using excitation-sensor modules and related devices and methods
US11589812B2 (en) 2009-02-25 2023-02-28 Valencell, Inc. Wearable devices for physiological monitoring
US10076282B2 (en) 2009-02-25 2018-09-18 Valencell, Inc. Wearable monitoring devices having sensors and light guides
US11160460B2 (en) 2009-02-25 2021-11-02 Valencell, Inc. Physiological monitoring methods
US10973415B2 (en) 2009-02-25 2021-04-13 Valencell, Inc. Form-fitted monitoring apparatus for health and environmental monitoring
US9289175B2 (en) 2009-02-25 2016-03-22 Valencell, Inc. Light-guiding devices and monitoring devices incorporating same
US11471103B2 (en) 2009-02-25 2022-10-18 Valencell, Inc. Ear-worn devices for physiological monitoring
US9301696B2 (en) 2009-02-25 2016-04-05 Valencell, Inc. Earbud covers
US10716480B2 (en) 2009-02-25 2020-07-21 Valencell, Inc. Hearing aid earpiece covers
US10898083B2 (en) 2009-02-25 2021-01-26 Valencell, Inc. Wearable monitoring devices with passive and active filtering
US9955919B2 (en) 2009-02-25 2018-05-01 Valencell, Inc. Light-guiding devices and monitoring devices incorporating same
US10842387B2 (en) 2009-02-25 2020-11-24 Valencell, Inc. Apparatus for assessing physiological conditions
US10542893B2 (en) 2009-02-25 2020-01-28 Valencell, Inc. Form-fitted monitoring apparatus for health and environmental monitoring
US10448840B2 (en) 2009-02-25 2019-10-22 Valencell, Inc. Apparatus for generating data output containing physiological and motion-related information
US10092245B2 (en) 2009-02-25 2018-10-09 Valencell, Inc. Methods and apparatus for detecting motion noise and for removing motion noise from physiological signals
US10750954B2 (en) 2009-02-25 2020-08-25 Valencell, Inc. Wearable devices with flexible optical emitters and/or optical detectors
US9750462B2 (en) 2009-02-25 2017-09-05 Valencell, Inc. Monitoring apparatus and methods for measuring physiological and/or environmental conditions
US11026588B2 (en) 2009-02-25 2021-06-08 Valencell, Inc. Methods and apparatus for detecting motion noise and for removing motion noise from physiological signals
US11660006B2 (en) 2009-02-25 2023-05-30 Valencell, Inc. Wearable monitoring devices with passive and active filtering
US9289135B2 (en) 2009-02-25 2016-03-22 Valencell, Inc. Physiological monitoring methods and apparatus
US10842389B2 (en) 2009-02-25 2020-11-24 Valencell, Inc. Wearable audio devices
US9314167B2 (en) 2009-02-25 2016-04-19 Valencell, Inc. Methods for generating data output containing physiological and motion-related information
WO2011032345A1 (en) * 2009-09-21 2011-03-24 上海道生医疗科技有限公司 Pulse condition acquisition apparatus and method
JP2011189080A (en) * 2010-03-16 2011-09-29 Toyama Univ Finger-tip pulse wave analyzer and vascular endothelium function evaluation system using the same
US10827979B2 (en) 2011-01-27 2020-11-10 Valencell, Inc. Wearable monitoring device
US11324445B2 (en) 2011-01-27 2022-05-10 Valencell, Inc. Headsets with angled sensor modules
US9427191B2 (en) 2011-07-25 2016-08-30 Valencell, Inc. Apparatus and methods for estimating time-state physiological parameters
US9521962B2 (en) 2011-07-25 2016-12-20 Valencell, Inc. Apparatus and methods for estimating time-state physiological parameters
US9788785B2 (en) 2011-07-25 2017-10-17 Valencell, Inc. Apparatus and methods for estimating time-state physiological parameters
US10512403B2 (en) 2011-08-02 2019-12-24 Valencell, Inc. Systems and methods for variable filter adjustment by heart rate metric feedback
US11375902B2 (en) 2011-08-02 2022-07-05 Valencell, Inc. Systems and methods for variable filter adjustment by heart rate metric feedback
US9801552B2 (en) 2011-08-02 2017-10-31 Valencell, Inc. Systems and methods for variable filter adjustment by heart rate metric feedback
US10076253B2 (en) 2013-01-28 2018-09-18 Valencell, Inc. Physiological monitoring devices having sensing elements decoupled from body motion
US10856749B2 (en) 2013-01-28 2020-12-08 Valencell, Inc. Physiological monitoring devices having sensing elements decoupled from body motion
US11684278B2 (en) 2013-01-28 2023-06-27 Yukka Magic Llc Physiological monitoring devices having sensing elements decoupled from body motion
US11266319B2 (en) 2013-01-28 2022-03-08 Valencell, Inc. Physiological monitoring devices having sensing elements decoupled from body motion
JP2018055690A (en) * 2013-09-27 2018-04-05 ノキア テクノロジーズ オーユー Wearable electronic device
US11337655B2 (en) 2014-07-30 2022-05-24 Valencell, Inc. Physiological monitoring devices and methods using optical sensors
US9538921B2 (en) 2014-07-30 2017-01-10 Valencell, Inc. Physiological monitoring devices with adjustable signal analysis and interrogation power and monitoring methods using same
US11883201B2 (en) 2014-07-30 2024-01-30 Yukka Magic Llc Physiological monitoring devices with adjustable stability
US11129572B2 (en) 2014-07-30 2021-09-28 Valencell, Inc. Physiological monitoring devices with adjustable stability
US10893835B2 (en) 2014-07-30 2021-01-19 Valencell, Inc. Physiological monitoring devices with adjustable signal analysis and interrogation power and monitoring methods using same
US11179108B2 (en) 2014-07-30 2021-11-23 Valencell, Inc. Physiological monitoring devices and methods using optical sensors
WO2016019002A1 (en) * 2014-07-30 2016-02-04 Valencell, Inc. Physiological monitoring devices with adjustable stability
US11185290B2 (en) 2014-07-30 2021-11-30 Valencell, Inc. Physiological monitoring devices and methods using optical sensors
US11412988B2 (en) 2014-07-30 2022-08-16 Valencell, Inc. Physiological monitoring devices and methods using optical sensors
US11638560B2 (en) 2014-07-30 2023-05-02 Yukka Magic Llc Physiological monitoring devices and methods using optical sensors
US11638561B2 (en) 2014-07-30 2023-05-02 Yukka Magic Llc Physiological monitoring devices with adjustable signal analysis and interrogation power and monitoring methods using same
US10623849B2 (en) 2014-08-06 2020-04-14 Valencell, Inc. Optical monitoring apparatus and methods
US11252499B2 (en) 2014-08-06 2022-02-15 Valencell, Inc. Optical physiological monitoring devices
US11252498B2 (en) 2014-08-06 2022-02-15 Valencell, Inc. Optical physiological monitoring devices
US11330361B2 (en) 2014-08-06 2022-05-10 Valencell, Inc. Hearing aid optical monitoring apparatus
US10536768B2 (en) 2014-08-06 2020-01-14 Valencell, Inc. Optical physiological sensor modules with reduced signal noise
US10015582B2 (en) 2014-08-06 2018-07-03 Valencell, Inc. Earbud monitoring devices
US10779062B2 (en) 2014-09-27 2020-09-15 Valencell, Inc. Wearable biometric monitoring devices and methods for determining if wearable biometric monitoring devices are being worn
US10506310B2 (en) 2014-09-27 2019-12-10 Valencell, Inc. Wearable biometric monitoring devices and methods for determining signal quality in wearable biometric monitoring devices
US10834483B2 (en) 2014-09-27 2020-11-10 Valencell, Inc. Wearable biometric monitoring devices and methods for determining if wearable biometric monitoring devices are being worn
US10798471B2 (en) 2014-09-27 2020-10-06 Valencell, Inc. Methods for improving signal quality in wearable biometric monitoring devices
US9794653B2 (en) 2014-09-27 2017-10-17 Valencell, Inc. Methods and apparatus for improving signal quality in wearable biometric monitoring devices
US10382839B2 (en) 2014-09-27 2019-08-13 Valencell, Inc. Methods for improving signal quality in wearable biometric monitoring devices
JP2016073338A (en) * 2014-10-02 2016-05-12 シャープ株式会社 Biological information measurement device
US11622455B2 (en) 2014-10-28 2023-04-04 Samsung Electronics Co., Ltd. Wearable electronic device
EP3654140A3 (en) * 2014-10-28 2020-08-19 Samsung Electronics Co., Ltd. Wearable electronic device
JP2016086873A (en) * 2014-10-30 2016-05-23 ローム株式会社 Vital sensor module and operation method for the same
US10736520B2 (en) 2014-10-31 2020-08-11 Omron Healthcare Co., Ltd. Blood pressure measurement device
CN106999070A (en) * 2014-10-31 2017-08-01 欧姆龙健康医疗事业株式会社 Blood pressure measuring device
CN105591662A (en) * 2014-11-07 2016-05-18 Lg电子株式会社 Wearable watch type mobile terminal
US9639057B2 (en) 2014-11-07 2017-05-02 Lg Electronics Inc. Wearable watch type mobile terminal
CN105591662B (en) * 2014-11-07 2020-10-30 Lg电子株式会社 Wearable watch type mobile terminal
CN104352227A (en) * 2014-11-07 2015-02-18 英华达(南京)科技有限公司 Annular wearable device and method for controlling tightness of annular wearable device
EP3017715A1 (en) * 2014-11-07 2016-05-11 LG Electronics Inc. Wearable watch type mobile terminal
CN104352223A (en) * 2014-12-05 2015-02-18 王永忠 Pressure regulating type smart watch for measuring pulse condition and measurement method
US10610158B2 (en) 2015-10-23 2020-04-07 Valencell, Inc. Physiological monitoring devices and methods that identify subject activity type
US10945618B2 (en) 2015-10-23 2021-03-16 Valencell, Inc. Physiological monitoring devices and methods for noise reduction in physiological signals based on subject activity type
WO2017219496A1 (en) * 2016-06-21 2017-12-28 中兴通讯股份有限公司 Electronic device and signal detection method
US10966662B2 (en) 2016-07-08 2021-04-06 Valencell, Inc. Motion-dependent averaging for physiological metric estimating systems and methods
WO2018063473A1 (en) * 2016-09-30 2018-04-05 Intel Corporation Blood pressure apparatus using active materials and related methods
US10456081B2 (en) 2016-09-30 2019-10-29 Intel Corporation Blood pressure apparatus using active materials and related methods
US11737707B2 (en) 2016-09-30 2023-08-29 Intel Corporation Blood pressure apparatus using active materials and related methods
JP2019192702A (en) * 2018-04-20 2019-10-31 新光電気工業株式会社 Semiconductor device and sensor modular
JP7112877B2 (en) 2018-04-20 2022-08-04 新光電気工業株式会社 sensor module
US11395609B2 (en) 2018-04-20 2022-07-26 Shinko Electric Industries Co., Ltd. Semiconductor device and sensor module
CN112938653A (en) * 2021-01-26 2021-06-11 珠海格力智能装备有限公司 First-aid ring

Similar Documents

Publication Publication Date Title
JP2008279061A (en) Biosignal detecting device
JP6179657B2 (en) Cuff for sphygmomanometer, method for manufacturing the same, and sphygmomanometer
TW200716320A (en) Torque wrench
DE602006011380D1 (en) Sensor and guidewire for intravascular pressure measurement
EP3142545B1 (en) An apparatus for a wearable device
JP2006212329A (en) Thoracic motion detecting sensor and monitor of biological condition
ATE329484T1 (en) ELECTRONIC CIRCUIT FOR FISHING TOOLS
DE502008002850D1 (en) Circuit device with bonded SMD component
US8422246B2 (en) Electronic apparatus
WO2019131237A1 (en) Blood pressure measurement device
WO2019131241A1 (en) Blood pressure measurement device
US20060185969A1 (en) Hearing aid with a control element
JP5507913B2 (en) Electronic blood pressure monitor
JP2009106418A (en) Band for wearing sensor and bioinformation apparatus
KR100311071B1 (en) Tape feeder for chip mounter
WO2017119388A1 (en) Cuff for sphygmomanometer, method for producing same, and sphygmomanometer
US11969235B2 (en) Sensor module, method for manufacturing sensor module, and blood pressure measurement device
JP2008246046A (en) Living body compressing device
JP2011019716A (en) Electronic sphygmomanometer
WO2019139040A1 (en) Blood pressure measurement device
US20230355115A1 (en) Cuff and blood pressure measurement device
JP2017113494A (en) Cardiorespiratory sensor, cardiorespiratory/electrocardiographic sensor, electrocardiographic sensor, and manufacturing method thereof
JP7028360B1 (en) Fader device
JP2006071452A (en) Measuring device for chain operation status
JP2003053678A (en) Inspection result display device for tightening tool