JP2008278585A - Electric vehicle charging control system, and electric vehicle charging control method - Google Patents

Electric vehicle charging control system, and electric vehicle charging control method Download PDF

Info

Publication number
JP2008278585A
JP2008278585A JP2007117008A JP2007117008A JP2008278585A JP 2008278585 A JP2008278585 A JP 2008278585A JP 2007117008 A JP2007117008 A JP 2007117008A JP 2007117008 A JP2007117008 A JP 2007117008A JP 2008278585 A JP2008278585 A JP 2008278585A
Authority
JP
Japan
Prior art keywords
charging
electric vehicle
battery
charging element
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007117008A
Other languages
Japanese (ja)
Other versions
JP5223232B2 (en
Inventor
Masatoshi Nagahama
昌俊 長▲濱▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Equos Research Co Ltd
Original Assignee
Equos Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Equos Research Co Ltd filed Critical Equos Research Co Ltd
Priority to JP2007117008A priority Critical patent/JP5223232B2/en
Publication of JP2008278585A publication Critical patent/JP2008278585A/en
Application granted granted Critical
Publication of JP5223232B2 publication Critical patent/JP5223232B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0092Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption with use of redundant elements for safety purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/20AC to AC converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To generate a driving force sufficiently and restrain the durability of a battery from deteriorating. <P>SOLUTION: This system has a charging element, an electric machine, a charging circuit 65 which is selectively connected with the power source of a charging facility, a charging control treatment means which starts the charging of the charging element at the set time before the planned time to start the running of an electric vehicle and stops the charging of the charging element when specified charging stop conditions are achieved until the planned time to start the running of the electric vehicle, and a discharging control treatment means which starts the discharging of the charging element in case that the start of the electric vehicle is not confirmed after passage of a specified time since the set time. Since it is so arranged as to charge the charging element before starting the running of the electric vehicle and then, discharge the charging element, it can generate a driving force sufficiently for running the electric vehicle. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電動車両充電制御システム及び電動車両充電制御方法に関するものである。   The present invention relates to an electric vehicle charge control system and an electric vehicle charge control method.

従来、電気自動車、ハイブリッド型車両等の電動車両においては、駆動モータにバッテリが接続され、該バッテリを放電させることによって発生させられた電力を駆動モータに供給して、駆動モータを駆動したり、制動時等において駆動モータで電力を回生し、回生した電力をバッテリに供給してバッテリを充電したりすることができる。また、例えば、自宅等に電動車両を置き、充電設備のコンセントにプラグを差し込むことによって外部電源からバッテリを充電することができるようになっている(例えば、特許文献1参照。)。
特開2000−116019号公報
Conventionally, in an electric vehicle such as an electric vehicle or a hybrid vehicle, a battery is connected to the drive motor, and electric power generated by discharging the battery is supplied to the drive motor to drive the drive motor. The electric power can be regenerated by the drive motor during braking or the like, and the regenerated electric power can be supplied to the battery to charge the battery. In addition, for example, an electric vehicle is placed at home or the like, and a battery can be charged from an external power source by inserting a plug into an outlet of a charging facility (see, for example, Patent Document 1).
JP 2000-1116019 A

しかしながら、前記従来の電動車両においては、電動車両を急に走行させる必要が生じたときに、バッテリ残量が小さいと、発生する電気量が小さいので、EV走行モードを優先して電動車両を走行させる場合に、航続距離が短くなり、場合によっては、電動車両を走行させるのに必要な車両要求トルク、すなわち、駆動力を十分に発生させることができなくなってしまう。そこで、次回、電動車両を急に走行させる必要が生じたときに、航続距離を長くすることができ、駆動力を十分に発生させることができるように、電動車両の運転を停止させる前に、バッテリ残量を大きい状態に保持しておくことが考えられる。ところが、バッテリ残量を大きい状態に保持する場合、バッテリの電解液、電極等が劣化し、バッテリの耐久性がその分低くなってしまう。   However, in the conventional electric vehicle, when it is necessary to make the electric vehicle run suddenly, if the remaining amount of the battery is small, the amount of electricity generated is small. Therefore, the electric vehicle is driven with priority on the EV driving mode. In this case, the cruising distance is shortened, and in some cases, the required vehicle torque necessary for running the electric vehicle, that is, the driving force cannot be sufficiently generated. Therefore, before stopping the operation of the electric vehicle, the next time when it becomes necessary to make the electric vehicle suddenly travel, the cruising distance can be increased and the driving force can be sufficiently generated. It is conceivable to keep the remaining battery level large. However, when the battery remaining amount is kept large, the battery electrolyte, electrodes, and the like deteriorate, and the durability of the battery is reduced accordingly.

本発明は、前記従来の電動車両の問題点を解決して、EV走行モードを優先して電動車両を走行させる場合で、電動車両を急に走行させる必要が生じたときに、航続距離を長くすることができ、駆動力を十分に発生させることができ、しかも、バッテリの耐久性が低下するのを抑制することができる電動車両充電制御システム及び電動車両充電制御方法を提供することを目的とする。   The present invention solves the problems of the conventional electric vehicle and increases the cruising distance when the electric vehicle needs to be driven suddenly when the electric vehicle is driven with priority on the EV driving mode. It is an object of the present invention to provide an electric vehicle charging control system and an electric vehicle charging control method capable of generating a sufficient driving force and suppressing a decrease in battery durability. To do.

そのために、本発明の電動車両充電制御システムにおいては、充電要素と、該充電要素から電力が供給されて駆動される電動機械と、充電施設の電源と選択的に接続され、前記充電要素を充電するための充電回路と、電動車両の走行を開始する予定の時刻より所定の時間前に設定された設定時刻で充電要素の充電を開始し、前記電動車両の走行を開始する予定の時刻までに、所定の充電停止条件が成立したときに、充電要素の充電を停止させる充電制御処理手段と、前記設定時刻から更に所定の時間が経過した後に、電動車両の始動が確認されない場合に、充電要素の放電を開始し、充電残量が小さくなって、あらかじめ設定された値になると、充電要素の放電を停止させる放電制御処理手段とを有する。   For this purpose, in the electric vehicle charging control system of the present invention, the charging element, the electric machine driven by power supplied from the charging element, and the power source of the charging facility are selectively connected to charge the charging element. A charging circuit for starting the charging and charging of the charging element at a set time set a predetermined time before the scheduled time for starting the running of the electric vehicle, and by the scheduled time for starting the running of the electric vehicle A charging control processing means for stopping charging of the charging element when a predetermined charging stop condition is satisfied, and the charging element when the start of the electric vehicle is not confirmed after a further predetermined time has elapsed from the set time. Discharge control processing means for stopping the discharge of the charging element when the remaining charge becomes small and reaches a preset value.

本発明によれば、電動車両充電制御システムにおいては、充電要素と、該充電要素から電力が供給されて駆動される電動機械と、充電施設の電源と選択的に接続され、前記充電要素を充電するための充電回路と、電動車両の走行を開始する予定の時刻より所定の時間前に設定された設定時刻で充電要素の充電を開始し、前記電動車両の走行を開始する予定の時刻までに、所定の充電停止条件が成立したときに、充電要素の充電を停止させる充電制御処理手段と、前記設定時刻から更に所定の時間が経過した後に、電動車両の始動が確認されない場合に、充電要素の放電を開始し、充電残量が小さくなって、あらかじめ設定された値になると、充電要素の放電を停止させる放電制御処理手段とを有する。   According to the present invention, in the electric vehicle charging control system, the charging element, the electric machine driven by power supplied from the charging element, and the power source of the charging facility are selectively connected to charge the charging element. A charging circuit for starting the charging and charging of the charging element at a set time set a predetermined time before the scheduled time for starting the running of the electric vehicle, and by the scheduled time for starting the running of the electric vehicle A charging control processing means for stopping charging of the charging element when a predetermined charging stop condition is satisfied, and the charging element when the start of the electric vehicle is not confirmed after a further predetermined time has elapsed from the set time. Discharge control processing means for stopping the discharge of the charging element when the remaining charge becomes small and reaches a preset value.

この場合、電動車両の走行を開始する前に充電要素を充電し、その後、所定の設定時刻で、充電要素の放電を開始するようになっているので、充電要素の放電を利用して電動車両を走行させるモードを優先して電動車両を走行させる場合で、電動車両を急に走行させる必要が生じたときに、航続距離を長くすることができ、駆動力を十分に発生させることができ、しかも、バッテリの耐久性が低下するのを抑制することができる。   In this case, since the charging element is charged before the running of the electric vehicle is started, and then the discharging of the charging element is started at a predetermined set time, the electric vehicle is used by using the discharging of the charging element. In the case where the electric vehicle is driven with priority on the mode for traveling the vehicle, when it is necessary to make the electric vehicle suddenly travel, the cruising distance can be increased, and the driving force can be generated sufficiently. And it can suppress that the durability of a battery falls.

以下、本発明の実施の形態について図面を参照しながら詳細に説明する。この場合、電動車両としてのハイブリッド型車両について説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In this case, a hybrid vehicle as an electric vehicle will be described.

図1は本発明の実施の形態における電動駆動制御装置のブロック図である。   FIG. 1 is a block diagram of an electric drive control device according to an embodiment of the present invention.

図において、11はエンジン、12は図示されないクランクシャフトと接続され、前記エンジン11を駆動することによって発生させられた回転が出力される出力軸、13は該出力軸12を介して入力されたトルクを分配する差動回転装置としてのプラネタリギヤユニット、16は、伝達軸17を介して前記プラネタリギヤユニット13と連結され、プラネタリギヤユニット13によって分配されたトルクを受ける第1の電動機械としての発電機(G)、25は出力軸14を介して前記プラネタリギヤユニット13と連結され、プラネタリギヤユニット13によって分配されたトルクを受ける第2の電動機械としての駆動モータ(M)である。前記エンジン11、発電機16及び駆動モータ25は、互いに差動回転自在に、かつ、機械的に連結されるとともに、更に出力軸18を介して車輪である駆動輪37と機械的に連結される。   In the figure, 11 is an engine, 12 is connected to a crankshaft (not shown), and an output shaft to which rotation generated by driving the engine 11 is output, and 13 is a torque input via the output shaft 12. A planetary gear unit 16 serving as a differential rotating device that distributes the power is connected to the planetary gear unit 13 via a transmission shaft 17 and a generator (G that receives torque distributed by the planetary gear unit 13) (G , 25 is a drive motor (M) as a second electric machine which is connected to the planetary gear unit 13 via the output shaft 14 and receives the torque distributed by the planetary gear unit 13. The engine 11, the generator 16 and the drive motor 25 are mechanically connected to each other so as to be differentially rotatable and mechanically connected to a drive wheel 37 which is a wheel via an output shaft 18. .

そして、前記プラネタリギヤユニット13は、少なくとも、第1の差動要素としての図示されないサンギヤ、該サンギヤと噛(し)合する図示されないピニオン、該ピニオンと噛合する第2の差動要素としての図示されないリングギヤ、及び前記ピニオンを回転自在に支持する第3の差動要素としての図示されないキャリヤを備え、前記サンギヤは前記伝達軸17を介して発電機16と、リングギヤは、出力軸14及び図示されない所定のギヤ列を介して駆動モータ25と、キャリヤは出力軸12を介してエンジン11と連結される。   The planetary gear unit 13 includes at least a sun gear (not shown) as a first differential element, a pinion (not shown) that meshes with the sun gear, and a second differential element that meshes with the pinion (not shown). A ring gear and a carrier (not shown) as a third differential element that rotatably supports the pinion are provided. The sun gear is connected to the generator 16 via the transmission shaft 17, and the ring gear is connected to the output shaft 14 and a predetermined not shown. The drive motor 25 and the carrier are connected to the engine 11 via the output shaft 12.

また、前記キャリヤと図示されないケースとの間に図示されないワンウェイクラッチが配設され、該ワンウェイクラッチは、エンジン11から正方向の回転がキャリヤに伝達されたときにフリーになり、発電機16又は駆動モータ25から逆方向の回転がキャリヤに伝達されたときにロックされ、エンジン11が逆方向に回転させられるのを阻止する。   A one-way clutch (not shown) is disposed between the carrier and a case (not shown), and the one-way clutch becomes free when the forward rotation from the engine 11 is transmitted to the carrier, and the generator 16 or the drive It is locked when reverse rotation is transmitted from the motor 25 to the carrier, preventing the engine 11 from rotating in the reverse direction.

前記発電機16は発電機インバータとしてのインバータ28に、駆動モータ25は駆動モータインバータとしてのインバータ29に接続され、各インバータ28、29は、いずれも、複数の、例えば、6個のスイッチング素子としての図示されないトランジスタを備え、該各トランジスタは、一対ずつユニット化されて各相のトランジスタモジュール(IGBT)を構成し、第1の電源としての、かつ、充電要素としてのバッテリ43と接続される。なお、バッテリ43に代えて、又はバッテリ43に加えて図示されないキャパシタを充電要素して接続することができる。   The generator 16 is connected to an inverter 28 as a generator inverter, the drive motor 25 is connected to an inverter 29 as a drive motor inverter, and each of the inverters 28 and 29 is a plurality of, for example, six switching elements. The transistors are united one by one to form a transistor module (IGBT) for each phase, and are connected to a battery 43 as a first power source and as a charging element. A capacitor (not shown) can be connected as a charging element instead of the battery 43 or in addition to the battery 43.

前記発電機16は、バッテリ43から電力が供給されて駆動され、発電機16のトルク、すなわち、発電機トルクを発生させ、発電時に電力を発生させ、バッテリ43に送る。   The generator 16 is driven by being supplied with electric power from the battery 43, generates torque of the generator 16, that is, generator torque, generates electric power during power generation, and sends it to the battery 43.

前記駆動モータ25は、バッテリ43から電力が供給されて駆動され、駆動モータ25のトルク、すなわち、駆動モータトルクを発生させて駆動輪37に送り、回生時に駆動輪37の回転を受けて電力を回生し、バッテリ43に送る。   The drive motor 25 is driven by being supplied with electric power from the battery 43, generates torque of the drive motor 25, that is, drive motor torque, sends it to the drive wheel 37, and receives the rotation of the drive wheel 37 during regeneration to generate electric power. Regenerate and send to battery 43.

そして、発電機16及び駆動モータ25の制御を行うために第1の制御装置としての駆動部制御装置49が、前記エンジン11の制御を行うために第2の制御装置としてのエンジン制御装置46が配設され、前記駆動部制御装置49及びエンジン制御装置46が主制御装置としての車両制御装置50に接続される。前記エンジン制御装置46、駆動部制御装置49及び車両制御装置50は、いずれも、図示されないCPU、記録装置等によって構成され、所定のプログラム、データ等に基づいて各種の演算を行い、コンピュータとして機能する。また、前記エンジン制御装置46及び駆動部制御装置49は、車両制御装置50に対して下位の制御装置を構成し、車両制御装置50は、前記エンジン制御装置46及び駆動部制御装置49に対して上位の制御装置を構成する。なお、前記エンジン制御装置46、駆動部制御装置49及び車両制御装置50によって電動車両充電制御システムが構成される。   In order to control the generator 16 and the drive motor 25, a drive unit control device 49 serving as a first control device is used. In order to control the engine 11, an engine control device 46 serving as a second control device is used. The drive unit control device 49 and the engine control device 46 are connected to a vehicle control device 50 as a main control device. The engine control device 46, the drive unit control device 49, and the vehicle control device 50 are all configured by a CPU, a recording device, etc. (not shown), and perform various calculations based on a predetermined program, data, etc., and function as a computer. To do. The engine control device 46 and the drive unit control device 49 constitute a lower control device for the vehicle control device 50, and the vehicle control device 50 is used for the engine control device 46 and the drive unit control device 49. A higher-level control device is configured. The engine control device 46, the drive unit control device 49, and the vehicle control device 50 constitute an electric vehicle charging control system.

前記駆動部制御装置49は、発電機16を駆動するための駆動信号をインバータ28に、駆動モータ25を駆動するための駆動信号をインバータ29にそれぞれ送る。   The drive unit control device 49 sends a drive signal for driving the generator 16 to the inverter 28 and a drive signal for driving the drive motor 25 to the inverter 29.

前記インバータ28は、駆動信号に従って駆動され、発電機16の力行時にバッテリ43から電力、すなわち、直流の電流を受けて、各相の電流を発生させ、各相の電流を発電機16に供給し、発電機16の発電時に発電機16から各相の電流を受けて、直流の電流を発生させ、バッテリ43に供給する。   The inverter 28 is driven according to a drive signal, receives power from the battery 43, that is, a direct current when the generator 16 is powered, generates a current of each phase, and supplies the current of each phase to the generator 16. When the generator 16 generates power, it receives a current of each phase from the generator 16, generates a direct current, and supplies it to the battery 43.

また、前記インバータ29は、駆動信号に従って駆動され、駆動モータ25の力行時にバッテリ43から電力、すなわち、直流の電流を受けて、各相の電流を発生させ、各相の電流を駆動モータ25に供給し、駆動モータ25の回生時に駆動モータ25から各相の電流を受けて、直流の電流を発生させ、バッテリ43に供給する。なお、本実施の形態においては、発電機16による発電を駆動モータ25による回生として説明する。   The inverter 29 is driven in accordance with a drive signal, receives electric power, that is, a direct current from the battery 43 when the drive motor 25 is powered, generates a current of each phase, and supplies the current of each phase to the drive motor 25. When the drive motor 25 is regenerated, each phase current is received from the drive motor 25 to generate a direct current, which is supplied to the battery 43. In the present embodiment, power generation by the generator 16 will be described as regeneration by the drive motor 25.

そして、48はバッテリ43の電圧を制御用の電圧に変換して前記車両制御装置50に印加するDC/DCコンバータ、52はバッテリ43の電流、すなわち、バッテリ電流Ibを検出する電流検出部としてのバッテリ電流センサ、53はバッテリ43の電圧、すなわち、バッテリ電圧Vbを検出する電圧検出部としてのバッテリ電圧センサであり、車両制御装置50の図示されないバッテリ残量検出処理手段は、バッテリ残量検出処理を行い、前記バッテリ電流Ib及びバッテリ電圧Vbに基づいて、充電残量としてのバッテリ残量SOCを検出する。なお、該バッテリ残量SOCは、バッテリ43の容量(電池容量)に対する充電された電気量を百分率で表した値である。   Reference numeral 48 denotes a DC / DC converter that converts the voltage of the battery 43 into a control voltage and applies it to the vehicle control device 50. Reference numeral 52 denotes a current detector that detects the current of the battery 43, that is, the battery current Ib. The battery current sensor 53 is a battery voltage sensor as a voltage detection unit that detects the voltage of the battery 43, that is, the battery voltage Vb. The battery remaining amount detection processing means (not shown) of the vehicle control device 50 is a battery remaining amount detection process. And the remaining battery charge SOC as the remaining charge is detected based on the battery current Ib and the battery voltage Vb. The remaining battery charge SOC is a value representing the amount of electricity charged as a percentage of the capacity of the battery 43 (battery capacity).

また、54はバッテリ43の温度、すなわち、バッテリ温度tbを検出する第1の温度検出部としてのバッテリ温度センサ、55は、加速操作部としての図示されないアクセルペダルの加速操作量を表すアクセルペダルの位置(踏込量)、すなわち、アクセル開度を検出する加速操作量検出部としてのアクセル開度センサ、56は、減速操作部としての図示されないブレーキペダルの減速操作量を表すブレーキペダルの位置(踏込量)、すなわち、ブレーキ踏込量を検出する減速操作量検出部としてのブレーキセンサ、57は車速vを検出する車速検出部としての車速センサ、58はエンジン11の温度、すなわち、エンジン温度teを検出する第2の温度検出部としてのエンジン温度センサ、59は車室内の温度、すなわち、室内温度trを検出する第3の温度検出部としての車内温度センサである。本実施の形態においては、車速検出部として車速センサ57が配設されるようになっているが、駆動モータ25に配設された位置センサによって検出されたロータの位置に基づいて車速vを検出することもできる。   Reference numeral 54 denotes a battery temperature sensor as a first temperature detection unit for detecting the temperature of the battery 43, that is, the battery temperature tb. Reference numeral 55 denotes an accelerator pedal representing an acceleration operation amount of an accelerator pedal (not shown) as an acceleration operation unit. A position (depression amount), that is, an accelerator opening sensor 56 serving as an acceleration operation amount detection unit for detecting the accelerator opening, and a brake pedal position (depression) representing a deceleration operation amount of a brake pedal (not shown) as a deceleration operation unit Amount), that is, a brake sensor as a deceleration operation amount detection unit that detects the brake depression amount, 57 is a vehicle speed sensor as a vehicle speed detection unit that detects the vehicle speed v, and 58 detects the temperature of the engine 11, that is, the engine temperature te. An engine temperature sensor 59 serving as a second temperature detecting unit, 59 is a temperature in the passenger compartment, that is, a room temperature tr A third interior temperature sensor as a temperature detection unit that detects. In the present embodiment, a vehicle speed sensor 57 is provided as a vehicle speed detection unit, but the vehicle speed v is detected based on the position of the rotor detected by the position sensor provided in the drive motor 25. You can also

そして、前記バッテリ43の充電及び放電を切り換えるために、切換要素としての電源スイッチ61が配設される。該電源スイッチ61によって、バッテリ43と、発電機16、駆動モータ25及び第2の電源としての100〔V〕の商用電源(交流電源AC)64とを選択的に接続する切換部が構成される。前記商用電源64は、家庭、オフィス等のようにバッテリ43を充電することができる施設、すなわち、充電施設に配設される。また、ハイブリッド型車両に、バッテリ43を充電するための充電回路65が配設され、前記商用電源64と選択的に接続される。   In order to switch between charging and discharging of the battery 43, a power switch 61 as a switching element is provided. The power switch 61 constitutes a switching unit that selectively connects the battery 43 to the generator 16, the drive motor 25, and a 100 [V] commercial power source (AC power source AC) 64 as a second power source. . The commercial power source 64 is disposed in a facility that can charge the battery 43, such as a home or office, that is, a charging facility. The hybrid vehicle is provided with a charging circuit 65 for charging the battery 43 and is selectively connected to the commercial power source 64.

なお、該商用電源64と充電回路65との間に図示されないAC/DCコンバータが配設され、該AC/DCコンバータにおいて、交流の電流が直流の電流に変換される。また、商用電源64に配設された図示されないコンセントと、ハイブリッド型車両に配設された図示されないプラグとが接離させられる。なお、前記コンセント及びプラグによって連結部材が構成される。   Note that an AC / DC converter (not shown) is disposed between the commercial power supply 64 and the charging circuit 65, and in the AC / DC converter, an alternating current is converted into a direct current. Further, an outlet (not shown) provided in the commercial power supply 64 and a plug (not shown) provided in the hybrid vehicle are brought into and out of contact with each other. A connecting member is constituted by the outlet and the plug.

また、前記電源スイッチ61において、端子a、b間が接続されると、バッテリ43と商用電源64とが充電回路65を介して接続され、これに伴い、商用電源64の電力をバッテリ43に供給し、該バッテリ43を充電することができる。そして、端子a、c間が接続されると、インバータ28、29とバッテリ43とが充電回路66を介して接続され、これに伴い、発電機16によって発電された電力及び駆動モータ25によって回生された電力をバッテリ43に供給し、バッテリ43を充電することができる。さらに、端子a、d間が接続されると、インバータ28、29とバッテリ43とがダイオードD1を介して接続され、バッテリ43を放電させ、発電機16及び駆動モータ25を駆動するのに必要な電力を、バッテリ43から出力し、発電機16及び駆動モータ25に供給することができる。   In addition, when the terminals a and b are connected in the power switch 61, the battery 43 and the commercial power source 64 are connected via the charging circuit 65, and accordingly, the power of the commercial power source 64 is supplied to the battery 43. The battery 43 can be charged. When the terminals a and c are connected, the inverters 28 and 29 and the battery 43 are connected via the charging circuit 66, and accordingly, the power generated by the generator 16 and the drive motor 25 are regenerated. The supplied electric power can be supplied to the battery 43 and the battery 43 can be charged. Further, when the terminals a and d are connected, the inverters 28 and 29 and the battery 43 are connected via the diode D1, and are necessary for discharging the battery 43 and driving the generator 16 and the drive motor 25. Electric power can be output from the battery 43 and supplied to the generator 16 and the drive motor 25.

なお、62は車室内を冷暖房する空調機器としてのエアコン、63は、エンジン11の本体(ケース)の直下に配設され、エンジン11を暖機(予熱)するための加熱体としてのヒータであり、エアコン62及びヒータ63は、DC/DCコンバータ67を介してバッテリ43と接続されるとともに、前記プラグを介して商用電源64と直接接続される。前記エンジン11、バッテリ43及びエアコン62は、暖機の対象となる暖機対象装置を構成する。   In addition, 62 is an air conditioner as an air conditioner for cooling and heating the passenger compartment, and 63 is a heater as a heating element that is disposed immediately below the main body (case) of the engine 11 and warms up (preheats) the engine 11. The air conditioner 62 and the heater 63 are connected to the battery 43 through the DC / DC converter 67 and directly connected to the commercial power supply 64 through the plug. The engine 11, the battery 43, and the air conditioner 62 constitute a warm-up target device that is a target of warm-up.

ところで、バッテリ43は温度によってその特性が変化し、低温時においては、バッテリ43の単位重量当たりの出力することができる電力を表す出力密度、及びバッテリ43の単位重量当たりの入力することができる電力を表す入力密度を十分に高くすることができない。したがって、ハイブリッド型車両を寒冷期に走行させる場合に、バッテリ43の有する電力を使い切れないので、航続距離を長くすることができなかったり、ハイブリッド型車両を走行させる際の駆動力を十分に発生させることができなかったりする。また、ハイブリッド型車両の走行を開始する前に、エンジン11を十分に暖機することなくハイブリッド型車両を走行させてしまうと、走行させながらエンジン11を暖機することになり、その場合、暖機が終了するまでの間、エンジン11の燃料噴射の制御、点火時期の制御等を、暖機用に変更することになり、通常時と異なる制御のまま走行することになるので、燃費が悪くなるだけでなく、排気ガスによって大気を汚染してしまう。   By the way, the characteristics of the battery 43 change depending on the temperature. When the temperature is low, the output density representing the power that can be output per unit weight of the battery 43 and the power that can be input per unit weight of the battery 43. The input density representing can not be made sufficiently high. Therefore, when the hybrid type vehicle is driven in the cold season, the electric power of the battery 43 cannot be used up, so the cruising distance cannot be increased or the driving force for driving the hybrid type vehicle is sufficiently generated. I can't. In addition, if the hybrid vehicle is run without sufficiently warming up the engine 11 before the hybrid vehicle starts running, the engine 11 is warmed up while running. Until the machine is finished, the fuel injection control, ignition timing control, etc. of the engine 11 will be changed to warm-up, and the vehicle will run with control different from the normal time, resulting in poor fuel consumption. Not only that, it will pollute the atmosphere with exhaust gas.

そこで、本実施の形態においては、ハイブリッド型車両の走行を開始する前に、バッテリ43及びエンジン11の暖機を終了するようにしている。なお、この場合、ハイブリッド型車両は、バッテリ43の放電を利用して走行させられるEV走行モードを優先して走行させられ、充電施設となる最初の出発地、例えば、自宅から走行を開始し、種々の経由地(目的地)を経た後、最終の目的地、例えば、自宅で走行を終了することとする。また、自宅を出発する際のバッテリ43において、バッテリ残量SOCは100〔%〕であるとし、自宅に到着したときのバッテリ残量SOCは30〔%〕であるとする。   Therefore, in the present embodiment, the warm-up of the battery 43 and the engine 11 is terminated before the hybrid vehicle starts to travel. In this case, the hybrid type vehicle is driven with priority on the EV driving mode that is driven by using the discharge of the battery 43, and starts running from the first departure point that becomes the charging facility, for example, from home. After passing through various waypoints (destinations), the travel is ended at the final destination, for example, at home. In addition, in the battery 43 when leaving the home, the remaining battery charge SOC is assumed to be 100 [%], and the remaining battery charge SOC when reaching the home is assumed to be 30 [%].

なお、バッテリ43を繰り返し経済的に使用するためには、連続して長時間維持することができる最大のバッテリ残量SOCmaxを80〔%〕程度とし、最小のバッテリ残量SOCminを30〔%〕程度とするのが好ましいが、例えば、10分程度の極めて短い時間だけ維持する場合の最大のバッテリ残量SOCmaxは100〔%〕であり、バッテリ43を満充電することができる。なお、最大のバッテリ残量SOCmax及び最小のバッテリ残量SOCminは、バッテリ43の性能、材質等によって異なる。   In order to use the battery 43 repeatedly and economically, the maximum remaining battery charge SOCmax that can be continuously maintained for a long time is set to about 80 [%], and the minimum remaining battery charge SOCmin is set to 30 [%]. However, the maximum remaining battery charge SOCmax when the battery is maintained for an extremely short time of about 10 minutes is 100%, and the battery 43 can be fully charged. The maximum remaining battery charge SOCmax and the minimum remaining battery charge SOCmin vary depending on the performance, material, and the like of the battery 43.

次に、電動駆動制御装置の動作について説明する。   Next, the operation of the electric drive control device will be described.

図2は本発明の実施の形態における電動駆動制御装置の前工程の動作を示すフローチャート、図3は本発明の実施の形態における電動駆動制御装置の本工程の動作を示すフローチャート、図4は本発明の実施の形態における電動駆動制御装置の本工程の動作を示すタイムチャートである。   FIG. 2 is a flowchart showing the operation of the previous step of the electric drive control apparatus in the embodiment of the present invention, FIG. 3 is a flowchart showing the operation of the electric drive control apparatus in the embodiment of the present invention, and FIG. It is a time chart which shows the operation | movement of this process of the electric drive control apparatus in embodiment of invention.

まず、ハイブリッド型車両の走行を開始すると、車両制御装置50(図1)の図示されない駆動条件取得処理手段は、駆動条件取得処理を行い、前記アクセル開度、ブレーキ踏込量、車速v、バッテリ残量SOC等の駆動条件を読み込み、車両制御装置50の図示されない駆動制御処理手段は、駆動制御処理を行い、前記駆動条件に基づいて、エンジン制御装置46及び駆動部制御装置49に指示を送り、エンジン11、発電機16及び駆動モータ25を駆動する。   First, when driving of the hybrid vehicle is started, a drive condition acquisition processing unit (not shown) of the vehicle control device 50 (FIG. 1) performs a drive condition acquisition process, and the accelerator opening, the brake depression amount, the vehicle speed v, the remaining battery power, and the like. A drive control processing unit (not shown) of the vehicle control device 50 reads the drive conditions such as the amount SOC, performs drive control processing, and sends instructions to the engine control device 46 and the drive unit control device 49 based on the drive conditions, The engine 11, the generator 16, and the drive motor 25 are driven.

そのために、車両制御装置50の図示されない充電残量判定処理手段としてのバッテリ残量判定処理手段は、充電残量判定処理としてのバッテリ残量判定処理を行い、バッテリ残量SOCが30〔%〕より大きいかどうかを判断する。   Therefore, the remaining battery level determination processing unit (not shown) as the remaining charging level determination processing unit (not shown) of the vehicle control device 50 performs the remaining battery level determination process as the remaining charging level determination process, and the remaining battery level SOC is 30 [%]. Determine if greater than.

そして、バッテリ残量SOCが30〔%〕より大きい場合、前記駆動制御処理手段は、バッテリ43から駆動モータ25に電力を供給し、駆動モータ25を駆動し、発電機16を必要に応じて駆動して、ハイブリッド型車両を、例えば、EV走行モードで走行させる。その間、バッテリ残量SOCは次第に小さくなり、バッテリ温度tbは次第に高くなり、エンジン温度teは50〔℃〕から徐々に高くなる。   When the remaining battery SOC is larger than 30%, the drive control processing means supplies power from the battery 43 to the drive motor 25, drives the drive motor 25, and drives the generator 16 as necessary. Then, the hybrid type vehicle is caused to travel in the EV traveling mode, for example. Meanwhile, the remaining battery charge SOC gradually decreases, the battery temperature tb gradually increases, and the engine temperature te gradually increases from 50 [° C.].

そして、ハイブリッド型車両の走行に伴って、バッテリ残量SOCが30〔%〕まで小さくなると、前記駆動制御処理手段は、エンジン11及び駆動モータ25を駆動し、ハイブリッド型車両をHV走行モードで走行させる。それに伴って、バッテリ残量SOCは30〔%〕で推移し、エンジン温度teは、ピーク値まで高くなった後、一定温度になる。その間、バッテリ43から供給された電力によってエアコン62が作動させられ、室内温度trを、所定の温度、本実施の形態においては、25〔℃〕に保つ。   When the remaining battery SOC is reduced to 30 [%] as the hybrid vehicle travels, the drive control processing means drives the engine 11 and the drive motor 25 to travel the hybrid vehicle in the HV travel mode. Let Along with this, the remaining battery SOC changes at 30 [%], and the engine temperature te rises to the peak value and then reaches a constant temperature. Meanwhile, the air conditioner 62 is operated by the electric power supplied from the battery 43, and the room temperature tr is kept at a predetermined temperature, that is, 25 [° C.] in the present embodiment.

次に、自宅に到着し、ハイブリッド型車両を停車させ、始動スイッチをオフにすると、前工程が開始される。このとき、バッテリ温度tb及びエンジン温度teは次第に低くなる。また、室内温度trは、外気温度が高い場合は、25〔℃〕から次第に高くなり、外気温度が低い場合は、25〔℃〕から次第に低くなり、外気温度と等しくされる。   Next, when the vehicle arrives at the home, stops the hybrid vehicle, and turns off the start switch, the pre-process is started. At this time, the battery temperature tb and the engine temperature te are gradually lowered. The room temperature tr gradually increases from 25 [° C.] when the outside air temperature is high, and gradually decreases from 25 [° C.] when the outside air temperature is low, and is equal to the outside air temperature.

そして、運転者が前記プラグをコンセントに差し込むと、第1の所定の設定時刻、本実施の形態においては、図示されないタイマで設定され、深夜電力の提供が開始されるタイミングで、前記車両制御装置50の図示されない充電残量監視処理手段としてのバッテリ残量監視処理手段は、充電残量監視処理としてのバッテリ残量監視処理を行い、バッテリ残量SOCを読み込み、前記車両制御装置50の図示されない充電制御処理手段は、充電制御処理を開始し、バッテリ残量SOCに基づいてバッテリ43の充電の制御を行う。   Then, when the driver inserts the plug into the outlet, the vehicle control device is set at a first predetermined set time, which is set by a timer (not shown) in the present embodiment and starts providing midnight power. The remaining battery charge monitoring processing means 50 as a remaining charge monitoring process means (not shown) 50 performs a remaining battery charge monitoring process as a remaining charge monitoring process, reads the remaining battery charge SOC, and is not shown in the vehicle controller 50. The charge control processing means starts the charge control process and controls the charging of the battery 43 based on the remaining battery charge SOC.

そのために、前記充電制御処理手段は、バッテリ残量SOCが、閾(しきい)値SOCth1、本実施の形態においては、80〔%〕以下であるかどうかを判断する。バッテリ残量SOCが80〔%〕以下である場合、前記充電制御処理手段は、電源スイッチ61の端子a、b間を接続し、バッテリ43を充電し、バッテリ残量SOCが80〔%〕より大きくなると、バッテリ43の充電を停止する。なお、前記閾値SOCth1は、バッテリ43の所定の耐久性を確保することができるように設定されたバッテリ残量SOCの範囲において、最大値に設定される。   Therefore, the charge control processing means determines whether or not the remaining battery charge SOC is equal to or less than a threshold (threshold) value SOCth1, which is 80 [%] in the present embodiment. When the remaining battery SOC is 80% or less, the charge control processing unit connects the terminals a and b of the power switch 61 to charge the battery 43, and the remaining battery SOC is 80% or less. When it becomes larger, charging of the battery 43 is stopped. The threshold value SOCth1 is set to a maximum value within the range of the remaining battery charge SOC set so as to ensure the predetermined durability of the battery 43.

そして、充電が進むのに伴って、バッテリ残量SOCが次第に大きくなり、これに伴って、商用電源64からの入力が徐々に小さくなる。また、この間、充電によってバッテリ43が、バッテリ43自体が有する内部抵抗により、発熱し、バッテリ温度tbが次第に高くなる。   As the charging progresses, the remaining battery charge SOC gradually increases, and accordingly, the input from the commercial power supply 64 gradually decreases. During this time, the battery 43 generates heat due to charging due to the internal resistance of the battery 43 itself, and the battery temperature tb gradually increases.

そして、所定のタイミングでバッテリ残量SOCが80〔%〕に到達すると、前記充電制御処理手段は、充電を停止させ、前工程の処理を終了する。   When the remaining battery SOC reaches 80 [%] at a predetermined timing, the charging control processing unit stops charging and ends the previous process.

このように、前工程でバッテリ残量SOCが80〔%〕に到達すると、その後、タイミングt1で本工程が開始されるまでの間、バッテリ残量SOCは80〔%〕に保持される。したがって、本工程が開始されるまでの間にハイブリッド型車両を急に走行させる必要が生じても、直ちにハイブリッド型車両をEV走行モードを優先して走行させることができる。   As described above, when the battery remaining amount SOC reaches 80 [%] in the previous process, the battery remaining amount SOC is maintained at 80 [%] until this process is started at the timing t1. Therefore, even if it is necessary to make the hybrid vehicle suddenly travel before the start of this step, the hybrid vehicle can immediately travel with priority on the EV travel mode.

ところで、本実施の形態においては、ハイブリッド型車両を走行させる予定がある場合、運転者は、第2の所定の設定時刻、本実施の形態においては、タイミングt2を、ハイブリッド型車両の走行を開始する予定の時刻として設定する。   By the way, in the present embodiment, when the hybrid vehicle is scheduled to travel, the driver starts traveling the hybrid vehicle at the second predetermined set time, in the present embodiment, timing t2. Set as the scheduled time.

その場合、前記タイミングt2より、所定の時間、本実施の形態においては、10分前のタイミングt1で本工程が開始され、前記充電制御処理手段はバッテリ43の充電を開始する。なお、タイミングt1からタイミングt2までの期間を、満充電制御区間として設定する。仮に、運転者が満充電制御区間でハイブリッド型車両を走行させる目的でコンセントからプラグを引き抜くと、前記充電制御処理手段は、充電を中止し、その時点のバッテリ残量SOCでバッテリ43の放電を利用してハイブリッド型車両を走行させることができる。   In this case, the present process is started at a predetermined time from the timing t2, a timing t1 10 minutes before in the present embodiment, and the charging control processing means starts charging the battery 43. Note that the period from timing t1 to timing t2 is set as the full charge control section. If the driver pulls out the plug from the outlet for the purpose of running the hybrid vehicle in the full charge control section, the charge control processing means stops charging and discharges the battery 43 with the remaining battery SOC at that time. The hybrid type vehicle can be run using this.

また、本実施の形態において、タイミングt1は、例えば、運転者が、図示されないリモコンスタータ(例えば、建物内からエンジン11を始動するための遠隔操作器としてのリモコン)を操作し、それに伴って発生させられた動作信号をハイブリッド型車両が動作信号を受信したときのタイミングとされるが、タイマによって設定することができる。   Further, in the present embodiment, the timing t1 occurs, for example, when the driver operates a remote controller starter (not shown) (for example, a remote controller as a remote controller for starting the engine 11 from inside the building). Although the timing when the hybrid-type vehicle receives the operation signal is used as the operation signal thus generated, it can be set by a timer.

次に、前記充電制御処理手段は、バッテリ43の充電を停止させる条件、すなわち、充電停止条件が成立したかどうかを判断する。そのために、前記充電制御処理手段は、第1の条件が成立したかどうかを、バッテリ残量SOCが100〔%〕であるかどうかによって判断し、第2の条件が成立したかどうかを、タイミングt1から所定の時間、例えば、10分が経過したかどうかによって判断し、第1、第2の条件のうちの少なくとも一方が成立すると、充電停止条件が成立したと判断する。   Next, the charging control processing means determines whether or not a condition for stopping charging of the battery 43, that is, whether or not a charging stop condition is satisfied. For this purpose, the charging control processing means determines whether or not the first condition is satisfied based on whether or not the remaining battery SOC is 100 [%], and determines whether or not the second condition is satisfied. Judgment is made based on whether or not a predetermined time, for example, 10 minutes has elapsed since t1, and when at least one of the first and second conditions is satisfied, it is determined that the charge stop condition is satisfied.

なお、図4に示されるように、タイミングt1からタイミングt2までの間、前記充電制御処理手段の電圧制御処理手段は、電圧制御処理を行い、充電回路65に指示を送り、商用電源64によってバッテリ43を充電する際のバッテリ電圧Vbの目標値を、タイミングt1で所定の第1の値Vb1にし、その後、一定の傾きを有する一次曲線(直線)を描いて高くし、タイミングt2で第2の値Vb2にする。   As shown in FIG. 4, during the period from timing t1 to timing t2, the voltage control processing means of the charging control processing means performs voltage control processing, sends an instruction to the charging circuit 65, and uses the commercial power source 64 to charge the battery. 43, the target value of the battery voltage Vb when charging 43 is set to a predetermined first value Vb1 at timing t1, and then is increased by drawing a linear curve (straight line) having a certain slope, and the second value at timing t2. Set to the value Vb2.

また、その間、バッテリ電流Ibは、タイミングt1で値Ib1になった後、二次曲線(時間の経過と共に傾きが大きくなる放物線)を描いて小さくなり、タイミングt2で零(0)〔C〕になり、また、バッテリ残量SOCは二次曲線(時間の経過と共に傾きが小さくなる放物線)を描いて大きくなり、100〔%〕になる。なお、1〔C:シーレイト〕は、バッテリ残量SOCを1時間で100〔%〕にするために必要とされる充電電流を表す。   In the meantime, the battery current Ib becomes a value Ib1 at the timing t1, and then decreases with a quadratic curve (a parabola whose slope increases with the passage of time), and becomes zero (0) [C] at the timing t2. In addition, the remaining battery charge SOC increases in a quadratic curve (a parabola whose inclination decreases with time) and becomes 100%. Note that 1 [C: cylate] represents a charging current required to make the remaining battery charge SOC 100% in one hour.

そして、前記充電制御処理手段は、充電停止条件が成立すると、充電電圧の印加を停止させ、バッテリ43の充電を停止させる。したがって、運転者がハイブリッド型車両の走行を開始する時刻であるタイミングt2までにはバッテリ43を満充電にすることができる。   Then, when the charge stop condition is satisfied, the charge control processing means stops the application of the charge voltage and stops the charging of the battery 43. Therefore, the battery 43 can be fully charged by the timing t2, which is the time when the driver starts traveling the hybrid vehicle.

続いて、タイミングt2で前記車両制御装置50の図示されない待機処理手段は、待機処理を行い、所定の時間、本実施の形態においては、バッテリ43の充電が停止させられた状態で10分が経過し、前記タイマによって設定された第3の所定の設定時刻、本実施の形態においては、タイミングt3になるのを待機する。そのために、タイミングt2からタイミングt3までの時間が、運転者の行動の誤差を含む意味であらかじめ出発時間帯として、かつ、運転準備区間として設定される。   Subsequently, at timing t2, the standby processing means (not shown) of the vehicle control device 50 performs standby processing, and in this embodiment, 10 minutes have elapsed with the charging of the battery 43 stopped. Then, it waits for the third predetermined set time set by the timer, that is, the timing t3 in this embodiment. Therefore, the time from timing t2 to timing t3 is set in advance as a departure time zone and as a driving preparation section in the sense that it includes an error in the driver's behavior.

この間、充電回路65はバッテリ43に電圧を印加しないが、バッテリ電圧Vbは第2の値Vb2に維持される。また、バッテリ残量SOCは100〔%〕に維持される。したがって、バッテリ43の入力密度を高くすることができるので、出発時間帯の間に、運転者がハイブリッド型車両の走行を開始すると、バッテリ残量SOCが100〔%〕の状態でバッテリ43の使用を開始することができる。   During this time, the charging circuit 65 does not apply a voltage to the battery 43, but the battery voltage Vb is maintained at the second value Vb2. Further, the remaining battery charge SOC is maintained at 100 [%]. Therefore, since the input density of the battery 43 can be increased, when the driver starts running the hybrid vehicle during the departure time period, the battery 43 is used in a state where the remaining battery charge SOC is 100%. Can start.

その結果、ハイブリッド型車両の航続距離を長くすることができるだけでなく、ハイブリッド型車両の駆動力を十分に発生させることができる。   As a result, it is possible not only to increase the cruising distance of the hybrid vehicle, but also to sufficiently generate the driving force of the hybrid vehicle.

ところで、タイミングt2から10分が経過し、出発時間帯を過ぎても、運転者がハイブリッド型車両を始動せず、ハイブリッド型車両の走行が開始されないことがある。その場合、その後も、バッテリ残量SOCが100〔%〕の状態が維持されることになり、バッテリ43の電解液、電極等が劣化するのが加速され、その結果、バッテリ43の耐久性が低下するのが加速されてしまう。   By the way, even if 10 minutes have elapsed from the timing t2 and the departure time zone has passed, the driver may not start the hybrid vehicle and the hybrid vehicle may not start running. In that case, the state where the remaining battery charge SOC is 100% is maintained thereafter, and the deterioration of the electrolyte solution, electrodes, and the like of the battery 43 is accelerated. As a result, the durability of the battery 43 is improved. The decline will be accelerated.

そこで、本実施の形態においては、ハイブリッド型車両の始動が確認されない場合、タイミングt3になると、車両制御装置50の図示されない放電制御処理手段は、放電制御処理を行い、ハイブリッド型車両を走行させる予定が変更されたと判断し、バッテリ残量SOCを80〔%〕程度まで小さくするために、バッテリ43の強制的な放電(強制放電)を開始する。そのために、前記放電制御処理手段は、ヒータ63を通電させてエンジン11の暖機を開始したり、エアコン62の作動を開始したりして、バッテリ43を放電させる。なお、前記ハイブリッド型車両が始動されたかどうかは、例えば、始動スイッチがオンにされたかどうかによって判断することができる。   Therefore, in the present embodiment, when the start of the hybrid vehicle is not confirmed, at timing t3, the discharge control processing means (not shown) of the vehicle control device 50 performs the discharge control processing and plans to drive the hybrid vehicle. In order to reduce the remaining battery charge SOC to about 80%, forced discharge (forced discharge) of the battery 43 is started. Therefore, the discharge control processing means discharges the battery 43 by energizing the heater 63 to start warming up the engine 11 or starting the operation of the air conditioner 62. Note that whether or not the hybrid vehicle has been started can be determined based on, for example, whether or not the start switch has been turned on.

また、必要に応じて、バッテリ43と図示されない可変抵抗とを接続し、所定の電流を可変抵抗に供給することによってバッテリ43を放電させたり、所定の電流を商用電源64を介して充電施設に供給することによって放電させたりすることができる。   Further, if necessary, the battery 43 is connected to a variable resistor (not shown), and the battery 43 is discharged by supplying a predetermined current to the variable resistor, or the predetermined current is supplied to the charging facility via the commercial power source 64. It can be discharged by supplying.

このとき、前記放電制御処理手段の電流制御処理手段は、電流制御処理を行い、エアコン62及びヒータ63に供給される電流、すなわち、放電電流を一定の値Ib2にして電流制御を行う。それに伴って、バッテリ電圧Vbは、二次曲線(時間の経過と共に傾きが小さくなる放物線)を描いて低くなり、タイミングt4で4.0〔V〕にされ、バッテリ残量SOCが、一次曲線(直線)を描いて小さくなり、タイミングt4で80〔%〕になる。   At this time, the current control processing means of the discharge control processing means performs a current control process, and controls the current supplied to the air conditioner 62 and the heater 63, that is, the discharge current to a constant value Ib2. Along with this, the battery voltage Vb is lowered to draw a quadratic curve (a parabola whose slope decreases with time), and is set to 4.0 [V] at timing t4, and the remaining battery charge SOC is changed to a linear curve ( A straight line is drawn and becomes smaller, and reaches 80% at timing t4.

このように、本実施の形態においては、タイミングt2からタイミングt3までの出発時間帯の間だけバッテリ残量SOCが100〔%〕に保持され、タイミングt1より前及びタイミングt4以降においては、バッテリ残量SOCが80〔%〕に保持されるので、バッテリ43の耐久性が低下するのを抑制することができる。   Thus, in the present embodiment, the remaining battery charge SOC is maintained at 100 [%] only during the departure time period from the timing t2 to the timing t3, and the remaining battery level is before the timing t1 and after the timing t4. Since the amount SOC is maintained at 80 [%], it is possible to prevent the durability of the battery 43 from being lowered.

また、仮に、運転者が出発時間帯以外に急にハイブリッド型車両を使用したとしても、バッテリ残量SOCは80〔%〕に保持されているので、十分な距離をバッテリ43の放電を利用して走行させるEV走行モードで走行させることができる。   Further, even if the driver suddenly uses the hybrid type vehicle outside the departure time zone, the remaining battery SOC is kept at 80 [%]. The vehicle can be run in the EV running mode.

そして、タイミングt1からタイミングt2までの間に充電が行われるので、その間に、バッテリ43が発熱する。したがって、タイミングt2までにバッテリ43を暖機し、バッテリ温度tbを高くすることができるので、ハイブリッド型車両の走行を開始するまでに、バッテリ43の出力密度を高くすることができる。その結果、ハイブリッド型車両を寒冷期に始動させた場合でも、その直後に、ハイブリッド型車両の駆動力を十分に発生させることができる。   Since charging is performed from timing t1 to timing t2, the battery 43 generates heat during that time. Therefore, the battery 43 can be warmed up by the timing t2 and the battery temperature tb can be increased, so that the output density of the battery 43 can be increased before the hybrid vehicle starts to travel. As a result, even when the hybrid vehicle is started in the cold season, the driving force of the hybrid vehicle can be sufficiently generated immediately after that.

しかも、出発時間が経過した後、タイミングt3からタイミングt4までの間、バッテリ43からヒータ63及びエアコン62に電力が供給され、車両の走行を開始する前にエンジン11及びエアコン62を暖機することができる。したがって、出発時間帯が経過して運転者がハイブリッド型車両の走行を開始した場合、エンジン11の燃料噴射の制御、点火時期の制御等を、暖機用に変更する必要がなくなり、エンジン11をコールドスタートさせるのを防止することができる。したがって、ハイブリッド型車両の走行を開始する際の燃費を良くすることができ、エネルギー効率を高くすることができるだけでなく、排気ガスの成分を十分に浄化することができ、排気ガスによって大気が汚染されるのを防止することができる。   Moreover, after the departure time elapses, power is supplied from the battery 43 to the heater 63 and the air conditioner 62 from the timing t3 to the timing t4, and the engine 11 and the air conditioner 62 are warmed up before the vehicle starts running. Can do. Therefore, when the driver starts driving the hybrid vehicle after the departure time period has elapsed, it is not necessary to change the fuel injection control, ignition timing control, and the like of the engine 11 for warm-up. It is possible to prevent a cold start. Therefore, it is possible not only to improve fuel efficiency when starting the running of the hybrid type vehicle, to increase energy efficiency, but also to sufficiently purify the components of the exhaust gas, and to pollute the atmosphere by the exhaust gas. Can be prevented.

さらに、ハイブリッド型車両の走行を開始する前にエアコン62の暖機が行われるので、走行を開始した後にエアコン62によってハイブリッド型車両に加わる負荷を小さくすることができる。したがって、燃費を良くすることができる。   Furthermore, since the air conditioner 62 is warmed up before the hybrid type vehicle starts traveling, the load applied to the hybrid vehicle by the air conditioner 62 after the start of traveling can be reduced. Therefore, fuel consumption can be improved.

次に、図2のフローチャートについて説明する。
ステップS1 コンセントに差し込む。
ステップS2 所定の設定時刻で充電を開始する。
ステップS3 バッテリ残量SOCを読み込む。
ステップS4 バッテリ残量SOCが80〔%〕以下であるかどうか判断する。バッテリ残量SOCが80〔%〕以下である場合はステップS5に、バッテリ残量SOCが80〔%〕より大きい場合はステップS6に進む。
ステップS5 バッテリ43を充電をする。
ステップS6 バッテリ43を充電しないで処理を終了する。
ステップS7 バッテリ残量SOCが80〔%〕より大きいかどうか判断する。バッテリ残量SOCが80〔%〕より大きい場合はステップS8に進み、バッテリ残量SOCが80〔%〕以下である場合はステップS5に戻る。
ステップS8 バッテリ43の充電を停止させ、処理を終了する。
Next, the flowchart of FIG. 2 will be described.
Step S1 Plug into an outlet.
Step S2: Charging is started at a predetermined set time.
Step S3: The remaining battery charge SOC is read.
Step S4: It is determined whether the remaining battery SOC is 80% or less. If the remaining battery charge SOC is 80% or less, the process proceeds to step S5. If the remaining battery charge SOC is greater than 80%, the process proceeds to step S6.
Step S5: The battery 43 is charged.
Step S6: The process is terminated without charging the battery 43.
Step S7: It is determined whether the remaining battery charge SOC is greater than 80 [%]. If the remaining battery charge SOC is greater than 80%, the process proceeds to step S8, and if the remaining battery charge SOC is 80% or less, the process returns to step S5.
Step S8: The charging of the battery 43 is stopped and the process is terminated.

次に、図3のフローチャートについて説明する。
ステップS11 所定の設定時刻で充電を開始する。
ステップS12 バッテリ残量SOCが100〔%〕になるのを待機し、バッテリ残量SOCが100〔%〕になった場合はステップS14に進む。
ステップS13 10分が経過するのを待機し、10分が経過した場合はステップS14に進む。
ステップS14 バッテリ43の充電を停止させる。
ステップS15 10分が経過したかどうかを判断する。10分が経過した場合はステップS16に進み、経過していない場合はステップS14に戻る。
ステップS16 バッテリ43を放電させる。
ステップS17 バッテリ残量SOCが80〔%〕以下であるかどうかを判断する。バッテリ残量SOCが80〔%〕以下である場合はステップS18に進み、バッテリ残量SOCが80〔%〕より大きい場合はステップS16に戻る。
ステップS18 バッテリ43の放電を停止させ、処理を終了する。
Next, the flowchart of FIG. 3 will be described.
Step S11: Charging is started at a predetermined set time.
Step S12 Wait for the remaining battery charge SOC to reach 100%, and if the remaining battery charge SOC reaches 100%, the process proceeds to Step S14.
Step S13: Wait for 10 minutes to elapse, and if 10 minutes have elapsed, proceed to step S14.
Step S14 The charging of the battery 43 is stopped.
Step S15: It is determined whether 10 minutes have passed. If 10 minutes have passed, the process proceeds to step S16, and if not, the process returns to step S14.
Step S16: The battery 43 is discharged.
Step S17: It is determined whether the remaining battery charge SOC is 80% or less. If the remaining battery charge SOC is 80% or less, the process proceeds to step S18. If the remaining battery charge SOC is greater than 80%, the process returns to step S16.
Step S18: Discharging the battery 43 is stopped and the process is terminated.

なお、本発明は前記実施の形態に限定されるものではなく、本発明の趣旨に基づいて種々変形させることが可能であり、それらを本発明の範囲から排除するものではない。   In addition, this invention is not limited to the said embodiment, It can change variously based on the meaning of this invention, and does not exclude them from the scope of the present invention.

本発明の実施の形態における電動駆動制御装置のブロック図である。It is a block diagram of the electric drive control device in an embodiment of the present invention. 発明の実施の形態における電動駆動制御装置の前工程の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the pre-process of the electric drive control apparatus in embodiment of invention. 本発明の実施の形態における電動駆動制御装置の本工程の動作を示すフローチャートである。It is a flowchart which shows the operation | movement of this process of the electric drive control apparatus in embodiment of this invention. 本発明の実施の形態における電動駆動制御装置の本工程の動作を示すタイムチャートである。It is a time chart which shows the operation | movement of this process of the electric drive control apparatus in embodiment of this invention.

符号の説明Explanation of symbols

16 発電機
25 駆動モータ
43 バッテリ
46 エンジン制御装置
49 駆動部制御装置
50 車両制御装置
64 商用電源
65 充電回路
SOC バッテリ残量
16 Generator 25 Drive motor 43 Battery 46 Engine control device 49 Drive unit control device 50 Vehicle control device 64 Commercial power supply 65 Charging circuit SOC Battery remaining amount

Claims (4)

充電要素と、該充電要素から電力が供給されて駆動される電動機械と、充電施設の電源と選択的に接続され、前記充電要素を充電するための充電回路と、電動車両の走行を開始する予定の時刻より所定の時間前に設定された設定時刻で充電要素の充電を開始し、前記電動車両の走行を開始する予定の時刻までに、所定の充電停止条件が成立したときに、充電要素の充電を停止させる充電制御処理手段と、前記設定時刻から更に所定の時間が経過した後に、電動車両の始動が確認されない場合に、充電要素の放電を開始し、充電残量が小さくなって、あらかじめ設定された値になると、充電要素の放電を停止させる放電制御処理手段とを有することを特徴とする電動車両充電制御システム。   A charging element, an electric machine driven by power supplied from the charging element, a charging circuit that is selectively connected to a power source of a charging facility, and charging the charging element, and starts running the electric vehicle When the charging element starts charging at a set time set a predetermined time before the scheduled time and the predetermined charging stop condition is satisfied by the scheduled time to start the traveling of the electric vehicle, the charging element When the start of the electric vehicle is not confirmed after a predetermined time has passed since the set time, and the charging control processing means for stopping the charging of the charging start of the charging element, the remaining charge is reduced, An electric vehicle charging control system comprising: a discharge control processing unit that stops discharging of the charging element when a preset value is reached. 前記充電制御処理手段は、所定の条件が成立したかどうかを、充電要素が満充電になったかどうかによって判断し、充電要素が満充電になり、前記所定の条件が成立したときに、前記充電停止条件が成立したと判断し、充電要素の充電を停止させる請求項1に記載の電動車両充電制御システム。   The charging control processing means determines whether or not a predetermined condition is satisfied based on whether or not the charging element is fully charged. When the charging element is fully charged and the predetermined condition is satisfied, The electric vehicle charging control system according to claim 1, wherein it is determined that the stop condition is satisfied, and charging of the charging element is stopped. 前記充電制御処理手段は、所定の条件が成立したかどうかを、充電要素の充電が開始されてから所定の時間が経過したかどうかによって判断し、所定の時間が経過し、所定の条件が成立したときに、前記充電停止条件が成立したと判断し、充電要素の充電を停止させる請求項1に記載の電動車両充電制御システム。   The charging control processing means determines whether or not a predetermined condition is satisfied depending on whether or not a predetermined time has elapsed since the charging of the charging element was started, and the predetermined condition has been satisfied. The electric vehicle charging control system according to claim 1, wherein the charging stop condition is determined to be satisfied and charging of the charging element is stopped. 充電要素、該充電要素から電力が供給されて駆動される電動機械、及び充電施設の電源と選択的に接続され、前記充電要素を充電するための充電回路を有する電動車両の電動車両充電制御方法において、電動車両の走行を開始する予定の時刻より所定の時間前に設定された設定時刻で充電要素の充電を開始し、前記電動車両の走行を開始する予定の時刻までに、所定の充電停止条件が成立したときに、充電要素の充電を停止させ、前記設定時刻から更に所定の時間が経過した後に、電動車両の始動が確認されない場合に、充電要素の放電を開始し、充電残量が小さくなって、あらかじめ設定された値になると、充電要素の放電を停止させることを特徴とする電動車両充電制御方法。   Electric vehicle charging control method for an electric vehicle having a charging element, an electric machine driven by power supplied from the charging element, and a charging circuit that is selectively connected to a power source of a charging facility and charges the charging element , Charging of the charging element is started at a set time set a predetermined time before the time when the electric vehicle is scheduled to start running, and the predetermined charging is stopped by the time when the electric vehicle is scheduled to start running. When the condition is satisfied, charging of the charging element is stopped, and when the start of the electric vehicle is not confirmed after a predetermined time has elapsed from the set time, discharging of the charging element is started and the remaining charge amount is An electric vehicle charging control method characterized by stopping discharging of a charging element when it becomes small and reaches a preset value.
JP2007117008A 2007-04-26 2007-04-26 Electric vehicle charge control system and electric vehicle charge control method Expired - Fee Related JP5223232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007117008A JP5223232B2 (en) 2007-04-26 2007-04-26 Electric vehicle charge control system and electric vehicle charge control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007117008A JP5223232B2 (en) 2007-04-26 2007-04-26 Electric vehicle charge control system and electric vehicle charge control method

Publications (2)

Publication Number Publication Date
JP2008278585A true JP2008278585A (en) 2008-11-13
JP5223232B2 JP5223232B2 (en) 2013-06-26

Family

ID=40055899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007117008A Expired - Fee Related JP5223232B2 (en) 2007-04-26 2007-04-26 Electric vehicle charge control system and electric vehicle charge control method

Country Status (1)

Country Link
JP (1) JP5223232B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009005450A (en) * 2007-06-20 2009-01-08 Mazda Motor Corp Controller for battery of vehicle
JP2011036070A (en) * 2009-08-04 2011-02-17 Suzuki Motor Corp Motor-driven vehicle
JP2011205828A (en) * 2010-03-26 2011-10-13 Honda Motor Co Ltd Electric vehicle
JP2012039725A (en) * 2010-08-05 2012-02-23 Toyota Motor Corp Charging method and charging system
WO2013001620A1 (en) * 2011-06-29 2013-01-03 トヨタ自動車株式会社 Power supply system for vehicle
JP2014087236A (en) * 2012-10-26 2014-05-12 Mitsubishi Electric Corp Charge and discharge control device
CN103875148A (en) * 2011-10-07 2014-06-18 丰田自动车株式会社 Vehicle charging system and method for charging vehicle
JP2014530786A (en) * 2011-10-21 2014-11-20 フィスカー オートモーティブ インコーポレイテッド System and method for controlling driving of a vehicle
JPWO2013140536A1 (en) * 2012-03-21 2015-08-03 トヨタ自動車株式会社 Electric vehicle, power equipment and power supply system
EP2830185A4 (en) * 2012-03-21 2016-03-16 Toyota Motor Co Ltd Electric vehicle, electric power facilities and electric power supply system
CN112124143A (en) * 2019-06-24 2020-12-25 本田技研工业株式会社 Control system, control method, and storage medium
WO2021213354A1 (en) * 2020-04-22 2021-10-28 丰疆智能科技研究院(常州)有限公司 Range extender, hybrid-power rice transplanter and working method of hybrid-power rice transplanter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6087870B2 (en) * 2014-07-23 2017-03-01 トヨタ自動車株式会社 vehicle

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS554691U (en) * 1978-06-26 1980-01-12
JPH0898420A (en) * 1994-09-29 1996-04-12 Toyota Autom Loom Works Ltd Charger
JPH08214412A (en) * 1995-02-06 1996-08-20 Honda Motor Co Ltd Battery charge controller for electric vehicle
JPH1051968A (en) * 1996-08-05 1998-02-20 Nissan Motor Co Ltd Method for charging battery
JP2000116019A (en) * 1998-10-06 2000-04-21 Suzuki Motor Corp Battery charging control device
JP2000134811A (en) * 1998-10-20 2000-05-12 Fujitsu General Ltd Portable terminal device
JP2000287372A (en) * 1999-03-31 2000-10-13 Hitachi Ltd Method and device for using lithium-ion secondary battery
JP2005218285A (en) * 2004-02-02 2005-08-11 Kobelco Contstruction Machinery Ltd Power source apparatus for working machine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS554691U (en) * 1978-06-26 1980-01-12
JPH0898420A (en) * 1994-09-29 1996-04-12 Toyota Autom Loom Works Ltd Charger
JPH08214412A (en) * 1995-02-06 1996-08-20 Honda Motor Co Ltd Battery charge controller for electric vehicle
JPH1051968A (en) * 1996-08-05 1998-02-20 Nissan Motor Co Ltd Method for charging battery
JP2000116019A (en) * 1998-10-06 2000-04-21 Suzuki Motor Corp Battery charging control device
JP2000134811A (en) * 1998-10-20 2000-05-12 Fujitsu General Ltd Portable terminal device
JP2000287372A (en) * 1999-03-31 2000-10-13 Hitachi Ltd Method and device for using lithium-ion secondary battery
JP2005218285A (en) * 2004-02-02 2005-08-11 Kobelco Contstruction Machinery Ltd Power source apparatus for working machine

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009005450A (en) * 2007-06-20 2009-01-08 Mazda Motor Corp Controller for battery of vehicle
JP2011036070A (en) * 2009-08-04 2011-02-17 Suzuki Motor Corp Motor-driven vehicle
JP2011205828A (en) * 2010-03-26 2011-10-13 Honda Motor Co Ltd Electric vehicle
JP2012039725A (en) * 2010-08-05 2012-02-23 Toyota Motor Corp Charging method and charging system
WO2012017298A3 (en) * 2010-08-05 2012-04-12 Toyota Jidosha Kabushiki Kaisha Charging method and charging system
CN103097169A (en) * 2010-08-05 2013-05-08 丰田自动车株式会社 Charging method and charging system
WO2013001620A1 (en) * 2011-06-29 2013-01-03 トヨタ自動車株式会社 Power supply system for vehicle
CN103875148A (en) * 2011-10-07 2014-06-18 丰田自动车株式会社 Vehicle charging system and method for charging vehicle
JPWO2013051151A1 (en) * 2011-10-07 2015-03-30 トヨタ自動車株式会社 Vehicle charging system and vehicle charging method
US9618954B2 (en) 2011-10-07 2017-04-11 Toyota Jidosha Kabushiki Kaisha Vehicle charging system and vehicle charging method with first and second charging operations
JP2014530786A (en) * 2011-10-21 2014-11-20 フィスカー オートモーティブ インコーポレイテッド System and method for controlling driving of a vehicle
JPWO2013140536A1 (en) * 2012-03-21 2015-08-03 トヨタ自動車株式会社 Electric vehicle, power equipment and power supply system
EP2830185A4 (en) * 2012-03-21 2016-03-16 Toyota Motor Co Ltd Electric vehicle, electric power facilities and electric power supply system
US9627911B2 (en) 2012-03-21 2017-04-18 Toyota Jidosha Kabushiki Kaisha Electric-motor vehicle, power equipment, and power supply system including limiting discharging after the power storage device is externally charged
JP2014087236A (en) * 2012-10-26 2014-05-12 Mitsubishi Electric Corp Charge and discharge control device
CN112124143A (en) * 2019-06-24 2020-12-25 本田技研工业株式会社 Control system, control method, and storage medium
CN112124143B (en) * 2019-06-24 2024-03-19 本田技研工业株式会社 Control system, control method, and storage medium
WO2021213354A1 (en) * 2020-04-22 2021-10-28 丰疆智能科技研究院(常州)有限公司 Range extender, hybrid-power rice transplanter and working method of hybrid-power rice transplanter

Also Published As

Publication number Publication date
JP5223232B2 (en) 2013-06-26

Similar Documents

Publication Publication Date Title
JP5223232B2 (en) Electric vehicle charge control system and electric vehicle charge control method
US8774993B2 (en) Hybrid vehicle and method of controlling the same
US9127582B2 (en) Control apparatus for hybrid vehicle
JP5487861B2 (en) Battery warm-up control device
JP6217289B2 (en) Hybrid vehicle control device
WO2012131941A1 (en) Vehicle, engine control method, and engine control device
US9750085B2 (en) Apparatus and method for controlling vehicle
US20090315518A1 (en) Power supply device and vehicle
JP4854557B2 (en) Electric drive control device
JP5660104B2 (en) vehicle
JP5553019B2 (en) Internal combustion engine start control device for hybrid vehicle
JP5590157B2 (en) Vehicle, vehicle control method, and vehicle control apparatus
JP2009248888A (en) Control device of hybrid vehicle
JP5130249B2 (en) Charge control device for hybrid vehicle
JP5866835B2 (en) Battery heating device for electric drive vehicle
JP2009248860A (en) Hybrid vehicle
JP2011015544A (en) Electrically-driven vehicle
US11532945B2 (en) Control device for vehicle
JP2010125906A (en) Controller for vehicle
JP5842899B2 (en) HYBRID VEHICLE, HYBRID VEHICLE CONTROL METHOD, AND ENGINE CONTROL DEVICE
JP2010255504A (en) Control device for hybrid vehicle
JP2009248889A (en) Battery temperature control device
CN111016875A (en) Control device for hybrid vehicle and control system for hybrid vehicle
JP2010285149A (en) Electric drive control device
JP2008163867A (en) Vehicle control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130225

R150 Certificate of patent or registration of utility model

Ref document number: 5223232

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees