WO2013001620A1 - Power supply system for vehicle - Google Patents

Power supply system for vehicle Download PDF

Info

Publication number
WO2013001620A1
WO2013001620A1 PCT/JP2011/064895 JP2011064895W WO2013001620A1 WO 2013001620 A1 WO2013001620 A1 WO 2013001620A1 JP 2011064895 W JP2011064895 W JP 2011064895W WO 2013001620 A1 WO2013001620 A1 WO 2013001620A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage device
power storage
power
vehicle
control
Prior art date
Application number
PCT/JP2011/064895
Other languages
French (fr)
Japanese (ja)
Inventor
智也 片野田
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2011/064895 priority Critical patent/WO2013001620A1/en
Publication of WO2013001620A1 publication Critical patent/WO2013001620A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • H02J7/0049Detection of fully charged condition
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]

Definitions

  • the present invention relates to a vehicle power supply system, and more particularly to a vehicle power supply system capable of charging a power storage device to be mounted by a power supply external to the vehicle.
  • a vehicle such as an electric vehicle, a hybrid vehicle, and a fuel cell vehicle that can generate a vehicle driving force by an electric motor is equipped with a power storage device that stores electric power for driving the electric motor.
  • Patent Document 1 discloses a vehicle configured to output electric power stored in a power storage device to the outside of the vehicle and to charge the power storage device from the outside of the vehicle.
  • Patent Document 1 discloses a power management system configured such that power can be transmitted between a vehicle and a house by using the vehicle as one of the power sources for the house. In this power management system, charging / discharging of the power storage device is controlled in consideration of the power supply / demand situation in the house.
  • SOC State of Charge
  • Management control is required.
  • SOC indicates the ratio of the current charge amount to the full charge capacity.
  • charging / discharging of the power storage device is controlled so that the SOC does not deviate from a predetermined control range.
  • Patent Document 2 describes vehicle battery control configured to change the SOC control target value in accordance with the battery temperature.
  • An apparatus is disclosed.
  • Patent Document 2 by setting the SOC target value larger as the battery temperature is lower, output shortage at low temperatures is suppressed, and necessary output is ensured regardless of temperature. .
  • Patent Document 3 discloses a control device that controls charging / discharging of a battery so that the battery capacity is within a fixed capacity control range defined by an upper limit value and a lower limit value. Disclosed.
  • the control device when it is determined that the memory effect is generated in the battery, the control device changes the capacity control range while maintaining a constant width.
  • the performance of a secondary battery typically used as a power storage device decreases with the progress of deterioration.
  • the full charge capacity of the secondary battery decreases as the deterioration progresses. Therefore, the full charge capacity decreases as the usage period of the power storage device increases, so that the distance that the electric vehicle can travel with the electric power stored in the secondary battery (hereinafter also referred to as the cruising distance of the electric vehicle) is shortened. there is a possibility. Therefore, it is necessary to reflect the deterioration of the power storage device also in the control of the SOC of the power storage device.
  • the present invention has been made to solve such a problem, and its purpose is to appropriately reflect the deterioration of the power storage device so as to suppress the deterioration of the in-vehicle power storage device and ensure the cruising distance. In other words, the charge / discharge of the power storage device is controlled.
  • a power supply system for a vehicle charges a power storage device by a rechargeable power storage device, an electric motor that receives power from the power storage device to generate a vehicle driving force, and a power source external to the vehicle.
  • the external charging mechanism configured to be configured to force the power storage device to be forced when the elapsed time has passed without the vehicle driving force being generated by the electric motor after the charging of the power storage device by the external charging mechanism has been completed.
  • control device discharges the power storage device until a charge state value of the power storage device reaches a predetermined value.
  • the vehicle power supply system further includes an input unit configured to accept an instruction regarding a predetermined time and a predetermined value from a user.
  • the control device sets the predetermined value to a value set based on the required charge amount to the power storage device calculated based on the next travel schedule. Set.
  • control device sets the required charge amount based on the amount of electric power consumed by the vehicle to reach the destination scheduled for the next travel.
  • the vehicle power supply system further includes an external power feeding mechanism configured to supply power from the power storage device to the outside of the vehicle.
  • the control device discharges the power storage device by the external power feeding mechanism.
  • the external power feeding mechanism is configured to be able to sell power from the power storage device to a power system outside the vehicle.
  • the vehicle power supply system further includes an auxiliary load.
  • the control device supplies power discharged from the power storage device to the auxiliary load.
  • the auxiliary load includes an auxiliary battery.
  • the control device charges the auxiliary battery with electric power discharged by the power storage device.
  • the external charging mechanism is configured to complete charging of the power storage device when the charge state value reaches an upper limit value of the charge state value defined in association with the full charge state of the power storage device.
  • the control device increases the upper limit value according to the progress of the deterioration of the power storage device.
  • the present invention it is possible to prevent the in-vehicle power storage device from being maintained for a long time in a state where the charge state value is high, and thus it is possible to suppress the progress of deterioration of the power storage device. As a result, the cruising distance of the vehicle can be extended.
  • FIG. 1 is a schematic configuration diagram of a vehicle equipped with a power supply system according to an embodiment of the present invention. It is a functional block diagram explaining charging / discharging control of the vehicle-mounted electrical storage apparatus in the power supply system by embodiment of this invention. It is a figure for demonstrating the correlation between the years of use of a lithium ion battery, and the capacity maintenance rate of the lithium ion battery. It is a figure for demonstrating the setting of the SOC control range by the control range setting part of FIG. It is a figure for demonstrating the cruising distance in long life mode, and the cruising distance in normal mode. It is a conceptual diagram explaining the setting of the control upper limit with respect to the years of use of an electrical storage apparatus.
  • FIG. 1 is a schematic configuration diagram of a vehicle 5 equipped with a power supply system according to an embodiment of the present invention.
  • an electric vehicle is described as an example of the vehicle 5, but the configuration of the vehicle 5 is not limited to this, and any vehicle that can run with electric power from the power storage device 10 is applicable.
  • the vehicle 5 includes, for example, a hybrid vehicle and a fuel cell vehicle other than an electric vehicle.
  • a power supply system for the vehicle is configured by a portion excluding the motor generator MG, the power transmission gear (not shown), and the drive wheels 24F from the illustrated configuration of the vehicle 5.
  • vehicle 5 includes a motor generator MG and a power storage device 10 capable of inputting / outputting electric power between motor generator MG.
  • the power storage device 10 is a re-dischargeable power storage element, and typically, a secondary battery such as a lithium ion battery or a nickel metal hydride battery is applied. Or you may comprise the electrical storage apparatus 10 by electric power storage elements other than batteries, such as an electric double layer capacitor.
  • FIG. 1 shows a system configuration related to charge / discharge control of the power storage device 10 in the vehicle 5.
  • the monitoring unit 11 detects the “state value” of the power storage device 10 based on the outputs of the temperature sensor 12, the voltage sensor 13 and the current sensor 14 provided in the power storage device 10. That is, “state value” includes temperature Tb, voltage Vb, and current Ib of power storage device 10. As described above, since a secondary battery is typically used as power storage device 10, temperature Tb, voltage Vb, and current Ib of power storage device 10 are hereinafter also referred to as battery temperature Tb, battery voltage Vb, and battery current Ib. . In addition, the battery temperature Tb, the battery voltage Vb, and the battery current Ib are collectively referred to as “battery data”.
  • the temperature sensor 12, the voltage sensor 13, and the current sensor 14 collectively indicate the temperature sensor, the voltage sensor, and the current sensor provided in the power storage device 10. That is, in practice, at least a part of the temperature sensor 12, the voltage sensor 13, and the current sensor 14 will be described in detail in terms of being generally provided.
  • Motor generator MG is an AC rotating electric machine, and is constituted by, for example, a three-phase AC motor generator including a rotor having a permanent magnet embedded therein and a stator having a three-phase coil Y-connected at a neutral point.
  • the output torque of motor generator MG is transmitted to drive wheels 24F via a power transmission gear (not shown) constituted by a speed reducer and a power split mechanism, and causes vehicle 5 to travel.
  • Motor generator MG can generate electric power by the rotational force of drive wheels 24F during regenerative braking of vehicle 5. Then, the generated power is converted into charging power for power storage device 10 by an inverter.
  • the vehicle 5 further includes a PCU (Power Control Unit) 15.
  • PCU 15 is configured to bi-directionally convert power between motor generator MG and power storage device 10.
  • the PCU 15 includes a converter and an inverter.
  • the converter is configured to perform bidirectional DC voltage conversion between power storage device 10 and the positive bus that transmits the DC link voltage of the inverter in accordance with switching command PWC from control device 30. That is, the input / output voltage of power storage device 10 and the DC voltage between the positive bus and the negative bus are boosted or lowered in both directions.
  • the inverter performs bidirectional power conversion between DC power between the positive bus and the negative bus and AC power input / output to / from motor generator MG. Specifically, the inverter converts DC power supplied via the positive bus and the negative bus into AC power in accordance with a switching command PWM from control device 30, and supplies the AC power to motor generator MG. Thereby, motor generator MG generates the driving force of vehicle 5.
  • the motor generator MG generates AC power as the drive wheels 24F are decelerated.
  • the inverter converts AC power generated by motor generator MG into DC power in accordance with switching command PWM from control device 30 and supplies the DC power to the positive bus and the negative bus.
  • the power storage device 10 is charged during deceleration or when traveling downhill.
  • a system main relay (hereinafter also referred to as SMR (System Main Relay)) 7 inserted and connected to the positive line PL1 and the negative line NL1.
  • the SMR 7 controls supply / cut-off of electric power between the power storage device 10 and the PCU 15 by controlling the conduction state (ON) / non-conduction state (OFF) according to the relay control signal SE from the control device 30. Switch.
  • the SMR 7 is used as a representative example of a switchgear that can cut off a charge / discharge path of the power storage device 10. That is, any type of switching device can be applied in place of the SMR 7.
  • the power supply system has a function of charging power storage device 10 with electric power from a power supply 60 (hereinafter also referred to as “external power supply”) outside the vehicle (so-called plug-in charging). Furthermore, the power supply system has a function of supplying the electric power stored in the power storage device 10 to the electric device 70 outside the vehicle. That is, the power supply system is configured to be able to charge the power storage device 10 from the external power supply 60 (external charging) and to supply power from the power storage device 10 to the outside of the vehicle (external power supply).
  • vehicle 5 is configured to perform external charging of power storage device 10 and external power feeding by power storage device 10.
  • CHR Charging relay
  • the power from the external power supply 60 is supplied to the power converter 50 by connecting the connector part 62 to the connector receiving part 54.
  • the external power supply 60 is a commercial power supply of AC 100V, for example.
  • the external power source 60 is connected to the power lines AC1 and AC2 of the power network.
  • an electric device 70 is connected to the power lines AC1 and AC2 of the power grid.
  • the electrical device 70 is an arbitrary device that operates by receiving power from the power grid.
  • the electric device 70 may be, for example, a house or an individual appliance. Further, the electric device 70 may be a vehicle other than the vehicle 5.
  • the sensor 55 detects the connection state between the connector part 62 and the connector receiving part 54.
  • the sensor 55 detects that the connector portion 62 is connected to the connector receiving portion 54
  • the sensor 55 outputs a signal STR indicating that the power storage device 10 is ready for external charging.
  • the sensor 55 stops outputting the signal STR.
  • an external power source and a vehicle are electromagnetically coupled in a non-contact manner to supply electric power, specifically, a primary coil is provided on the external power source side, A power supply may be received from an external power source by providing a secondary coil on the vehicle side and supplying power using the mutual conductance between the primary coil and the secondary coil.
  • the power conversion device 50 is connected to the connector receiving unit 54 via the power lines ACL1 and ACL2.
  • power conversion device 50 is connected to power storage device 10 through charging relay 52 by positive line PL2 and negative line NL2.
  • power conversion device 50 converts AC power supplied from external power supply 60 into DC power and supplies it to power storage device 10 according to control signal PWD from control device 30.
  • power conversion device 50 converts DC power supplied from power storage device 10 into AC power and supplies it to the outside of the vehicle in accordance with control signal PWD from control device 30.
  • power converter 50 is a bidirectional AC / DC converter for performing bidirectional power conversion between AC power and DC power, and positive line PL2 and negative line. And a capacitor for reducing voltage fluctuation between NL2.
  • One end of the relay included in CHR 52 is connected to the positive terminal and the negative terminal of power storage device 10, respectively.
  • the other end of the relay included in CHR 52 is connected to positive line PL2 and negative line NL2 connected to power conversion device 50, respectively.
  • the CHR 52 is controlled to be in a conductive state (ON) / non-conductive state (OFF) in accordance with a control signal SE2 from the control device 30, so that the electric power between the power storage device 10 and the power conversion device 50 is controlled. Switching between supply and shut-off.
  • the CHR 52 is used as a representative example of a switchgear that can cut off the electrical connection between the power storage device 10 and the power conversion device 50. That is, any type of switching device can be applied in place of the CHR 52.
  • the vehicle 5 further includes a switch 56 configured to be operable by the user.
  • the switch 56 is switched between an on state and an off state by a user's manual operation.
  • switch 56 When switch 56 is turned on by the user, switch 56 generates a command (signal SLF) for setting the charging mode of power storage device 10 so that the progress of deterioration of power storage device 10 is suppressed.
  • the use period of power storage device 10 can be extended by suppressing the progress of deterioration of power storage device 10. That is, signal SLF is a command for extending the use period of power storage device 10.
  • the charging mode for suppressing the progress of deterioration of the power storage device 10 is also referred to as “long life mode”.
  • the switch 56 stops generating the signal SLF when turned off by the user. Thereby, the setting of the long life mode is canceled, and the vehicle 5 is switched from the long life mode to the normal mode. That is, the user can select either the long life mode or the normal mode as the charging mode of the vehicle 5 by operating the switch 56 on or off.
  • the vehicle 5 further includes an input unit 80 configured to receive an instruction from the user.
  • the input unit 80 is a user interface for the user to set information related to charging control such as a charging completion time during external charging of the power storage device 10 to be described later. Information regarding the charging control set by the input unit 80 is transmitted to the control device 30.
  • the control device 30 is typically an electronic control device mainly composed of a CPU (Central Processing Unit), a memory area such as a RAM (Random Access Memory) and a ROM (Read Only Memory), and an input / output interface.
  • CPU Central Processing Unit
  • a memory area such as a RAM (Random Access Memory) and a ROM (Read Only Memory)
  • ECU Electronic Control Unit
  • the control apparatus 30 performs control which concerns on vehicle driving
  • at least a part of the ECU may be configured to execute predetermined numerical / logical operation processing by hardware such as an electronic circuit.
  • FIG. 1 shows battery data (battery temperature Tb, battery voltage Vb, and battery current Ib) from the monitoring unit 11, a signal SLF from the switch 56, and charge control from the input unit 80.
  • the controller 30 also controls a DC voltage from a voltage sensor arranged between the positive bus and the negative bus, a current detection value of each phase of the motor generator MG, a rotation angle detection value of the motor generator MG, and the like. Is input.
  • FIG. 2 is a functional block diagram illustrating charge / discharge control of the in-vehicle power storage device in the power supply system according to the embodiment of the present invention. Note that each functional block described in each of the following block diagrams including FIG. 2 can be realized by the control device 30 executing software processing according to a preset program. Alternatively, a circuit (hardware) having a function corresponding to the function can be configured in the control device 30.
  • control device 30 includes a deterioration diagnosis unit 300, a state estimation unit 320, a control range setting unit 330, a determination unit 340, a charge / discharge control unit 350, and a timer 360.
  • the deterioration diagnosis unit 300 measures the years of use of the power storage device 10 as a deterioration parameter used to estimate the degree of deterioration of the power storage device 10. Deterioration of power storage device 10 proceeds as the years of use increase. As the deterioration of the power storage device 10 proceeds, the full charge capacity of the power storage device 10 decreases and the internal resistance increases. In addition to the years of use of power storage device 10, the cause of deterioration of power storage device 10 includes the travel distance of vehicle 5. Therefore, deterioration diagnosis unit 300 may measure the travel distance of vehicle 5 as the deterioration parameter, instead of the service life of power storage device 10. Alternatively, the years of use of power storage device 10 and the travel distance of vehicle 5 may be measured. The years of use of power storage device 10 and the travel distance of vehicle 5 can be calculated by various known methods. The usage years CNT of the power storage device 10 measured by the deterioration diagnosis unit 300 are transmitted to the control range setting unit 330.
  • the state estimation unit 320 estimates the state of charge (SOC) of the power storage device 10 based on the battery data (Tb, Vb, Ib) from the monitoring unit 11.
  • the SOC indicates the ratio (0 to 100%) of the current charge amount to the full charge capacity.
  • state estimating unit 320 sequentially calculates the estimated SOC value (#SOC) of power storage device 10 based on the integrated value of the charge / discharge amount of power storage device 10.
  • the integrated value of the charge / discharge amount can be obtained by temporally integrating the product (electric power) of the battery current Ib and the battery voltage Vb.
  • the estimated SOC value (#SOC) may be calculated based on the relationship between the open circuit voltage (OCV) and the SOC.
  • Control range setting unit 330 sets the SOC control range of power storage device 10 based on signal SLF from switch 56 and measured value CNT of the age of power storage device 10 from degradation diagnosis unit 300.
  • the “SOC control range” is an SOC control range during external charging, and is set independently of the SOC control range during travel.
  • the lower limit of the SOC control range is referred to as Smin (control lower limit value)
  • the upper limit of the SOC control range is referred to as Smax (control upper limit value).
  • the control upper limit value Smax and the control lower limit value Smin respectively correspond to a full charge state and an empty state in SOC control provided to avoid further overcharge or overdischarge.
  • control range setting unit 330 When the control range setting unit 330 receives the signal SLF from the switch 56, the control range setting unit 330 determines that the signal SLF is generated, that is, the long life mode is selected as the charging mode of the power storage device 10. On the other hand, when signal SLF is not received from switch 56, it is determined that signal SLF is not generated, that is, the normal mode is selected as the charging mode of power storage device 10. Control range setting unit 330 switches the SOC control range of power storage device 10 between the normal mode and the long life mode by a method described later.
  • determining unit 340 When determining unit 340 obtains the estimated SOC value (#SOC) estimated by state estimating unit 320, it determines whether or not the estimated SOC value (#SOC) has reached control upper limit value Smax. Determination unit 340 outputs the determination result to charge / discharge control unit 350.
  • the charge / discharge control unit 350 starts external charging based on the signal STR from the sensor 55. Specifically, charge / discharge control unit 350 determines that external charging can be started when signal STR is generated. Charging / discharging control unit 350 turns on CHR 52 by control signal SE2 and generates control signal PWD so as to convert AC power supplied from external power supply 60 into DC power. The power storage device 10 is charged by power conversion of the power conversion device 50 in accordance with the control signal PWD.
  • charge / discharge control unit 350 When determining unit 340 determines that the estimated SOC value (#SOC) has reached control upper limit value Smax due to an increase in the SOC of power storage device 10, charge / discharge control unit 350 generates control signal PWD. To stop. When the generation of the control signal PWD is stopped, the power conversion device 50 is stopped. When power conversion device 50 stops, charging of power storage device 10 ends.
  • the user can set a scheduled time for starting the vehicle 5 as a charging end time by operating the input unit 80. For example, when the user sets the next scheduled boarding time after returning home from the outside, the power storage device 10 can be almost fully charged at the set scheduled boarding time. In this case, external charging of power storage device 10 is started at a charging start time calculated backward from the charging end time.
  • the charging cost can be reduced by charging the power storage device 10 during the midnight power time zone.
  • the user can set the time within the midnight power time zone as the charging start time of the power storage device 10 by operating the input unit 80.
  • a timer external charging that is started according to a charging end time or charging start time that is set in advance by the user is referred to as a “timer”. Also referred to as “charging”.
  • Control upper limit value Smax is a determination value for determining whether or not the SOC has reached a fully charged state during external charging of power storage device 10.
  • the SOC of the power storage device 10 gradually decreases as the vehicle 5 travels. Then, when the estimated SOC value (#SOC) decreases to the lower limit value of the control range, the vehicle 5 finishes traveling.
  • the SOC control range during travel is set independently of the control range during external charging. For example, at the time of regenerative braking of vehicle 5, the SOC of power storage device 10 rises due to the regenerative power generated by motor generator MG. As a result, there is a possibility that it becomes higher than the control upper limit value Smax when the power storage device 10 is externally charged. However, as the vehicle 5 continues to travel, the SOC decreases again. That is, while the vehicle 5 is traveling, it is unlikely that a state where the SOC is high continues for a long time. Therefore, the SOC control range during traveling can be set independently of the control range at the external charging site.
  • the external charging is performed after the vehicle 5 travels, whereby the power storage device 10 can be almost fully charged.
  • the cruising distance of the vehicle 5 can be extended.
  • the “cruising distance” means a distance that the vehicle 5 can travel with the electric power stored in the power storage device 10.
  • a lithium ion battery having a high energy density is applied as the power storage device 10
  • a large amount of power can be extracted from the power storage device 10, and the power storage device 10 can be reduced in size and weight.
  • FIG. 3 is a diagram for explaining the correlation between the years of use of the lithium ion battery and the capacity retention rate of the lithium ion battery.
  • the capacity maintenance rate when the lithium ion battery is new is defined as 100%.
  • the lithium ion battery gradually deteriorates as the vehicle 5 travels repeatedly using the electric power stored in the lithium ion battery.
  • the capacity maintenance rate decreases as the service life of the lithium ion battery increases. That is, the full charge capacity of the lithium ion battery is reduced.
  • the degree of decrease in the capacity maintenance rate with respect to the years of use increases as the SOC at the completion of charging of the lithium ion battery increases.
  • the full charge capacity of the power storage device 10 may be reduced.
  • the vehicle 5 has a long life mode for extending the usage period of the power storage device 10.
  • the SOC control of power storage device 10 is switched between the normal mode and the long life mode as follows.
  • FIG. 4 is a diagram for explaining setting of the SOC control range by the control range setting unit 330 of FIG.
  • Control upper limit value Smax is a determination value for determining whether or not the SOC of power storage device 10 has reached a fully charged state during external charging as described above. In vehicle 5 according to the present embodiment, this reference upper limit value Smax is switched between the normal mode and the long life mode.
  • the first range R1 is the SOC control range in the normal mode.
  • the second range R2 is a SOC control range in the long life mode.
  • Smax1 indicates the upper limit value of the first range R1, that is, the control upper limit value Smax in the normal mode.
  • Smax2 indicates the upper limit value of the second range R2, that is, the control upper limit value Smax in the long life mode.
  • the lower limit value of the first range R1, that is, the control lower limit value in the normal mode, and the lower limit value of the second range R2, that is, the control lower limit value in the long life mode are both Smin.
  • the lower limit value of the second range R2 may be larger than the lower limit value of the first range R1.
  • Control upper limit values Smax1 and Smax2 are both set to values smaller than 100% in order to prevent overcharging of power storage device 10.
  • Control lower limit Smin is set to a value larger than 0% in order to prevent overdischarge of power storage device 10.
  • control upper limit value Smax2 in the long life mode is set to a value smaller than the control upper limit value Smax1 in the normal mode.
  • the power storage device 10 when the power storage device 10 is charged in the long life mode, it is possible to suppress a decrease in the full charge capacity of the power storage device 10. As a result, the cruising distance of the vehicle 5 can be ensured even when the power storage device 10 has been used for a long time.
  • FIG. 5 is a diagram for explaining the cruising distance in the long life mode and the cruising distance in the normal mode.
  • power storage device 10 when power storage device 10 has a short service life, power storage device 10 can store a large amount of power because the degree of deterioration of power storage device 10 is small. Therefore, when the service life of power storage device 10 is short, the cruising distance in the normal mode is longer than the cruising distance in the long life mode.
  • the deterioration of the power storage device 10 proceeds.
  • the progress of the deterioration of the power storage device 10 is suppressed as compared with the normal mode, so that even when the power storage device 10 has been used for a long time, a large amount of power can be stored in the power storage device 10. Can do.
  • the vehicle 5 can travel a cruising distance longer than the cruising distance in the normal mode.
  • the deterioration of the power storage device 10 proceeds as the service life of the power storage device 10 increases. Therefore, the cruising distance of the vehicle 5 becomes shorter as the years of use of the power storage device 10 become longer.
  • control upper limit value Smax2 is increased according to the progress of deterioration of power storage device 10.
  • control range setting unit 330 increases control upper limit value Smax2 when the condition that the deterioration parameter indicating the degree of deterioration of power storage device 10 has reached a predetermined level is satisfied.
  • the deterioration parameter at least one of the years of use of the power storage device 10 and the travel distance of the vehicle 5 can be used. The deterioration of the power storage device 10 progresses as the service life of the power storage device 10 becomes longer or the travel distance of the vehicle 5 becomes longer.
  • the control upper limit value Smax2 is increased every time the number of years of use of power storage device 10 reaches a certain number of years y0.
  • the reference upper limit value Smax2 increases at a timing determined according to the degree of deterioration of the power storage device 10 as the service life of the power storage device 10 becomes longer. As shown in FIG. 3, the full charge capacity of power storage device 10 decreases as the age of power storage device 10 increases. Therefore, if control upper limit value Smax2 is fixed, there is a possibility that the amount of charge of power storage device 10 cannot be increased even if power storage device 10 is charged. As a result, the cruising distance of the vehicle 5 may not reach the target value.
  • the amount of charge of power storage device 10 is maintained by increasing control upper limit value Smax2 at an appropriate timing based on the degree of deterioration of power storage device 10 (the degree of decrease in full charge capacity). be able to. As a result, the cruising distance of the vehicle 5 can be extended.
  • FIG. 6 is a conceptual diagram illustrating the setting of the control upper limit value Smax2 with respect to the years of use of the power storage device 10.
  • control upper limit value Smax2 in the long life mode is set to S0 which is a default value when power storage device 10 is equivalent to a new product.
  • S0 indicates the ratio of the reference capacity to the full charge capacity when the power storage device 10 is new.
  • the reference capacity is set to a value having a margin with respect to the full charge capacity.
  • the capacity of the power storage device 10 required to achieve the target value of the cruising distance of the vehicle 5 is set to a default value.
  • the SOC of power storage device 10 reaches control upper limit value Smax2, so that it is determined that power storage device 10 has reached a fully charged state. That is, the reference capacity corresponds to a threshold value for determining whether or not the power storage device 10 has reached a fully charged state.
  • the full charge capacity of the power storage device 10 decreases as the age of the power storage device 10 increases. Therefore, if reference upper limit value Smax2 is fixed to default value S0, the cruising distance of vehicle 5 will be longer even if the power storage device 10 is charged until the SOC reaches the reference upper limit value Smax2 when the power storage device 10 has a long service life. The target value may not be achieved.
  • control range setting unit 330 defaults control upper limit value Smax2 when it is determined that the number of years of use of power storage device 10 has reached a predetermined number of years y0 based on measurement value CNT from deterioration diagnosis unit 300. The value is increased from S0 to S1. S1 corresponds to the ratio of the reference capacity C0 to the full charge capacity when the power storage device 10 has been used for y0 years.
  • the control upper limit value Smax2 is maintained at S1 during the usage time from year y0 to year 2y0. During this time, the full charge capacity of the power storage device 10 decreases. When the service life reaches 2y0, the control range setting unit 330 increases the control upper limit value Smax2 from S1 to S2. S2 corresponds to the ratio of the reference capacity C0 to the full charge capacity when the usage period of the power storage device 10 reaches 2y0 years.
  • control upper limit value Smax2 is increased every predetermined service life y0. However, the control upper limit value Smax2 may be increased once. The number of times that the control upper limit value Smax2 is increased can be determined based on the standard years of use of the power storage device 10, the full charge capacity of the power storage device 10, the target cruising distance, and the like.
  • control upper limit value Smax2 may be increased according to the travel distance of the vehicle 5.
  • FIG. 7 is a conceptual diagram illustrating the setting of the control upper limit value Smax2 with respect to the travel distance of the vehicle 5.
  • control range setting section 330 performs control when it is determined that travel distance of vehicle 5 has reached a predetermined distance x0 based on travel distance measurement value CNT from deterioration diagnosis section 300.
  • the upper limit value Smax2 is increased from the default value S0 to S1.
  • S1 corresponds to the ratio of the reference capacity C0 to the full charge capacity when the travel distance of the vehicle 5 reaches a certain distance x0.
  • the control upper limit value Smax2 is maintained at S1 during the travel distance from x0 to 2x0. During this time, the full charge capacity of the power storage device 10 decreases.
  • the control range setting unit 330 increases the control upper limit value Smax2 from S1 to S2.
  • S2 corresponds to the ratio of the reference capacity C0 to the full charge capacity when the travel distance of the vehicle 5 reaches 2x0.
  • the number of times of increasing the control upper limit value Smax2 may be one instead of increasing the control upper limit value Smax2 for each predetermined distance x0.
  • the number of times that the control upper limit value Smax2 is increased can be determined based on the standard years of use of the power storage device 10, the full charge capacity of the power storage device 10, the target cruising distance, and the like.
  • FIG. 8 is a conceptual diagram for explaining the cruising range of the vehicle that can be achieved by the SOC control according to the present embodiment.
  • a solid line in FIG. 8 indicates the cruising distance of the vehicle 5 when the control upper limit value Smax2 is increased at a predetermined timing based on the degree of deterioration of the power storage device 10.
  • the dotted line in FIG. 8 indicates the cruising distance of the vehicle 5 when the control upper limit value Smax2 is fixed to the default value S0.
  • the control upper limit value Smax2 when the control upper limit value Smax2 is fixed to the default value S0, the cruising distance decreases as the service life of the power storage device 10 increases. This is because the full charge capacity decreases as the number of years of use of the power storage device 10 increases. In contrast, when the control upper limit value Smax2 is increased at an appropriate timing based on the degree of deterioration of the power storage device 10, the charge amount of the power storage device 10 can be maintained at the reference capacity C0. Can be extended. As a result, the target value of the cruising distance can be achieved when the target years of use have elapsed.
  • FIG. 9 is a flowchart showing a control processing procedure for realizing charging control of power storage device 10 according to the embodiment of the present invention. Note that the flowchart shown in FIG. 9 is executed at regular time intervals or whenever a predetermined condition is satisfied.
  • control device 30 determines whether or not signal STR is generated in step S01. When signal STR is not generated (NO in step S01), control device 30 determines that external charging cannot be started. In this case, the process is returned to the main routine.
  • control device 30 determines that external charging can be started. In this case, control device 30 determines whether or not signal SLF has been generated in step S02. When it is determined that signal SLF is not generated (NO in step S02), control device 30 sets the SOC upper limit value of power storage device 10 to Smax1 in step S03. Thereby, the charging mode is set to the normal mode.
  • control device 30 sets the control upper limit value of the SOC to Smax2 in step S04. Thereby, the charging mode is set to the long life mode. That is, the processes in steps S02 to S04 correspond to the function of the control range setting unit 330 shown in FIG.
  • control device 30 generates control signal PWD for controlling the charging power supplied to power storage device 10.
  • Power conversion device 50 converts AC power from external power supply 60 into DC power suitable for charging power storage device 10 in accordance with control signal PWD.
  • the power storage device 10 is charged with DC power supplied from the power conversion device 50.
  • step S06 state estimation unit 320 (FIG. 2) estimates the SOC of power storage device 10 based on the battery data from monitoring unit 11.
  • controller 30 obtains the estimated SOC value (#SOC) calculated by state estimating unit 320, it determines in step S07 whether or not the estimated SOC value (#SOC) has reached control upper limit value Smax. That is, the process in step S07 corresponds to the function of the determination unit 340 shown in FIG.
  • control device 30 stops generating control signal PWD in step S08. Thereby, external charging of power storage device 10 ends.
  • the process returns to step S05.
  • the processes of steps S05 to S07 are repeatedly executed. That is, the processes in steps S05 and S08 correspond to the function of the charge / discharge control unit 350 shown in FIG.
  • FIG. 10 is a flowchart for explaining the process of step S04 of FIG. 9 in more detail. This flowchart is executed every predetermined time or every time a predetermined condition is satisfied when the charging mode is set to the long life mode.
  • control device 30 (control range setting unit 330) reaches the reference value (x0) based on the measured value CNT from deterioration diagnosis unit 300, based on the measured value CNT. Determine whether or not.
  • control range setting unit 330 suppresses the increase in control upper limit value Smax2 in step S14. That is, the control upper limit value Smax2 does not change.
  • the process of step S14 ends, the entire process is returned to the main routine.
  • control range setting unit 330 increases control upper limit value Smax2 in step S12. At this time, the control range setting unit 330 increases the reference upper limit value Smax2 to a value that can secure the reference capacity C0.
  • control range setting unit 330 returns the measured value CNT of the service life of the power storage device 10 to 0 in step S13.
  • the entire process is returned to the main routine.
  • the SOC of power storage device 10 is maintained at a relatively high value for a long time. For example, even if charging of the power storage device 10 is completed in accordance with the next scheduled travel time by timer charging, the next travel may not be started even after the scheduled time has passed. In this way, it is determined that an undesired state continues from the viewpoint of deterioration because it is determined that a long time has passed without the vehicle 5 starting to travel after the charging of the power storage device 10 is completed. There is.
  • control device 30 forcibly discharges power storage device 10 when the time that has elapsed without starting the next run after charging of power storage device 10 has exceeded a predetermined time. Let That is, control device 30 forcibly discharges power storage device 10 when the state of high SOC of power storage device 10 continues for a predetermined time.
  • FIG. 11 is a diagram showing a temporal change in the SOC of power storage device 10 as the vehicle travels.
  • power storage device 10 is charged to control upper limit value Smax during the IG off period.
  • the vehicle 5 travels using the electric power stored in the power storage device 10.
  • the traveling of the vehicle 5 is completed by the SOC of the power storage device 10 being reduced to the control lower limit value Smin due to the continuation of the traveling (time t ⁇ b> 2)
  • the user connects the connector portion 62 to the vehicle 5. Is started (time t3).
  • timer charging is performed, the charging start time is set based on the charging start time or the charging end time set by the user using the input unit 80.
  • Control device 30 discharge / discharge control unit 350 in FIG. 2 terminates external charging of power storage device 10 when the SOC of power storage device 10 reaches control upper limit value Smax (time t4).
  • the charge / discharge control unit 350 uses the timer 360 (FIG. 2) to measure the time that has elapsed without starting the next run after the completion of the external charging. That is, charge / discharge control unit 350 measures the time during which power storage device 10 is left in a high SOC state. Then, when the elapsed time measured by the timer 360 exceeds a predetermined time (time t5), the charge / discharge control unit 350 starts forced discharge of the power storage device 10. As a result, the SOC of power storage device 10 begins to decrease.
  • time t5 a predetermined time
  • the charge / discharge control unit 350 ends the discharge of the power storage device 10. Until the ignition-on command is given and the vehicle 5 starts to travel (time t7), the SOC of power storage device 10 is maintained close to threshold value Sth.
  • the predetermined time is a determination value for determining whether or not deterioration of the power storage device 10 may progress by maintaining the SOC of the power storage device 10 at a value close to the control upper limit value Smax.
  • the predetermined time can be determined in advance by obtaining a relationship between the elapsed time and the battery performance by a deterioration test or the like of the power storage device 10.
  • the user may set the predetermined time directly from the input unit 80.
  • the threshold value Sth may be set directly by the user from the input unit 80.
  • the charge / discharge control unit 350 receives information on the next travel schedule input to the input unit 80 by the user, the charge / discharge control unit 350 refers to a map database and past travel history data stored in a storage unit (not shown). The power consumption in the next run is acquired. Then, charge / discharge control unit 350 sets a target value of the charge amount of power storage device 10 calculated based on the power consumption in the next travel as threshold value Sth.
  • charging / discharging control unit 350 supplies power discharged by power storage device 10 to the outside of the vehicle.
  • charge / discharge control unit 350 generates control signal PWD for controlling the power supplied to the electric power system outside the vehicle.
  • power conversion device 50 converts DC power supplied from power storage device 10 into AC power and supplies it to power lines AC1 and AC2 of the power grid.
  • the electrical device 70 operates by receiving AC power supplied to the power lines AC1 and AC2 of the power network.
  • FIG. 12 is a flowchart illustrating discharge control of power storage device 10 by the vehicle according to the embodiment of the present invention. This flowchart is executed every time a predetermined condition is satisfied every predetermined time when external charging of the power storage device 10 is executed according to the flowchart of FIG. 9.
  • step S21 in order to execute the discharging process of power storage device 10, it is determined in step S21 whether or not external charging has been completed. If it is determined that external charging has not been completed (NO in step S21), the process returns to the main routine.
  • charge / discharge control unit 350 determines in step S22 whether or not an ignition-on command has been given. If the ignition-on command is not given (NO in step S22), charging / discharging control unit 350 increments the count value of timer 360 that measures the elapsed time from the completion of external charging in step S23. If an ignition-on command is given (YES in step S22), charge / discharge control unit 350 resets the count value of timer 360 in step S24.
  • step S25 the charge / discharge control unit 350 determines whether or not the count value of the timer 360, that is, the elapsed time after the completion of external charging has reached a predetermined time. If it is determined that the count value has not reached the predetermined time (NO in step S25), the process returns to the main routine.
  • charge / discharge control unit 350 controls AC power supplied to the outside of the vehicle in step S26.
  • Control signal PWD is generated.
  • the power conversion device 50 converts the power discharged from the power storage device 10 into AC power suitable for external power feeding in accordance with the control signal PWD.
  • the AC power converted by the power conversion device 50 is supplied to a power network outside the vehicle.
  • step S27 the state estimation unit 320 (FIG. 2) estimates the SOC of the power storage device 10 based on the battery data from the monitoring unit 11.
  • charging / discharging control unit 350 obtains SOC estimated value (#SOC) calculated by state estimating unit 320
  • step S28 charge / discharge control unit 350 determines whether or not SOC estimated value (#SOC) has reached threshold value Sth. To do.
  • step S28 When it is determined that the estimated SOC value (#SOC) has reached threshold value Sth (YES in step S28), charge / discharge control unit 350 stops generating control signal PWD in step S29. Thereby, the external power supply by the power storage device 10 ends. On the other hand, when it is determined that the estimated SOC value (#SOC) has not reached threshold value Sth (NO in step S28), the process returns to step S26. Until the estimated SOC value (#SOC) reaches the threshold value Sth, the processes of steps S26 to S28 are repeatedly executed.
  • the electric power supplied to the electric power network outside the vehicle by the processing of steps S26 to S28 can be consumed by the electric device 70 connected to the power lines AC1 and AC2 of the electric power network.
  • the power may be supplied to a power system of a commercial power supply for sale. For example, when the power storage device 10 is charged in the late-night power period, if the driving does not start after the scheduled morning driving time the next day, power is sold during the day when the power rate is high. May be.
  • FIG. 13 is a schematic configuration diagram of a vehicle 5A according to a modification of the embodiment of the present invention.
  • the schematic configuration of the vehicle 5A according to this modified example is the same as that of FIG. 1 except that it further includes a DC / DC converter 90, an auxiliary battery 92, and an auxiliary load 94, and the control structure of the control device 30. Because there are, detailed description will not be repeated.
  • DC / DC converter 90 is connected to positive line PL1 and negative line NL1 connected to power storage device 10.
  • DC / DC converter 90 converts the voltage level of the DC voltage received from power storage device 10 or PCU 15, and supplies the voltage level to auxiliary battery 92 and auxiliary load 94 via positive line PL3.
  • a DC voltage is supplied as a power supply voltage from the DC / DC converter 90 to the auxiliary load 94.
  • Auxiliary machine load 94 is driven by a DC voltage received from power storage device 10 or PCU 15.
  • Control device 30 (charging / discharging control unit 350) performs control for driving DC / DC converter 90 when the time that has elapsed without starting the next run after completion of external charging for power storage device 10 exceeds a predetermined time.
  • a signal PWE is generated.
  • This control signal PWE is output to the DC / DC converter 90.
  • the DC power from the power storage device 10 is supplied to the auxiliary battery 92 and the auxiliary load 94 by voltage conversion of the DC / DC converter 90 according to the control signal PWE.
  • FIG. 14 is a flowchart illustrating discharge control of power storage device 10 by the vehicle power supply system according to the modification of the embodiment of the present invention. This flowchart is executed every time a predetermined condition is satisfied every predetermined time when external charging of the power storage device 10 is executed according to the flowchart of FIG. 9.
  • the charge / discharge control unit 350 measures the elapsed time from when the external charging is completed until the ignition-on command is given through steps S21 to S25 similar to FIG. Then, when it is determined that the count value of the timer 360, that is, the elapsed time after the completion of external charging has reached a predetermined time (YES in step S25), the charge / discharge control unit 350 performs step S36.
  • the control signal PWE for driving the DC / DC converter 90 is generated.
  • DC / DC converter 90 converts the voltage level of power discharged from power storage device 10 in accordance with control signal PWE, and supplies the voltage level to auxiliary battery 92 and auxiliary load 94 via positive line PL3.
  • step S37 the state estimation unit 320 (FIG. 2) estimates the SOC of the power storage device 10 based on the battery data from the monitoring unit 11.
  • charging / discharging control unit 350 obtains SOC estimated value (#SOC) calculated by state estimating unit 320
  • step S38 charging / discharging control unit 350 determines whether or not SOC estimated value (#SOC) has reached threshold value Sth. To do.
  • step S38 When it is determined that the estimated SOC value (#SOC) has reached threshold value Sth (YES in step S38), charge / discharge control unit 350 stops generating control signal PWE in step S39. Thereby, the power supply from power storage device 10 to auxiliary battery 92 and auxiliary load 94 is completed. On the other hand, when it is determined that the estimated SOC value (#SOC) has not reached threshold value Sth (NO in step S38), the process returns to step S36. Until the estimated SOC value (#SOC) reaches the threshold value Sth, the processes of steps S36 to S38 are repeated.
  • the power supply system for a vehicle it is possible to prevent the SOC of the power storage device from being maintained at a high value for a long time after external charging is completed.
  • the progress of deterioration can be suppressed.
  • the cruising distance of the vehicle can be extended.
  • the discharge control of the power storage device according to the above-described embodiment to the configuration in which the SOC control upper limit value during external charging is increased according to the progress of the deterioration of the power storage device, the progress of the deterioration of the power storage device is achieved. Further suppression is possible. As a result, the cruising distance of the vehicle can be further extended.
  • the vehicle to which the charge / discharge control of the in-vehicle power storage device according to the present embodiment is applied is not limited to the electric vehicle illustrated in FIG.
  • a hybrid vehicle and an electric vehicle not equipped with an engine are used regardless of the number of mounted motors (motor generators) and the configuration of the drive system. And can be commonly applied to all vehicles including fuel cell vehicles.
  • the present invention can be applied to an electric vehicle that can be charged by an external power source.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

This power supply system for a vehicle is provided with: a rechargeable electrical storage device (10); an external charging mechanism (50), which is configured to charge the electrical storage device (10) using a power supply outside of the vehicle; and a control device (30), which forcibly makes the electrical storage device (10) discharge electricity, in the cases where a time that exceeds a predetermined time has elapsed without having vehicle drive power generated by means of an electric motor (MG) after completion of charging of the electrical storage device (10) by means of the external charging mechanism (50).

Description

車両の電源システムVehicle power system
 この発明は、車両の電源システムに関し、より特定的には、搭載する蓄電装置を車両外部の電源により充電可能な車両の電源システムに関する。 The present invention relates to a vehicle power supply system, and more particularly to a vehicle power supply system capable of charging a power storage device to be mounted by a power supply external to the vehicle.
 電動機によって車両駆動力を発生可能に構成された、電気自動車、ハイブリッド自動車および燃料電池自動車等の車両では、当該電動機を駆動するための電力を蓄積する蓄電装置が搭載されている。たとえば、特開2008-54439号公報(特許文献1)には、蓄電装置に蓄積された電力を車両外部へ出力し、かつ、車両外部から蓄電装置を充電可能に構成された車両が開示される。特開2008-54439号公報(特許文献1)は、車両を住宅用電源の1つとして用いることにより、車両と住宅との間で相互に電力伝達可能に構成された電力マネジメントシステムを開示する。この電力マネジメントシステムでは、住宅内の電力需給状況を考慮して蓄電装置の充放電が制御される。 A vehicle such as an electric vehicle, a hybrid vehicle, and a fuel cell vehicle that can generate a vehicle driving force by an electric motor is equipped with a power storage device that stores electric power for driving the electric motor. For example, Japanese Patent Laying-Open No. 2008-54439 (Patent Document 1) discloses a vehicle configured to output electric power stored in a power storage device to the outside of the vehicle and to charge the power storage device from the outside of the vehicle. . Japanese Patent Laying-Open No. 2008-54439 (Patent Document 1) discloses a power management system configured such that power can be transmitted between a vehicle and a house by using the vehicle as one of the power sources for the house. In this power management system, charging / discharging of the power storage device is controlled in consideration of the power supply / demand situation in the house.
 このような車両では、車両の走行中および車両の走行完了後において、蓄電装置の放電および充電が繰り返し実行されるため、蓄電装置の充電状態(SOC:State of Charge;以下、単に「SOC」とも称す)の管理制御が必要となる。なお、SOCとは、満充電容量に対する現在の充電量の比率を示したものである。一般的には、SOCが所定の制御範囲から外れることがないように、蓄電装置の充放電が制御される。 In such a vehicle, since the storage device is repeatedly discharged and charged while the vehicle is running and after the vehicle has been run, the state of charge of the power storage device (SOC: State of Charge; hereinafter, simply referred to as “SOC”). Management control is required. Note that the SOC indicates the ratio of the current charge amount to the full charge capacity. Generally, charging / discharging of the power storage device is controlled so that the SOC does not deviate from a predetermined control range.
 このような車両のSOC制御の一態様として、特開2002-345165号公報(特許文献2)には、電池の温度に応じてSOCの制御目標値を変化させるように構成された車両用電池制御装置が開示される。特開2002-345165号公報(特許文献2)では、電池温度が低いほどSOC目標値を大きく設定することによって、低温時の出力不足を抑制し、温度によらず必要な出力を確保している。 As one aspect of such vehicle SOC control, Japanese Patent Laying-Open No. 2002-345165 (Patent Document 2) describes vehicle battery control configured to change the SOC control target value in accordance with the battery temperature. An apparatus is disclosed. In Japanese Patent Laid-Open No. 2002-345165 (Patent Document 2), by setting the SOC target value larger as the battery temperature is lower, output shortage at low temperatures is suppressed, and necessary output is ensured regardless of temperature. .
 また、特開2005-65352号公報(特許文献3)には、バッテリ容量が上限値および下限値で規定される一定幅の容量制御範囲内となるようにバッテリの充放電を制御する制御装置が開示される。特開2005-65352号(特許文献3)では、制御装置は、バッテリにメモリ効果が発生していると判断された場合には、容量制御範囲を一定幅に維持しつつ変更する。 Japanese Patent Laying-Open No. 2005-65352 (Patent Document 3) discloses a control device that controls charging / discharging of a battery so that the battery capacity is within a fixed capacity control range defined by an upper limit value and a lower limit value. Disclosed. In Japanese Patent Laid-Open No. 2005-65352 (Patent Document 3), when it is determined that the memory effect is generated in the battery, the control device changes the capacity control range while maintaining a constant width.
特開2008-54439号公報JP 2008-54439 A 特開2002-345165号公報JP 2002-345165 A 特開2005-65352号公報JP 2005-65352 A 特開平11-178234号公報JP-A-11-178234 特開2001-258177号公報JP 2001-258177 A
 ここで、蓄電装置として代表的に使用される二次電池の性能は、劣化の進行に応じて低下することが知られている。たとえば二次電池の満充電容量は、劣化の進行に応じて低下する。したがって、蓄電装置の使用期間が長くなるにつれて満充電容量が低下することによって、二次電池に蓄えられた電力によって電動車両が走行可能な距離(以下、電動車両の航続距離ともいう)が短くなる可能性がある。したがって、蓄電装置のSOCの制御にも、蓄電装置の劣化を反映させる必要がある。 Here, it is known that the performance of a secondary battery typically used as a power storage device decreases with the progress of deterioration. For example, the full charge capacity of the secondary battery decreases as the deterioration progresses. Therefore, the full charge capacity decreases as the usage period of the power storage device increases, so that the distance that the electric vehicle can travel with the electric power stored in the secondary battery (hereinafter also referred to as the cruising distance of the electric vehicle) is shortened. there is a possibility. Therefore, it is necessary to reflect the deterioration of the power storage device also in the control of the SOC of the power storage device.
 それゆえ、この発明は、かかる課題を解決するためになされたものであり、その目的は、車載蓄電装置の劣化を抑制して航続距離を確保するように、蓄電装置の劣化を反映して適切に蓄電装置の充放電を制御することである。 Therefore, the present invention has been made to solve such a problem, and its purpose is to appropriately reflect the deterioration of the power storage device so as to suppress the deterioration of the in-vehicle power storage device and ensure the cruising distance. In other words, the charge / discharge of the power storage device is controlled.
 この発明のある局面に従えば、車両の電源システムは、再充電可能な蓄電装置と、蓄電装置から電力の供給を受けて車両駆動力を発生する電動機と、車両外部の電源によって蓄電装置を充電するように構成された外部充電機構と、外部充電機構による蓄電装置の充電が完了してから電動機により車両駆動力が発生されないまま経過した時間が所定時間を超えた場合には、蓄電装置を強制的に放電させる制御装置とを備える。 According to one aspect of the present invention, a power supply system for a vehicle charges a power storage device by a rechargeable power storage device, an electric motor that receives power from the power storage device to generate a vehicle driving force, and a power source external to the vehicle. The external charging mechanism configured to be configured to force the power storage device to be forced when the elapsed time has passed without the vehicle driving force being generated by the electric motor after the charging of the power storage device by the external charging mechanism has been completed. And a control device for discharging automatically.
 好ましくは、制御装置は、蓄電装置の充電状態値が所定値に達するまで、蓄電装置を放電させる。 Preferably, the control device discharges the power storage device until a charge state value of the power storage device reaches a predetermined value.
 好ましくは、車両の電源システムは、ユーザからの所定時間および所定値に関する指示を受付け可能に構成された入力部をさらに備える。 Preferably, the vehicle power supply system further includes an input unit configured to accept an instruction regarding a predetermined time and a predetermined value from a user.
 好ましくは、制御装置は、入力部が次回走行予定に関する情報を受付けた場合には、所定値を、次回走行予定に基づいて演算される蓄電装置への必要充電量に基づいて設定された値に設定する。 Preferably, when the input unit receives information related to the next travel schedule, the control device sets the predetermined value to a value set based on the required charge amount to the power storage device calculated based on the next travel schedule. Set.
 好ましくは、制御装置は、次回走行予定の目的地に到達するために車両で消費される電力量に基づいて必要充電量を設定する。 Preferably, the control device sets the required charge amount based on the amount of electric power consumed by the vehicle to reach the destination scheduled for the next travel.
 好ましくは、車両の電源システムは、蓄電装置からの電力を車両外部に供給するように構成された外部給電機構をさらに備える。制御装置は、外部給電機構により蓄電装置を放電する。 Preferably, the vehicle power supply system further includes an external power feeding mechanism configured to supply power from the power storage device to the outside of the vehicle. The control device discharges the power storage device by the external power feeding mechanism.
 好ましくは、外部給電機構は、蓄電装置からの電力を車両外部の電力系統に売電可能に構成される。 Preferably, the external power feeding mechanism is configured to be able to sell power from the power storage device to a power system outside the vehicle.
 好ましくは、車両の電源システムは、補機負荷をさらに備える。制御装置は、蓄電装置で放電される電力を補機負荷に供給する。 Preferably, the vehicle power supply system further includes an auxiliary load. The control device supplies power discharged from the power storage device to the auxiliary load.
 好ましくは、補機負荷は、補機バッテリを含む。制御装置は、蓄電装置で放電される電力により補機バッテリを充電する。 Preferably, the auxiliary load includes an auxiliary battery. The control device charges the auxiliary battery with electric power discharged by the power storage device.
 好ましくは、外部充電機構は、充電状態値が蓄電装置の満充電状態に対応付けて規定された充電状態値の上限値に達すると、蓄電装置の充電を完了するように構成される。制御装置は、上限値を、蓄電装置の劣化の進行に応じて上昇させる。 Preferably, the external charging mechanism is configured to complete charging of the power storage device when the charge state value reaches an upper limit value of the charge state value defined in association with the full charge state of the power storage device. The control device increases the upper limit value according to the progress of the deterioration of the power storage device.
 この発明によれば、車載蓄電装置の充電状態値が高い状態に長時間維持されてしまうのを防止できるため、蓄電装置の劣化の進行を抑制することができる。この結果、車両の航続距離を延ばすことができる。 According to the present invention, it is possible to prevent the in-vehicle power storage device from being maintained for a long time in a state where the charge state value is high, and thus it is possible to suppress the progress of deterioration of the power storage device. As a result, the cruising distance of the vehicle can be extended.
本発明の実施の形態による電源システムを搭載した車両の概略構成図である。1 is a schematic configuration diagram of a vehicle equipped with a power supply system according to an embodiment of the present invention. 本発明の実施の形態による電源システムにおける車載蓄電装置の充放電制御を説明する機能ブロック図である。It is a functional block diagram explaining charging / discharging control of the vehicle-mounted electrical storage apparatus in the power supply system by embodiment of this invention. リチウムイオン電池の使用年数とそのリチウムイオン電池の容量維持率との間の相関関係を説明するための図である。It is a figure for demonstrating the correlation between the years of use of a lithium ion battery, and the capacity maintenance rate of the lithium ion battery. 図2の制御範囲設定部によるSOC制御範囲の設定を説明するための図である。It is a figure for demonstrating the setting of the SOC control range by the control range setting part of FIG. ロングライフモードでの航続距離と通常モードでの航続距離とを説明するための図である。It is a figure for demonstrating the cruising distance in long life mode, and the cruising distance in normal mode. 蓄電装置の使用年数に対する制御上限値の設定を説明する概念図である。It is a conceptual diagram explaining the setting of the control upper limit with respect to the years of use of an electrical storage apparatus. 車両の走行距離に対する制御上限値の設定を説明する概念図である。It is a conceptual diagram explaining the setting of the control upper limit with respect to the travel distance of a vehicle. 本実施の形態によるSOC制御により達成可能な車両の航続距離を説明する概念図である。It is a conceptual diagram explaining the cruising range of a vehicle that can be achieved by SOC control according to the present embodiment. 本発明の実施の形態に従う蓄電装置の充電制御を実現するための制御処理手順を示したフローチャートである。It is the flowchart which showed the control processing procedure for implement | achieving charge control of the electrical storage apparatus according to embodiment of this invention. 図9のステップS04の処理をさらに詳細に説明するフローチャートである。10 is a flowchart for explaining the process of step S04 in FIG. 9 in more detail. 車両の走行に伴なう蓄電装置のSOCの時間的な変化を示す図である。It is a figure which shows the time change of SOC of the electrical storage apparatus accompanying driving | running | working of a vehicle. 本発明の実施の形態による車両による蓄電装置の放電制御を説明するフローチャートである。It is a flowchart explaining the discharge control of the electrical storage apparatus by the vehicle by embodiment of this invention. 本発明の実施の形態の変形例による車両の概略構成図である。It is a schematic block diagram of the vehicle by the modification of embodiment of this invention. 本発明の実施の形態の変形例による車両の電源システムによる蓄電装置の放電制御を説明するフローチャートである。It is a flowchart explaining the discharge control of the electrical storage apparatus by the power supply system of the vehicle by the modification of embodiment of this invention.
 以下、本発明の実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明が繰返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.
 図1は、本発明の実施の形態による電源システムを搭載した車両5の概略構成図である。本実施の形態では、車両5として電気自動車を例として説明するが、車両5の構成はこれに限定されるものではなく、蓄電装置10からの電力によって走行可能な車両であれば適用可能である。車両5としては、電気自動車以外にたとえばハイブリッド車両や燃料電池自動車などが含まれる。なお、図示された車両5の構成から、モータジェネレータMG、動力伝達ギヤ(図示せず)および駆動輪24Fを除いた部分によって、車両の電源システムが構成される。 FIG. 1 is a schematic configuration diagram of a vehicle 5 equipped with a power supply system according to an embodiment of the present invention. In the present embodiment, an electric vehicle is described as an example of the vehicle 5, but the configuration of the vehicle 5 is not limited to this, and any vehicle that can run with electric power from the power storage device 10 is applicable. . The vehicle 5 includes, for example, a hybrid vehicle and a fuel cell vehicle other than an electric vehicle. It should be noted that a power supply system for the vehicle is configured by a portion excluding the motor generator MG, the power transmission gear (not shown), and the drive wheels 24F from the illustrated configuration of the vehicle 5.
 図1を参照して、車両5は、モータジェネレータMGと、モータジェネレータMGとの間で電力を入出力可能な蓄電装置10とを搭載する。 Referring to FIG. 1, vehicle 5 includes a motor generator MG and a power storage device 10 capable of inputting / outputting electric power between motor generator MG.
 蓄電装置10は、再放電可能な電力貯蔵要素であり、代表的には、リチウムイオン電池やニッケル水素電池などの二次電池が適用される。あるいは、電気二重層キャパシタなどの電池以外の電力貯蔵要素によって、蓄電装置10を構成してもよい。図1には、車両5のうちの蓄電装置10の充放電制御に関するシステム構成が記載されている。 The power storage device 10 is a re-dischargeable power storage element, and typically, a secondary battery such as a lithium ion battery or a nickel metal hydride battery is applied. Or you may comprise the electrical storage apparatus 10 by electric power storage elements other than batteries, such as an electric double layer capacitor. FIG. 1 shows a system configuration related to charge / discharge control of the power storage device 10 in the vehicle 5.
 監視ユニット11は、蓄電装置10に設けられた温度センサ12、電圧センサ13および電流センサ14の出力に基づいて、蓄電装置10の「状態値」を検出する。すなわち、「状態値」は、蓄電装置10の温度Tb、電圧Vbおよび電流Ibを含む。上述のように、蓄電装置10として代表的に二次電池が用いられるため、蓄電装置10の温度Tb、電圧Vbおよび電流Ibについて、以下では、電池温度Tb、電池電圧Vbおよび電池電流Ibとも称する。また、電池温度Tb、電池電圧Vbおよび電池電流Ibを包括的に「電池データ」とも総称する。 The monitoring unit 11 detects the “state value” of the power storage device 10 based on the outputs of the temperature sensor 12, the voltage sensor 13 and the current sensor 14 provided in the power storage device 10. That is, “state value” includes temperature Tb, voltage Vb, and current Ib of power storage device 10. As described above, since a secondary battery is typically used as power storage device 10, temperature Tb, voltage Vb, and current Ib of power storage device 10 are hereinafter also referred to as battery temperature Tb, battery voltage Vb, and battery current Ib. . In addition, the battery temperature Tb, the battery voltage Vb, and the battery current Ib are collectively referred to as “battery data”.
 なお、温度センサ12、電圧センサ13および電流センサ14については、蓄電装置10に設けられる温度センサ、電圧センサおよび電流センサのそれぞれを包括的に示すものである。すなわち、実際には、温度センサ12、電圧センサ13および電流センサ14の少なくとも一部については、複数個設けられることが一般的である点について確認的に記載する。 Note that the temperature sensor 12, the voltage sensor 13, and the current sensor 14 collectively indicate the temperature sensor, the voltage sensor, and the current sensor provided in the power storage device 10. That is, in practice, at least a part of the temperature sensor 12, the voltage sensor 13, and the current sensor 14 will be described in detail in terms of being generally provided.
 モータジェネレータMGは、交流回転電機であり、たとえば、永久磁石が埋設されたロータと中性点でY結線された三相コイルを有するステータとを備える三相交流電動発電機によって構成される。モータジェネレータMGの出力トルクは、減速機や動力分割機構によって構成される動力伝達ギヤ(図示せず)を介して駆動輪24Fに伝達されて、車両5を走行させる。モータジェネレータMGは、車両5の回生制動時には、駆動輪24Fの回転力によって発電することができる。そして、その発電電力は、インバータによって蓄電装置10の充電電力に変換される。 Motor generator MG is an AC rotating electric machine, and is constituted by, for example, a three-phase AC motor generator including a rotor having a permanent magnet embedded therein and a stator having a three-phase coil Y-connected at a neutral point. The output torque of motor generator MG is transmitted to drive wheels 24F via a power transmission gear (not shown) constituted by a speed reducer and a power split mechanism, and causes vehicle 5 to travel. Motor generator MG can generate electric power by the rotational force of drive wheels 24F during regenerative braking of vehicle 5. Then, the generated power is converted into charging power for power storage device 10 by an inverter.
 車両5は、PCU(Power Control Unit)15をさらに備える。PCU15は、モータジェネレータMGと蓄電装置10との間で双方向に電力変換するように構成される。PCU15は、いずれも図示しないが、コンバータと、インバータとを含む。コンバータは、制御装置30からのスイッチング指令PWCに従って、蓄電装置10と、インバータの直流リンク電圧を伝達する正母線との間で、双方向の直流電圧変換を実行するように構成される。すなわち、蓄電装置10の入出力電圧と、正母線および負母線間の直流電圧とは、双方向に昇圧または降圧される。インバータは、正母線および負母線間の直流電力と、モータジェネレータMGに入出力される交流電力との間の双方向の電力変換を実行する。具体的には、インバータは、制御装置30からのスイッチング指令PWMに応じて、正母線および負母線を介して供給される直流電力を交流電力に変換して、モータジェネレータMGへ供給する。これによりモータジェネレータMGは、車両5の駆動力を発生する。 The vehicle 5 further includes a PCU (Power Control Unit) 15. PCU 15 is configured to bi-directionally convert power between motor generator MG and power storage device 10. Although not shown, the PCU 15 includes a converter and an inverter. The converter is configured to perform bidirectional DC voltage conversion between power storage device 10 and the positive bus that transmits the DC link voltage of the inverter in accordance with switching command PWC from control device 30. That is, the input / output voltage of power storage device 10 and the DC voltage between the positive bus and the negative bus are boosted or lowered in both directions. The inverter performs bidirectional power conversion between DC power between the positive bus and the negative bus and AC power input / output to / from motor generator MG. Specifically, the inverter converts DC power supplied via the positive bus and the negative bus into AC power in accordance with a switching command PWM from control device 30, and supplies the AC power to motor generator MG. Thereby, motor generator MG generates the driving force of vehicle 5.
 一方、車両5の回生制動時には、モータジェネレータMGは、駆動輪24Fの減速に伴って交流電力を発電する。このとき、インバータは、制御装置30からのスイッチング指令PWMに応じて、モータジェネレータMGが発生する交流電力を直流電力に変換し、正母線および負母線へ供給する。これにより、減速時や降坂走行時に蓄電装置10が充電される。 On the other hand, during regenerative braking of the vehicle 5, the motor generator MG generates AC power as the drive wheels 24F are decelerated. At this time, the inverter converts AC power generated by motor generator MG into DC power in accordance with switching command PWM from control device 30 and supplies the DC power to the positive bus and the negative bus. As a result, the power storage device 10 is charged during deceleration or when traveling downhill.
 蓄電装置10とPCU15との間には、正線PL1および負線NL1に介挿接続されたシステムメインリレー(以下、SMR(System Main Relay)とも称する)7が設けられる。SMR7は、制御装置30からのリレー制御信号SEに応じて導通状態(オン)/非導通状態(オフ)が制御されることにより、蓄電装置10とPCU15との間での電力の供給および遮断を切換える。SMR7は、蓄電装置10の充放電経路を遮断可能な開閉装置の代表例として用いられる。すなわち、任意の形式の開閉装置をSMR7に代えて適用することができる。 Between the power storage device 10 and the PCU 15, there is provided a system main relay (hereinafter also referred to as SMR (System Main Relay)) 7 inserted and connected to the positive line PL1 and the negative line NL1. The SMR 7 controls supply / cut-off of electric power between the power storage device 10 and the PCU 15 by controlling the conduction state (ON) / non-conduction state (OFF) according to the relay control signal SE from the control device 30. Switch. The SMR 7 is used as a representative example of a switchgear that can cut off a charge / discharge path of the power storage device 10. That is, any type of switching device can be applied in place of the SMR 7.
 本実施の形態による電源システムは、車両外部の電源(以下、「外部電源」とも称する)60からの電力によって蓄電装置10を充電する(いわゆるプラグイン充電)機能を有する。さらに、電源システムは、蓄電装置10に蓄えられた電力を車両外部の電気機器70に供給できる機能を有する。すなわち、電源システムは、外部電源60から蓄電装置10の充電(外部充電)が可能であるとともに、蓄電装置10から車両外部への給電(外部給電)が可能に構成される。 The power supply system according to the present embodiment has a function of charging power storage device 10 with electric power from a power supply 60 (hereinafter also referred to as “external power supply”) outside the vehicle (so-called plug-in charging). Furthermore, the power supply system has a function of supplying the electric power stored in the power storage device 10 to the electric device 70 outside the vehicle. That is, the power supply system is configured to be able to charge the power storage device 10 from the external power supply 60 (external charging) and to supply power from the power storage device 10 to the outside of the vehicle (external power supply).
 具体的には、車両5は、蓄電装置10の外部充電および蓄電装置10による外部給電を行なうための構成として、充電リレー(CHR)52と、電力変換装置50と、コネクタ受入部54と、センサ55とを備える。 Specifically, vehicle 5 is configured to perform external charging of power storage device 10 and external power feeding by power storage device 10. Charging relay (CHR) 52, power conversion device 50, connector receiving unit 54, sensor 55.
 コネクタ部62がコネクタ受入部54に連結されることで、外部電源60からの電力が電力変換装置50へ供給される。外部電源60は、たとえば交流100Vの商用電源である。外部電源60は、電力網の電力線AC1,AC2に接続されている。 The power from the external power supply 60 is supplied to the power converter 50 by connecting the connector part 62 to the connector receiving part 54. The external power supply 60 is a commercial power supply of AC 100V, for example. The external power source 60 is connected to the power lines AC1 and AC2 of the power network.
 なお、電力網の電力線AC1,AC2には、電気機器70が接続されている。電気機器70は、電力網から電力を受けて動作する任意の機器である。電気機器70は、たとえば、家屋であってもよいし個別の電化製品であってもよい。また、電気機器70は、車両5以外の他の車両であってもよい。 Note that an electric device 70 is connected to the power lines AC1 and AC2 of the power grid. The electrical device 70 is an arbitrary device that operates by receiving power from the power grid. The electric device 70 may be, for example, a house or an individual appliance. Further, the electric device 70 may be a vehicle other than the vehicle 5.
 センサ55は、コネクタ部62とコネクタ受入部54との連結状態を検出する。センサ55は、コネクタ部62がコネクタ受入部54に連結されたことを検出すると、蓄電装置10が外部充電可能な状態となったことを示す信号STRを出力する。一方、コネクタ部62がコネクタ受入部54から外されたことを検出したときには、センサ55は、信号STRの出力を停止する。 The sensor 55 detects the connection state between the connector part 62 and the connector receiving part 54. When the sensor 55 detects that the connector portion 62 is connected to the connector receiving portion 54, the sensor 55 outputs a signal STR indicating that the power storage device 10 is ready for external charging. On the other hand, when it is detected that the connector part 62 is removed from the connector receiving part 54, the sensor 55 stops outputting the signal STR.
 なお、外部充電可能とするために、他にも、外部電源と車両とを非接触のまま電磁的に結合して電力を供給する構成、具体的には外部電源側に一次コイルを設けるとともに、車両側に二次コイルを設け、一次コイルと二次コイルとの間の相互コンダクタンスを利用して電力供給を行なう構成により、外部電源から電力を受入れてもよい。 In addition, in order to enable external charging, other than that, an external power source and a vehicle are electromagnetically coupled in a non-contact manner to supply electric power, specifically, a primary coil is provided on the external power source side, A power supply may be received from an external power source by providing a secondary coil on the vehicle side and supplying power using the mutual conductance between the primary coil and the secondary coil.
 電力変換装置50は、電力線ACL1,ACL2を介してコネクタ受入部54に接続される。また、電力変換装置50は、正線PL2および負線NL2によって、充電リレー52を介して蓄電装置10に接続される。そして、電力変換装置50は、外部充電時には、制御装置30からの制御信号PWDに応じて、外部電源60から供給される交流電力を直流電力に変換して蓄電装置10へ供給する。また、外部給電時には、電力変換装置50は、制御装置30からの制御信号PWDに応じて、蓄電装置10から供給される直流電力を交流電力に変換して車両外部へ供給する。なお、電力変換装置50は、図示は省略するが、このような交流電力と直流電力との間で双方向に電力変換を行なうための双方向AC/DC変換器と、正線PL2および負線NL2間の電圧変動を減少させるためのコンデンサとを含んでいる。 The power conversion device 50 is connected to the connector receiving unit 54 via the power lines ACL1 and ACL2. In addition, power conversion device 50 is connected to power storage device 10 through charging relay 52 by positive line PL2 and negative line NL2. Then, at the time of external charging, power conversion device 50 converts AC power supplied from external power supply 60 into DC power and supplies it to power storage device 10 according to control signal PWD from control device 30. Further, at the time of external power feeding, power conversion device 50 converts DC power supplied from power storage device 10 into AC power and supplies it to the outside of the vehicle in accordance with control signal PWD from control device 30. Although not shown in the figure, power converter 50 is a bidirectional AC / DC converter for performing bidirectional power conversion between AC power and DC power, and positive line PL2 and negative line. And a capacitor for reducing voltage fluctuation between NL2.
 CHR52に含まれるリレーの一方端は、蓄電装置10の正極端子および負極端子にそれぞれ接続される。CHR52に含まれるリレーの他方端は、電力変換装置50に接続される正線PL2および負線NL2にそれぞれ接続される。そして、CHR52は、制御装置30からの制御信号SE2に応じて導通状態(オン)/非導通状態(オフ)が制御されることにより、蓄電装置10と電力変換装置50との間での電力の供給および遮断を切換える。CHR52は、蓄電装置10と電力変換装置50との電気的接続を遮断可能な開閉装置の代表例として用いられる。すなわち、任意の形式の開閉装置をCHR52に代えて適用することができる。 One end of the relay included in CHR 52 is connected to the positive terminal and the negative terminal of power storage device 10, respectively. The other end of the relay included in CHR 52 is connected to positive line PL2 and negative line NL2 connected to power conversion device 50, respectively. The CHR 52 is controlled to be in a conductive state (ON) / non-conductive state (OFF) in accordance with a control signal SE2 from the control device 30, so that the electric power between the power storage device 10 and the power conversion device 50 is controlled. Switching between supply and shut-off. The CHR 52 is used as a representative example of a switchgear that can cut off the electrical connection between the power storage device 10 and the power conversion device 50. That is, any type of switching device can be applied in place of the CHR 52.
 車両5は、ユーザによって操作可能に構成されたスイッチ56をさらに備える。スイッチ56は、ユーザの手動操作によりオン状態とオフ状態との間で切替えられる。スイッチ56は、ユーザによりオン状態とされたときには、蓄電装置10の劣化の進行が抑制されるように蓄電装置10の充電モードを設定するための指令(信号SLF)を発生する。蓄電装置10の劣化の進行が抑制されることによって、蓄電装置10の使用期間を延ばすことができる。すなわち、信号SLFは、蓄電装置10の使用期間を延ばすための指令である。以下の説明では、蓄電装置10の劣化の進行を抑制するための充電モードを「ロングライフモード」とも称する。 The vehicle 5 further includes a switch 56 configured to be operable by the user. The switch 56 is switched between an on state and an off state by a user's manual operation. When switch 56 is turned on by the user, switch 56 generates a command (signal SLF) for setting the charging mode of power storage device 10 so that the progress of deterioration of power storage device 10 is suppressed. The use period of power storage device 10 can be extended by suppressing the progress of deterioration of power storage device 10. That is, signal SLF is a command for extending the use period of power storage device 10. In the following description, the charging mode for suppressing the progress of deterioration of the power storage device 10 is also referred to as “long life mode”.
 スイッチ56は、ユーザによりオフ状態とされたときには、信号SLFの発生を停止する。これにより、ロングライフモードの設定が解除されるとともに、車両5がロングライフモードから通常モードへ切替わる。すなわち、ユーザはスイッチ56をオンまたはオフに操作することにより、車両5の充電モードとして、ロングライフモードおよび通常モードのいずれかを選択できる。 The switch 56 stops generating the signal SLF when turned off by the user. Thereby, the setting of the long life mode is canceled, and the vehicle 5 is switched from the long life mode to the normal mode. That is, the user can select either the long life mode or the normal mode as the charging mode of the vehicle 5 by operating the switch 56 on or off.
 車両5は、ユーザからの指示を受付け可能に構成された入力部80をさらに備える。入力部80は、後述する蓄電装置10の外部充電の際に、ユーザが充電完了時刻などの充電制御に関する情報を設定するためのユーザインターフェイスである。入力部80によって設定された充電制御に関する情報は、制御装置30へ送信される。 The vehicle 5 further includes an input unit 80 configured to receive an instruction from the user. The input unit 80 is a user interface for the user to set information related to charging control such as a charging completion time during external charging of the power storage device 10 to be described later. Information regarding the charging control set by the input unit 80 is transmitted to the control device 30.
 制御装置30は、代表的には、CPU(Central Processing Unit)と、RAM(Random Access Memory)やROM(Read Only Memory)などのメモリ領域と、入出力インターフェイスとを主体として構成された電子制御装置(ECU:Electronic Control Unit)により構成される。そして、制御装置30は、予めROMなどに格納されたプログラムをCPUがRAMに読出して実行することによって、車両走行および充放電に係る制御を実行する。なお、ECUの少なくとも一部は、電子回路等のハードウェアにより所定の数値・論理演算処理を実行するように構成されてもよい。 The control device 30 is typically an electronic control device mainly composed of a CPU (Central Processing Unit), a memory area such as a RAM (Random Access Memory) and a ROM (Read Only Memory), and an input / output interface. (ECU: Electronic Control Unit) And the control apparatus 30 performs control which concerns on vehicle driving | running | working and charging / discharging, when CPU reads the program previously stored in ROM etc. to RAM, and runs it. Note that at least a part of the ECU may be configured to execute predetermined numerical / logical operation processing by hardware such as an electronic circuit.
 制御装置30に入力される情報として、図1には、監視ユニット11からの電池データ(電池温度Tb、電池電圧Vbおよび電池電流Ib)、スイッチ56からの信号SLFおよび入力部80からの充電制御に関する情報を例示する。図示しないが、正母線と負母線との線間に配置された電圧センサからの直流電圧、モータジェネレータMGの各相の電流検出値およびモータジェネレータMGの回転角検出値などについても、制御装置30に入力される。 As information input to the control device 30, FIG. 1 shows battery data (battery temperature Tb, battery voltage Vb, and battery current Ib) from the monitoring unit 11, a signal SLF from the switch 56, and charge control from the input unit 80. The information regarding is illustrated. Although not shown, the controller 30 also controls a DC voltage from a voltage sensor arranged between the positive bus and the negative bus, a current detection value of each phase of the motor generator MG, a rotation angle detection value of the motor generator MG, and the like. Is input.
 図2は、本発明の実施の形態による電源システムにおける車載蓄電装置の充放電制御を説明する機能ブロック図である。なお、図2を始めとする以下の各ブロック図に記載された各機能ブロックについては、予め設定されたプログラムに従って制御装置30がソフトウェア処理を実行することにより実現することができる。あるいは、制御装置30の内部に、当該機能に相当する機能を有する回路(ハードウェア)を構成することも可能である。 FIG. 2 is a functional block diagram illustrating charge / discharge control of the in-vehicle power storage device in the power supply system according to the embodiment of the present invention. Note that each functional block described in each of the following block diagrams including FIG. 2 can be realized by the control device 30 executing software processing according to a preset program. Alternatively, a circuit (hardware) having a function corresponding to the function can be configured in the control device 30.
 図2を参照して、制御装置30は、劣化診断部300と、状態推定部320と、制御範囲設定部330と、判定部340と、充放電制御部350と、タイマー360とを含む。 Referring to FIG. 2, control device 30 includes a deterioration diagnosis unit 300, a state estimation unit 320, a control range setting unit 330, a determination unit 340, a charge / discharge control unit 350, and a timer 360.
 劣化診断部300は、蓄電装置10の劣化度合いを推定するのに用いる劣化パラメータとして、蓄電装置10の使用年数を計測する。蓄電装置10は、使用年数が長くなるにつれて劣化が進行する。蓄電装置10の劣化が進行すると、蓄電装置10の満充電容量は低下し、内部抵抗は上昇する。なお、蓄電装置10の劣化の要因には、蓄電装置10の使用年数以外に、車両5の走行距離が含まれる。よって、劣化診断部300は、劣化パラメータとして、蓄電装置10の使用年数に代えて、車両5の走行距離を計測してもよい。あるいは、蓄電装置10の使用年数および車両5の走行距離を計測してもよい。なお、蓄電装置10の使用年数および車両5の走行距離は、公知の種々の方法によって算出することができる。劣化診断部300によって計測された蓄電装置10の使用年数CNTは、制御範囲設定部330へ伝達される。 The deterioration diagnosis unit 300 measures the years of use of the power storage device 10 as a deterioration parameter used to estimate the degree of deterioration of the power storage device 10. Deterioration of power storage device 10 proceeds as the years of use increase. As the deterioration of the power storage device 10 proceeds, the full charge capacity of the power storage device 10 decreases and the internal resistance increases. In addition to the years of use of power storage device 10, the cause of deterioration of power storage device 10 includes the travel distance of vehicle 5. Therefore, deterioration diagnosis unit 300 may measure the travel distance of vehicle 5 as the deterioration parameter, instead of the service life of power storage device 10. Alternatively, the years of use of power storage device 10 and the travel distance of vehicle 5 may be measured. The years of use of power storage device 10 and the travel distance of vehicle 5 can be calculated by various known methods. The usage years CNT of the power storage device 10 measured by the deterioration diagnosis unit 300 are transmitted to the control range setting unit 330.
 状態推定部320は、監視ユニット11からの電池データ(Tb,Vb,Ib)に基づいて、蓄電装置10の充電状態(SOC)を推定する。SOCは、満充電容量に対する現在の充電量の比率(0~100%)を示したものである。たとえば、状態推定部320は、蓄電装置10の充放電量の積算値に基づいて蓄電装置10のSOC推定値(♯SOC)を順次演算する。充放電量の積算値は、電池電流Ibおよび電池電圧Vbの積(電力)を時間的に積分することで得られる。あるいは、開放電圧(OCV:Open Circuit Voltage)とSOCとの関係に基づいてSOC推定値(♯SOC)を算出してもよい。 The state estimation unit 320 estimates the state of charge (SOC) of the power storage device 10 based on the battery data (Tb, Vb, Ib) from the monitoring unit 11. The SOC indicates the ratio (0 to 100%) of the current charge amount to the full charge capacity. For example, state estimating unit 320 sequentially calculates the estimated SOC value (#SOC) of power storage device 10 based on the integrated value of the charge / discharge amount of power storage device 10. The integrated value of the charge / discharge amount can be obtained by temporally integrating the product (electric power) of the battery current Ib and the battery voltage Vb. Alternatively, the estimated SOC value (#SOC) may be calculated based on the relationship between the open circuit voltage (OCV) and the SOC.
 制御範囲設定部330は、スイッチ56からの信号SLFおよび劣化診断部300からの蓄電装置10の使用年数の計測値CNTに基づいて、蓄電装置10のSOC制御範囲を設定する。なお、本明細書において、「SOC制御範囲」とは、外部充電時におけるSOCの制御範囲であって、走行時におけるSOCの制御範囲とは独立に設定される。以下では、SOC制御範囲の下限をSmin(制御下限値)と称し、SOC制御範囲の上限をSmax(制御上限値)と称することとする。制御上限値Smaxおよび制御下限値Sminは、これ以上の過充電または過放電が進行するのを回避するために設けられた、SOC制御上の満充電状態および空状態にそれぞれ相当する。 Control range setting unit 330 sets the SOC control range of power storage device 10 based on signal SLF from switch 56 and measured value CNT of the age of power storage device 10 from degradation diagnosis unit 300. In the present specification, the “SOC control range” is an SOC control range during external charging, and is set independently of the SOC control range during travel. Hereinafter, the lower limit of the SOC control range is referred to as Smin (control lower limit value), and the upper limit of the SOC control range is referred to as Smax (control upper limit value). The control upper limit value Smax and the control lower limit value Smin respectively correspond to a full charge state and an empty state in SOC control provided to avoid further overcharge or overdischarge.
 制御範囲設定部330は、スイッチ56から信号SLFを受けたときには、信号SLFが発生した、すなわち、蓄電装置10の充電モードとしてロングライフモードが選択されたと判定する。一方、スイッチ56から信号SLFを受けていないときには、信号SLFが発生していない、すなわち、蓄電装置10の充電モードとして通常モードが選択されたと判定する。制御範囲設定部330は、後述する方法によって、通常モード時と、ロングライフモード時との間で、蓄電装置10のSOC制御範囲を切換える。 When the control range setting unit 330 receives the signal SLF from the switch 56, the control range setting unit 330 determines that the signal SLF is generated, that is, the long life mode is selected as the charging mode of the power storage device 10. On the other hand, when signal SLF is not received from switch 56, it is determined that signal SLF is not generated, that is, the normal mode is selected as the charging mode of power storage device 10. Control range setting unit 330 switches the SOC control range of power storage device 10 between the normal mode and the long life mode by a method described later.
 判定部340は、状態推定部320で推定されたSOC推定値(♯SOC)を取得すると、SOC推定値(♯SOC)が制御上限値Smaxに達したか否かを判定する。判定部340は、その判定結果を充放電制御部350へ出力する。 When determining unit 340 obtains the estimated SOC value (#SOC) estimated by state estimating unit 320, it determines whether or not the estimated SOC value (#SOC) has reached control upper limit value Smax. Determination unit 340 outputs the determination result to charge / discharge control unit 350.
 充放電制御部350は、センサ55からの信号STRに基づいて、外部充電を開始する。具体的には、充放電制御部350は、信号STRが発生している場合には外部充電を開始可能と判断する。充放電制御部350は、制御信号SE2によりCHR52をオンするとともに、外部電源60から供給される交流電力を直流電力に変換するように制御信号PWDを生成する。この制御信号PWDに従った電力変換装置50の電力変換によって、蓄電装置10が充電される。 The charge / discharge control unit 350 starts external charging based on the signal STR from the sensor 55. Specifically, charge / discharge control unit 350 determines that external charging can be started when signal STR is generated. Charging / discharging control unit 350 turns on CHR 52 by control signal SE2 and generates control signal PWD so as to convert AC power supplied from external power supply 60 into DC power. The power storage device 10 is charged by power conversion of the power conversion device 50 in accordance with the control signal PWD.
 そして、蓄電装置10のSOCが増加することにより、SOC推定値(♯SOC)が制御上限値Smaxに達したと判定部340により判定されると、充放電制御部350は、制御信号PWDの生成を停止する。制御信号PWDの生成が停止されることによって、電力変換装置50が停止する。電力変換装置50が停止することによって蓄電装置10の充電が終了する。 When determining unit 340 determines that the estimated SOC value (#SOC) has reached control upper limit value Smax due to an increase in the SOC of power storage device 10, charge / discharge control unit 350 generates control signal PWD. To stop. When the generation of the control signal PWD is stopped, the power conversion device 50 is stopped. When power conversion device 50 stops, charging of power storage device 10 ends.
 このようなプラグインタイプの車両5において、ユーザは、入力部80を操作することにより、充電終了時刻として車両5を始動させる予定時刻を設定することができる。たとえば、ユーザが外出先からの帰宅後に次の乗車予定時刻を設定することにより、設定された乗車予定時刻には蓄電装置10をほぼ満充電の状態にすることができる。この場合、充電終了時刻から逆算される充電開始時刻に蓄電装置10の外部充電が開始される。 In such a plug-in type vehicle 5, the user can set a scheduled time for starting the vehicle 5 as a charging end time by operating the input unit 80. For example, when the user sets the next scheduled boarding time after returning home from the outside, the power storage device 10 can be almost fully charged at the set scheduled boarding time. In this case, external charging of power storage device 10 is started at a charging start time calculated backward from the charging end time.
 また、深夜電力の料金が日中に使用される電力の料金よりも安い場合には、その深夜電力の時間帯に蓄電装置10を充電することによって充電コストを低減することができる。このような場合には、ユーザは、入力部80を操作することにより、深夜電力の時間帯内の時刻を蓄電装置10の充電開始時刻に設定することができる。本明細書では、ユーザがコネクタ部62を車両5に連結することで開始される外部充電と区別するために、ユーザが予め設定した充電終了時刻または充電開始時刻に従って開始される外部充電を「タイマー充電」とも記す。 In addition, when the charge for midnight power is lower than the charge for power used during the day, the charging cost can be reduced by charging the power storage device 10 during the midnight power time zone. In such a case, the user can set the time within the midnight power time zone as the charging start time of the power storage device 10 by operating the input unit 80. In this specification, in order to distinguish from external charging that is started when the user connects the connector unit 62 to the vehicle 5, external charging that is started according to a charging end time or charging start time that is set in advance by the user is referred to as a “timer”. Also referred to as “charging”.
 (SOC制御範囲の設定)
 本発明の実施の形態による車両5では、車両走行開始時には、蓄電装置10は、制御上限値Smaxまで外部充電されている。制御上限値Smaxは、蓄電装置10の外部充電時においてSOCが満充電状態に達したか否かを判定するための判定値である。
(Setting of SOC control range)
In vehicle 5 according to the embodiment of the present invention, power storage device 10 is externally charged up to control upper limit value Smax when the vehicle starts to travel. Control upper limit value Smax is a determination value for determining whether or not the SOC has reached a fully charged state during external charging of power storage device 10.
 イグニッションスイッチがオンされて車両5の走行が指示されると、車両5の走行によって、蓄電装置10のSOCは徐々に低下する。そして、SOC推定値(♯SOC)が、制御範囲の下限値まで低下すると、車両5の走行が終了する。 When the ignition switch is turned on and the vehicle 5 is instructed to travel, the SOC of the power storage device 10 gradually decreases as the vehicle 5 travels. Then, when the estimated SOC value (#SOC) decreases to the lower limit value of the control range, the vehicle 5 finishes traveling.
 なお、走行時におけるSOCの制御範囲は、外部充電時における制御範囲とは独立に設定される。たとえば車両5の回生制動時には、モータジェネレータMGが発生した回生電力によって蓄電装置10のSOCが上昇する。この結果、蓄電装置10の外部充電時における制御上限値Smaxよりも高くなる可能性がある。しかしながら、車両5の走行が継続されることによって、SOCが再び低下する。すなわち、車両5の走行中は、SOCが高い状態が長時間継続する可能性が低い。したがって、走行時におけるSOCの制御範囲は、外部充電地における制御範囲とは独立に設定することができる。 Note that the SOC control range during travel is set independently of the control range during external charging. For example, at the time of regenerative braking of vehicle 5, the SOC of power storage device 10 rises due to the regenerative power generated by motor generator MG. As a result, there is a possibility that it becomes higher than the control upper limit value Smax when the power storage device 10 is externally charged. However, as the vehicle 5 continues to travel, the SOC decreases again. That is, while the vehicle 5 is traveling, it is unlikely that a state where the SOC is high continues for a long time. Therefore, the SOC control range during traveling can be set independently of the control range at the external charging site.
 そして、車両5の走行が終了すると、ユーザがコネクタ部62(図1)を車両5に連結することで、外部充電が開始される。これにより、蓄電装置10のSOCは上昇し始める。 And when driving | running | working of the vehicle 5 is complete | finished, external charging will be started because a user connects the connector part 62 (FIG. 1) to the vehicle 5. FIG. Thereby, the SOC of power storage device 10 begins to rise.
 このように、車両5の走行後において外部充電が実行されることにより、蓄電装置10をほぼ満充電の状態にすることができる。これにより、蓄電装置10から多くの電力量を取り出すことができるため、車両5の航続距離を延ばすことができる。なお、本明細書では「航続距離」とは、蓄電装置10に蓄えられた電力によって車両5が走行可能な距離を意味する。特に、蓄電装置10として、高いエネルギ密度を有するリチウムイオン電池を適用した場合には、蓄電装置10から多くの電力量を取り出すことができるとともに、蓄電装置10の小型化および軽量化を実現できる。 Thus, the external charging is performed after the vehicle 5 travels, whereby the power storage device 10 can be almost fully charged. Thereby, since a large amount of electric power can be taken out from the power storage device 10, the cruising distance of the vehicle 5 can be extended. In the present specification, the “cruising distance” means a distance that the vehicle 5 can travel with the electric power stored in the power storage device 10. In particular, when a lithium ion battery having a high energy density is applied as the power storage device 10, a large amount of power can be extracted from the power storage device 10, and the power storage device 10 can be reduced in size and weight.
 しかしながら、一般的に、リチウムイオン電池では、SOCが高い状態が長時間継続することは劣化の観点から好ましくない。たとえばリチウムイオン電池の劣化が進行すると、満充電容量が低下する。図3は、リチウムイオン電池の使用年数とそのリチウムイオン電池の容量維持率との間の相関関係を説明するための図である。図3を参照して、リチウムイオン電池が新品であるときの容量維持率が100%と定義される。リチウムイオン電池に蓄えられた電力を用いて車両5の走行が繰り返されることにより、リチウムイオン電池は次第に劣化する。リチウムイオン電池の使用年数が長くなるほど容量維持率は小さくなる。すなわち、リチウムイオン電池の満充電容量が低下する。さらに、使用年数に対する容量維持率の低下の度合いは、リチウムイオン電池の充電完了時のSOCが高くなるほど大きくなる。 However, in general, in a lithium ion battery, it is not preferable from the viewpoint of deterioration that a state in which the SOC is high continues for a long time. For example, as the deterioration of a lithium ion battery proceeds, the full charge capacity decreases. FIG. 3 is a diagram for explaining the correlation between the years of use of the lithium ion battery and the capacity retention rate of the lithium ion battery. Referring to FIG. 3, the capacity maintenance rate when the lithium ion battery is new is defined as 100%. The lithium ion battery gradually deteriorates as the vehicle 5 travels repeatedly using the electric power stored in the lithium ion battery. The capacity maintenance rate decreases as the service life of the lithium ion battery increases. That is, the full charge capacity of the lithium ion battery is reduced. Furthermore, the degree of decrease in the capacity maintenance rate with respect to the years of use increases as the SOC at the completion of charging of the lithium ion battery increases.
 ここで、蓄電装置10の充電が完了してから車両5の走行が開始されるまでの時間はユーザによって異なるため、SOCが高い状態が長時間継続する可能性がある。よって、蓄電装置10の満充電容量が低下してしまう虞がある。 Here, since the time from when the charging of the power storage device 10 is completed to when the vehicle 5 starts to travel is different depending on the user, there is a possibility that the state where the SOC is high continues for a long time. Therefore, the full charge capacity of the power storage device 10 may be reduced.
 本実施の形態による車両5は、蓄電装置10の使用期間を延ばすためのロングライフモードを有する。本実施の形態では、通常モード時と、ロングライフモード時との間で、蓄電装置10のSOC制御を以下のように切換える。 The vehicle 5 according to the present embodiment has a long life mode for extending the usage period of the power storage device 10. In the present embodiment, the SOC control of power storage device 10 is switched between the normal mode and the long life mode as follows.
 図4は、図2の制御範囲設定部330によるSOC制御範囲の設定を説明するための図である。 FIG. 4 is a diagram for explaining setting of the SOC control range by the control range setting unit 330 of FIG.
 制御上限値Smaxは、上記のように、外部充電時において、蓄電装置10のSOCが満充電状態に達したか否かを判定するための判定値である。本実施の形態による車両5では、この基準上限値Smaxを、通常モードとロングライフモードとの間で切換える。 Control upper limit value Smax is a determination value for determining whether or not the SOC of power storage device 10 has reached a fully charged state during external charging as described above. In vehicle 5 according to the present embodiment, this reference upper limit value Smax is switched between the normal mode and the long life mode.
 図4を参照して、第1の範囲R1は、通常モードにおけるSOCの制御範囲である。第2の範囲R2は、ロングライフモードにおけるSOCの制御範囲である。Smax1は、第1の範囲R1の上限値、すなわち、通常モードにおける制御上限値Smaxを示す。Smax2は、第2の範囲R2の上限値、すなわち、ロングライフモードにおける制御上限値Smaxを示す。また、第1の範囲R1の下限値、すなわち、通常モードにおける制御下限値と、第2の範囲R2の下限値、すなわち、ロングライフモードにおける制御下限値とはともにSminである。ただし、第2の範囲R2の下限値が第1の範囲R1の下限値よりも大きくてもよい。 Referring to FIG. 4, the first range R1 is the SOC control range in the normal mode. The second range R2 is a SOC control range in the long life mode. Smax1 indicates the upper limit value of the first range R1, that is, the control upper limit value Smax in the normal mode. Smax2 indicates the upper limit value of the second range R2, that is, the control upper limit value Smax in the long life mode. Further, the lower limit value of the first range R1, that is, the control lower limit value in the normal mode, and the lower limit value of the second range R2, that is, the control lower limit value in the long life mode are both Smin. However, the lower limit value of the second range R2 may be larger than the lower limit value of the first range R1.
 制御上限値Smax1およびSmax2は、蓄電装置10の過充電を防止するために、ともに100%よりも小さい値に設定される。また、制御下限値Sminは、蓄電装置10の過放電を防止するために、0%よりも大きい値に設定される。 Control upper limit values Smax1 and Smax2 are both set to values smaller than 100% in order to prevent overcharging of power storage device 10. Control lower limit Smin is set to a value larger than 0% in order to prevent overdischarge of power storage device 10.
 ここで、ロングライフモードにおける制御上限値Smax2は、通常モードにおける制御上限値Smax1よりも小さい値に設定される。これにより、ロングライフモード時には、蓄電装置10の充電が完了したときのSOCを、通常モード時よりも下げることができる。この結果、ロングライフモード時には、蓄電装置10の劣化の進行を抑制することができる。 Here, the control upper limit value Smax2 in the long life mode is set to a value smaller than the control upper limit value Smax1 in the normal mode. Thereby, at the time of the long life mode, the SOC when the charging of the power storage device 10 is completed can be made lower than that at the time of the normal mode. As a result, in the long life mode, the progress of the deterioration of the power storage device 10 can be suppressed.
 このようにロングライフモードで蓄電装置10を充電した場合には、蓄電装置10の満充電容量の低下を抑制することができる。その結果、蓄電装置10の使用年数が長くなっても、車両5の航続距離を確保することができる。 Thus, when the power storage device 10 is charged in the long life mode, it is possible to suppress a decrease in the full charge capacity of the power storage device 10. As a result, the cruising distance of the vehicle 5 can be ensured even when the power storage device 10 has been used for a long time.
 図5は、ロングライフモードでの航続距離と通常モードでの航続距離とを説明するための図である。 FIG. 5 is a diagram for explaining the cruising distance in the long life mode and the cruising distance in the normal mode.
 図5を参照して、蓄電装置10の使用年数が短い場合には、蓄電装置10の劣化度合いが小さいために蓄電装置10は多くの電力量を蓄えることができる。したがって、蓄電装置10の使用年数が短い場合には、通常モードでの航続距離がロングライフモードでの航続距離よりも長い。 Referring to FIG. 5, when power storage device 10 has a short service life, power storage device 10 can store a large amount of power because the degree of deterioration of power storage device 10 is small. Therefore, when the service life of power storage device 10 is short, the cruising distance in the normal mode is longer than the cruising distance in the long life mode.
 そして、制御上限値Smaxを限度として蓄電装置10が充電されることによって、蓄電装置10の劣化が進行する。しかしながら、ロングライフモードでは、通常モードと比較して、蓄電装置10の劣化の進行が抑制されるため、蓄電装置10の使用年数が長くなっても、蓄電装置10により多くの電力量を蓄えることができる。その結果、通常モードでの航続距離よりも長い航続距離を車両5が走行することができる。 Then, when the power storage device 10 is charged with the control upper limit value Smax as the limit, the deterioration of the power storage device 10 proceeds. However, in the long life mode, the progress of the deterioration of the power storage device 10 is suppressed as compared with the normal mode, so that even when the power storage device 10 has been used for a long time, a large amount of power can be stored in the power storage device 10. Can do. As a result, the vehicle 5 can travel a cruising distance longer than the cruising distance in the normal mode.
 その一方で、充電モードにロングライフモードが選択された場合においても、蓄電装置10の使用年数が長くなるに従って、蓄電装置10の劣化(満受電容量の低下)が進行する。そのため、蓄電装置10の使用年数が長くなるにつれて車両5の航続距離が短くなってしまう。 On the other hand, even when the long life mode is selected as the charging mode, the deterioration of the power storage device 10 (decrease in the full power receiving capacity) proceeds as the service life of the power storage device 10 increases. Therefore, the cruising distance of the vehicle 5 becomes shorter as the years of use of the power storage device 10 become longer.
 そこで、本実施の形態による車両5では、蓄電装置10の充電モードとしてロングライフモードが選択された場合には、蓄電装置10の劣化の進行に応じて制御上限値Smax2を上昇させる。具体的には、制御範囲設定部330は、蓄電装置10の劣化度合いを示す劣化パラメータが所定レベルに達しているという条件が成立すると、制御上限値Smax2を上昇させる。劣化パラメータとしては、蓄電装置10の使用年数および車両5の走行距離の少なくとも一方を用いることができる。蓄電装置10の使用年数が長くなるほど、あるいは、車両5の走行距離が長くなるほど、蓄電装置10の劣化が進行する。本実施の形態では、蓄電装置10の使用年数が一定の年数y0に達するごとに、制御上限値Smax2を上昇させる。 Therefore, in vehicle 5 according to the present embodiment, when long life mode is selected as the charging mode of power storage device 10, control upper limit value Smax2 is increased according to the progress of deterioration of power storage device 10. Specifically, control range setting unit 330 increases control upper limit value Smax2 when the condition that the deterioration parameter indicating the degree of deterioration of power storage device 10 has reached a predetermined level is satisfied. As the deterioration parameter, at least one of the years of use of the power storage device 10 and the travel distance of the vehicle 5 can be used. The deterioration of the power storage device 10 progresses as the service life of the power storage device 10 becomes longer or the travel distance of the vehicle 5 becomes longer. In the present embodiment, the control upper limit value Smax2 is increased every time the number of years of use of power storage device 10 reaches a certain number of years y0.
 このような構成とすることにより、蓄電装置10の使用年数が長くなるにつれて、蓄電装置10の劣化度合いに応じて定められたタイミングで基準上限値Smax2が上昇する。図3に示したように、蓄電装置10の使用年数が長くなるにつれて、蓄電装置10の満充電容量が減少する。そのため、制御上限値Smax2を固定すると、蓄電装置10を充電しても、蓄電装置10の充電量を増やすことはできない可能性がある。その結果、車両5の航続距離が目標値に達成しない虞がある。これに対して、本実施の形態では、蓄電装置10の劣化度合い(満充電容量の減少度合い)に基づいた適当なタイミングで制御上限値Smax2を上昇させることにより、蓄電装置10の充電量を保つことができる。この結果、車両5の航続距離を延ばすことができる。 With such a configuration, the reference upper limit value Smax2 increases at a timing determined according to the degree of deterioration of the power storage device 10 as the service life of the power storage device 10 becomes longer. As shown in FIG. 3, the full charge capacity of power storage device 10 decreases as the age of power storage device 10 increases. Therefore, if control upper limit value Smax2 is fixed, there is a possibility that the amount of charge of power storage device 10 cannot be increased even if power storage device 10 is charged. As a result, the cruising distance of the vehicle 5 may not reach the target value. In contrast, in the present embodiment, the amount of charge of power storage device 10 is maintained by increasing control upper limit value Smax2 at an appropriate timing based on the degree of deterioration of power storage device 10 (the degree of decrease in full charge capacity). be able to. As a result, the cruising distance of the vehicle 5 can be extended.
 図6は、蓄電装置10の使用年数に対する制御上限値Smax2の設定を説明する概念図である。 FIG. 6 is a conceptual diagram illustrating the setting of the control upper limit value Smax2 with respect to the years of use of the power storage device 10.
 図6を参照して、ロングライフモードにおける制御上限値Smax2は、蓄電装置10の新品相当時には、デフォルト値であるS0に設定される。S0は、蓄電装置10の新品時の満充電容量に対する基準容量の比率を示したものである。基準容量は、満充電容量に対してマージンを有する値に設定される。基準容量については、車両5の航続距離の目標値を達成するのに必要とされる蓄電装置10の容量がデフォルト値に設定される。蓄電装置10の容量が基準容量に達すると、蓄電装置10のSOCが制御上限値Smax2に到達するため、蓄電装置10が満充電状態に達したと判定される。すなわち、基準容量は、蓄電装置10が満充電状態に到達したか否かを判別するための閾値に相当する。 Referring to FIG. 6, control upper limit value Smax2 in the long life mode is set to S0 which is a default value when power storage device 10 is equivalent to a new product. S0 indicates the ratio of the reference capacity to the full charge capacity when the power storage device 10 is new. The reference capacity is set to a value having a margin with respect to the full charge capacity. As for the reference capacity, the capacity of the power storage device 10 required to achieve the target value of the cruising distance of the vehicle 5 is set to a default value. When the capacity of power storage device 10 reaches the reference capacity, the SOC of power storage device 10 reaches control upper limit value Smax2, so that it is determined that power storage device 10 has reached a fully charged state. That is, the reference capacity corresponds to a threshold value for determining whether or not the power storage device 10 has reached a fully charged state.
 図3に示したように、蓄電装置10の使用年数が長くなるに従って、蓄電装置10の満充電容量が減少する。そのため、基準上限値Smax2をデフォルト値S0に固定すると、蓄電装置10の使用年数が長い場合には、SOCが基準上限値Smax2に達するまで蓄電装置10を充電しても、車両5の航続距離が目標値に達成しない可能性がある。 As shown in FIG. 3, the full charge capacity of the power storage device 10 decreases as the age of the power storage device 10 increases. Therefore, if reference upper limit value Smax2 is fixed to default value S0, the cruising distance of vehicle 5 will be longer even if the power storage device 10 is charged until the SOC reaches the reference upper limit value Smax2 when the power storage device 10 has a long service life. The target value may not be achieved.
 このため、制御範囲設定部330は、劣化診断部300からの計測値CNTに基づいて、蓄電装置10の使用年数が所定の年数y0年に達したと判断されると、制御上限値Smax2をデフォルト値S0からS1に上昇させる。S1は、蓄電装置10の使用年数がy0年に達したときの満充電容量に対する基準容量C0の比率に相当する。 Therefore, control range setting unit 330 defaults control upper limit value Smax2 when it is determined that the number of years of use of power storage device 10 has reached a predetermined number of years y0 based on measurement value CNT from deterioration diagnosis unit 300. The value is increased from S0 to S1. S1 corresponds to the ratio of the reference capacity C0 to the full charge capacity when the power storage device 10 has been used for y0 years.
 y0年から2y0年までの使用時間では、制御上限値Smax2がS1に保たれる。この間に蓄電装置10の満充電容量が減少する。使用年数が2y0年に達したときには、制御範囲設定部330は、制御上限値Smax2をS1からS2へ上昇させる。S2は、蓄電装置10の使用年数が2y0年に達したときの満充電容量に対する基準容量C0の比率に相当する。 The control upper limit value Smax2 is maintained at S1 during the usage time from year y0 to year 2y0. During this time, the full charge capacity of the power storage device 10 decreases. When the service life reaches 2y0, the control range setting unit 330 increases the control upper limit value Smax2 from S1 to S2. S2 corresponds to the ratio of the reference capacity C0 to the full charge capacity when the usage period of the power storage device 10 reaches 2y0 years.
 なお、図6では、所定の使用年数y0ごとに制御上限値Smax2を上昇させる構成としたが、制御上限値Smax2を上昇させる回数を1回でもよい。蓄電装置10の標準的な使用年数、蓄電装置10の満充電容量および目標航続距離等に基づいて、制御上限値Smax2を上昇させる回数を定めることができる。 In FIG. 6, the control upper limit value Smax2 is increased every predetermined service life y0. However, the control upper limit value Smax2 may be increased once. The number of times that the control upper limit value Smax2 is increased can be determined based on the standard years of use of the power storage device 10, the full charge capacity of the power storage device 10, the target cruising distance, and the like.
 また、図7に示すように、車両5の走行距離に応じて制御上限値Smax2を上昇させてもよい。図7は、車両5の走行距離に対する制御上限値Smax2の設定を説明する概念図である。図7を参照して、制御範囲設定部330は、劣化診断部300からの走行距離の計測値CNTに基づいて、車両5の走行距離が所定の距離x0に達したと判断されると、制御上限値Smax2をデフォルト値S0からS1に上昇させる。図7では、S1は、車両5の走行距離が一定の距離x0に達したときの満充電容量に対する基準容量C0の比率に相当する。走行距離がx0から2x0までの時間では、制御上限値Smax2がS1に保たれる。この間に、蓄電装置10の満充電容量が減少する。走行距離が2x0年に達したとき、制御範囲設定部330は、制御上限値Smax2をS1からS2へ上昇させる。S2は、車両5の走行距離が2x0に達したときの満充電容量に対する基準容量C0の比率に相当する。 Further, as shown in FIG. 7, the control upper limit value Smax2 may be increased according to the travel distance of the vehicle 5. FIG. 7 is a conceptual diagram illustrating the setting of the control upper limit value Smax2 with respect to the travel distance of the vehicle 5. Referring to FIG. 7, control range setting section 330 performs control when it is determined that travel distance of vehicle 5 has reached a predetermined distance x0 based on travel distance measurement value CNT from deterioration diagnosis section 300. The upper limit value Smax2 is increased from the default value S0 to S1. In FIG. 7, S1 corresponds to the ratio of the reference capacity C0 to the full charge capacity when the travel distance of the vehicle 5 reaches a certain distance x0. The control upper limit value Smax2 is maintained at S1 during the travel distance from x0 to 2x0. During this time, the full charge capacity of the power storage device 10 decreases. When the travel distance reaches 2 × 0 years, the control range setting unit 330 increases the control upper limit value Smax2 from S1 to S2. S2 corresponds to the ratio of the reference capacity C0 to the full charge capacity when the travel distance of the vehicle 5 reaches 2x0.
 なお、図6と同様に、図7においても、所定の距離x0ごとに制御上限値Smax2を上昇させる構成に代えて、制御上限値Smax2を上昇させる回数を1回でもよい。蓄電装置10の標準的な使用年数、蓄電装置10の満充電容量および目標航続距離等に基づいて、制御上限値Smax2を上昇させる回数を定めることができる。 As in FIG. 6, in FIG. 7, the number of times of increasing the control upper limit value Smax2 may be one instead of increasing the control upper limit value Smax2 for each predetermined distance x0. The number of times that the control upper limit value Smax2 is increased can be determined based on the standard years of use of the power storage device 10, the full charge capacity of the power storage device 10, the target cruising distance, and the like.
 図8は、本実施の形態によるSOC制御により達成可能な車両の航続距離を説明する概念図である。図8の実線は、蓄電装置10の劣化度合いに基づいた所定のタイミングで制御上限値Smax2を上昇させた場合の車両5の航続距離を示す。図8の点線は、制御上限値Smax2をデフォルト値S0に固定させた場合の車両5の航続距離を示す。 FIG. 8 is a conceptual diagram for explaining the cruising range of the vehicle that can be achieved by the SOC control according to the present embodiment. A solid line in FIG. 8 indicates the cruising distance of the vehicle 5 when the control upper limit value Smax2 is increased at a predetermined timing based on the degree of deterioration of the power storage device 10. The dotted line in FIG. 8 indicates the cruising distance of the vehicle 5 when the control upper limit value Smax2 is fixed to the default value S0.
 図8を参照して、制御上限値Smax2をデフォルト値S0に固定させた場合には、蓄電装置10の使用年数が長くなるに従って航続距離が減少する。蓄電装置10の使用年数が長くなるに従って満充電容量が減少するためである。これに対して、蓄電装置10の劣化度合いに基づいた適当なタイミングで制御上限値Smax2を上昇させた場合には、蓄電装置10の充電量を基準容量C0に保つことができるため、航続距離を延ばすことができる。これにより、目標の使用年数が経過したときに、航続距離の目標値を達成することができる。 Referring to FIG. 8, when the control upper limit value Smax2 is fixed to the default value S0, the cruising distance decreases as the service life of the power storage device 10 increases. This is because the full charge capacity decreases as the number of years of use of the power storage device 10 increases. In contrast, when the control upper limit value Smax2 is increased at an appropriate timing based on the degree of deterioration of the power storage device 10, the charge amount of the power storage device 10 can be maintained at the reference capacity C0. Can be extended. As a result, the target value of the cruising distance can be achieved when the target years of use have elapsed.
 図9は、本発明の実施の形態に従う蓄電装置10の充電制御を実現するための制御処理手順を示したフローチャートである。なお、図9に示すフローチャートは、一定時間ごとまたは所定の条件が成立するごとに実行される。 FIG. 9 is a flowchart showing a control processing procedure for realizing charging control of power storage device 10 according to the embodiment of the present invention. Note that the flowchart shown in FIG. 9 is executed at regular time intervals or whenever a predetermined condition is satisfied.
 図9を参照して、制御装置30は、ステップS01により、信号STRが発生したか否かを判定する。信号STRが発生していない場合(ステップS01においてNO)には、制御装置30は、外部充電を開始できないと判断する。この場合、処理はメインルーチンに戻される。 Referring to FIG. 9, control device 30 determines whether or not signal STR is generated in step S01. When signal STR is not generated (NO in step S01), control device 30 determines that external charging cannot be started. In this case, the process is returned to the main routine.
 一方、信号STRが発生している場合(ステップS01においてYES)には、制御装置30は、外部充電を開始可能と判断する。この場合、制御装置30は、ステップS02により、信号SLFが発生したか否かを判定する。信号SLFが発生していないと判定された場合(ステップS02においてNO)、制御装置30は、ステップS03により、蓄電装置10のSOCの制御上限値をSmax1に設定する。これにより、充電モードは通常モードに設定される。 On the other hand, when signal STR is generated (YES in step S01), control device 30 determines that external charging can be started. In this case, control device 30 determines whether or not signal SLF has been generated in step S02. When it is determined that signal SLF is not generated (NO in step S02), control device 30 sets the SOC upper limit value of power storage device 10 to Smax1 in step S03. Thereby, the charging mode is set to the normal mode.
 これに対して、信号SLFが発生したと判定された場合(ステップS02においてYES)、制御装置30は、ステップS04により、SOCの制御上限値をSmax2に設定する。これにより、充電モードはロングライフモードに設定される。すなわち、ステップS02~S04の処理は図2に示した制御範囲設定部330の機能に対応する。 On the other hand, when it is determined that signal SLF has been generated (YES in step S02), control device 30 sets the control upper limit value of the SOC to Smax2 in step S04. Thereby, the charging mode is set to the long life mode. That is, the processes in steps S02 to S04 correspond to the function of the control range setting unit 330 shown in FIG.
 次に、ステップS05では、制御装置30は、蓄電装置10に供給する充電電力を制御するための制御信号PWDを生成する。電力変換装置50は、制御信号PWDに従って、外部電源60からの交流電力を蓄電装置10の充電に適した直流電力に変換する。電力変換装置50から与えられる直流電力によって蓄電装置10が充電される。 Next, in step S05, control device 30 generates control signal PWD for controlling the charging power supplied to power storage device 10. Power conversion device 50 converts AC power from external power supply 60 into DC power suitable for charging power storage device 10 in accordance with control signal PWD. The power storage device 10 is charged with DC power supplied from the power conversion device 50.
 ステップS06において、状態推定部320(図2)は、監視ユニット11からの電池データに基づいて、蓄電装置10のSOCを推定する。制御装置30は、状態推定部320で算出されたSOC推定値(♯SOC)を取得すると、ステップS07により、SOC推定値(♯SOC)が制御上限値Smaxに達したか否かを判定する。すなわち、ステップS07の処理は図2に示した判定部340の機能に対応する。 In step S06, state estimation unit 320 (FIG. 2) estimates the SOC of power storage device 10 based on the battery data from monitoring unit 11. When controller 30 obtains the estimated SOC value (#SOC) calculated by state estimating unit 320, it determines in step S07 whether or not the estimated SOC value (#SOC) has reached control upper limit value Smax. That is, the process in step S07 corresponds to the function of the determination unit 340 shown in FIG.
 SOC推定値(♯SOC)が制御上限値Smaxに達したと判定された場合(ステップS07においてYES)には、制御装置30は、ステップS08により、制御信号PWDの生成を停止する。これにより、蓄電装置10の外部充電が終了する。一方、SOC推定値(♯SOC)が制御上限値Smaxに達していないと判定された場合(ステップS07においてNO)には、処理はステップS05に戻る。SOC推定値(♯SOC)が制御上限値Smaxに達するまで、ステップS05~S07の処理が繰り返し実行される。すなわち、ステップS05,S08の処理は図2に示した充放電制御部350の機能に対応する。 If it is determined that the estimated SOC value (#SOC) has reached the control upper limit value Smax (YES in step S07), control device 30 stops generating control signal PWD in step S08. Thereby, external charging of power storage device 10 ends. On the other hand, when it is determined that the estimated SOC value (#SOC) has not reached control upper limit value Smax (NO in step S07), the process returns to step S05. Until the estimated SOC value (#SOC) reaches the control upper limit value Smax, the processes of steps S05 to S07 are repeatedly executed. That is, the processes in steps S05 and S08 correspond to the function of the charge / discharge control unit 350 shown in FIG.
 図10は、図9のステップS04の処理をさらに詳細に説明するフローチャートである。このフローチャートは、充電モードがロングライフモードに設定された場合に、一定時間ごとまたは所定の条件が成立するごとに実行される。 FIG. 10 is a flowchart for explaining the process of step S04 of FIG. 9 in more detail. This flowchart is executed every predetermined time or every time a predetermined condition is satisfied when the charging mode is set to the long life mode.
 図10を参照して、制御装置30(制御範囲設定部330)は、ステップS11では、劣化診断部300からの計測値CNTに基づいて、蓄電装置10の使用年数が基準値(x0)に達したか否かを判定する。蓄電装置10の使用年数が基準値に達していないと判定された場合(ステップS11においてNO)には、制御範囲設定部330は、ステップS14により、制御上限値Smax2の上昇を抑制する。すなわち、制御上限値Smax2は変化しない。ステップS14の処理が終了すると、全体の処理はメインルーチンに戻される。 Referring to FIG. 10, in step S11, control device 30 (control range setting unit 330) reaches the reference value (x0) based on the measured value CNT from deterioration diagnosis unit 300, based on the measured value CNT. Determine whether or not. When it is determined that the age of power storage device 10 has not reached the reference value (NO in step S11), control range setting unit 330 suppresses the increase in control upper limit value Smax2 in step S14. That is, the control upper limit value Smax2 does not change. When the process of step S14 ends, the entire process is returned to the main routine.
 これに対して、蓄電装置10の使用年数が基準値に達したと判定された場合(ステップS11においてYES)には、制御範囲設定部330は、ステップS12により、制御上限値Smax2を上昇させる。このとき、制御範囲設定部330は、基準容量C0を確保できる値まで基準上限値Smax2を上昇させる。 On the other hand, when it is determined that the age of power storage device 10 has reached the reference value (YES in step S11), control range setting unit 330 increases control upper limit value Smax2 in step S12. At this time, the control range setting unit 330 increases the reference upper limit value Smax2 to a value that can secure the reference capacity C0.
 次に、制御範囲設定部330は、ステップS13により、蓄電装置10の使用年数の計測値CNTを0に戻す。ステップS13の処理が終了すると、全体の処理はメインルーチンに戻される。 Next, the control range setting unit 330 returns the measured value CNT of the service life of the power storage device 10 to 0 in step S13. When the process of step S13 is completed, the entire process is returned to the main routine.
 (蓄電装置の放電制御)
 以上のような制御構造によって、蓄電装置10のSOC制御範囲が設定されることにより、ロングライフモード時には、蓄電装置10の充電が完了したときのSOCを、通常モード時よりも下げることができる。この結果、ロングモード時には、蓄電装置10の劣化の進行を抑制することができる。
(Discharge control of power storage device)
By setting the SOC control range of power storage device 10 by the control structure as described above, the SOC when charging of power storage device 10 is completed can be lowered in the long life mode than in the normal mode. As a result, in the long mode, the progress of the deterioration of the power storage device 10 can be suppressed.
 その一方で、蓄電装置10では、そのSOCが相対的に高い状態が長時間継続することは、劣化の観点から好ましくない。したがって、外部充電によってSOCが制御上限値となるまで蓄電装置10を充電した後に次回の走行が開始されないと、蓄電装置10のSOCは相対的に高い値に長時間維持されてしまう。たとえば、タイマー充電によって次回走行予定時刻に合わせて蓄電装置10の充電を完了しても、当該予定時刻を過ぎても次回の走行が開始されないような場合が考えられる。このように蓄電装置10の充電が完了した後に車両5の走行が開始されないまま長時間経過することは、劣化の観点から好ましくない状態が継続していると判断されるため、これに対応する必要がある。 On the other hand, in the power storage device 10, it is not preferable from the viewpoint of deterioration that the SOC is relatively high for a long time. Therefore, if the next running is not started after charging power storage device 10 until the SOC reaches the control upper limit value by external charging, the SOC of power storage device 10 is maintained at a relatively high value for a long time. For example, even if charging of the power storage device 10 is completed in accordance with the next scheduled travel time by timer charging, the next travel may not be started even after the scheduled time has passed. In this way, it is determined that an undesired state continues from the viewpoint of deterioration because it is determined that a long time has passed without the vehicle 5 starting to travel after the charging of the power storage device 10 is completed. There is.
 そこで、本実施の形態に従う制御装置30は、蓄電装置10の充電が完了してから次回の走行が開始されないまま経過した時間が所定時間を超えた場合には、蓄電装置10を強制的に放電させる。すなわち、制御装置30は、蓄電装置10のSOCが高い状態が所定時間を超えて継続した場合には、蓄電装置10を強制的に放電させる。 Therefore, control device 30 according to the present embodiment forcibly discharges power storage device 10 when the time that has elapsed without starting the next run after charging of power storage device 10 has exceeded a predetermined time. Let That is, control device 30 forcibly discharges power storage device 10 when the state of high SOC of power storage device 10 continues for a predetermined time.
 図11は、車両の走行に伴なう蓄電装置10のSOCの時間的な変化を示す図である。
 図11を参照して、本実施の形態に従う車両5において、外部充電が実行されると、IGオフ期間において蓄電装置10は制御上限値Smaxまで充電される。イグニッションオン指令が与えられて車両5の走行が開始される(時刻t1)と、車両5は蓄電装置10に蓄えられた電力を用いて走行する。この走行の継続によって、蓄電装置10のSOCが制御下限値Sminまで低下する(時刻t2)ことにより、車両5の走行が完了すると、ユーザがコネクタ部62を車両5に連結することで、外部充電が開始される(時刻t3)。なお、タイマー充電を実行する場合には、充電開始時刻は、ユーザが入力部80で設定した充電開始時刻または充電終了時刻に基づいて設定される。
FIG. 11 is a diagram showing a temporal change in the SOC of power storage device 10 as the vehicle travels.
Referring to FIG. 11, when external charging is performed in vehicle 5 according to the present embodiment, power storage device 10 is charged to control upper limit value Smax during the IG off period. When the ignition-on command is given and the vehicle 5 starts to travel (time t1), the vehicle 5 travels using the electric power stored in the power storage device 10. When the traveling of the vehicle 5 is completed by the SOC of the power storage device 10 being reduced to the control lower limit value Smin due to the continuation of the traveling (time t <b> 2), the user connects the connector portion 62 to the vehicle 5. Is started (time t3). When timer charging is performed, the charging start time is set based on the charging start time or the charging end time set by the user using the input unit 80.
 外部充電が開始されることにより、蓄電装置10のSOCは増加し始める。制御装置30(図2の充放電制御部350)は、蓄電装置10のSOCが制御上限値Smaxに達する(時刻t4)と、蓄電装置10の外部充電を終了する。 When the external charging is started, the SOC of the power storage device 10 starts to increase. Control device 30 (charge / discharge control unit 350 in FIG. 2) terminates external charging of power storage device 10 when the SOC of power storage device 10 reaches control upper limit value Smax (time t4).
 蓄電装置10の外部充電が完了すると、充放電制御部350は、タイマー360(図2)を用いて、外部充電の完了後において次回の走行が開始されないまま経過した時間を計測する。すなわち、充放電制御部350は、蓄電装置10のSOCが高い状態で放置されている時間を計測する。そして、タイマー360により計測された経過時間が所定時間を超える(時刻t5)と、充放電制御部350は、蓄電装置10の強制的な放電を開始する。これにより、蓄電装置10のSOCは低下し始める。 When the external charging of the power storage device 10 is completed, the charge / discharge control unit 350 uses the timer 360 (FIG. 2) to measure the time that has elapsed without starting the next run after the completion of the external charging. That is, charge / discharge control unit 350 measures the time during which power storage device 10 is left in a high SOC state. Then, when the elapsed time measured by the timer 360 exceeds a predetermined time (time t5), the charge / discharge control unit 350 starts forced discharge of the power storage device 10. As a result, the SOC of power storage device 10 begins to decrease.
 この蓄電装置10の放電によって、蓄電装置10のSOCが予め定められたしきい値Sthに達する(時刻t6)と、充放電制御部350は、蓄電装置10の放電を終了する。イグニッションオン指令が与えられて車両5の走行が開始される(時刻t7)まで、蓄電装置10のSOCはしきい値Sthに近い状態に維持される。 When the SOC of the power storage device 10 reaches a predetermined threshold value Sth due to the discharge of the power storage device 10 (time t6), the charge / discharge control unit 350 ends the discharge of the power storage device 10. Until the ignition-on command is given and the vehicle 5 starts to travel (time t7), the SOC of power storage device 10 is maintained close to threshold value Sth.
 ここで、所定時間は、蓄電装置10のSOCが制御上限値Smaxに近い値を維持することにより、蓄電装置10の劣化が進行する虞があるか否かを判定するための判定値である。この所定時間は、蓄電装置10の劣化試験等によって経過時間と電池性能との関係を求めることによって、予め定めることができる。あるいは、ユーザが入力部80から直接所定時間を設定するようにしてもよい。 Here, the predetermined time is a determination value for determining whether or not deterioration of the power storage device 10 may progress by maintaining the SOC of the power storage device 10 at a value close to the control upper limit value Smax. The predetermined time can be determined in advance by obtaining a relationship between the elapsed time and the battery performance by a deterioration test or the like of the power storage device 10. Alternatively, the user may set the predetermined time directly from the input unit 80.
 また、しきい値Sthについても、ユーザが入力部80から直接設定するようにしてもよい。あるいは、ユーザによって次回走行予定に関する情報(走行目的地やその走行経路などの目的地に関する情報)が入力された場合には、次回走行予定に基づいて次回の走行の際に必要とされる充電量が確保されるように、しきい値Sthを設定するようにしてもよい。具体的には、充放電制御部350は、ユーザによって入力部80に入力された次回走行予定に関する情報を受けると、図示しない記憶部に記憶された地図データベースおよび過去の走行履歴データを参照して、次回走行における消費電力を取得する。そして、充放電制御部350は、次回走行における消費電力に基づいて演算される蓄電装置10の充電量の目標値を、しきい値Sthとして設定する。 Also, the threshold value Sth may be set directly by the user from the input unit 80. Alternatively, when the user inputs information related to the next travel schedule (information regarding the travel destination and the destination such as the travel route), the amount of charge required for the next travel based on the next travel schedule The threshold value Sth may be set so that is secured. Specifically, when the charge / discharge control unit 350 receives information on the next travel schedule input to the input unit 80 by the user, the charge / discharge control unit 350 refers to a map database and past travel history data stored in a storage unit (not shown). The power consumption in the next run is acquired. Then, charge / discharge control unit 350 sets a target value of the charge amount of power storage device 10 calculated based on the power consumption in the next travel as threshold value Sth.
 本実施の形態において、蓄電装置10の強制的な放電が開始されると、充放電制御部350は、蓄電装置10で放電される電力を車両外部に供給する。具体的には、充放電制御部350は、車両外部の電力系統に供給する電力を制御するための制御信号PWDを生成する。電力変換装置50は、制御信号PWDに従って、蓄電装置10から供給される直流電力を交流電力に変換して電力網の電力線AC1,AC2へ供給する。電力網の電力線AC1,AC2に供給された交流電力を受けて電気機器70が動作する。 In the present embodiment, when forcible discharge of power storage device 10 is started, charging / discharging control unit 350 supplies power discharged by power storage device 10 to the outside of the vehicle. Specifically, charge / discharge control unit 350 generates control signal PWD for controlling the power supplied to the electric power system outside the vehicle. In accordance with control signal PWD, power conversion device 50 converts DC power supplied from power storage device 10 into AC power and supplies it to power lines AC1 and AC2 of the power grid. The electrical device 70 operates by receiving AC power supplied to the power lines AC1 and AC2 of the power network.
 図12は、本発明の実施の形態による車両による蓄電装置10の放電制御を説明するフローチャートである。このフローチャートは、図9のフローチャートにより蓄電装置10の外部充電が実行された場合に、一定時間ごと所定の条件が成立するごとに実行される。 FIG. 12 is a flowchart illustrating discharge control of power storage device 10 by the vehicle according to the embodiment of the present invention. This flowchart is executed every time a predetermined condition is satisfied every predetermined time when external charging of the power storage device 10 is executed according to the flowchart of FIG. 9.
 図12を参照して、まず、蓄電装置10の放電処理を実行するために、ステップS21により、外部充電が完了したか否かが判定される。外部充電が完了していないと判定された場合(ステップS21においてNO)は、処理はメインルーチンに戻される。 Referring to FIG. 12, first, in order to execute the discharging process of power storage device 10, it is determined in step S21 whether or not external charging has been completed. If it is determined that external charging has not been completed (NO in step S21), the process returns to the main routine.
 一方、外部充電が完了していると判定された場合(ステップS21においてYES)には、充放電制御部350は、ステップS22により、イグニッションオン指令が与えられたか否かを判定する。イグニッションオン指令が与えられていなければ(ステップS22においてNO)、充放電制御部350は、ステップS23により、外部充電が完了してからの経過時間を計測するタイマー360のカウント値をインクリメントする。イグニッションオン指令が与えられていれば(ステップS22においてYES)、充放電制御部350は、ステップS24により、タイマー360のカウント値をリセットする。 On the other hand, when it is determined that external charging has been completed (YES in step S21), charge / discharge control unit 350 determines in step S22 whether or not an ignition-on command has been given. If the ignition-on command is not given (NO in step S22), charging / discharging control unit 350 increments the count value of timer 360 that measures the elapsed time from the completion of external charging in step S23. If an ignition-on command is given (YES in step S22), charge / discharge control unit 350 resets the count value of timer 360 in step S24.
 次に、充放電制御部350は、ステップS25により、タイマー360のカウント値、すなわち、外部充電が完了してからの経過時間が所定時間に達したか否かを判定する。カウント値が所定時間に達していないと判定された場合(ステップS25においてNO)には、処理はメインルーチンに戻される。 Next, in step S25, the charge / discharge control unit 350 determines whether or not the count value of the timer 360, that is, the elapsed time after the completion of external charging has reached a predetermined time. If it is determined that the count value has not reached the predetermined time (NO in step S25), the process returns to the main routine.
 これに対して、カウント値が所定時間に達していると判定された場合(ステップS25においてYES)には、充放電制御部350は、ステップS26により、車両外部に供給する交流電力を制御するための制御信号PWDを生成する。電力変換装置50は、制御信号PWDに従って、蓄電装置10で放電される電力を外部給電に適した交流電力に変換する。電力変換装置50により変換された交流電力は車両外部の電力網に供給される。 On the other hand, when it is determined that the count value has reached the predetermined time (YES in step S25), charge / discharge control unit 350 controls AC power supplied to the outside of the vehicle in step S26. Control signal PWD is generated. The power conversion device 50 converts the power discharged from the power storage device 10 into AC power suitable for external power feeding in accordance with the control signal PWD. The AC power converted by the power conversion device 50 is supplied to a power network outside the vehicle.
 ステップS27において、状態推定部320(図2)は、監視ユニット11からの電池データに基づいて、蓄電装置10のSOCを推定する。充放電制御部350は、状態推定部320で算出されたSOC推定値(♯SOC)を取得すると、ステップS28により、SOC推定値(♯SOC)がしきい値Sthに達したか否かを判定する。 In step S27, the state estimation unit 320 (FIG. 2) estimates the SOC of the power storage device 10 based on the battery data from the monitoring unit 11. When charging / discharging control unit 350 obtains SOC estimated value (#SOC) calculated by state estimating unit 320, in step S28, charge / discharge control unit 350 determines whether or not SOC estimated value (#SOC) has reached threshold value Sth. To do.
 SOC推定値(♯SOC)がしきい値Sthに達したと判定された場合(ステップS28においてYES)には、充放電制御部350は、ステップS29により、制御信号PWDの生成を停止する。これにより、蓄電装置10による外部給電が終了する。一方、SOC推定値(♯SOC)がしきい値Sthに達していないと判定された場合(ステップS28においてNO)には、処理はステップS26に戻る。SOC推定値(♯SOC)がしきい値Sthに達するまで、ステップS26~S28の処理が繰り返し実行される。 When it is determined that the estimated SOC value (#SOC) has reached threshold value Sth (YES in step S28), charge / discharge control unit 350 stops generating control signal PWD in step S29. Thereby, the external power supply by the power storage device 10 ends. On the other hand, when it is determined that the estimated SOC value (#SOC) has not reached threshold value Sth (NO in step S28), the process returns to step S26. Until the estimated SOC value (#SOC) reaches the threshold value Sth, the processes of steps S26 to S28 are repeatedly executed.
 なお、ステップS26~S28の処理により車両外部の電力網に供給された電力については、電力網の電力線AC1,AC2に接続される電気機器70で消費することができる。あるいは、商用電源の電力系統へ供給して売電するようにしてもよい。たとえば、深夜電力の時間帯に蓄電装置10を充電する場合に、次の日の朝の走行予定時刻を過ぎても走行が開始されない場合には、電力料金の高い日中に売電するようにしてもよい。 Note that the electric power supplied to the electric power network outside the vehicle by the processing of steps S26 to S28 can be consumed by the electric device 70 connected to the power lines AC1 and AC2 of the electric power network. Alternatively, the power may be supplied to a power system of a commercial power supply for sale. For example, when the power storage device 10 is charged in the late-night power period, if the driving does not start after the scheduled morning driving time the next day, power is sold during the day when the power rate is high. May be.
 (変更例)
 蓄電装置10で放電された電力の受入れ先として、上述の本実施の形態では、車両外部へ供給する構成について説明したが、車両5に搭載される補機負荷に供給する構成としてもよい。以下に、図13および図14を用いて、蓄電装置10で放電された電力を補機負荷に供給する構成について説明する。
(Example of change)
In the above-described embodiment, the configuration for supplying the electric power discharged from the power storage device 10 to the outside of the vehicle has been described. However, the configuration may be such that the auxiliary device mounted on the vehicle 5 is supplied. Hereinafter, a configuration for supplying the electric power discharged by the power storage device 10 to the auxiliary load will be described with reference to FIGS. 13 and 14.
 図13は、本発明の実施の形態の変更例による車両5Aの概略構成図である。本変更例による車両5Aの概略構成は、DC/DCコンバータ90と、補機バッテリ92と、補機負荷94とをさらに備えること、および制御装置30の制御構造を除いて、図1と同様であるので、詳細な説明は繰り返さない。 FIG. 13 is a schematic configuration diagram of a vehicle 5A according to a modification of the embodiment of the present invention. The schematic configuration of the vehicle 5A according to this modified example is the same as that of FIG. 1 except that it further includes a DC / DC converter 90, an auxiliary battery 92, and an auxiliary load 94, and the control structure of the control device 30. Because there are, detailed description will not be repeated.
 DC/DCコンバータ90は、蓄電装置10に接続される正線PL1および負線NL1に接続される。DC/DCコンバータ90は、蓄電装置10またはPCU15から受けた直流電圧の電圧レベルを変換し、正線PL3を介して補機バッテリ92および補機負荷94に供給する。補機負荷94には、DC/DCコンバータ90から、直流電圧が電源電圧として供給される。補機負荷94は、蓄電装置10またはPCU15から受けた直流電圧により駆動される。 DC / DC converter 90 is connected to positive line PL1 and negative line NL1 connected to power storage device 10. DC / DC converter 90 converts the voltage level of the DC voltage received from power storage device 10 or PCU 15, and supplies the voltage level to auxiliary battery 92 and auxiliary load 94 via positive line PL3. A DC voltage is supplied as a power supply voltage from the DC / DC converter 90 to the auxiliary load 94. Auxiliary machine load 94 is driven by a DC voltage received from power storage device 10 or PCU 15.
 制御装置30(充放電制御部350)は、蓄電装置10に対する外部充電の完了後において次回の走行が開始されないまま経過した時間が所定時間を超えると、DC/DCコンバータ90を駆動するための制御信号PWEを生成する。この制御信号PWEはDC/DCコンバータ90へ出力される。制御信号PWEに従ったDC/DCコンバータ90の電圧変換によって、蓄電装置10からの直流電力が補機バッテリ92および補機負荷94へ供給される。 Control device 30 (charging / discharging control unit 350) performs control for driving DC / DC converter 90 when the time that has elapsed without starting the next run after completion of external charging for power storage device 10 exceeds a predetermined time. A signal PWE is generated. This control signal PWE is output to the DC / DC converter 90. The DC power from the power storage device 10 is supplied to the auxiliary battery 92 and the auxiliary load 94 by voltage conversion of the DC / DC converter 90 according to the control signal PWE.
 図14は、本発明の実施の形態の変更例に従う車両の電源システムによる蓄電装置10の放電制御を説明するフローチャートである。このフローチャートは、図9のフローチャートにより蓄電装置10の外部充電が実行された場合に、一定時間ごと所定の条件が成立するごとに実行される。 FIG. 14 is a flowchart illustrating discharge control of power storage device 10 by the vehicle power supply system according to the modification of the embodiment of the present invention. This flowchart is executed every time a predetermined condition is satisfied every predetermined time when external charging of the power storage device 10 is executed according to the flowchart of FIG. 9.
 図14を参照して、充放電制御部350は、図12と同様のステップS21~S25により、外部充電が完了してからイグニッションオン指令が与えられるまでの経過時間を計測する。そして、充放電制御部350は、タイマー360のカウント値、すなわち、外部充電が完了してからの経過時間が所定時間に達してると判定された場合(ステップS25においてYES)には、ステップS36により、DC/DCコンバータ90を駆動するための制御信号PWEを生成する。DC/DCコンバータ90は、制御信号PWEに従って、蓄電装置10で放電される電力の電圧レベルを変換し、正線PL3を介して補機バッテリ92および補機負荷94に供給する。 Referring to FIG. 14, the charge / discharge control unit 350 measures the elapsed time from when the external charging is completed until the ignition-on command is given through steps S21 to S25 similar to FIG. Then, when it is determined that the count value of the timer 360, that is, the elapsed time after the completion of external charging has reached a predetermined time (YES in step S25), the charge / discharge control unit 350 performs step S36. The control signal PWE for driving the DC / DC converter 90 is generated. DC / DC converter 90 converts the voltage level of power discharged from power storage device 10 in accordance with control signal PWE, and supplies the voltage level to auxiliary battery 92 and auxiliary load 94 via positive line PL3.
 ステップS37において、状態推定部320(図2)は、監視ユニット11からの電池データに基づいて、蓄電装置10のSOCを推定する。充放電制御部350は、状態推定部320で算出されたSOC推定値(♯SOC)を取得すると、ステップS38により、SOC推定値(♯SOC)がしきい値Sthに達したか否かを判定する。 In step S37, the state estimation unit 320 (FIG. 2) estimates the SOC of the power storage device 10 based on the battery data from the monitoring unit 11. When charging / discharging control unit 350 obtains SOC estimated value (#SOC) calculated by state estimating unit 320, in step S38, charging / discharging control unit 350 determines whether or not SOC estimated value (#SOC) has reached threshold value Sth. To do.
 SOC推定値(♯SOC)がしきい値Sthに達したと判定された場合(ステップS38においてYES)には、充放電制御部350は、ステップS39により、制御信号PWEの生成を停止する。これにより、蓄電装置10から補機バッテリ92および補機負荷94に対する給電が終了する。一方、SOC推定値(♯SOC)がしきい値Sthに達していないと判定された場合(ステップS38においてNO)には、処理はステップS36に戻る。SOC推定値(♯SOC)がしきい値Sthに達するまで、ステップS36~S38の処理が繰り返し実行される。 When it is determined that the estimated SOC value (#SOC) has reached threshold value Sth (YES in step S38), charge / discharge control unit 350 stops generating control signal PWE in step S39. Thereby, the power supply from power storage device 10 to auxiliary battery 92 and auxiliary load 94 is completed. On the other hand, when it is determined that the estimated SOC value (#SOC) has not reached threshold value Sth (NO in step S38), the process returns to step S36. Until the estimated SOC value (#SOC) reaches the threshold value Sth, the processes of steps S36 to S38 are repeated.
 以上のように、この発明の実施の形態による車両の電源システムによれば、外部充電が完了した後に、蓄電装置のSOCが高い値に長時間維持されてしまうのを防止できるため、蓄電装置の劣化の進行を抑制できる。この結果、車両の航続距離を延ばすことができる。 As described above, according to the power supply system for a vehicle according to the embodiment of the present invention, it is possible to prevent the SOC of the power storage device from being maintained at a high value for a long time after external charging is completed. The progress of deterioration can be suppressed. As a result, the cruising distance of the vehicle can be extended.
 なお、蓄電装置の劣化の進行に応じて、外部充電時のSOC制御上限値を上昇させる構成に、上述の実施の形態による蓄電装置の放電制御を適用することによって、蓄電装置の劣化の進行をさらに抑制できる。この結果、車両の航続距離をより一層延ばすことができる。 In addition, by applying the discharge control of the power storage device according to the above-described embodiment to the configuration in which the SOC control upper limit value during external charging is increased according to the progress of the deterioration of the power storage device, the progress of the deterioration of the power storage device is achieved. Further suppression is possible. As a result, the cruising distance of the vehicle can be further extended.
 なお、本実施の形態による車載蓄電装置の充放電制御が適用される車両は、図1に例示した電気自動車に限定されるものではない。本発明は、車載蓄電装置を外部電源により充電可能な構成を有するものであれば、搭載される電動機(モータジェネレータ)の個数や駆動系の構成に関わらず、ハイブリッド車両、エンジンを搭載しない電気自動車や燃料電池自動車等を含む車両全般に共通に適用できる。 In addition, the vehicle to which the charge / discharge control of the in-vehicle power storage device according to the present embodiment is applied is not limited to the electric vehicle illustrated in FIG. In the present invention, as long as the in-vehicle power storage device has a configuration capable of being charged by an external power source, a hybrid vehicle and an electric vehicle not equipped with an engine are used regardless of the number of mounted motors (motor generators) and the configuration of the drive system. And can be commonly applied to all vehicles including fuel cell vehicles.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 この発明は、搭載する蓄電装置を外部電源による充電可能な電動車両に適用することができる。 The present invention can be applied to an electric vehicle that can be charged by an external power source.
 5,5A 車両、10 蓄電装置、11 監視ユニット、12 温度センサ、13 電圧センサ、14 電流センサ、24F 駆動輪、30 制御装置、50 電力変換装置、52 充電リレー、54 コネクタ受入部、55 センサ、56 スイッチ、60 外部電源、62 コネクタ部、70 電気機器、80 入力部、90 DC/DCコンバータ、92 補機バッテリ、94 補機負荷、110 状態推定部、120 劣化診断部、160 制御範囲設定部、300 劣化診断部、320 状態推定部、330 制御範囲設定部、340 判定部、350 充放電制御部、360 タイマー、AC1,AC2,ACL1,ACL2 電力線、MG モータジェネレータ、NL1,NL2 負線、PL1~PL3 正線。 5,5A vehicle, 10 power storage device, 11 monitoring unit, 12 temperature sensor, 13 voltage sensor, 14 current sensor, 24F drive wheel, 30 control device, 50 power conversion device, 52 charging relay, 54 connector receiving unit, 55 sensor, 56 switches, 60 external power supplies, 62 connectors, 70 electrical equipment, 80 inputs, 90 DC / DC converters, 92 auxiliary batteries, 94 auxiliary loads, 110 state estimation units, 120 deterioration diagnosis units, 160 control range setting units , 300 deterioration diagnosis unit, 320 state estimation unit, 330 control range setting unit, 340 determination unit, 350 charge / discharge control unit, 360 timer, AC1, AC2, ACL1, ACL2 power line, MG motor generator, NL1, NL2 negative line, PL1 ~ PL3 positive line.

Claims (10)

  1.  再充電可能な蓄電装置(10)と、
     前記蓄電装置(10)から電力の供給を受けて車両駆動力を発生する電動機(MG)と、
     車両外部の電源(60)によって前記蓄電装置(10)を充電するように構成された外部充電機構(50)と、
     前記外部充電機構(50)による前記蓄電装置(10)の充電が完了してから前記電動機(MG)により車両駆動力が発生されないまま経過した時間が所定時間を超えた場合には、前記蓄電装置(10)を強制的に放電させる制御装置(30)とを備える、車両の電源システム。
    A rechargeable power storage device (10);
    An electric motor (MG) that receives a supply of electric power from the power storage device (10) and generates a vehicle driving force;
    An external charging mechanism (50) configured to charge the power storage device (10) with a power source (60) external to the vehicle;
    In a case where the time elapsed without the vehicle driving force being generated by the electric motor (MG) after the charging of the power storage device (10) by the external charging mechanism (50) exceeds a predetermined time, the power storage device A vehicle power supply system comprising: a control device (30) forcibly discharging (10).
  2.  前記制御装置(30)は、前記蓄電装置(10)の充電状態値が所定値に達するまで、前記蓄電装置(10)を放電させる、請求項1に記載の車両の電源システム。 The vehicle power supply system according to claim 1, wherein the control device (30) discharges the power storage device (10) until a charge state value of the power storage device (10) reaches a predetermined value.
  3.  ユーザからの前記所定時間および前記所定値に関する指示を受付け可能に構成された入力部(80)をさらに備える、請求項2に記載の車両の電源システム。 The vehicle power supply system according to claim 2, further comprising an input unit (80) configured to be able to receive an instruction regarding the predetermined time and the predetermined value from a user.
  4.  前記制御装置(30)は、前記入力部(80)が次回走行予定に関する情報を受付けた場合には、前記所定値を、次回走行予定に基づいて演算される前記蓄電装置(10)への必要充電量に基づいて設定された値に設定する、請求項3に記載の車両の電源システム。 When the input unit (80) receives information related to the next travel schedule, the control device (30) needs the predetermined value to the power storage device (10) calculated based on the next travel schedule. The vehicle power supply system according to claim 3, wherein the power supply system is set to a value set based on a charge amount.
  5.  前記制御装置(30)は、次回走行予定の目的地に到達するために車両で消費される電力量に基づいて前記必要充電量を設定する、請求項4に記載の車両の電源システム。 5. The vehicle power supply system according to claim 4, wherein the control device (30) sets the required charge amount based on an amount of electric power consumed by the vehicle to reach a destination scheduled to be traveled next time.
  6.  前記蓄電装置(10)からの電力を車両外部に供給するように構成された外部給電機構(50)をさらに備え、
     前記制御装置(30)は、前記外部給電機構(50)により前記蓄電装置(10)を放電する、請求項1から5のいずれか1項に記載の車両の電源システム。
    An external power feeding mechanism (50) configured to supply electric power from the power storage device (10) to the outside of the vehicle;
    The said control apparatus (30) is a power supply system of the vehicle of any one of Claim 1 to 5 which discharges the said electrical storage apparatus (10) by the said external electric power feeding mechanism (50).
  7.  前記外部給電機構(50)は、前記蓄電装置(10)からの電力を車両外部の電力系統に売電可能に構成される、請求項6に記載の車両の電源システム。 The vehicle power supply system according to claim 6, wherein the external power supply mechanism (50) is configured to be able to sell power from the power storage device (10) to a power system outside the vehicle.
  8.  補機負荷(94)をさらに備え、
     前記制御装置(30)は、前記蓄電装置(10)で放電される電力を前記補機負荷(94)に供給する、請求項1から5のいずれか1項に記載の車両の電源システム。
    An auxiliary machine load (94) is further provided,
    The said control apparatus (30) is a power supply system of the vehicle of any one of Claim 1 to 5 which supplies the electric power discharged by the said electrical storage apparatus (10) to the said auxiliary machine load (94).
  9.  補機バッテリ(92)をさらに備え、
     前記制御装置(30)は、前記蓄電装置(10)で放電される電力により前記補機バッテリ(92)を充電する、請求項8に記載の車両の電源システム。
    An auxiliary battery (92),
    The vehicle power supply system according to claim 8, wherein the control device (30) charges the auxiliary battery (92) with electric power discharged from the power storage device (10).
  10.  前記外部充電機構(50)は、前記充電状態値が前記蓄電装置(10)の満充電状態に対応付けて規定された前記充電状態値の上限値に達すると、前記蓄電装置(10)の充電を完了するように構成され、
     前記制御装置(30)は、前記上限値を、前記蓄電装置(10)の劣化の進行に応じて上昇させる、請求項1に記載の電源システム。
    The external charging mechanism (50) charges the power storage device (10) when the charge state value reaches an upper limit value of the charge state value defined in association with a full charge state of the power storage device (10). Configured to complete
    The power supply system according to claim 1, wherein the control device (30) increases the upper limit value in accordance with the progress of deterioration of the power storage device (10).
PCT/JP2011/064895 2011-06-29 2011-06-29 Power supply system for vehicle WO2013001620A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/064895 WO2013001620A1 (en) 2011-06-29 2011-06-29 Power supply system for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/064895 WO2013001620A1 (en) 2011-06-29 2011-06-29 Power supply system for vehicle

Publications (1)

Publication Number Publication Date
WO2013001620A1 true WO2013001620A1 (en) 2013-01-03

Family

ID=47423563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064895 WO2013001620A1 (en) 2011-06-29 2011-06-29 Power supply system for vehicle

Country Status (1)

Country Link
WO (1) WO2013001620A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014181501A (en) * 2013-03-19 2014-09-29 Sumitomo Heavy Ind Ltd Mechanical parking facility
JP2017123245A (en) * 2016-01-06 2017-07-13 トヨタ自動車株式会社 Battery system of electric motor vehicle
EP3505390A1 (en) * 2017-12-28 2019-07-03 Toyota Jidosha Kabushiki Kaisha Vehicle to grid management system
CN110323796A (en) * 2018-03-30 2019-10-11 铃木株式会社 Vehicle power source device
US11114707B2 (en) 2015-03-25 2021-09-07 Gs Yuasa International Ltd. Monitoring apparatus for energy storage device, energy storage apparatus, and a method of monitoring energy storage device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006304393A (en) * 2005-04-15 2006-11-02 Toyota Motor Corp Power supply, its control method and vehicle
JP2008278585A (en) * 2007-04-26 2008-11-13 Equos Research Co Ltd Electric vehicle charging control system, and electric vehicle charging control method
JP2010148283A (en) * 2008-12-19 2010-07-01 Mazda Motor Corp Device for controlling storage battery of electric vehicle
JP2011055589A (en) * 2009-08-31 2011-03-17 Toyota Motor Corp Power supply system
WO2011061811A1 (en) * 2009-11-17 2011-05-26 トヨタ自動車株式会社 Vehicle and method for controlling vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006304393A (en) * 2005-04-15 2006-11-02 Toyota Motor Corp Power supply, its control method and vehicle
JP2008278585A (en) * 2007-04-26 2008-11-13 Equos Research Co Ltd Electric vehicle charging control system, and electric vehicle charging control method
JP2010148283A (en) * 2008-12-19 2010-07-01 Mazda Motor Corp Device for controlling storage battery of electric vehicle
JP2011055589A (en) * 2009-08-31 2011-03-17 Toyota Motor Corp Power supply system
WO2011061811A1 (en) * 2009-11-17 2011-05-26 トヨタ自動車株式会社 Vehicle and method for controlling vehicle

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014181501A (en) * 2013-03-19 2014-09-29 Sumitomo Heavy Ind Ltd Mechanical parking facility
US11114707B2 (en) 2015-03-25 2021-09-07 Gs Yuasa International Ltd. Monitoring apparatus for energy storage device, energy storage apparatus, and a method of monitoring energy storage device
JP2017123245A (en) * 2016-01-06 2017-07-13 トヨタ自動車株式会社 Battery system of electric motor vehicle
EP3505390A1 (en) * 2017-12-28 2019-07-03 Toyota Jidosha Kabushiki Kaisha Vehicle to grid management system
KR20190080750A (en) * 2017-12-28 2019-07-08 도요타 지도샤(주) Vehicle
CN109986996A (en) * 2017-12-28 2019-07-09 丰田自动车株式会社 Automobile
KR102275924B1 (en) 2017-12-28 2021-07-12 도요타 지도샤(주) Vehicle
US11180031B2 (en) 2017-12-28 2021-11-23 Toyota Jidosha Kabushiki Kaisha Vehicle
CN110323796A (en) * 2018-03-30 2019-10-11 铃木株式会社 Vehicle power source device

Similar Documents

Publication Publication Date Title
JP5710775B2 (en) Vehicle charging system and vehicle charging method
JP5772952B2 (en) Electric vehicle and control method of electric vehicle
JP5664780B2 (en) Charging device for power storage device and vehicle equipped with the same
JP5482798B2 (en) Vehicle and vehicle control method
US9013138B2 (en) Charging apparatus for electric storage device, vehicle equipped with the charging apparatus, and method of controlling the charging apparatus
US9315105B2 (en) Electrically-driven vehicle and method for controlling the same
CN103192729B (en) Elec. vehicle
JP5454697B2 (en) VEHICLE POWER SUPPLY DEVICE, VEHICLE EQUIPPED WITH THE SAME AND CONTROL METHOD FOR CAR
JP5585564B2 (en) VEHICLE CONTROL DEVICE, CONTROL METHOD, AND VEHICLE
JP5370492B2 (en) Vehicle and vehicle control method
JPWO2012172686A1 (en) Electric vehicle and control method of electric vehicle
US20130020863A1 (en) Power supply system and vehicle equipped with power supply system
JP5413507B2 (en) VEHICLE CONTROL DEVICE AND VEHICLE CONTROL METHOD
JP5515897B2 (en) Vehicle control device and vehicle equipped with the same
CN105083040A (en) Power supply control device
KR20140036039A (en) Vehicle battery control device
WO2013001620A1 (en) Power supply system for vehicle
US9469210B2 (en) Vehicle
JP5742709B2 (en) Vehicle and vehicle control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11868476

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 11868476

Country of ref document: EP

Kind code of ref document: A1