JP2008277690A - Mosfet circuit - Google Patents

Mosfet circuit Download PDF

Info

Publication number
JP2008277690A
JP2008277690A JP2007122323A JP2007122323A JP2008277690A JP 2008277690 A JP2008277690 A JP 2008277690A JP 2007122323 A JP2007122323 A JP 2007122323A JP 2007122323 A JP2007122323 A JP 2007122323A JP 2008277690 A JP2008277690 A JP 2008277690A
Authority
JP
Japan
Prior art keywords
mosfet
circuit
degrees
elements
arrangement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007122323A
Other languages
Japanese (ja)
Inventor
Tadashi Wakabayashi
若林  正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2007122323A priority Critical patent/JP2008277690A/en
Publication of JP2008277690A publication Critical patent/JP2008277690A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a MOSFET layout capable of ensuring relative precision independent of rotation and mirroring at the time of arranging a MOSFET. <P>SOLUTION: In this MOSFET circuit constituting an electronic circuit by combining a plurality of MOSFET elements, in the case of constituting the MOSFET circuit of one unit by combining four MOSFET elements, the four MOSFET elements are arranged in a shape of a square. When the arrangement direction of one MOSFET element is set to a 0 degree, arrangement directions of other three MOSFET elements are arranged so as to be set to the direction of 90 degrees, the direction of 180 degrees, and the direction of 270 degrees put between gate electrodes, respectively. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、複数のMOSFET素子を組み合わせて電子回路を構成するMOSFET回路に関し、相対精度を要求される回路に用いて好適なMOSFET回路に関するものである。   The present invention relates to a MOSFET circuit that constitutes an electronic circuit by combining a plurality of MOSFET elements, and relates to a MOSFET circuit suitable for use in a circuit that requires relative accuracy.

MOSFET回路に関する先行技術文献としては下記のものが知られている。   The following are known as prior art documents relating to MOSFET circuits.

特開平9−121152号公報JP-A-9-121152 特開平10−214971号公報JP-A-10-214971 特開2001−267327号公報JP 2001-267327 A

図2(a)はMOSFET素子を組み合わせてバイアス回路を構成した従来例を示す回路図である。図において、1は基準電流の入力側である。点線で囲ったイで示す回路は入力電流a[A]に対してMOSFET(M0)1個で構成した基準電流1倍の出力(a×1[A])を得る回路である。   FIG. 2A is a circuit diagram showing a conventional example in which a bias circuit is configured by combining MOSFET elements. In the figure, reference numeral 1 denotes a reference current input side. A circuit indicated by “a” surrounded by a dotted line is a circuit that obtains an output (a × 1 [A]) that is one reference current composed of one MOSFET (M0) with respect to the input current a [A].

また、ロで示す回路はM0のMOSFETを基準としてMOSFET(M1−1,M1−2)を2個並列に並べて基準電流の2倍の電流(a×2[A])を得るための回路。ハで示す回路はM0を基準としてMOSFET(M2−1,M2−2,M2−3,M2−4)を4個並列に並べて基準電流の4倍の電流(a×4[A])を得るための回路である。   The circuit indicated by B is a circuit for obtaining two times the reference current (a × 2 [A]) by arranging two MOSFETs (M1-1, M1-2) in parallel with the M0 MOSFET as a reference. In the circuit indicated by C, four MOSFETs (M2-1, M2-2, M2-3, M2-4) are arranged in parallel with M0 as a reference to obtain a current (a × 4 [A]) that is four times the reference current. It is a circuit for.

このような回路ではM0,M1−1〜M2−4において相対精度が必要であり、MOSFETの相対誤差を低減するために、基準のM0と同一素子を同一方向(Sorce,Gate,Drainの順番を揃える)に配置してる。   In such a circuit, relative accuracy is required in M0, M1-1 to M2-4, and in order to reduce the relative error of the MOSFET, the same element as the reference M0 is placed in the same direction (order of Source, Gate, Drain). Align).

図2(b)は図2(a)の回路のMOSFET素子の配列を示すもので、イ’ロ’ハ’の回路においてSorce,Gate,Drainの方向を揃えた状態を示す図である。図2(b)に示すように何れの回路においてもG(ゲート)を中心に左側にS(ソース)、右側にD(ドレイン)が配置されている。   FIG. 2B shows the arrangement of the MOSFET elements in the circuit of FIG. 2A, and shows a state in which the directions of Source, Gate, and Drain are aligned in the circuit of “B”. As shown in FIG. 2B, in any circuit, S (source) is arranged on the left side with G (gate) as the center, and D (drain) is arranged on the right side.

ところで、MOSFETを用いた電子回路において、相対精度が必要な場合は素子を同一方向に揃える必要があるが、チップ面積の制約やマクロセル化された場合は素子方向を揃えられない場合がある。
図3は相対精度が悪化する場合のMOSFET素子のレイアウト配置を示す図である。
By the way, in an electronic circuit using a MOSFET, it is necessary to align elements in the same direction when relative accuracy is required, but there are cases where the element direction cannot be aligned when the chip area is limited or a macro cell is formed.
FIG. 3 is a diagram showing a layout arrangement of MOSFET elements when the relative accuracy deteriorates.

図3において、イ’で示す回路ではG(ゲート)を中心に左側にS(ソース)、右側にD(ドレイン)が配置されており、ロ’で示す回路ではG(ゲート)を中心に上側にD(ドレイン)が配置され、下側にS(ソース)が配置されている。またハ’で示す回路では、
G(ゲート)を中心に左側にD(ドレイン)、右側にS(ソース)が配置されている。
In FIG. 3, S (source) is arranged on the left side with respect to G (gate) in the circuit indicated by 'a', and D (drain) is arranged on the right side in the circuit indicated by b '. D (drain) is arranged on the lower side, and S (source) is arranged on the lower side. In the circuit indicated by '
Centered around G (gate), D (drain) is arranged on the left side, and S (source) is arranged on the right side.

即ち、イ’ロ’の回路では素子配列が90度回転した状態で配置され、イ’ハ’の回路では素子配列が180度回転した状態で配置されている。そしてこのような配列では一般的に相対精度が悪化する。
本発明は上記従来技術の課題を解決するためになされたもので、MOSFET配置時の回転、ミラーリングによらず相対精度を確保できるMOSFETレイアウトを実現することを目的としている。
That is, the element arrangement is arranged in a state where the element arrangement is rotated 90 degrees in the circuit “A”, and the element arrangement is arranged in a state where the element arrangement is rotated 180 degrees in the circuit “a”. In such an arrangement, the relative accuracy generally deteriorates.
The present invention has been made to solve the above-described problems of the prior art, and an object thereof is to realize a MOSFET layout capable of ensuring relative accuracy irrespective of rotation and mirroring when placing a MOSFET.

本発明のMOSFET回路は請求項1においては、
複数のMOSFET素子を組み合わせて電子回路を構成するMOSFET回路において、4つのMOSFET素子を組み合わせて一単位のMOSFET回路を構成するに際しては、前記4つのMOSFET素子を正方形状に配置し、一つのMOSFET素子の配列方向を0度としたときに他の3つのMOSFET素子の配列方向をゲート電極を挟んで、90度の方向、180度の方向および270度の方向になるように配置したことを特徴とする。
The MOSFET circuit of the present invention is as follows.
In a MOSFET circuit that constitutes an electronic circuit by combining a plurality of MOSFET elements, when a single unit MOSFET circuit is configured by combining four MOSFET elements, the four MOSFET elements are arranged in a square shape, The arrangement direction of the other three MOSFET elements is arranged to be 90 degrees, 180 degrees, and 270 degrees across the gate electrode when the arrangement direction of is set to 0 degrees. To do.

請求項2においては、請求項1に記載のMOSFET回路において、
前記ゲート電極は十字状に形成され、十字で仕切られた対角の位置にソース電極とドレイン電極を配置し、前記ソース電極およびドレイン電極同士を接続したことを特徴とする
In claim 2, in the MOSFET circuit according to claim 1,
The gate electrode is formed in a cross shape, and a source electrode and a drain electrode are arranged at diagonal positions partitioned by the cross, and the source electrode and the drain electrode are connected to each other.

以上説明したことから明らかなように本発明の請求項1,2によれば、次のような効果がある。
4つのMOSFET素子を正方形状に配置し、一つのMOSFET素子の配列方向を0度としたときに他の3つのMOSFET素子の配列方向をゲート電極を挟んで、90度の方向、180度の方向および270度の方向になるように配置し、ゲート電極を十字状に形成して十字で仕切られた対角の位置にソース電極とドレイン電極を配置し、ソース電極およびドレイン電極同士を接続した。
As is apparent from the above description, according to claims 1 and 2 of the present invention, the following effects can be obtained.
When four MOSFET elements are arranged in a square shape and the arrangement direction of one MOSFET element is 0 degree, the arrangement direction of the other three MOSFET elements is 90 degrees and 180 degrees with the gate electrode in between. The gate electrode is formed in a cross shape, the source electrode and the drain electrode are arranged at diagonal positions partitioned by the cross, and the source electrode and the drain electrode are connected to each other.

その結果、任意のレイアウト配置においても素子方向は同一となり、0度,90度,180度,270度の回転配置やX軸、Y軸ミラーリング配置を行っても相対精度の確保が可能となる。   As a result, the element direction is the same in any layout arrangement, and relative accuracy can be ensured even if rotational arrangement of 0 degrees, 90 degrees, 180 degrees, and 270 degrees or X-axis and Y-axis mirroring arrangement is performed.

はじめに、図4(a〜c)を用いてMOSFETの配置について説明する。
基準となるMOSFETを図4(a)とし、MOSFETのゲート幅をL[um]、ソースとドレインの長さをW[um]とする。
First, the arrangement of MOSFETs will be described with reference to FIGS.
The reference MOSFET is shown in FIG. 4A, the gate width of the MOSFET is L [um], and the length of the source and drain is W [um].

図4(b)は図4(a)の素子を4分割した結果を示す図である。ゲート、ソース、ドレインが結線によりゲートを中心に接続されている。MOSFETのゲートの幅WのサイズはW/4[um]であり、MOSFETとしては図4(a)と図4(b)は等価である。   FIG. 4B is a diagram showing the result of dividing the element of FIG. The gate, source, and drain are connected around the gate by connection. The size of the width W of the gate of the MOSFET is W / 4 [um], and FIGS. 4A and 4B are equivalent as the MOSFET.

図4(c)は図4(b)の配置を変更した結果を示す図である。この図では4個のMOSFETが0度のMOSFETを基準として,90度,180度,270度に正方形に配置されており、かつ、ゲート、ソース、ドレイン同士が結線により接続されている。この状態では図4(b)に示すものと接続に変更はない。   FIG. 4C is a diagram showing a result of changing the arrangement of FIG. In this figure, four MOSFETs are arranged in a square shape at 90 degrees, 180 degrees, and 270 degrees with reference to a 0 degree MOSFET, and the gate, source, and drain are connected by wiring. In this state, the connection is not changed from that shown in FIG.

図1は本発明の実施形態の一例を示す図である。この図においては、4つのMOSFET素子を組み合わせて一単位のMOSFET回路が構成されている。ここで、ゲート電極は十字状に形成されており、このゲート電極の十字で仕切られた対角(×)の位置にソース電極とドレイン電極が配置されている。   FIG. 1 is a diagram showing an example of an embodiment of the present invention. In this figure, a unit MOSFET circuit is configured by combining four MOSFET elements. Here, the gate electrode is formed in a cross shape, and the source electrode and the drain electrode are arranged at diagonal (x) positions partitioned by the cross of the gate electrode.

そして、4つのMOSFET素子は正方形状に配置され、一つのMOSFET素子の配列方向を0度としたときに他の3つのMOSFET素子の配列方向を前記ゲート電極を挟んで、90度の方向、180度の方向および270度の方向になるように配置されてソース電極およびドレイン電極は対角に位置する同士が結線により接続されている。
なお、図4(c)のMOSFETに対しては拡散領域の共有化を行っている(SourceとSource、DrainとDrainは共有化が可能)点が異なっている。
The four MOSFET elements are arranged in a square shape, and when the direction of arrangement of one MOSFET element is 0 degree, the direction of arrangement of the other three MOSFET elements is 90 degrees across the gate electrode, 180 degrees The source electrode and the drain electrode are arranged diagonally and are connected to each other by connection.
Note that a diffusion region is shared for the MOSFET of FIG. 4C (source and source, drain and drain can be shared).

図1の構成によれば、0度,90度,180度,270度の回転配置、X軸,Y軸ミラーリング配置、及びこれらの組み合わせを行っても、素子方向が0度,90度,180度,270度の4素子で構成されることに変わりがない。これにより相対精度の確保が可能となる。   According to the configuration of FIG. 1, the element direction is 0 degree, 90 degrees, 180 even if the rotation arrangement of 0 degrees, 90 degrees, 180 degrees, 270 degrees, the X axis, the Y axis mirroring arrangement, and the combination thereof are performed. There is no change in being composed of 4 elements of 270 degrees. This makes it possible to ensure relative accuracy.

なお、以上の説明は、本発明の説明および例示を目的として特定の好適な実施例を示したに過ぎない。従って本発明は、上記実施例に限定されることなく、その本質から逸脱しない範囲で更に多くの変更、変形を含むものである。   The above description merely shows a specific preferred embodiment for the purpose of explanation and illustration of the present invention. Therefore, the present invention is not limited to the above-described embodiments, and includes many changes and modifications without departing from the essence thereof.

本発明のMOSFET回路の一実施例を示す構成図である。It is a block diagram which shows one Example of the MOSFET circuit of this invention. MOSFET素子を組み合わせてバイアス回路を構成した従来例を示す回路図である。It is a circuit diagram which shows the prior art example which comprised the bias element by combining MOSFET elements. 相対精度が悪化する場合のMOSFET素子のレイアウト配置を示す図である。It is a figure which shows the layout arrangement | positioning of a MOSFET element in case relative accuracy deteriorates. MOSFETの配置についての説明図である。It is explanatory drawing about arrangement | positioning of MOSFET.

符号の説明Explanation of symbols

1 基準電流
M0,M1−1,M1−2,M2−1〜M2−4 MOSFET
S ソース
G ゲート
D ドレイン
1 Reference Current M0, M1-1, M1-2, M2-1 to M2-4 MOSFET
S source G gate D drain

Claims (2)

複数のMOSFET素子を組み合わせて電子回路を構成するMOSFET回路において、4つのMOSFET素子を組み合わせて一単位のMOSFET回路を構成するに際しては、前記4つのMOSFET素子を正方形状に配置し、一つのMOSFET素子の配列方向を0度としたときに他の3つのMOSFET素子の配列方向をゲート電極を挟んで、90度の方向、180度の方向および270度の方向になるように配置したことを特徴とするMOSFET回路。   In a MOSFET circuit that constitutes an electronic circuit by combining a plurality of MOSFET elements, when a single unit MOSFET circuit is configured by combining four MOSFET elements, the four MOSFET elements are arranged in a square shape, The arrangement direction of the other three MOSFET elements is arranged to be 90 degrees, 180 degrees, and 270 degrees across the gate electrode when the arrangement direction of is set to 0 degrees. MOSFET circuit to do. 前記ゲート電極は十字状に形成され、十字で仕切られた対角の位置にソース電極とドレイン電極を配置し、前記ソース電極およびドレイン電極同士を接続したことを特徴とする請求項1に記載のMOSFET回路。   2. The gate electrode according to claim 1, wherein the gate electrode is formed in a cross shape, a source electrode and a drain electrode are arranged at diagonal positions partitioned by the cross, and the source electrode and the drain electrode are connected to each other. MOSFET circuit.
JP2007122323A 2007-05-07 2007-05-07 Mosfet circuit Pending JP2008277690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007122323A JP2008277690A (en) 2007-05-07 2007-05-07 Mosfet circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007122323A JP2008277690A (en) 2007-05-07 2007-05-07 Mosfet circuit

Publications (1)

Publication Number Publication Date
JP2008277690A true JP2008277690A (en) 2008-11-13

Family

ID=40055271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007122323A Pending JP2008277690A (en) 2007-05-07 2007-05-07 Mosfet circuit

Country Status (1)

Country Link
JP (1) JP2008277690A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013071959A1 (en) * 2011-11-15 2013-05-23 X-Fab Semiconductor Foundries Ag A mos device assembly

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013071959A1 (en) * 2011-11-15 2013-05-23 X-Fab Semiconductor Foundries Ag A mos device assembly
US10026734B2 (en) 2011-11-15 2018-07-17 X-Fab Semiconductor Foundries Ag MOS device assembly

Similar Documents

Publication Publication Date Title
JP4535136B2 (en) Semiconductor integrated circuit and switch layout and wiring method
US9673145B2 (en) Semiconductor integrated circuit layout structure
WO2006105453A3 (en) Integrated circuit memory array configuration including decoding compatibility with partial implementation of multiple memory layers
JP2004172583A (en) Semiconductor device
TW201640655A (en) Semiconductor integrated circuit layout structure
JP2008277690A (en) Mosfet circuit
US11758715B2 (en) System and method for reducing cell area and current leakage in anti-fuse cell array
WO2010100849A1 (en) Semiconductor integrated circuit device
JP2006165065A (en) Semiconductor integrated circuit and its layout method, and standard cell
JP2008258425A (en) Standard cell and semiconductor device with the same
JP2010129843A (en) Method of generating cell data in semiconductor integrated circuit, and method of designing semiconductor integrated circuit
JP2010073797A (en) Method for manufacturing semiconductor device
US10679940B2 (en) Mask and metal wiring of a semiconductor device formed using the same
JP2007027314A (en) Semiconductor integrated circuit device
JP2006237123A (en) Semiconductor integrated circuit
TWI405093B (en) Pattern structure for semiconductor cell libraries
WO2010001507A1 (en) Semiconductor integrated circuit device
JP2006303099A (en) Standard cell structure
JP2009170842A (en) Semiconductor device
JP2007129094A (en) Semiconductor device
JP2008311570A (en) Semiconductor device
JP4363227B2 (en) Semiconductor device
JP2007129221A (en) Multi-purpose measurement marks for semiconductor devices, calibration method using the same, measurement system, and computer program
US7123084B2 (en) Semiconductor integrated circuit and designing method for same
JP2009087987A (en) Semiconductor device and layout method