JP2008278713A - Parallel 24-pulse rectifier circuit - Google Patents

Parallel 24-pulse rectifier circuit Download PDF

Info

Publication number
JP2008278713A
JP2008278713A JP2007122336A JP2007122336A JP2008278713A JP 2008278713 A JP2008278713 A JP 2008278713A JP 2007122336 A JP2007122336 A JP 2007122336A JP 2007122336 A JP2007122336 A JP 2007122336A JP 2008278713 A JP2008278713 A JP 2008278713A
Authority
JP
Japan
Prior art keywords
terminal group
phase
output terminal
reactor
input terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007122336A
Other languages
Japanese (ja)
Other versions
JP4973306B2 (en
Inventor
Hiroshi Osawa
博 大沢
Iwao Kurata
巌 倉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2007122336A priority Critical patent/JP4973306B2/en
Publication of JP2008278713A publication Critical patent/JP2008278713A/en
Application granted granted Critical
Publication of JP4973306B2 publication Critical patent/JP4973306B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rectifiers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To miniaturize and reduce the cost of a parallel 24-pulse rectifier circuit by using an AC interphase reactor having a small phase shift angle for the purpose of low-voltage large capacitance requiring an insulation transformer for voltage step-down. <P>SOLUTION: The pulse rectifier circuit includes an AC interphase reactor 3A connected to secondary windings 21, 22 of a three-winding insulation transformer 2, reactors 3B, 3C on the output side thereof, and three-phase bridge rectifiers 1A-1D connected to the output sides of the reactors 3B, 3C and having a DC side connected in parallel. In the reactor 3A, a plurality of windings are magnetically coupled each other so that a magnetomotive force acting to the iron cores of the reactor 3A may be almost zero when the effective value of a current flowing to a first input/output terminal group is equal to that of a current flowing to a second input/output terminal group and a difference in current phase is substantially 30 degrees. In the reactors 3B, 3C, a plurality of windings are magnetically coupled each other so that a magnetomotive force acting to the iron cores of the reactors may be almost zero when the effective values of currents flowing from first and second output terminal groups are equal and the difference in current phase is almost 15 degrees. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、3相交流電圧を3相整流器により整流して直流電圧を得る整流回路に関し、詳しくは、4台の3相整流器の直流側が並列接続されてなる並列24パルス整流回路に関するものである。   The present invention relates to a rectifier circuit that rectifies a three-phase AC voltage with a three-phase rectifier to obtain a DC voltage, and more particularly to a parallel 24-pulse rectifier circuit in which the DC sides of four three-phase rectifiers are connected in parallel. .

3相交流電力を直流電力に変換する電力変換器として、3相ブリッジ整流器がよく用いられている。3相ブリッジ整流器は、電源の1サイクルに6回の転流を行うことから、その回路は6パルス整流回路とも呼ばれている。更に、3相ブリッジ整流器を複数台組み合わせることにより、12パルス整流回路または18パルス整流回路などの多パルス整流回路を構成することが可能である。
これらの多パルス整流回路は、転流回数が増えるため、電源に流れる高調波電流を低減できること、大容量化できることは、利点として良く知られている。
A three-phase bridge rectifier is often used as a power converter that converts three-phase AC power into DC power. Since the three-phase bridge rectifier performs six commutations in one cycle of the power supply, the circuit is also called a six-pulse rectifier circuit. Further, a multi-pulse rectifier circuit such as a 12-pulse rectifier circuit or an 18-pulse rectifier circuit can be configured by combining a plurality of three-phase bridge rectifiers.
Since these multi-pulse rectifier circuits increase the number of commutations, it is well known as an advantage that the harmonic current flowing in the power supply can be reduced and the capacity can be increased.

図6及び図7は、ダイオードまたはサイリスタにより構成された2台の3相ブリッジ整流器からなる12パルス整流回路の構成例を示しており、例えば非特許文献1に記載された回路と原理的に同一である。
図6及び図7において、1A,1Bは3相ブリッジ整流器、2は一方の2次巻線がスター結線、他方の2次巻線がデルタ結線され、両2次巻線の出力電圧が30度の位相差をもつ3巻線絶縁変圧器である。また、U,V,Wは3相入力端子、P,Nは直流出力端子を示している。
6 and 7 show a configuration example of a 12-pulse rectifier circuit including two three-phase bridge rectifiers configured by diodes or thyristors. For example, the principle is the same as the circuit described in Non-Patent Document 1. It is.
6 and 7, 1A and 1B are three-phase bridge rectifiers, 2 is one secondary winding is star-connected, the other secondary winding is delta-connected, and the output voltage of both secondary windings is 30 degrees. This is a three-winding insulation transformer having a phase difference of. U, V, and W are three-phase input terminals, and P and N are DC output terminals.

図6の回路では、2台の3相ブリッジ整流器1A,1Bが直列接続されており、主に高圧大容量用途に適している。
一方、図7の回路は、相間リアクトル5を介して2台の3相ブリッジ整流器1A,1Bの直流回路が並列接続された並列12パルス整流回路であり、主に低圧大容量用途に適している。ここで、相間リアクトル5は、並列接続された3相ブリッジ整流器1A,1B間を横流する高調波電流を抑制する作用を果している。
図6及び図7の回路では、2台の3相ブリッジ整流器1A,1Bが発生する第5次及び第7次の高調波が理想的には相殺されるので、電源の高調波を低減することができる。
In the circuit of FIG. 6, two three-phase bridge rectifiers 1A and 1B are connected in series, which is suitable mainly for high voltage and large capacity applications.
On the other hand, the circuit of FIG. 7 is a parallel 12-pulse rectifier circuit in which DC circuits of two three-phase bridge rectifiers 1A and 1B are connected in parallel via an interphase reactor 5, and is mainly suitable for low voltage and large capacity applications. . Here, the interphase reactor 5 has the effect | action which suppresses the harmonic current which crosses between the three-phase bridge rectifiers 1A and 1B connected in parallel.
In the circuits of FIGS. 6 and 7, the fifth and seventh harmonics generated by the two three-phase bridge rectifiers 1A and 1B are ideally canceled, so that the harmonics of the power supply can be reduced. Can do.

次に、図8は、非特許文献2に記載されている回路と原理的に同一の回路である。
この回路では、図6や図7に示した絶縁変圧器2に代えて、一相あたり3巻線が磁気結合された相間リアクトル31が用いられている。31U,31U,31U,31V,31V,31V,31W,31W,31Wは巻線である。
以下では、この種のリアクトルを交流相間リアクトルと呼び、図7に示した直流側の相間リアクトル5を直流相間リアクトルと呼ぶことにする。
Next, FIG. 8 is a circuit that is theoretically the same as the circuit described in Non-Patent Document 2.
In this circuit, instead of the insulating transformer 2 shown in FIGS. 6 and 7, an interphase reactor 31 in which three windings are magnetically coupled per phase is used. 31U 1, 31U 2, 31U 3 , 31V 1, 31V 2, 31V 3, 31W 1, 31W 2, 31W 3 is winding.
Hereinafter, this type of reactor is referred to as an AC phase reactor, and the DC side phase reactor 5 shown in FIG. 7 is referred to as a DC phase reactor.

図8において、交流相間リアクトル31では異なる相の巻線が互いに磁気結合されていることにより、リアクトル31の入出力間において移相機能が生じる。
同一鉄心上に巻かれた3巻線(例えば巻線31U,31U,31U)の巻数N,N,Nを、
:N:N=3.73:2.73:1.0
に設計することにより、2組のリアクトルの出力電圧が30度の位相差をもった交流電源を構成し、整流器1A,1Bに30度の位相差をもつ3相交流電圧を供給することができる。これにより、図8の従来技術では、図7に示す回路と同様な並列12パルス整流回路の機能を得ようとするものである。
なお、図8の回路では、交流相間リアクトル31が整流器1A,1B間を流れる横流を抑制するので、図7のような直流相間リアクトル5は不要となる。
In FIG. 8, windings of different phases are magnetically coupled to each other in the AC interphase reactor 31, thereby generating a phase shift function between the input and output of the reactor 31.
The number of turns N 1 , N 2 , N 3 of three windings (for example, windings 31 U 1 , 31 U 2 , 31 U 3 ) wound on the same iron core,
N 1 : N 2 : N 3 = 3.73: 2.73: 1.0
By designing to the above, it is possible to configure an AC power source in which the output voltages of the two sets of reactors have a phase difference of 30 degrees, and to supply a three-phase AC voltage having a phase difference of 30 degrees to the rectifiers 1A and 1B. . Thus, the prior art of FIG. 8 attempts to obtain the function of a parallel 12-pulse rectifier circuit similar to the circuit shown in FIG.
In the circuit of FIG. 8, the AC interphase reactor 31 suppresses the cross current flowing between the rectifiers 1A and 1B, so the DC interphase reactor 5 as shown in FIG. 7 is not necessary.

次いで、図9は、特許文献1に記載されている回路と原理的に同一の回路である。なお、32U,32U,32U,32V,32V,32V,32W,32W,32Wは交流相間リアクトル32の巻線である。
この回路では、交流相間リアクトル32の同一鉄心上に巻かれた3巻線(例えば巻線32U,32U,32U)の巻数N,N,Nを、
:N:N=√3:1:1
に設計する。これにより、非特許文献2と同様に、並列12パルス整流回路の機能を得ようとするものである。
Next, FIG. 9 is a circuit that is theoretically the same as the circuit described in Patent Document 1. Note that it is 32U 1, 32U 2, 32U 3 , 32V 1, 32V 2, 32V 3, 32W 1, 32W 2, 32W 3 windings of the AC phase between reactor 32.
In this circuit, the number of turns N 1 , N 2 , N 3 of three windings (for example, windings 32 U 1 , 32 U 2 , 32 U 3 ) wound on the same iron core of the AC interphase reactor 32,
N 1 : N 2 : N 3 = √3: 1: 1
To design. As a result, as in Non-Patent Document 2, the function of a parallel 12-pulse rectifier circuit is to be obtained.

更に、図10は、非特許文献3に記載されている回路と原理的に同一の回路である。
この回路は交流相間リアクトル31,33を備えており、交流相間リアクトル31は巻線31U,31U,31U,31V,31V,31V,31W,31W,31Wを備え、交流相間リアクトル33は巻線33U,33U,33V,33V,33W,33Wを備えている。
そして、交流相間リアクトル33の巻線33U,33V,33Wは3相入力端子U,V,Wと整流器1Aとの間に接続され、巻線33U,33V,33Wは3相入力端子U,V,Wと交流相間リアクトル31の巻線31U,31V,31Wとの間に接続されている。
また、交流相間リアクトル31の巻線31U,31V,31Wは整流器1Bに、巻線31U,31V,31Wは整流器1Cにそれぞれ接続されている。
Further, FIG. 10 is the same circuit in principle as the circuit described in Non-Patent Document 3.
This circuit includes AC interphase reactors 31 and 33, and the AC interphase reactor 31 includes windings 31U 1 , 31U 2 , 31U 3 , 31V 1 , 31V 2 , 31V 3 , 31W 1 , 31W 2 , 31W 3 , AC interphase reactor 33 is provided with a winding 33U 1, 33U 2, 33V 1 , 33V 2, 33W 1, 33W 2.
The windings 33U 1 AC interphase reactors 33, 33V 1, 33 W 1 is connected between the three phase input terminals U, V, W and the rectifier 1A, the winding 33U 2, 33V 2, 33W 2 is 3-phase It is connected between the input terminals U, V, W and the windings 31U 3 , 31V 3 , 31W 3 of the AC interphase reactor 31.
Further, the windings 31U 1 , 31V 1 and 31W 1 of the AC interphase reactor 31 are connected to the rectifier 1B, and the windings 31U 2 , 31V 2 and 31W 2 are connected to the rectifier 1C.

なお、交流相間リアクトル31の同一鉄心上に巻かれた巻線(例えば巻線31U,31U,31U)の巻数N,N,Nは、
:N:N=2.88:1.88:1
の関係にある。
これにより、交流相間リアクトル31に接続された整流器1B,1Cの入力電流は実効値が等しく、かつ位相差が40度となる。
The number of turns N 1 , N 2 , N 3 of the windings wound on the same iron core of the AC interphase reactor 31 (for example, windings 31U 1 , 31U 2 , 31U 3 )
N 1 : N 2 : N 3 = 2.88: 1.88: 1
Are in a relationship.
Thereby, the effective values of the input currents of the rectifiers 1B and 1C connected to the AC interphase reactor 31 are equal and the phase difference is 40 degrees.

一方、交流相間リアクトル33は同相の2巻線が磁気結合しているので移相機能はないが、整流器1Aに流れる電流と交流相間リアクトル31に流れる電流との比率を所定値にさせる機能がある。
交流相間リアクトル33の同一鉄心上に巻かれた巻線の巻数N,N(例えば巻線33U,33U)の巻数N,Nは、
:N=1.88:1
の関係にあり、これによって整流器1A,1B,1Cに流れる入力電流は実効値が等しく、その位相差は、整流器1Aを基準にすると、それぞれ0度、+20度、−20度となる。
On the other hand, the AC interphase reactor 33 does not have a phase shifting function because two in-phase windings are magnetically coupled, but has a function of setting the ratio of the current flowing through the rectifier 1A and the current flowing through the AC interphase reactor 31 to a predetermined value. .
Turns N 4, N 5 turns N 4 of wound windings on the same core of the AC phase between reactors 33, N 5 (e.g. windings 33U 1, 33U 2) is
N 4 : N 5 = 1.88: 1
As a result, the effective values of the input currents flowing through the rectifiers 1A, 1B, and 1C are equal, and the phase differences are 0 degrees, +20 degrees, and -20 degrees, respectively, with respect to the rectifier 1A.

上記の位相差は18パルス整流回路を構成する場合の位相差に一致しており、図10の回路はこのことによって並列18パルス整流回路の機能を得ようとするものである。この場合、理想的には第5次、第7次、第11次、第13次の高調波が電源に流れず、並列12パルス整流回路より大容量で高調波の少ない整流回路を構成することができる。   The above phase difference coincides with the phase difference in the case of configuring the 18-pulse rectifier circuit, and the circuit of FIG. 10 is intended to obtain the function of the parallel 18-pulse rectifier circuit. In this case, ideally, the fifth, seventh, eleventh, and thirteenth harmonics do not flow to the power source, and a rectifier circuit having a larger capacity and fewer harmonics than the parallel 12-pulse rectifier circuit is formed. Can do.

「電気工学ハンドブック(第6版)」,社団法人電気学会,20編パワーエレクトロニクス,846頁〜847頁"Electrical Engineering Handbook (6th edition)", The Institute of Electrical Engineers of Japan, 20 editions, Power Electronics, pages 846-847 "A New 12-Pulse Rectifier Circuit with Line-Side Interphase Transformer and Nearly Sinusoidal Line Currents" by Manfred Depenbrock and Clemens Niermann, Proc. of 6th Conference on PEMC,vol.2,pp.374-378 (1990年)"A New 12-Pulse Rectifier Circuit with Line-Side Interphase Transformer and Nearly Sinusoidal Line Currents" by Manfred Depenbrock and Clemens Niermann, Proc. Of 6th Conference on PEMC, vol.2, pp.374-378 (1990) "A New 18-Pulse Rectifier Circuit with Line-Side Interphase Transformer and Nearly Sinusoidal Line Currents" Proc. of 1990 IPEC-Tokyo, Vol.1, pp.539-546 (1990年)"A New 18-Pulse Rectifier Circuit with Line-Side Interphase Transformer and Nearly Sinusoidal Line Currents" Proc. Of 1990 IPEC-Tokyo, Vol.1, pp.539-546 (1990) 特開2000−358372号公報(請求項1,請求項4、段落[0019]〜[0025]、図1,図2等)JP 2000-358372 A (Claims 1 and 4, paragraphs [0019] to [0025], FIG. 1, FIG. 2, etc.)

さて、金属の誘導加熱分野に適用されるインバータ用の直流電源や非鉄金属の製造に用いられる電解用の直流電源などでは、例えば電圧が数百V、出力が数千kW以上の低圧大容量の直流電源が必要になる。この種の直流電源は6kV級以上の高圧商用電源から得るのが望ましいので、降圧変圧器が必要になる。
上述したような分野において、例えば非特許文献1に記載された図7の回路を用いて3巻線変圧器2を降圧変圧器とすることにより、低圧大容量の整流回路(直流電源)を構成し、しかも電源の高調波を低減することが可能である。しかし、その場合には次のような問題が生じる。
Now, in a DC power source for inverters applied to the induction heating field of metals and a DC power source for electrolysis used in the production of non-ferrous metals, for example, a voltage of several hundred volts and an output of several thousand kW or more are low voltage and large capacity. A DC power supply is required. Since this type of DC power supply is desirably obtained from a high-voltage commercial power supply of 6 kV class or higher, a step-down transformer is required.
In the field as described above, for example, by using the circuit of FIG. 7 described in Non-Patent Document 1, the three-winding transformer 2 is a step-down transformer, thereby constructing a low-voltage and large-capacity rectifier circuit (DC power supply). In addition, the harmonics of the power supply can be reduced. However, in that case, the following problems occur.

例えば6kV級以上の交流高電圧から最終的に数百V級の直流電圧を得ようとすると、3巻線変圧器2の2次巻線の巻数は必然的に多くできない。このため、変圧比の大きな降圧用の3巻線変圧器2を用いる必要があるが、この種の3巻線変圧器では、スター側とデルタ側の2組の2次電圧に実効値の誤差が生じやすくなる。
この電圧実効値誤差は、2台の3相ブリッジ整流器1A,1Bの直流電圧誤差となって現れるが、直流相間リアクトル5ではこの直流電圧誤差を補償できないので、両整流器1A,1B間を流れる直流成分の横流が過大になる。この結果、大きな容量をもった3相ブリッジ整流器1A,1Bや3巻線変圧器2が必要になる。同時に、3巻線変圧器2の2次電流には第5次及び第7次高調波が多く含まれるため、この高調波も3巻線変圧器2の容量増加の原因となる。
For example, when trying to finally obtain a DC voltage of several hundreds V from an AC high voltage of 6 kV or higher, the number of turns of the secondary winding of the three-winding transformer 2 cannot be increased. For this reason, it is necessary to use a step-down three-winding transformer 2 with a large transformation ratio. In this type of three-winding transformer, there is an error in effective value between two sets of secondary voltages on the star side and the delta side. Is likely to occur.
This voltage effective value error appears as a DC voltage error of the two three-phase bridge rectifiers 1A and 1B. However, since the DC voltage error cannot be compensated for by the DC interphase reactor 5, the DC current flowing between the rectifiers 1A and 1B. Ingredient cross current becomes excessive. As a result, the three-phase bridge rectifiers 1A and 1B and the three-winding transformer 2 having a large capacity are required. At the same time, the secondary current of the three-winding transformer 2 includes many fifth and seventh harmonics, and this harmonic also causes an increase in the capacity of the three-winding transformer 2.

なお、図示されていないが、千鳥結線した4巻線絶縁変圧器を用いて3組の2次巻線の位相差を0度、+20度、−20度とし、直流側が並列接続された3台のブリッジ整流器を変圧器の各2次巻線に接続すれば、並列18パルス整流回路を構成することが可能である。ただし、この場合も、各整流器間を流れる直流成分の横流が過大になると言う点では図7の並列12パルス整流回路の場合と同様である。   Although not shown in the figure, three units in which the phase difference of the three secondary windings is set to 0 degree, +20 degree, and -20 degrees using a four-winding insulated transformer connected in a staggered manner, and the DC side is connected in parallel. If a bridge rectifier is connected to each secondary winding of the transformer, a parallel 18-pulse rectifier circuit can be constructed. However, this case is the same as the parallel 12-pulse rectifier circuit of FIG. 7 in that the cross current of the DC component flowing between the rectifiers becomes excessive.

一方、非特許文献2,3や特許文献1に記載された従来技術は、絶縁変圧器や直流相間リアクトルを不要にした点に特徴がある。しかしながら、これらの従来技術により、上述したように交流高電圧を降圧して最終的に所定の直流電圧を得る場合、確かに直流相間リアクトルは不要になるが、3巻線変圧器に代わるものとして大形かつ高価な交流相間リアクトル31,32が必要になる。
以下に、交流相間リアクトルが大形かつ高価になる理由を説明する。
On the other hand, the conventional techniques described in Non-Patent Documents 2 and 3 and Patent Document 1 are characterized in that an insulating transformer and a DC interphase reactor are not required. However, with these conventional techniques, as described above, when the AC high voltage is stepped down to finally obtain a predetermined DC voltage, a DC interphase reactor is certainly unnecessary, but it is an alternative to a three-winding transformer. Large and expensive AC interphase reactors 31 and 32 are required.
The reason why the AC phase reactor is large and expensive will be described below.

まず第1の理由として、非特許文献2,3や特許文献1における交流相間リアクトル31,32は移相特性を持っている。このため、交流相間リアクトルの入力電圧に対して出力電圧の位相を変化させようとすると、交流相間リアクトルの入出力間には移相に伴った基本波成分の電圧降下が生じ、更に、高調波分による電圧降下が生じる。
ここで、交流相間リアクトルの容量は、基本波成分の電圧降下と高調波成分の電圧降下とを加算した電圧と、交流相間リアクトルを流れる電流との積によって決定される。
First, as a first reason, the inter-phase reactors 31 and 32 in Non-Patent Documents 2 and 3 and Patent Document 1 have phase shift characteristics. For this reason, if the phase of the output voltage is changed with respect to the input voltage of the AC phase reactor, a voltage drop of the fundamental wave component due to the phase shift occurs between the input and output of the AC phase reactor, and further, the harmonics A voltage drop due to minutes occurs.
Here, the capacity of the reactor between the AC phases is determined by the product of the voltage obtained by adding the voltage drop of the fundamental component and the voltage drop of the harmonic component and the current flowing through the reactor between the AC phases.

交流相間リアクトルの容量を決定するのは基本波成分の電圧降下の方が支配的であるが、図7に示した直流相間リアクトル5の容量決定にあたっては、基本波成分の電圧降下に相当する成分はない。すなわち、交流相間リアクトル31,32を用いる場合には、その容量決定に支配的である基本波成分の電圧降下分だけ、交流相間リアクトル31,32の容量を直流相間リアクトル5の容量に対して大きくする必要がある。   The capacity of the AC interphase reactor is determined by the voltage drop of the fundamental wave component. However, in determining the capacity of the DC phase reactor 5 shown in FIG. 7, the component corresponding to the voltage drop of the fundamental wave component is determined. There is no. That is, when the AC interphase reactors 31 and 32 are used, the capacity of the AC interphase reactors 31 and 32 is made larger than the capacity of the DC interphase reactor 5 by the voltage drop of the fundamental wave component that is dominant in determining the capacity. There is a need to.

また、図8,図9に示した並列12パルス整流回路の交流相間リアクトル31,32は±15度の移相を行なう。ところが、図10に示した並列18パルス整流回路の交流相間リアクトル31は±20度の移相を行なう。移相角が大きくなるほどリアクトルの容量が増えるので、小形化や低価格化の点で図10の並列18パルス整流回路は問題がある。   Further, the AC interphase reactors 31 and 32 of the parallel 12-pulse rectifier circuit shown in FIGS. 8 and 9 perform a phase shift of ± 15 degrees. However, the AC interphase reactor 31 of the parallel 18-pulse rectifier circuit shown in FIG. 10 performs a phase shift of ± 20 degrees. Since the capacity of the reactor increases as the phase shift angle increases, the parallel 18-pulse rectifier circuit of FIG. 10 has a problem in terms of downsizing and cost reduction.

更に、複数台の3相ブリッジ整流器間に流れようとする横流には3次高調波等の零相成分も存在する。この零相成分に対して横流の抑制効果を持たせようとすると、例えば単相リアクトルが必要になり、図10に示した並列18パルス整流回路の場合には、合計6台の単相リアクトルが必要になる。従って、直流相間リアクトルを用いる場合に比べて機器台数が増えることが大形化の要因になる。
また、図8,図9に示したような並列12パルス整流回路では第11次と第13次の高調波が存在するので、高調波フィルタを併用せざるを得ない場合があり、これも機器台数の増加や大形化を招く。
Furthermore, a zero-phase component such as a third-order harmonic also exists in a cross current that flows between a plurality of three-phase bridge rectifiers. If the zero-phase component is to have a cross current suppressing effect, for example, a single-phase reactor is required, and in the case of the parallel 18-pulse rectifier circuit shown in FIG. 10, a total of six single-phase reactors are included. I need it. Therefore, an increase in the number of devices is a factor in increasing the size as compared with the case where a DC phase reactor is used.
In addition, in the parallel 12-pulse rectifier circuit as shown in FIGS. 8 and 9, since the 11th and 13th harmonics exist, there is a case where a harmonic filter must be used together. This will increase the number and size.

そこで、本発明の解決課題は、降圧のために絶縁変圧器を必要とする低圧大容量の用途に対し、移相角の小さい交流相間リアクトルを使用可能として、交流相間リアクトルひいては回路全体の小形化、低価格化を可能にした並列24パルス整流回路を提供することにある。   Therefore, the problem to be solved by the present invention is that it is possible to use an AC interphase reactor with a small phase shift angle for a low voltage and large capacity application that requires an insulating transformer for stepping down, thereby reducing the size of the AC interphase reactor and thus the entire circuit. Another object of the present invention is to provide a parallel 24-pulse rectifier circuit that enables a reduction in price.

上記課題を解決するため、請求項1に係る発明は、互いに絶縁され、かつ、出力電圧がほぼ30度の位相差を持つ第1,第2の3相交流電源のうち、
第1の3相交流電源の出力が、第1の相間リアクトルの第1の入力端子群と出力端子群とを介して第2の相間リアクトルの入力端子群に入力され、
第2の3相交流電源の出力が、第1の相間リアクトルの第2の入力端子群と出力端子群とを介して第3の相間リアクトルの入力端子群に入力され、
第2の相間リアクトルの第1の出力端子群が第1の3相整流器の入力端子群に接続され、
第2の相間リアクトルの第2の出力端子群が第2の3相整流器の入力端子群に接続され、
第3の相間リアクトルの第1の出力端子群が第3の3相整流器の入力端子群に接続され、
第3の相間リアクトルの第2の出力端子群が第4の3相整流器の入力端子群に接続され、
第1〜第4の3相整流器の直流端子が直接または直流リアクトルを介して並列接続されてなる整流回路において、
第1の相間リアクトルは、
第1の入力端子群及び出力端子群に流れる電流と、第2の入力端子群及び出力端子群に流れる電流と、の実効値が等しく、かつ、これらの電流の位相差がほぼ30度のときにリアクトルの鉄心に作用する起磁力がほぼゼロになるように複数の巻線が互いに磁気結合され、
第2及び第3の相間リアクトルは、
各相間リアクトルの第1の出力端子群から流出する電流と、第2の出力端子群から流出する電流と、の実効値が等しく、かつ、これらの電流の位相差がほぼ15度のときに当該リアクトルの鉄心に作用する起磁力がほぼゼロになるように複数の巻線が互いに磁気結合されてなるものである。
In order to solve the above-mentioned problem, the invention according to claim 1 is characterized in that, among the first and second three-phase AC power supplies that are insulated from each other and whose output voltage has a phase difference of approximately 30 degrees,
The output of the first three-phase AC power supply is input to the input terminal group of the second interphase reactor via the first input terminal group and the output terminal group of the first interphase reactor,
The output of the second three-phase AC power supply is input to the input terminal group of the third interphase reactor via the second input terminal group and the output terminal group of the first interphase reactor,
The first output terminal group of the second interphase reactor is connected to the input terminal group of the first three-phase rectifier,
A second output terminal group of the second interphase reactor is connected to an input terminal group of the second three-phase rectifier;
The first output terminal group of the third interphase reactor is connected to the input terminal group of the third three-phase rectifier,
The second output terminal group of the third interphase reactor is connected to the input terminal group of the fourth three-phase rectifier,
In the rectifier circuit in which the DC terminals of the first to fourth three-phase rectifiers are connected directly or in parallel via a DC reactor,
The first interphase reactor is
When the effective value of the current flowing through the first input terminal group and the output terminal group is equal to the current flowing through the second input terminal group and the output terminal group, and the phase difference between these currents is approximately 30 degrees The windings are magnetically coupled to each other so that the magnetomotive force acting on the reactor core is almost zero,
The second and third interphase reactors are
When the effective value of the current flowing out from the first output terminal group of each interphase reactor and the current flowing out from the second output terminal group are equal and the phase difference between these currents is approximately 15 degrees, A plurality of windings are magnetically coupled to each other so that the magnetomotive force acting on the reactor core is substantially zero.

請求項2に係る発明は、3相交流電源が、第1の相間リアクトルの第1の巻線群を介して第1の3相絶縁変圧器の入力端子に入力されると共に、第1の相間リアクトルの第2の巻線群を介して第2の3相絶縁変圧器の入力端子に接続され、
第1の3相絶縁変圧器の出力端子が、第2の相間リアクトルの入力端子群及び第1の出力端子群を介して第1の3相整流器の入力端子群に接続され、
第1の3相絶縁変圧器の出力端子が、第2の相間リアクトルの入力端子群及び第2の出力端子群を介して第2の3相整流器の入力端子群に接続され、
第2の3相絶縁変圧器の出力端子が、第3の相間リアクトルの入力端子群及び第1の出力端子群を介して第3の3相整流器の入力端子群に接続され、
第2の3相絶縁変圧器の出力端子が、第3の相間リアクトルの入力端子群及び第2の出力端子群を介して第4の3相整流器の入力端子群に接続され、
第1の3相絶縁変圧器の出力電圧と第2の3相絶縁変圧器の出力電圧との位相差がほぼ30度であり、
第1〜第4の3相整流器の直流端子が直接または直流リアクトルを介して並列接続されてなる整流回路において、
第1の相間リアクトルは、第1の巻線群及び第2の巻線群の巻数が等しく、かつ同一鉄心に巻かれる巻線が互いに逆極性に磁気結合しており、
第2及び第3の相間リアクトルは、
各相間リアクトルの第1の出力端子群から流出する電流と、第2の出力端子群から流出する電流と、の実効値が等しく、かつ、これらの電流の位相差がほぼ15度のときに当該リアクトルの鉄心に作用する起磁力がほぼゼロになるように複数の巻線が互いに磁気結合されているものである。
In the invention according to claim 2, the three-phase AC power supply is input to the input terminal of the first three-phase isolation transformer via the first winding group of the first interphase reactor, and the first interphase Connected to the input terminal of the second three-phase isolation transformer via the second winding group of the reactor,
The output terminal of the first three-phase isolation transformer is connected to the input terminal group of the first three-phase rectifier through the input terminal group of the second interphase reactor and the first output terminal group,
The output terminal of the first three-phase isolation transformer is connected to the input terminal group of the second three-phase rectifier through the input terminal group and the second output terminal group of the second interphase reactor,
The output terminal of the second three-phase isolation transformer is connected to the input terminal group of the third three-phase rectifier via the input terminal group of the third interphase reactor and the first output terminal group,
The output terminal of the second three-phase isolation transformer is connected to the input terminal group of the fourth three-phase rectifier through the input terminal group and the second output terminal group of the third interphase reactor,
The phase difference between the output voltage of the first three-phase isolation transformer and the output voltage of the second three-phase isolation transformer is approximately 30 degrees;
In the rectifier circuit in which the DC terminals of the first to fourth three-phase rectifiers are connected directly or in parallel via a DC reactor,
In the first interphase reactor, the number of turns of the first winding group and the second winding group is equal, and the windings wound on the same iron core are magnetically coupled with opposite polarities.
The second and third interphase reactors are
When the effective value of the current flowing out from the first output terminal group of each interphase reactor and the current flowing out from the second output terminal group are equal and the phase difference between these currents is approximately 15 degrees, A plurality of windings are magnetically coupled to each other so that the magnetomotive force acting on the reactor core is substantially zero.

請求項3に係る発明は、3相交流電源が、第1の相間リアクトルの入力端子群及び第1の出力端子群を介して第1の3相絶縁変圧器の入力端子に接続されると共に、第1の相間リアクトルの入力端子群及び第2の出力端子群を介して第2の3相絶縁変圧器の入力端子に接続され、
第1の3相絶縁変圧器の第1の出力端子が、第2の相間リアクトルの第1の入力端子群及び出力端子群を介して第1の3相整流器の入力端子群に接続され、
第1の3相絶縁変圧器の第2の出力端子が、第2の相間リアクトルの第2の入力端子群及び出力端子群を介して第2の3相整流器の入力端子群に接続され、
第2の3相絶縁変圧器の第1の出力端子が、第3の相間リアクトルの第1の入力端子群及び出力端子群を介して第3の3相整流器の入力端子群に接続され、
第2の3相絶縁変圧器の第2の出力端子が、第3の相間リアクトルの第2の入力端子群及び出力端子群を介して第4の3相整流器の入力端子群に接続され、
第1の3相絶縁変圧器の第1の出力端子の電圧と第2の出力端子の電圧との位相差がほぼ30度であり、
第2の3相絶縁変圧器の第1の出力端子の電圧と第2の出力端子の電圧との位相差がほぼ30度であり、
第1〜第4の3相整流器の直流端子が直接または直流リアクトルを介して並列接続されてなる整流回路において、
第1の相間リアクトルは、
第1の出力端子群から流出する電流と、第2の出力端子群から流出する電流と、の実効値が等しく、かつ、これらの電流の位相差がほぼ15度のときに当該リアクトルの鉄心に作用する起磁力がほぼゼロになるように複数の巻線が互いに磁気結合され、
第2及び第3の相間リアクトルは、
第1の入力端子群及び出力端子群に流れる電流と、第2の入力端子群及び出力端子群に流れる電流と、の実効値が等しく、かつ、これらの電流の位相差がほぼ30度のときに当該リアクトルの鉄心に作用する起磁力がほぼゼロになるように複数の巻線が互いに磁気結合されているものである。
In the invention according to claim 3, the three-phase AC power supply is connected to the input terminal of the first three-phase isolation transformer via the input terminal group and the first output terminal group of the first interphase reactor, Connected to the input terminal of the second three-phase isolation transformer via the input terminal group and the second output terminal group of the first interphase reactor,
The first output terminal of the first three-phase isolation transformer is connected to the input terminal group of the first three-phase rectifier through the first input terminal group and the output terminal group of the second interphase reactor,
The second output terminal of the first three-phase isolation transformer is connected to the input terminal group of the second three-phase rectifier through the second input terminal group and the output terminal group of the second interphase reactor,
The first output terminal of the second three-phase isolation transformer is connected to the input terminal group of the third three-phase rectifier through the first input terminal group and the output terminal group of the third interphase reactor,
The second output terminal of the second three-phase isolation transformer is connected to the input terminal group of the fourth three-phase rectifier through the second input terminal group and the output terminal group of the third interphase reactor,
The phase difference between the voltage at the first output terminal and the voltage at the second output terminal of the first three-phase isolation transformer is approximately 30 degrees;
The phase difference between the voltage at the first output terminal and the voltage at the second output terminal of the second three-phase isolation transformer is approximately 30 degrees;
In the rectifier circuit in which the DC terminals of the first to fourth three-phase rectifiers are connected directly or in parallel via a DC reactor,
The first interphase reactor is
When the effective value of the current flowing out from the first output terminal group is equal to the current flowing out from the second output terminal group and the phase difference between these currents is about 15 degrees, the current of the reactor core The windings are magnetically coupled to each other so that the acting magnetomotive force is almost zero,
The second and third interphase reactors are
When the effective value of the current flowing through the first input terminal group and the output terminal group is equal to the current flowing through the second input terminal group and the output terminal group, and the phase difference between these currents is approximately 30 degrees In addition, a plurality of windings are magnetically coupled to each other so that the magnetomotive force acting on the core of the reactor becomes substantially zero.

請求項4に係る発明は、3相交流電源が、第1の相間リアクトルの入力端子群及び第1の出力端子群を介して第2の相間リアクトルの入力端子群に接続されると共に、第1の相間リアクトルの入力端子群及び第2の出力端子群を介して第3の相間リアクトルの入力端子群に接続され、
第2の相間リアクトルの第1の出力端子群が第1の3相絶縁変圧器を介して第1の3相整流器の入力端子群に接続され、
第2の相間リアクトルの第2の出力端子群が第2の3相絶縁変圧器を介して第2の3相整流器の入力端子群に接続され、
第3の相間リアクトルの第1の出力端子群が第3の3相絶縁変圧器を介して第3の3相整流器の入力端子群に接続され、
第3の相間リアクトルの第2の出力端子群が第4の3相絶縁変圧器を介して第4の3相整流器の入力端子群に接続され、
第1の3相絶縁変圧器の出力電圧と第2の3相絶縁変圧器の出力電圧との位相差がほぼ30度であり、
第3の3相絶縁変圧器の出力電圧と第4の3相絶縁変圧器の出力電圧との位相差がほぼ30度であり、
第1〜第4の3相整流器の直流端子が直接または直流リアクトルを介して並列接続されてなる整流回路において、
前記第1の相間リアクトルは、
第1の出力端子群から流出する電流と、第2の出力端子群から流出する電流と、の実効値が等しく、かつ、これらの電流の位相差がほぼ15度のときに当該リアクトルの鉄心に作用する起磁力がほぼゼロになるように複数の巻線が互いに磁気結合され、
第2及び第3の相間リアクトルは、第1の出力端子群に接続された第1の巻線群と、第2の出力端子群に接続された第2の巻線群と、の巻数が等しく、かつ同一鉄心に巻かれる巻線が互いに逆極性に磁気結合しているものである。
In the invention according to claim 4, the three-phase AC power supply is connected to the input terminal group of the second interphase reactor via the input terminal group of the first interphase reactor and the first output terminal group, and the first Are connected to the input terminal group of the third interphase reactor via the input terminal group of the interphase reactor and the second output terminal group,
The first output terminal group of the second interphase reactor is connected to the input terminal group of the first three-phase rectifier through the first three-phase isolation transformer,
A second output terminal group of the second interphase reactor is connected to an input terminal group of the second three-phase rectifier through a second three-phase isolation transformer;
The first output terminal group of the third interphase reactor is connected to the input terminal group of the third three-phase rectifier through the third three-phase isolation transformer,
A second output terminal group of the third interphase reactor is connected to an input terminal group of the fourth three-phase rectifier through a fourth three-phase isolation transformer;
The phase difference between the output voltage of the first three-phase isolation transformer and the output voltage of the second three-phase isolation transformer is approximately 30 degrees;
The phase difference between the output voltage of the third three-phase isolation transformer and the output voltage of the fourth three-phase isolation transformer is approximately 30 degrees;
In the rectifier circuit in which the DC terminals of the first to fourth three-phase rectifiers are connected directly or in parallel via a DC reactor,
The first interphase reactor is:
When the effective value of the current flowing out from the first output terminal group is equal to the current flowing out from the second output terminal group and the phase difference between these currents is about 15 degrees, the current of the reactor core The windings are magnetically coupled to each other so that the acting magnetomotive force is almost zero,
The second and third interphase reactors have the same number of turns of the first winding group connected to the first output terminal group and the second winding group connected to the second output terminal group. In addition, the windings wound on the same iron core are magnetically coupled with opposite polarities.

本発明によれば、降圧用の絶縁変圧器が必要になる低圧大容量の用途に対して、絶縁変圧器の移相機能、交流相間リアクトルの移相機能及び電流平衡化の作用を組合わせることにより、小形かつ安価で高調波の少ない並列24パルス整流回路を実現することができる。   According to the present invention, for a low-voltage and large-capacity application that requires an insulation transformer for step-down, the phase-shift function of the insulation transformer, the phase-shift function of the reactor between the AC phases, and the action of current balancing are combined. Thus, a small, inexpensive, and parallel 24-pulse rectifier circuit with less harmonics can be realized.

すなわち、請求項1の発明では、第2,第3の交流相間リアクトルの出力における移相機能は最大で±7.5度となり、移相に伴う交流相間リアクトルの容量増大を抑制して交流相間リアクトル及び回路全体の小形化、低価格化を図ることができる。
また、請求項2の発明によれば、第1,第2の絶縁変圧器の1次側すなわち高圧側に第1の交流相間リアクトルを接続する構成によって交流相間リアクトルの電流を低減すると共に、これに伴う巻線構成の簡略化によって交流相間リアクトル及び回路全体の一層の小形化に寄与することができる。
That is, in the first aspect of the invention, the phase shift function at the output of the second and third AC interphase reactors is ± 7.5 degrees at the maximum, and the increase in the capacity of the AC interphase reactors accompanying the phase shift is suppressed, so The reactor and the entire circuit can be reduced in size and price.
According to the invention of claim 2, while the first AC interphase reactor is connected to the primary side of the first and second isolation transformers, that is, the high voltage side, the current of the AC interphase reactor is reduced, The simplification of the winding configuration associated with can contribute to further miniaturization of the AC phase reactor and the entire circuit.

請求項3の発明においても、第1,第2の絶縁変圧器の1次側に第1の交流相間リアクトルを接続することにより小形化が可能であると共に、上記絶縁変圧器の作用により横流が流れないため、交流相間リアクトルに3相3脚鉄心を使用可能として交流相間リアクトルの小形化、低価格化を図ることができる。
請求項4の発明においては、全ての交流相間リアクトルを絶縁変圧器の1次側すなわち高圧側に接続して電流を低減するので、リアクトルの小形化が可能になり、また、請求項3に比べて、第2,第3の交流相間リアクトルの巻線構成を簡略化することができる。
In the invention of claim 3, it is possible to reduce the size by connecting the first AC interphase reactor to the primary side of the first and second insulation transformers, and the cross current is generated by the action of the insulation transformer. Since it does not flow, it is possible to use a three-phase, three-legged core for the AC interphase reactor, thereby reducing the size and price of the AC interphase reactor.
In the invention of claim 4, since all the AC interphase reactors are connected to the primary side of the insulating transformer, that is, the high voltage side to reduce the current, the reactor can be reduced in size, and compared with claim 3. Thus, the winding configuration of the second and third AC interphase reactors can be simplified.

以下、図に沿って本発明の実施形態を説明する。
まず、図1は請求項1に相当する本発明の第1実施形態を示す回路図である。図1において、3相交流電源に接続された3相入力端子U,V,Wには、第1,第2の2次巻線21,22を有する3巻線絶縁変圧器2の1次巻線20が接続されている。
図示するように、第1の2次巻線21をスター結線、第2の2次巻線22をデルタ結線とすると、第1,第2の2次巻線21,22の出力電圧の位相差は30度となる。このため、第1,第2の2次巻線21,22を有する3巻線絶縁変圧器2は、請求項1における第1,第2の3相交流電源を構成している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a circuit diagram showing a first embodiment of the present invention corresponding to claim 1. In FIG. 1, three-phase input terminals U, V, and W connected to a three-phase AC power source have primary windings of a three-winding transformer 2 having first and second secondary windings 21 and 22, respectively. Line 20 is connected.
As shown in the figure, when the first secondary winding 21 is star-connected and the second secondary winding 22 is delta-connected, the phase difference between the output voltages of the first and second secondary windings 21 and 22 is shown. Will be 30 degrees. For this reason, the three-winding insulation transformer 2 having the first and second secondary windings 21 and 22 constitutes the first and second three-phase AC power sources in claim 1.

上記絶縁変圧器2の2次巻線21,22は、各相ごとに巻数がNである一巻線と巻数がNである二巻線とが同一鉄心(3相3脚鉄心)上に巻かれた第1の交流相間リアクトル3Aに接続されている。なお、巻数がNの巻線3AU,3AV,3AWは第1の2次巻線21に接続され、巻数がNの巻線3AU,3AU,3AV,3AV,3AW,3AWは第2の2次巻線22に接続されている。更に、巻線3AUは3AWに、巻線3AVは3AUに、巻線3AWは3AVにそれぞれ接続される。
ここで、上記巻線の巻数比は、
:N=√3:1
となっている。
The secondary winding 21, 22 of the insulating transformer 2 shows one winding and winding turns is N 4 for each phase is N 5 wound around and the same core (3-phase 3-legged iron core) above Is connected to the first AC interphase reactor 3 </ b> A. Note that the windings 3AU 1 , 3AV 1 , 3AW 1 having N 4 turns are connected to the first secondary winding 21, and windings 3 AU 2 , 3AU 3 , 3AV 2 , 3AV 3 , 3AW having N 5 turns are connected. 2 and 3AW 3 are connected to the second secondary winding 22. Furthermore, the winding 3AU 2 in 3AW 3, the winding 3AV 2 is 3AU 3, winding 3AW 2 are connected to the 3AV 3.
Here, the turn ratio of the winding is
N 4 : N 5 = √3: 1
It has become.

図2は、交流相間リアクトル3Aの動作を説明するためのフェーザ図である。
図2において、IU1,IV1,IW1はスター結線(進相側)の2次巻線21に接続された巻線3AU,3AV,3AW側の電流、IU2,IV2,IW2はデルタ結線(遅相側)の2次巻線22に接続された巻線3AU,3AU,3AV,3AV,3AW,3AW側の電流である(なお、明細書本文ではベクトルを示すドットを省略する)。また、破線はU相の鉄心に作用する巻数と電流との積、すなわち起磁力を示す。
電流IU1,IV2は同極性に磁気結合し、電流IU2はこれらと逆極性に磁気結合し、かつ、巻線の巻数比N:Nを前述のように設定することにより、U相の鉄心に作用する合成起磁力は図示するような閉じた三角形、すなわちゼロとなる。
FIG. 2 is a phasor diagram for explaining the operation of the AC interphase reactor 3A.
In FIG. 2, I U1 , I V1 , and I W1 are currents on the windings 3AU 1 , 3AV 1 , 3AW 1 side connected to the secondary winding 21 of the star connection (advanced side), I U2 , I V2 , I W2 is the current on the windings 3AU 2 , 3AU 3 , 3AV 2 , 3AV 3 , 3AW 2 , 3AW 3 side connected to the secondary winding 22 of the delta connection (slow phase side) (note that the specification text) (The dot indicating the vector is omitted.) The broken line indicates the product of the number of turns acting on the U-phase iron core and the current, that is, the magnetomotive force.
The currents I U1 and I V2 are magnetically coupled in the same polarity, the current I U2 is magnetically coupled in the opposite polarity to these, and the winding turns ratio N 4 : N 5 is set as described above. The resultant magnetomotive force acting on the phase iron core is a closed triangle as shown in the drawing, that is, zero.

ところで、交流相間リアクトルは同一鉄心上に巻かれた巻線による起磁力の総和が理想的にはゼロになるように作用する。従って、絶縁変圧器2の2次巻線21,22の電圧に実効値の誤差が存在した場合、同一鉄心に作用する起磁力がゼロになるように作用し、これによって両2次巻線21,22の電流実効値は等しくなる。この場合、交流相間リアクトル3Aは移相機能を持たず、絶縁変圧器2の2次電圧誤差を補償する機能だけを持つ。なぜならば、交流相間リアクトル3Aの入力電圧は、絶縁変圧器2によって移相されているからである。   By the way, the AC interphase reactor acts so that the sum of magnetomotive forces by the windings wound on the same iron core is ideally zero. Therefore, when there is an error in the effective value in the voltage of the secondary windings 21 and 22 of the isolation transformer 2, the magnetomotive force acting on the same iron core acts so as to become zero. , 22 are equal to each other. In this case, the AC interphase reactor 3 </ b> A does not have a phase shift function, but has only a function for compensating for a secondary voltage error of the isolation transformer 2. This is because the input voltage of the AC interphase reactor 3 </ b> A is phase-shifted by the insulation transformer 2.

また、第1の交流相間リアクトル3Aの巻線3AU,3AV,3AWは第2の交流相間リアクトル3Bに接続され、前記リアクトル3Aの巻線3AU,3AV,3AWは第3の交流相間リアクトル3Cに接続されている。
ここで、第2,第3の交流相間リアクトル3B,3Cは、一相あたり3巻線が磁気結合されており、3U,3U,3U,3V,3V,3V,3W,3W,3Wは巻線を示す。なお、巻線3U,3V,3Wの巻数をN、巻線3U,3V,3Wの巻数をN、巻線3U,3V,3Wの巻数をNとする。
Further, the windings 3AU 1 , 3AV 1 , 3AW 1 of the first AC interphase reactor 3A are connected to the second AC interphase reactor 3B, and the windings 3AU 3 , 3AV 3 , 3AW 3 of the reactor 3A are the third It is connected to AC phase reactor 3C.
Here, in the second and third AC interphase reactors 3B and 3C, three windings are magnetically coupled per phase, and 3U 1 , 3U 2 , 3U 3 , 3V 1 , 3V 2 , 3V 3 , 3W 1 , 3W 2 and 3W 3 denote windings. Note that the number of turns of the windings 3U 1 , 3V 1 , 3W 1 is N 1 , the number of turns of the windings 3U 2 , 3V 2 , 3W 2 is N 2 , and the number of turns of the windings 3U 3 , 3V 3 , 3W 3 is N 3 . To do.

第2の交流相間リアクトル3Bの巻線3U,3V,3Wは第1の3相ブリッジ整流器1Aの交流回路に接続され、巻線3U,3V,3Wは第2の3相ブリッジ整流器1Bの交流回路に接続されている。また、第3の交流相間リアクトル3Cの巻線3U,3V,3Wは第3の3相ブリッジ整流器1Cの交流回路に接続され、巻線3U,3V,3Wは第4の3相ブリッジ整流器1Dの交流回路に接続されている。
第1〜第4の3相ブリッジ整流器1A〜1Dの直流回路は並列接続され、正負の直流端子P,N間には平滑コンデンサ4が接続されている。
The windings 3U 1 , 3V 1 , 3W 1 of the second AC interphase reactor 3B are connected to the AC circuit of the first three-phase bridge rectifier 1A, and the windings 3U 2 , 3V 2 , 3W 2 are the second three-phases. It is connected to the AC circuit of the bridge rectifier 1B. The windings 3U 1 , 3V 1 , 3W 1 of the third AC phase reactor 3C are connected to the AC circuit of the third three-phase bridge rectifier 1C, and the windings 3U 2 , 3V 2 , 3W 2 are connected to the fourth It is connected to the AC circuit of the three-phase bridge rectifier 1D.
The DC circuits of the first to fourth three-phase bridge rectifiers 1A to 1D are connected in parallel, and a smoothing capacitor 4 is connected between the positive and negative DC terminals P and N.

第2,第3の交流相間リアクトル3B,3Cにおいて、第1〜第4の3相ブリッジ整流器1A〜1Dに流れる電流の方向を交流電流の正方向と定めると、巻線3U,3V,3Wと巻線3U,3V,3Wとは同極性に磁気結合され、巻線3U,3V,3Wはこれらと逆極性に磁気結合されている。
第2,第3の交流相間リアクトル3B,3Cの構成は、図8及び図10の交流相間リアクトル31と同様であるが、ここでは、前述した巻数比が、
:N:N=7.08:6.08:1
に設定されている。
なお、実用上は、上記巻数比は7:6:1であっても構わない。
In the second and third AC interphase reactors 3B and 3C, when the direction of the current flowing through the first to fourth three-phase bridge rectifiers 1A to 1D is defined as the positive direction of the AC current, the windings 3U 1 , 3V 1 , 3W 1 and windings 3U 3 , 3V 3 , 3W 3 are magnetically coupled with the same polarity, and windings 3U 2 , 3V 2 , 3W 2 are magnetically coupled with the opposite polarity.
The configuration of the second and third AC interphase reactors 3B and 3C is the same as that of the AC interphase reactor 31 of FIGS. 8 and 10, but here, the turn ratio described above is
N 1 : N 2 : N 3 = 7.08: 6.08: 1
Is set to
In practice, the turn ratio may be 7: 6: 1.

これにより、第2,第3の交流相間リアクトル3B,3Cの各2組の出力における移相機能は±7.5度となる。
その結果、3相ブリッジ整流器1Dの入力位相を基準位相とすると、3相ブリッジ整流器1A〜1Dの入力位相は45度、30度、15度、0度となるため、この整流回路は並列24パルス整流回路として動作する。
なお、本実施形態では絶縁変圧器として3巻線絶縁変圧器2を用いているが、2台の2巻線変圧器を用いても同様の作用効果を得ることができる。また、直流電流を平滑化するために、3相ブリッジ整流器1A〜1Dの出力端子は直流リアクトルを介して並列接続しても良い。
As a result, the phase shift function at the outputs of the two sets of the second and third AC interphase reactors 3B and 3C is ± 7.5 degrees.
As a result, assuming that the input phase of the three-phase bridge rectifier 1D is a reference phase, the input phases of the three-phase bridge rectifiers 1A to 1D are 45 degrees, 30 degrees, 15 degrees, and 0 degrees. Operates as a rectifier circuit.
In the present embodiment, the three-winding insulation transformer 2 is used as the insulation transformer. However, similar effects can be obtained by using two two-winding transformers. Further, in order to smooth the direct current, the output terminals of the three-phase bridge rectifiers 1A to 1D may be connected in parallel via a direct current reactor.

図8や図9に示した従来の並列12パルス整流回路用の交流相間リアクトル31,32の移相機能は±15度であり、図10に示した従来の並列18パルス整流回路用交流相間リアクトル31の移相機能は±20度であったのに対し、この実施形態によれば、移相機能が最大で±7.5度であるため、移相に伴う交流相間リアクトル3B,3Cの容量増大を抑制してリアクトル及び回路全体の小形化、低価格化を図ることができる。また、並列24パルス整流回路によって大容量かつ高調波の少ない整流回路を提供可能である。   The phase shift function of the AC phase reactors 31 and 32 for the conventional parallel 12-pulse rectifier circuit shown in FIGS. 8 and 9 is ± 15 degrees, and the conventional AC phase reactor for the parallel 18-pulse rectifier circuit shown in FIG. 31 has a phase shift function of ± 20 degrees, but according to this embodiment, since the phase shift function is ± 7.5 degrees at the maximum, the capacity of the reactors 3B and 3C between the AC phases accompanying the phase shift By suppressing the increase, the reactor and the entire circuit can be reduced in size and cost. A parallel 24 pulse rectifier circuit can provide a rectifier circuit with a large capacity and less harmonics.

次に、図3は請求項2に相当する本発明の第2実施形態の回路図である。第1実施形態と同一の構成要素には同一の参照符号を付して説明を省略し、以下では異なる部分を中心に説明する。
この第2実施形態では、第1の交流相間リアクトル3Dが第1,第2の絶縁変圧器2A,2Bの1次側に接続されている
低圧大容量の整流回路では、その出力電流が大電流になるので、リアクトルの製作が困難になる場合がある。このため、本実施形態では交流相間リアクトル3Dを絶縁変圧器2A,2Bの1次側、すなわち高圧回路に接続して電流値を低減する。また、交流相間リアクトル3Dが絶縁変圧器2A,2Bの1次側に接続されることにより、交流相間リアクトル3Dの第1の出力端子群と第2の出力端子群に流れる電流は同位相となる。これにより、交流相間リアクトル3Dは同一鉄心上に逆極性に磁気結合した同一巻数の2巻線で構成できるため、構成が簡単になって小形化が可能になる。
Next, FIG. 3 is a circuit diagram of a second embodiment of the present invention corresponding to claim 2. The same components as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. Hereinafter, different portions will be mainly described.
In the second embodiment, the first AC interphase reactor 3D is connected to the primary side of the first and second insulation transformers 2A and 2B.
In the low-voltage and large-capacity rectifier circuit, the output current becomes a large current, which may make it difficult to manufacture the reactor. For this reason, in this embodiment, AC phase reactor 3D is connected to the primary side of insulation transformer 2A, 2B, ie, a high voltage circuit, and an electric current value is reduced. Further, the AC phase reactor 3D is connected to the primary side of the isolation transformers 2A and 2B, so that the currents flowing through the first output terminal group and the second output terminal group of the AC phase reactor 3D have the same phase. . As a result, the AC interphase reactor 3D can be configured with two windings having the same number of turns magnetically coupled to the opposite polarity on the same iron core, and thus the configuration can be simplified and the size can be reduced.

交流相間リアクトル3Dは、3相入力端子U,V,Wに接続された巻線3DU,3DU,3DV,3DV,3DW,3DWを備え、巻線3DU,3DV,3DWは第1の絶縁変圧器2Aの1次巻線2Aに接続されると共に、巻線3DU,3DV,3DWは第2の絶縁変圧器2Bの1次巻線2Bに接続される。また、3相入力端子U,V,Wに接続された各2巻線は何れも逆極性に磁気結合されている。
仮に絶縁変圧器2A,2Bの変圧比に誤差があっても、交流相間リアクトル3Dの逆極性に磁気結合した2巻線の作用により、絶縁変圧器2A,2Bの1次電流は等しくなり、その結果、2次電流もほぼ等しくなる。
The AC interphase reactor 3D includes windings 3DU 1 , 3DU 2 , 3DV 1 , 3DV 2 , 3DW 1 , 3DW 2 connected to the three-phase input terminals U, V, W, and windings 3DU 1 , 3DV 1 , 3DW. 1 is connected to the primary winding 2A 1 of the first isolation transformer 2A, winding 3DU 2, 3DV 2, 3DW 2 is connected to the primary winding 2B 1 of the second isolation transformer 2B The Each of the two windings connected to the three-phase input terminals U, V, and W is magnetically coupled to each other with a reverse polarity.
Even if there is an error in the transformation ratio of the insulation transformers 2A and 2B, the primary currents of the insulation transformers 2A and 2B become equal due to the action of the two windings magnetically coupled to the opposite polarity of the AC interphase reactor 3D. As a result, the secondary current is also substantially equal.

絶縁変圧器2A,2Bの1次巻線2A,2Bは共にデルタ結線であり、一方の2次巻線2Aはスター結線、他方の2次巻線2Bはデルタ結線であるため、絶縁変圧器2A,2Bの2次電圧の位相差は30度である。
絶縁変圧器2Aの2次巻線2Aには第2の交流相間リアクトル3Bが接続され、絶縁変圧器2Bの2次巻線2Bには第3の交流相間リアクトル3Cが接続されている。これらの交流相間リアクトルの結線及び巻数比は、図1における交流相間リアクトル3B,3Cと同一であり、リアクトル3B,3Cの各2組の出力における移相機能は第1実施形態と同様に±7.5度である。
また、リアクトル3B,3Cの出力端子には、前記同様に第1〜第4の3相ブリッジ整流器1A〜1Dの交流回路が接続されている。
Since the primary windings 2A 1 and 2B 1 of the isolation transformers 2A and 2B are both delta connections, one of the secondary windings 2A 2 is a star connection and the other secondary winding 2B 2 is a delta connection. The phase difference between the secondary voltages of the isolation transformers 2A and 2B is 30 degrees.
The secondary winding 2A and second isolation transformer 2A is connected to a second AC interphase reactor 3B, the secondary winding 2B 2 insulating transformer 2B is connected to a third alternating interphase reactors 3C. The connection and turn ratio of these AC interphase reactors are the same as those of the AC interphase reactors 3B and 3C in FIG. 1, and the phase shift function at the two sets of outputs of the reactors 3B and 3C is ± 7 as in the first embodiment. .5 degrees.
Similarly, the AC circuits of the first to fourth three-phase bridge rectifiers 1A to 1D are connected to the output terminals of the reactors 3B and 3C, as described above.

本実施形態においても、3相ブリッジ整流器1Dの入力位相を基準位相とすると、3相ブリッジ整流器1A〜1Dの入力電流は実効値が等しく、また、入力位相は45度、30度、15度、0度となるため、この整流回路は並列24パルス整流回路として動作する。
この実施形態によれば、第1の交流相間リアクトル3Dを第1,第2の絶縁変圧器2A,2Bの1次側、すなわち本発明の目的とする用途では高圧側に接続して電流を低減し、また、これに伴ってリアクトル3Dの巻線構成も簡略化できるので、リアクトル及び回路全体の小形化が可能になる。
Also in this embodiment, assuming that the input phase of the three-phase bridge rectifier 1D is a reference phase, the input currents of the three-phase bridge rectifiers 1A to 1D have the same effective value, and the input phases are 45 degrees, 30 degrees, 15 degrees, Since this is 0 degree, this rectifier circuit operates as a parallel 24-pulse rectifier circuit.
According to this embodiment, the first AC interphase reactor 3D is connected to the primary side of the first and second isolation transformers 2A and 2B, that is, to the high voltage side for the purpose of the present invention, thereby reducing the current. In addition, the winding configuration of the reactor 3D can be simplified accordingly, so that the reactor and the entire circuit can be reduced in size.

次いで、図4は、請求項3に相当する本発明の第3実施形態を示す回路図である。第1実施形態と比較した場合の特徴的な部分は、±7.5度の移相機能を持つ第1の交流相間リアクトル3Bが第1,第2の3巻線絶縁変圧器2,2’の1次側に接続されていることである。   Next, FIG. 4 is a circuit diagram showing a third embodiment of the present invention corresponding to the third aspect. The characteristic part in comparison with the first embodiment is that the first AC interphase reactor 3B having a phase shift function of ± 7.5 degrees is the first and second three-winding insulation transformers 2, 2 ′. It is connected to the primary side.

第1の交流相間リアクトル3Bは、図3における交流相間リアクトル3B(及び3C)と同一の構成であり、巻線3U,3V,3Wは3相入力端子U,V,Wに接続されている。また、巻線3U,3V,3Wは第1の3巻線絶縁変圧器2の1次巻線に接続され、巻線3U,3V,3Wは第2の3巻線絶縁変圧器2’の1次巻線に接続されている。このため、第1,第2の3巻線絶縁変圧器2,2’の1次電圧は±7.5度の位相差を有する。 The first AC interphase reactor 3B has the same configuration as the AC interphase reactor 3B (and 3C) in FIG. 3, and the windings 3U 3 , 3V 3 , 3W 3 are connected to the three-phase input terminals U, V, W. ing. The windings 3U 1 , 3V 1 , 3W 1 are connected to the primary winding of the first three-winding insulation transformer 2, and the windings 3U 2 , 3V 2 , 3W 2 are the second three-winding insulation. It is connected to the primary winding of the transformer 2 ′. For this reason, the primary voltages of the first and second three-winding isolation transformers 2 and 2 ′ have a phase difference of ± 7.5 degrees.

第1,第2の3巻線絶縁変圧器2,2’の構成は図1の絶縁変圧器2と同様であり、何れも1次巻線がデルタ結線、第1の2次巻線がスター結線、第2の2次巻線がデルタ結線である。
これら各変圧器2,2’の第1,第2の2次巻線は、図1における交流相間リアクトル3Aと同一構成の第2,第3の交流相間リアクトル3A,3Eに接続されている。なお、交流相間リアクトル3A,3Eにおいて、3AU,3AV,3AW,3EU,3EV,3EWは巻数がNの巻線、3AU,3AU,3AV,3AV,3AW,3AW,3EU,3EU,3EV,3EV,3EW,3EWは巻数がNの巻線であり、これらの巻線は各変圧器2,2’の2次巻線電圧の実効値誤差を補償する機能を持っている。
また、第2,第3の交流相間リアクトル3A,3Eの各2組の3相出力端子は、直流回路が並列接続された第1〜第4の3相ブリッジ整流器1A〜1Dの交流回路にそれぞれ接続されている。
The configuration of the first and second three-winding insulation transformers 2 and 2 ′ is the same as that of the insulation transformer 2 in FIG. 1, and in each case, the primary winding is a delta connection and the first secondary winding is a star. The connection and the second secondary winding are delta connections.
The first and second secondary windings of these transformers 2 and 2 'are connected to second and third AC interphase reactors 3A and 3E having the same configuration as the AC interphase reactor 3A in FIG. Incidentally, the AC phase between reactors 3A, in 3E, 3AU 1, 3AV 1, 3AW 1, 3EU 1, 3EV 1, 3EW 1 the winding of the turns is N 4, 3AU 2, 3AU 3 , 3AV 2, 3AV 3, 3AW 2 , 3AW 3 , 3 EU 2 , 3 EU 3 , 3 EV 2 , 3 EV 3 , 3 EW 2 , 3 EW 3 are windings with N 5 turns, and these windings are secondary winding voltages of the transformers 2, 2 ′. It has a function to compensate for the RMS value error.
The two sets of three-phase output terminals of the second and third AC interphase reactors 3A and 3E are respectively connected to the AC circuits of the first to fourth three-phase bridge rectifiers 1A to 1D in which DC circuits are connected in parallel. It is connected.

この実施形態によれば、上記構成により、3相ブリッジ整流器1Dの入力位相を基準位相とすると、3相ブリッジ整流器1A〜1Dの入力電流は実効値が等しく、入力位相は45度、15度、30度、0度となるため、この整流回路は並列24パルス整流回路として動作する。   According to this embodiment, when the input phase of the three-phase bridge rectifier 1D is a reference phase, the input current of the three-phase bridge rectifiers 1A to 1D has the same effective value, and the input phase is 45 degrees, 15 degrees, Since 30 degrees and 0 degrees, this rectifier circuit operates as a parallel 24-pulse rectifier circuit.

特にこの実施形態では、従来では交流相間リアクトルのみによって±20度の移相を行っていたのに対し、±30度移相を行う絶縁変圧器2,2’を用いることにより、第2,第3の交流相間リアクトル3A,3Eにおける基本波成分の電圧降下をほぼゼロとし、かつ、±7.5度の移相を行う第1の交流相間リアクトル3Bを高圧回路に接続可能として電流を低減することにより、交流相間リアクトル3A,3E,3Bの小形化、低価格化が可能になる。
また、第1,第2実施形態では、第1,第2の3相ブリッジ整流器1A,1B間や第3,第4の3相ブリッジ整流器1C,1Dに流れる横流を抑制するために、第2,第3の交流相間リアクトル3B,3Cとして3台の単相リアクトルまたは5脚鉄心の3相リアクトルを用いる必要がある。これに対し、本実施形態では、絶縁変圧器2,2’の作用によって上述の横流が流れないので、安価な3相3脚鉄心を用いることができ、小形化、低価格化に一層寄与する。
In particular, in this embodiment, the phase shift of ± 20 degrees is conventionally performed only by the AC interphase reactor, but by using the isolation transformers 2 and 2 ′ that perform the phase shift of ± 30 degrees, The voltage drop of the fundamental wave component in the AC interphase reactors 3A and 3E is almost zero, and the first AC interphase reactor 3B that performs a phase shift of ± 7.5 degrees can be connected to the high voltage circuit to reduce the current. As a result, the AC phase reactors 3A, 3E, 3B can be reduced in size and price.
In the first and second embodiments, in order to suppress the cross current flowing between the first and second three-phase bridge rectifiers 1A and 1B and the third and fourth three-phase bridge rectifiers 1C and 1D, the second As the third AC interphase reactors 3B and 3C, it is necessary to use three single-phase reactors or three-phase reactors having a five-legged core. On the other hand, in this embodiment, since the above-mentioned cross current does not flow by the action of the insulation transformers 2 and 2 ′, an inexpensive three-phase three-legged core can be used, which further contributes to downsizing and cost reduction. .

次に、図5は請求項4に相当する本発明の第4実施形態を示す回路図である。
第1実施形態と比較した場合の特徴的な部分は、第1〜第3の交流相間リアクトル3B,3D,3Fが絶縁変圧器の1次側に接続されている点であり、絶縁変圧器としては第1〜第4の2巻線絶縁変圧器2A〜2Dを用いている。
Next, FIG. 5 is a circuit diagram showing a fourth embodiment of the present invention corresponding to the fourth aspect.
The characteristic part when compared with the first embodiment is that the first to third AC interphase reactors 3B, 3D, 3F are connected to the primary side of the insulation transformer, and as an insulation transformer Uses first to fourth two-winding insulation transformers 2A to 2D.

第1の交流相間リアクトル3Bは、図3における交流相間リアクトル3B(及び3C)と同一の構成であり、巻線3U,3V,3Wは3相入力端子U,V,Wに接続されている。また、巻線3U,3V,3Wの出力電圧及び巻線3U,3V,3Wの出力電圧は±7.5度の位相差を有する。第2,第3の交流相間リアクトル3D,3Fは、図3の第2実施形態における交流相間リアクトル3Dと同一の構成であり、それぞれ同一鉄心上に逆極性に磁気結合された同一巻数(N)の巻線3DU,3DU,3DV,3DV,3DW,3DW及び巻線3FU,3FU,3FV,3FV,3FW,3FWを備えている。 The first AC interphase reactor 3B has the same configuration as the AC interphase reactor 3B (and 3C) in FIG. 3, and the windings 3U 3 , 3V 3 , 3W 3 are connected to the three-phase input terminals U, V, W. ing. Further, the output voltages of the windings 3U 1 , 3V 1 and 3W 1 and the output voltages of the windings 3U 2 , 3V 2 and 3W 2 have a phase difference of ± 7.5 degrees. The second and third AC interphase reactors 3D and 3F have the same configuration as the AC interphase reactor 3D in the second embodiment of FIG. 3, and each have the same number of turns (N 4 ) magnetically coupled to the opposite polarity on the same iron core. ) Windings 3DU 1 , 3DU 2 , 3DV 1 , 3DV 2 , 3DW 1 , 3DW 2 and windings 3FU 1 , 3FU 2 , 3FV 1 , 3FV 2 , 3FW 1 , 3FW 2 .

また、第1,第3の絶縁変圧器2A,2Cは1次巻線がデルタ結線、2次巻線がスター結線であり、第2,第4の絶縁変圧器2B,2Dは1次巻線がデルタ結線、2次巻線もデルタ結線である。
第2の交流相間リアクトル3Dの巻線3DU,3DV,3DWは第1の絶縁変圧器2Aの1次巻線に接続され、同じく巻線3DU,3DV,3DWは第2の絶縁変圧器2Bの1次巻線に接続され、第3の交流相間リアクトル3Eの巻線3FU,3FV,3FWは第3の絶縁変圧器2Cの1次巻線に接続され、同じく巻線3FU,3FV,3FWは第4の絶縁変圧器2Dの1次巻線に接続されている。
更に、第1〜第4の2巻線絶縁変圧器2A〜2Dの2次巻線は第1〜第4の3相ブリッジ整流器1A〜1Dの交流回路にそれぞれ接続され、これらの直流回路は並列に接続されている。
The first and third isolation transformers 2A and 2C have a delta connection for the primary winding, a star connection for the secondary winding, and the primary windings for the second and fourth isolation transformers 2B and 2D. The delta connection and the secondary winding are also delta connections.
The windings 3DU 1 , 3DV 1 , 3DW 1 of the second AC interphase reactor 3D are connected to the primary winding of the first isolation transformer 2A, and the windings 3DU 2 , 3DV 2 , 3DW 2 are the second The winding 3FU 1 , 3FV 1 , 3FW 1 of the third AC interphase reactor 3E is connected to the primary winding of the third insulation transformer 2C and is connected to the primary winding of the insulation transformer 2B. Lines 3FU 2 , 3FV 2 , 3FW 2 are connected to the primary winding of the fourth isolation transformer 2D.
Further, the secondary windings of the first to fourth two-winding isolation transformers 2A to 2D are connected to the AC circuits of the first to fourth three-phase bridge rectifiers 1A to 1D, respectively, and these DC circuits are connected in parallel. It is connected to the.

この実施形態によれば、第1〜第3の交流相間リアクトル3B,3D,3Fと第1〜第4の2巻線絶縁変圧器2A〜2Dの作用により、3相ブリッジ整流器1Dの入力位相を基準位相とすると、3相ブリッジ整流器1A〜1Dの入力電流は実効値が等しく、入力位相は45度、15度、30度、0度となるため、この整流回路は並列24パルス整流回路として動作する。
この実施形態では、全ての交流相間リアクトル3B,3D,3Fを絶縁変圧器2A〜2Dの1次側、すなわち本発明が目的とする用途では高圧側に接続して電流を低減できると共に、第3実施形態と比べて交流相間リアクトル3D,3Fの巻線構成を簡略化できることにより、交流相間リアクトル及び回路全体を更に小形化、低価格化できる効果がある。
According to this embodiment, the input phase of the three-phase bridge rectifier 1D is obtained by the action of the first to third AC interphase reactors 3B, 3D, 3F and the first to fourth two-winding insulation transformers 2A to 2D. Assuming the reference phase, since the effective values of the input currents of the three-phase bridge rectifiers 1A to 1D are equal and the input phases are 45 degrees, 15 degrees, 30 degrees, and 0 degrees, this rectifier circuit operates as a parallel 24-pulse rectifier circuit. To do.
In this embodiment, all the AC interphase reactors 3B, 3D, 3F can be connected to the primary side of the isolation transformers 2A to 2D, that is, the high voltage side in the intended use of the present invention to reduce the current. Compared with the embodiment, the configuration of the windings of the AC interphase reactors 3D and 3F can be simplified, and thus there is an effect that the AC interphase reactor and the entire circuit can be further reduced in size and cost.

本発明の第1実施形態を示す回路図である。1 is a circuit diagram showing a first embodiment of the present invention. 第1実施形態における交流相間リアクトルの作用を説明するためのフェーザ図である。It is a phasor figure for demonstrating the effect | action of the reactor between alternating current phases in 1st Embodiment. 本発明の第2実施形態を示す回路図である。It is a circuit diagram which shows 2nd Embodiment of this invention. 本発明の第3実施形態を示す回路図である。It is a circuit diagram which shows 3rd Embodiment of this invention. 本発明の第4実施形態を示す回路図である。It is a circuit diagram which shows 4th Embodiment of this invention. 非特許文献1に記載された従来技術の回路図である。It is a circuit diagram of the prior art described in the nonpatent literature 1. 非特許文献1に記載された従来技術の回路図である。It is a circuit diagram of the prior art described in the nonpatent literature 1. 非特許文献2に記載された従来技術の回路図である。It is a circuit diagram of the prior art described in the nonpatent literature 2. 特許文献1に記載された従来技術の回路図である。It is a circuit diagram of the prior art described in Patent Document 1. 非特許文献3に記載された従来技術の回路図である。FIG. 6 is a circuit diagram of a conventional technique described in Non-Patent Document 3.

符号の説明Explanation of symbols

1A,1B,1C,1D:3相ブリッジ整流器
2,2’,2A,2B,2C,2D:絶縁変圧器
3A,3B,3C,3D,3E,3F:交流相間リアクトル
4:平滑コンデンサ
U,V,W:3相入力端子
P,N:直流出力端子
1A, 1B, 1C, 1D: Three-phase bridge rectifiers 2, 2 ', 2A, 2B, 2C, 2D: Insulation transformers 3A, 3B, 3C, 3D, 3E, 3F: Reactor between AC phases 4: Smoothing capacitors U, V , W: 3-phase input terminal P, N: DC output terminal

Claims (4)

互いに絶縁され、かつ、出力電圧がほぼ30度の位相差を持つ第1,第2の3相交流電源のうち、
第1の3相交流電源の出力が、第1の相間リアクトルの第1の入力端子群と出力端子群とを介して第2の相間リアクトルの入力端子群に入力され、
第2の3相交流電源の出力が、第1の相間リアクトルの第2の入力端子群と出力端子群とを介して第3の相間リアクトルの入力端子群に入力され、
第2の相間リアクトルの第1の出力端子群が第1の3相整流器の入力端子群に接続され、
第2の相間リアクトルの第2の出力端子群が第2の3相整流器の入力端子群に接続され、
第3の相間リアクトルの第1の出力端子群が第3の3相整流器の入力端子群に接続され、
第3の相間リアクトルの第2の出力端子群が第4の3相整流器の入力端子群に接続され、
第1〜第4の3相整流器の直流端子が直接または直流リアクトルを介して並列接続されてなる整流回路において、
第1の相間リアクトルは、
第1の入力端子群及び出力端子群に流れる電流と、第2の入力端子群及び出力端子群に流れる電流と、の実効値が等しく、かつ、これらの電流の位相差がほぼ30度のときにリアクトルの鉄心に作用する起磁力がほぼゼロになるように複数の巻線が互いに磁気結合され、
第2及び第3の相間リアクトルは、
各相間リアクトルの第1の出力端子群から流出する電流と、第2の出力端子群から流出する電流と、の実効値が等しく、かつ、これらの電流の位相差がほぼ15度のときに当該リアクトルの鉄心に作用する起磁力がほぼゼロになるように複数の巻線が互いに磁気結合されてなることを特徴とする並列24パルス整流回路。
Of the first and second three-phase AC power supplies that are insulated from each other and have an output voltage having a phase difference of approximately 30 degrees,
The output of the first three-phase AC power supply is input to the input terminal group of the second interphase reactor via the first input terminal group and the output terminal group of the first interphase reactor,
The output of the second three-phase AC power supply is input to the input terminal group of the third interphase reactor via the second input terminal group and the output terminal group of the first interphase reactor,
The first output terminal group of the second interphase reactor is connected to the input terminal group of the first three-phase rectifier,
A second output terminal group of the second interphase reactor is connected to an input terminal group of the second three-phase rectifier;
The first output terminal group of the third interphase reactor is connected to the input terminal group of the third three-phase rectifier,
The second output terminal group of the third interphase reactor is connected to the input terminal group of the fourth three-phase rectifier,
In the rectifier circuit in which the DC terminals of the first to fourth three-phase rectifiers are connected directly or in parallel via a DC reactor,
The first interphase reactor is
When the effective values of the current flowing through the first input terminal group and the output terminal group are equal to the current flowing through the second input terminal group and the output terminal group, and the phase difference between these currents is approximately 30 degrees The windings are magnetically coupled to each other so that the magnetomotive force acting on the reactor core is almost zero,
The second and third interphase reactors are
When the effective value of the current flowing out from the first output terminal group of each interphase reactor is equal to the effective value of the current flowing out from the second output terminal group, and the phase difference between these currents is approximately 15 degrees, A parallel 24-pulse rectifier circuit, wherein a plurality of windings are magnetically coupled to each other so that the magnetomotive force acting on the core of the reactor is substantially zero.
3相交流電源が、第1の相間リアクトルの第1の巻線群を介して第1の3相絶縁変圧器の入力端子に入力されると共に、第1の相間リアクトルの第2の巻線群を介して第2の3相絶縁変圧器の入力端子に接続され、
第1の3相絶縁変圧器の出力端子が、第2の相間リアクトルの入力端子群及び第1の出力端子群を介して第1の3相整流器の入力端子群に接続され、
第1の3相絶縁変圧器の出力端子が、第2の相間リアクトルの入力端子群及び第2の出力端子群を介して第2の3相整流器の入力端子群に接続され、
第2の3相絶縁変圧器の出力端子が、第3の相間リアクトルの入力端子群及び第1の出力端子群を介して第3の3相整流器の入力端子群に接続され、
第2の3相絶縁変圧器の出力端子が、第3の相間リアクトルの入力端子群及び第2の出力端子群を介して第4の3相整流器の入力端子群に接続され、
第1の3相絶縁変圧器の出力電圧と第2の3相絶縁変圧器の出力電圧との位相差がほぼ30度であり、
第1〜第4の3相整流器の直流端子が直接または直流リアクトルを介して並列接続されてなる整流回路において、
第1の相間リアクトルは、第1の巻線群及び第2の巻線群の巻数が等しく、かつ同一鉄心に巻かれる巻線が互いに逆極性に磁気結合しており、
第2及び第3の相間リアクトルは、
各相間リアクトルの第1の出力端子群から流出する電流と、第2の出力端子群から流出する電流と、の実効値が等しく、かつ、これらの電流の位相差がほぼ15度のときに当該リアクトルの鉄心に作用する起磁力がほぼゼロになるように複数の巻線が互いに磁気結合されていることを特徴とする並列24パルス整流回路。
A three-phase AC power supply is input to the input terminal of the first three-phase isolation transformer via the first winding group of the first interphase reactor, and the second winding group of the first interphase reactor. Is connected to the input terminal of the second three-phase isolation transformer via
The output terminal of the first three-phase isolation transformer is connected to the input terminal group of the first three-phase rectifier through the input terminal group of the second interphase reactor and the first output terminal group,
The output terminal of the first three-phase isolation transformer is connected to the input terminal group of the second three-phase rectifier through the input terminal group and the second output terminal group of the second interphase reactor,
The output terminal of the second three-phase isolation transformer is connected to the input terminal group of the third three-phase rectifier via the input terminal group of the third interphase reactor and the first output terminal group,
The output terminal of the second three-phase isolation transformer is connected to the input terminal group of the fourth three-phase rectifier through the input terminal group and the second output terminal group of the third interphase reactor,
The phase difference between the output voltage of the first three-phase isolation transformer and the output voltage of the second three-phase isolation transformer is approximately 30 degrees;
In the rectifier circuit in which the DC terminals of the first to fourth three-phase rectifiers are connected directly or in parallel via a DC reactor,
In the first interphase reactor, the number of turns of the first winding group and the second winding group is equal, and the windings wound on the same iron core are magnetically coupled with opposite polarities.
The second and third interphase reactors are
When the effective value of the current flowing out from the first output terminal group of each interphase reactor and the current flowing out from the second output terminal group are equal and the phase difference between these currents is approximately 15 degrees, A parallel 24-pulse rectifier circuit characterized in that a plurality of windings are magnetically coupled to each other so that the magnetomotive force acting on the core of the reactor is substantially zero.
3相交流電源が、第1の相間リアクトルの入力端子群及び第1の出力端子群を介して第1の3相絶縁変圧器の入力端子に接続されると共に、第1の相間リアクトルの入力端子群及び第2の出力端子群を介して第2の3相絶縁変圧器の入力端子に接続され、
第1の3相絶縁変圧器の第1の出力端子が、第2の相間リアクトルの第1の入力端子群及び出力端子群を介して第1の3相整流器の入力端子群に接続され、
第1の3相絶縁変圧器の第2の出力端子が、第2の相間リアクトルの第2の入力端子群及び出力端子群を介して第2の3相整流器の入力端子群に接続され、
第2の3相絶縁変圧器の第1の出力端子が、第3の相間リアクトルの第1の入力端子群及び出力端子群を介して第3の3相整流器の入力端子群に接続され、
第2の3相絶縁変圧器の第2の出力端子が、第3の相間リアクトルの第2の入力端子群及び出力端子群を介して第4の3相整流器の入力端子群に接続され、
第1の3相絶縁変圧器の第1の出力端子の電圧と第2の出力端子の電圧との位相差がほぼ30度であり、
第2の3相絶縁変圧器の第1の出力端子の電圧と第2の出力端子の電圧との位相差がほぼ30度であり、
第1〜第4の3相整流器の直流端子が直接または直流リアクトルを介して並列接続されてなる整流回路において、
第1の相間リアクトルは、
第1の出力端子群から流出する電流と、第2の出力端子群から流出する電流と、の実効値が等しく、かつ、これらの電流の位相差がほぼ15度のときに当該リアクトルの鉄心に作用する起磁力がほぼゼロになるように複数の巻線が互いに磁気結合され、
第2及び第3の相間リアクトルは、
第1の入力端子群及び出力端子群に流れる電流と、第2の入力端子群及び出力端子群に流れる電流と、の実効値が等しく、かつ、これらの電流の位相差がほぼ30度のときに当該リアクトルの鉄心に作用する起磁力がほぼゼロになるように複数の巻線が互いに磁気結合されていることを特徴とする並列24パルス整流回路。
The three-phase AC power source is connected to the input terminal of the first three-phase isolation transformer via the input terminal group and the first output terminal group of the first interphase reactor, and the input terminal of the first interphase reactor Connected to the input terminal of the second three-phase isolation transformer via the group and the second output terminal group,
The first output terminal of the first three-phase isolation transformer is connected to the input terminal group of the first three-phase rectifier through the first input terminal group and the output terminal group of the second interphase reactor,
The second output terminal of the first three-phase isolation transformer is connected to the input terminal group of the second three-phase rectifier through the second input terminal group and the output terminal group of the second interphase reactor,
The first output terminal of the second three-phase isolation transformer is connected to the input terminal group of the third three-phase rectifier through the first input terminal group and the output terminal group of the third interphase reactor,
The second output terminal of the second three-phase isolation transformer is connected to the input terminal group of the fourth three-phase rectifier through the second input terminal group and the output terminal group of the third interphase reactor,
The phase difference between the voltage at the first output terminal and the voltage at the second output terminal of the first three-phase isolation transformer is approximately 30 degrees;
The phase difference between the voltage at the first output terminal and the voltage at the second output terminal of the second three-phase isolation transformer is approximately 30 degrees;
In the rectifier circuit in which the DC terminals of the first to fourth three-phase rectifiers are connected directly or in parallel via a DC reactor,
The first interphase reactor is
When the effective value of the current flowing out from the first output terminal group is equal to the current flowing out from the second output terminal group and the phase difference between these currents is about 15 degrees, the current of the reactor core The windings are magnetically coupled to each other so that the acting magnetomotive force is almost zero,
The second and third interphase reactors are
When the effective value of the current flowing through the first input terminal group and the output terminal group is equal to the current flowing through the second input terminal group and the output terminal group, and the phase difference between these currents is approximately 30 degrees A parallel 24-pulse rectifier circuit characterized in that a plurality of windings are magnetically coupled to each other so that the magnetomotive force acting on the core of the reactor is substantially zero.
3相交流電源が、第1の相間リアクトルの入力端子群及び第1の出力端子群を介して第2の相間リアクトルの入力端子群に接続されると共に、第1の相間リアクトルの入力端子群及び第2の出力端子群を介して第3の相間リアクトルの入力端子群に接続され、
第2の相間リアクトルの第1の出力端子群が第1の3相絶縁変圧器を介して第1の3相整流器の入力端子群に接続され、
第2の相間リアクトルの第2の出力端子群が第2の3相絶縁変圧器を介して第2の3相整流器の入力端子群に接続され、
第3の相間リアクトルの第1の出力端子群が第3の3相絶縁変圧器を介して第3の3相整流器の入力端子群に接続され、
第3の相間リアクトルの第2の出力端子群が第4の3相絶縁変圧器を介して第4の3相整流器の入力端子群に接続され、
第1の3相絶縁変圧器の出力電圧と第2の3相絶縁変圧器の出力電圧との位相差がほぼ30度であり、
第3の3相絶縁変圧器の出力電圧と第4の3相絶縁変圧器の出力電圧との位相差がほぼ30度であり、
第1〜第4の3相整流器の直流端子が直接または直流リアクトルを介して並列接続されてなる整流回路において、
前記第1の相間リアクトルは、
第1の出力端子群から流出する電流と、第2の出力端子群から流出する電流と、の実効値が等しく、かつ、これらの電流の位相差がほぼ15度のときに当該リアクトルの鉄心に作用する起磁力がほぼゼロになるように複数の巻線が互いに磁気結合され、
第2及び第3の相間リアクトルは、第1の出力端子群に接続された第1の巻線群と、第2の出力端子群に接続された第2の巻線群と、の巻数が等しく、かつ同一鉄心に巻かれる巻線が互いに逆極性に磁気結合していることを特徴とする並列24パルス整流回路。
A three-phase AC power source is connected to the input terminal group of the second interphase reactor via the input terminal group and the first output terminal group of the first interphase reactor, and the input terminal group of the first interphase reactor and It is connected to the input terminal group of the third interphase reactor via the second output terminal group,
The first output terminal group of the second interphase reactor is connected to the input terminal group of the first three-phase rectifier through the first three-phase isolation transformer,
A second output terminal group of the second interphase reactor is connected to an input terminal group of the second three-phase rectifier through a second three-phase isolation transformer;
The first output terminal group of the third interphase reactor is connected to the input terminal group of the third three-phase rectifier through the third three-phase isolation transformer,
A second output terminal group of the third interphase reactor is connected to an input terminal group of the fourth three-phase rectifier through a fourth three-phase isolation transformer;
The phase difference between the output voltage of the first three-phase isolation transformer and the output voltage of the second three-phase isolation transformer is approximately 30 degrees;
The phase difference between the output voltage of the third three-phase isolation transformer and the output voltage of the fourth three-phase isolation transformer is approximately 30 degrees;
In the rectifier circuit in which the DC terminals of the first to fourth three-phase rectifiers are connected directly or in parallel via a DC reactor,
The first interphase reactor is:
When the effective value of the current flowing out from the first output terminal group is equal to the current flowing out from the second output terminal group and the phase difference between these currents is about 15 degrees, the current of the reactor core The windings are magnetically coupled to each other so that the acting magnetomotive force is almost zero,
The second and third interphase reactors have the same number of turns of the first winding group connected to the first output terminal group and the second winding group connected to the second output terminal group. A parallel 24-pulse rectifier circuit, wherein windings wound around the same iron core are magnetically coupled with opposite polarities.
JP2007122336A 2007-05-07 2007-05-07 Parallel 24 pulse rectifier circuit Active JP4973306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007122336A JP4973306B2 (en) 2007-05-07 2007-05-07 Parallel 24 pulse rectifier circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007122336A JP4973306B2 (en) 2007-05-07 2007-05-07 Parallel 24 pulse rectifier circuit

Publications (2)

Publication Number Publication Date
JP2008278713A true JP2008278713A (en) 2008-11-13
JP4973306B2 JP4973306B2 (en) 2012-07-11

Family

ID=40056020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007122336A Active JP4973306B2 (en) 2007-05-07 2007-05-07 Parallel 24 pulse rectifier circuit

Country Status (1)

Country Link
JP (1) JP4973306B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101834532A (en) * 2010-03-17 2010-09-15 山西昭鑫电力科技有限公司 High-voltage and high-power transducer
JP2012130210A (en) * 2010-12-17 2012-07-05 Toshiba Mitsubishi-Electric Industrial System Corp Electric power conversion apparatus
CN102891613A (en) * 2011-07-21 2013-01-23 台达电子企业管理(上海)有限公司 Alternating current (AC) to direct current (DC) power converter and DC charging station
JP2013021825A (en) * 2011-07-12 2013-01-31 Japan Radio Co Ltd Power supply device
CN102948056A (en) * 2010-06-10 2013-02-27 沙夫纳Emv股份公司 Integrated magnetic device for low harmonics three-phase front-end
US20150256099A1 (en) * 2014-03-10 2015-09-10 The Boeing Company Six-Phase Supplied Transformer Rectifier Unit
CN107425739A (en) * 2017-07-28 2017-12-01 南京航空航天大学 D types 24 arteries and veins self coupling vertoroes of asymmetry
CN109742969A (en) * 2019-01-11 2019-05-10 北京机械设备研究所 One kind being based on magnetic-coupled three-phase inverter
CN110460249A (en) * 2019-08-09 2019-11-15 湖南大学 A kind of 24 pulse wave tractive power supply system of magnetic integrated form for electric propulsion
JP2022540927A (en) * 2019-07-16 2022-09-20 エルデック・コーポレーション Asymmetric 24-pulse autotransformer rectifier unit for turbine electric propulsion and related systems and methods

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6014691U (en) * 1983-07-11 1985-01-31 株式会社明電舎 rectifier
JPH09135570A (en) * 1995-11-07 1997-05-20 Yaskawa Electric Corp Multiple rectifier
JPH10323045A (en) * 1997-05-20 1998-12-04 Yaskawa Electric Corp Rectifier
JPH11266586A (en) * 1998-01-14 1999-09-28 Mitsubishi Electric Corp Ac-to-dc power converter
JP2000358372A (en) * 1999-06-11 2000-12-26 Daikin Ind Ltd Three-phase rectifier
JP2002010646A (en) * 2000-06-15 2002-01-11 Toshiba Corp Rectifier and transformer
JP2002044953A (en) * 2000-07-27 2002-02-08 Daikin Ind Ltd Rectifier of three-phase half-voltage output type
JP2002095260A (en) * 2000-09-12 2002-03-29 Fuji Electric Systems Co Ltd Harmonics current suppressing power converter
JP2004215401A (en) * 2002-12-27 2004-07-29 Kawasaki Heavy Ind Ltd Rectifying device
JP2006211867A (en) * 2005-01-31 2006-08-10 Fuji Electric Systems Co Ltd Rectifying circuit
JP2007028846A (en) * 2005-07-20 2007-02-01 Daikin Ind Ltd Interphase reactor and three-phase multiplex rectification circuit

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6014691U (en) * 1983-07-11 1985-01-31 株式会社明電舎 rectifier
JPH09135570A (en) * 1995-11-07 1997-05-20 Yaskawa Electric Corp Multiple rectifier
JPH10323045A (en) * 1997-05-20 1998-12-04 Yaskawa Electric Corp Rectifier
JPH11266586A (en) * 1998-01-14 1999-09-28 Mitsubishi Electric Corp Ac-to-dc power converter
JP2000358372A (en) * 1999-06-11 2000-12-26 Daikin Ind Ltd Three-phase rectifier
JP2002010646A (en) * 2000-06-15 2002-01-11 Toshiba Corp Rectifier and transformer
JP2002044953A (en) * 2000-07-27 2002-02-08 Daikin Ind Ltd Rectifier of three-phase half-voltage output type
JP2002095260A (en) * 2000-09-12 2002-03-29 Fuji Electric Systems Co Ltd Harmonics current suppressing power converter
JP2004215401A (en) * 2002-12-27 2004-07-29 Kawasaki Heavy Ind Ltd Rectifying device
JP2006211867A (en) * 2005-01-31 2006-08-10 Fuji Electric Systems Co Ltd Rectifying circuit
JP2007028846A (en) * 2005-07-20 2007-02-01 Daikin Ind Ltd Interphase reactor and three-phase multiplex rectification circuit

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101834532A (en) * 2010-03-17 2010-09-15 山西昭鑫电力科技有限公司 High-voltage and high-power transducer
CN102948056A (en) * 2010-06-10 2013-02-27 沙夫纳Emv股份公司 Integrated magnetic device for low harmonics three-phase front-end
JP2013528348A (en) * 2010-06-10 2013-07-08 シャフナー・エーエムファウ・アクチェンゲゼルシャフト Integrated magnetic device for low-harmonic three-phase front-end equipment
JP2012130210A (en) * 2010-12-17 2012-07-05 Toshiba Mitsubishi-Electric Industrial System Corp Electric power conversion apparatus
JP2013021825A (en) * 2011-07-12 2013-01-31 Japan Radio Co Ltd Power supply device
CN102891613A (en) * 2011-07-21 2013-01-23 台达电子企业管理(上海)有限公司 Alternating current (AC) to direct current (DC) power converter and DC charging station
US20150256099A1 (en) * 2014-03-10 2015-09-10 The Boeing Company Six-Phase Supplied Transformer Rectifier Unit
US9793820B2 (en) * 2014-03-10 2017-10-17 The Boeing Company Six-phase supplied transformer rectifier unit
CN107425739A (en) * 2017-07-28 2017-12-01 南京航空航天大学 D types 24 arteries and veins self coupling vertoroes of asymmetry
CN107425739B (en) * 2017-07-28 2020-01-31 南京航空航天大学 D-type asymmetric 24-pulse autotransformer rectifier
CN109742969A (en) * 2019-01-11 2019-05-10 北京机械设备研究所 One kind being based on magnetic-coupled three-phase inverter
CN109742969B (en) * 2019-01-11 2020-05-19 北京机械设备研究所 Three-phase inverter based on magnetic coupling
JP2022540927A (en) * 2019-07-16 2022-09-20 エルデック・コーポレーション Asymmetric 24-pulse autotransformer rectifier unit for turbine electric propulsion and related systems and methods
CN110460249A (en) * 2019-08-09 2019-11-15 湖南大学 A kind of 24 pulse wave tractive power supply system of magnetic integrated form for electric propulsion

Also Published As

Publication number Publication date
JP4973306B2 (en) 2012-07-11

Similar Documents

Publication Publication Date Title
JP4973306B2 (en) Parallel 24 pulse rectifier circuit
JP6181132B2 (en) Power converter
US5455759A (en) Symmetrical, phase-shifting, fork transformer
US7233506B1 (en) Low kVA/kW transformers for AC to DC multipulse converters
US7095636B2 (en) Electromagnetic interference filter for an autotransformer
US7274280B1 (en) Nine-phase step-up/step-down autotransformer
US6650557B2 (en) 18-pulse rectification system using a wye-connected autotransformer
US20080165553A1 (en) Eighteen pulse rectification scheme for use with variable frequency drives
JP6404768B2 (en) Power converter
JP2008178180A (en) Rectifier circuit
US20130020869A1 (en) Arrangement for Power Supply for a reactor for production of polysilicon with a frequency converter
US7750782B1 (en) Nine-phase autotransformer
JP3237983B2 (en) Multiple inverter device
Abdollahi Power quality enhancement of a T-connected autotransformer based on 72-pulse AC–DC converter with rated power reduction
JP2008278714A (en) Rectifier circuit
CN107148730A (en) Power inverter
JP2014230438A (en) Electric power conversion system
US20160126857A1 (en) Autotransformer with wide range of, integer turns, phase shift, and voltage
US7719858B1 (en) Fifteen-phase autotransformer
JP2016086641A (en) Power conversion device
JP5029129B2 (en) Parallel 18-pulse rectifier circuit
Chivite-Zabalza et al. A passive 36-pulse AC–DC converter with inherent load balancing using combined harmonic voltage and current injection
US11450477B2 (en) Phase-shift autotransformer, multi-pulse rectifier systems and fast charging
JP2008061466A (en) Power conversion system
Choi et al. Multi-pulse converters for high voltage and high power applications

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20100415

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120229

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120326

R150 Certificate of patent or registration of utility model

Ref document number: 4973306

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250