JP2008275356A - 気液二相流れ供給装置及び気液二相流れ評価システム - Google Patents

気液二相流れ供給装置及び気液二相流れ評価システム Download PDF

Info

Publication number
JP2008275356A
JP2008275356A JP2007116518A JP2007116518A JP2008275356A JP 2008275356 A JP2008275356 A JP 2008275356A JP 2007116518 A JP2007116518 A JP 2007116518A JP 2007116518 A JP2007116518 A JP 2007116518A JP 2008275356 A JP2008275356 A JP 2008275356A
Authority
JP
Japan
Prior art keywords
gas
liquid
phase flow
porous body
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007116518A
Other languages
English (en)
Inventor
Katsuya Matsuoka
克弥 松岡
Makoto Tonai
誠 藤内
Hideo Mori
英夫 森
Yoshinori Hamamoto
芳徳 濱本
Naoki Iwamura
直樹 岩村
Kojiro Higuchi
幸治郎 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007116518A priority Critical patent/JP2008275356A/ja
Publication of JP2008275356A publication Critical patent/JP2008275356A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Nozzles (AREA)

Abstract

【課題】気体と液体とを混合し気液二相流れとして測定対象物に供給する際に、液体流量を目標値に近づけることを可能とすることである。
【解決手段】気液二相流れ供給装置20は、測定対象物である多孔体12の一方側面に一方端が取り付けられる外側管22と、外側管22の内部に軸心を合わせて配置され、多孔体12の一方側面から任意の離間間隔で一方端が離間されて配置される内側管24とを有し、内側管24の他方端から液体を供給し、外側管22と内側管24との間の環状管部26の他方端から気体を供給し、多孔体12の一方側面と内側管24の開口との間の空間28において気体と液体を混合し気液二相流れとして多孔体12に供給する。この気液二相流れ供給装置20を用いて、多孔体12の圧力損失を測定する気液二相流れ評価システムが構成される。
【選択図】図2

Description

本発明は気液二相流れ供給装置及び気液二相流れ評価システムに係り、特に、気体と液体とを混合し気液二相流れとして測定対象物に供給する気液二相流れ供給装置及びかかる気液二相流れ供給装置を用いた気液二相流れ評価システムに関する。
気孔を有するポーラスな物質である多孔体は、気体や液体を透過するので、ろ過層や拡散層等として用いられる。このようにろ過層や拡散層等として用いられるものについては、気体や液体がどのように透過するかを評価する必要がある。例えば、多孔体等の測定対象物の一方側を供給側として気体や液体を供給し、他方側を排出側として透過した気体や液体を排出させ、そのときの供給側の圧力と排出側の圧力との差圧を、多孔体等の測定対象物の圧力損失として評価することが行われる。
例えば、特許文献1には、内燃機関の排ガス浄化に用いられるハニカム構造体の圧力損失の評価方法として、気体目標流量と気体流量許容範囲とを設定して気体をハニカム構造体に供給し、そのときのハニカム構造体の気体流入側と気体流出側との間の差圧を測定し、気体流量許容範囲にあるときは気体流量が目標流量でなくても、測定された差圧から気体目標流量における差圧を換算して求めることが開示されている。これにより、気体流量を正確に合わせこまなくても小さい圧力損失を評価できると述べられている。
特開2005−189176号公報
特許文献1によれば、ハニカム構造体において気体を透過させるときの小さい圧力損失を評価できる。しかし、気体と液体とから構成される気液二相流れが供給される場合には、液体の表面張力等によって供給管等の供給装置の壁面に液体が偏り、液体の流速がゼロとなることが生じやすく、目標の液体流量とならないことがある。また、流れる気体中に水が蒸発することが生じやすく、目標の液体流量とならないことがある。
本発明の目的は、気体と液体とを混合し気液二相流れとして測定対象物に供給する際に、液体流量を目標値に近づけることを可能とする気液二相流れ供給装置を提供することである。他の目的は、気体と液体とを混合し気液二相流れにおいて液体流量を目標値に近づけることを可能とする気液二相流れ評価システムを提供することである。以下の手段は、これらの目的の少なくとも1つに貢献する。
本発明に係る気液二相流れ供給装置は、測定対象物の一方側面に一方端が取り付けられる外側管と、外側管の内部に軸心を合わせて配置され、測定対象物の一方側面から任意の離間間隔で一方端が離間されて配置される内側管と、を有し、内側管の他方端から液体を供給し、外側管と内側管との間の環状管部の他方端から気体を供給し、測定対象物の一方側面と内側管の開口との間の空間において気体と液体を混合し気液二相流れとして測定対象物に供給することを特徴とする。
また、本発明に係る気液二相流れ供給装置は、測定対象物である多孔体の一方側面に一方端が取り付けられる外側管と、外側管の内部に軸心を合わせて配置され、多孔体の一方側面から任意の離間間隔で一方端が離間されて配置される内側管と、を有し、内側管の他方端から液体を供給し、外側管と内側管との間の環状管部の他方端から気体を供給し、多孔体の一方側面と内側管の開口との間の空間において気体と液体を混合し気液二相流れとして多孔体に供給することを特徴とする。
また、本発明に係る気液二相流れ評価システムは、測定対象物である多孔体を保持する保持部と、多孔体の一方側面に設けられ、気体と液体からなる気液二相流れを多孔体に供給する気液二相流れ供給装置と、多孔体の他方側面に設けられ、気液二相流れ供給装置から供給されて多孔体を透過した流体を流出させる流出管と、気液二相流れ供給装置における流体圧と流出管における流体圧との差である差圧を圧力損失として検出する手段と、を備え、気液二相流れ供給装置は、多孔体の一方側面に一方端が取り付けられる外側管と、外側管の内部に軸心を合わせて配置され、多孔体の一方側面から任意の離間間隔で一方端が離間されて配置される内側管と、を有し、内側管の他方端から液体を供給し、外側管と内側管との間の環状管部の他方端から気体を供給し、多孔体の一方側面と内側管の開口との間の空間において気体と液体を混合し気液二相流れとして多孔体に供給することを特徴とする。
また、本発明に係る気液二相流れ評価システムにおいて、気液二相流れ供給装置の環状管部の他方端に乾燥気体流量設定手段を介して接続される乾燥気体供給源と、気液二相流れ供給装置の内側管の他方端に液体流量設定手段を介して接続され、乾燥気体供給源から供給される乾燥気体の圧力によって液体を供給する液体タンクと、気液二相流れ供給装置の環状管部の他方端に加湿気体流量設定手段を介して接続され、乾燥気体供給源から供給される乾燥気体を加湿し加湿気体として供給する加湿手段と、を備えることが好ましい。
上記構成の少なくとも1つにより、気液二相流れ供給装置は、測定対象物の一方側面に一方端が取り付けられる外側管と、測定対象物の一方側面から一方端が離間されて配置される内側管とを有する二重管構造であり、内側管の他方端から液体を供給し、外側管と内側管との間の環状管部の他方端から気体を供給し、測定対象物の一方側面と内側管の開口との間の空間において気体と液体を混合し気液二相流れとして測定対象物に供給する。このようにすることで、測定対象物の表面と管壁に液体が偏ることがなく、液体は流速を有して測定対象物に供給され、目標の液体流量に近づけることができる。
なお、測定対象物を多孔体としても、同様に、多孔体の表面と管壁に液体が偏ることがなく、液体は流速を有して多孔体に供給され、目標の液体流量に近づけることができる。
また、上記構成の少なくとも1つにより、気液二相流れ評価システムは、上記の気液二層流れ供給装置を用い、気液二相流れ供給装置における流体圧と流出管における流体圧との差である差圧を圧力損失として検出するので、液体流量を目標値に近づけて、気液二相流れにおける多孔体の圧力損失を評価することができる。
また、気液二相流れ評価システムにおいて、乾燥気体供給源と、乾燥気体供給源から供給される乾燥気体の圧力によって液体を供給する液体タンクと、乾燥気体供給源から供給される乾燥気体を加湿し加湿気体として供給する加湿手段とを備える。これにより、乾燥気体に液体が蒸発することを抑制し、気液二相流れにおいて目標の液体流量に近づけることができる。
以下に図面を用いて、本発明に係る実施の形態につき、詳細に説明する。以下では、測定対象物として、フィルム状の多孔体を説明するが、これは説明のための一例であって、液体を透過する物質であればよい。例えば、気孔を有するポーラスな材料として、多孔質膜あるいは多孔質の焼結材等のほか、半透過膜、中空糸等であってもよい。また、気液二相流れとして、空気と水から構成される流体を説明するが、気体は空気以外のガスであってもよく、液体は水以外のものであってもよい。気液二相流れに、微粒子、土壌、砂、ゴミ等の固体を含んでいてもよい。また、以下における材質等は説明のための一例であって、測定対象物の種類、供給される流体の種類等に応じ、適宜変更が可能である。
図1は、気液二相流れ評価システム10の構成図である。図2、図3は、気液二相流れ評価システム10に用いられる気液二相流れ供給装置20の周辺の構成を説明するための拡大図である。気液二相流れ評価システム10は、測定対象物に気液二相流れを供給し、測定対象物の両端における圧力損失を評価するシステムである。図1に示される気液二相流れ評価システム10、図1から図3に示される気液二相流れ供給装置20は、多孔体12を測定対象物とし、気液二相流れとして、空気と水から構成される気液二相流体を用いるものである。したがって、図1に示される気液二相流れ評価システム10は、多孔体内の気液二相流れ評価する機能を有する。
気液二相流れ評価システム10は、多孔体12を保持する保持部14と、気液二相流れを多孔体12に供給する気液二相流れ供給装置20と、多孔体12を透過した流体を流出させる流出管29と、気液二相流れ供給装置20における流体圧と流出管29における流体圧との差である差圧を圧力損失として検出する差圧計17と、気液二相流れ供給装置20に接続されて、乾燥気体と加湿器気体とが供給される気体供給路50と、液体が供給される液体供給路70とを含んで供給される。
最初に気液二相流れ供給装置20周辺の構成を説明し、次に、気体供給路50と液体供給路70を説明し、ついで気液二相流れ評価システム10の全体の作用等について説明する。
図2、図3は、気液二相流れ供給装置20の周辺の構成を説明するためのもので、図2は断面図、図3は斜視図である。ここでは、測定対象物である多孔体12と、保持部14と、気液二相流れ供給装置20と、流出管29とが示されている。
測定対象物である多孔体12は、気孔を有し、気体と液体を透過する性質を有する物質から構成される薄膜状フィルムである。
保持部14は、測定対象物である多孔体12を保持して任意の配置位置に配置する機能を有するもので、中央部開口を有する円環状の2枚の保持板13,15と、シールリング16と、2枚の保持板13,15を合わせて固定するボルト・ナットからなる締結部材18等を含んで構成される。2枚の保持板13,15は、流体の状態を観察できるように、透明な材料で構成されることが好ましい。例えば、アクリル樹脂等を円環状に加工したものを用いることができる。
多孔体12の大きさは、保持部14の円環状の中央部開口の大きさよりも小さめに設定される。そして、円環状の中央開口を塞ぐように、2枚の円環状の保持板13,15の間に多孔体12を配置して挟みこみ、適当なシールリング16を用いながら、ボルト・ナットからなる締結部材18で固定することで、多孔体12が保持部14に保持される。
気液二相流れ供給装置20は、保持部14の上面に配置され、多孔体12に気液二相流れ21を供給する供給配管である。気液二相流れ供給装置20は、多孔体12の一方側面に一方端が取り付けられる外側管22と、外側管22の内部に軸心を合わせて配置され、多孔体12の一方側面から任意の離間間隔で一方端が離間されて配置される内側管24とを有する二重管である。したがって、外側管22と内側管24との間は環状管部26となっている。外側管22の一方端と、保持部14あるいは多孔体12とが接する部分は、気液二相流れ21が漏れないように、適当な材料でシールされることが好ましい。
かかる気液二相流れ供給装置20もまた、流体の状態を観察できるように、透明な材料で構成されることが好ましい。例えば、ガラス管、あるいはアクリル樹脂等から構成される透明パイプを用いることができる。
気液二相流れ供給装置20において、内側管24の他方端は、図1で述べた液体供給路70に接続され、環状管部26の他方端は、図1で述べた気体供給路50に接続される。したがって、内側管24は液体が流れる液体流路であり、環状管部26は気体が流れる気体流路である。内側管24は、多孔体12の一方側面に接していないので、内側管24の一方端と多孔体12の一方側面との間には、外側管22によって規定される空間28があることになる。内側管24で規定される液体流路を流れてきた液体は、この空間28に速度を有して流れ込むことになる。同様に、環状管部26によって規定される気体流路を流れてきた気体も、内側を規定する内側管24がその一方端で終了することで内側の規制がなくなり、この空間28に速度を有して流れ込む。
このように、環状管部26によって規定される気体流路と、内側管24によって規定される液体流路とをそれぞれ独立に設け、測定対象物である多孔体12の一方側面の手前に空間28を設けることで、気体と液体とがこの空間28に流れ込む。この空間28に流れ込む気体と液体とは共に速度を有しているので、効果的に混合され、気体成分も液体成分も速度を有する気液二相流れ21となる。この観点から、空間28は、気液混合空間と呼ぶことができる。
このことを、1つの管に気体と液体とを共に流す場合を示す図4と比較すると、その相違がよく理解できる。図4は、1つの管80に気体(G)と液体(L)を流して、多孔体12に供給する場合の断面図である。1つの管80に気体と液体とを共に流すと、液体は、その表面張力等の性質によって、管80の管壁に沿って流れがちとなる。管壁に沿って流れる液体は、管の中央を流れる流体に比べるとその速度が格段に遅くなる。したがって、その低速の液体は、多孔体12に到達しても多孔体12を透過することが困難になり、多孔体12の一方側面に止まってしまう。このようになると、液体(L)の速度はゼロに近くなり、多孔体12に供給する液体流量が目標値よりも大幅に少なくなる。
図2、図3の構成においても、内側管24を流れる液体は、やはり管壁の影響を受け、管壁に沿って流れる成分がある。しかし、内側管24の一方端は、多孔体12の一方側面に接していないため、内側管24の管壁に沿って流れてきた成分も、その一方端で空間28に放出される。その放出の際の速度は、内側管24の中央部を流れてきた液体の速度の影響を受けるので、かなりの速度を有することができる。このようにして、内側管24の一方端を多孔体12の一方側面から離間して配置することで、速度を有する液体を、空間28に供給できる。これによって、多孔体12に供給する液体流量を目標値に近づけることができる。
以上が気液二相流れ供給装置20周辺の構成の説明である。次に、再び図1に戻り、気体供給路50と液体供給路70等の構成を説明する。なお、以下では、必要に応じ、図2、図3の符号を用いて説明する。
上記のように、気液二相流れ供給装置20の環状管部26の他方端は、気体供給路50に接続され、内側管24の他方端は、液体供給路70に接続される。
液体供給路70は、液体タンク72に収容される液体を気液二相流れ供給装置20に供給するための流体流路である。液体タンク72には、乾燥気体供給源40からレギュレータ42によって所定の気体圧力に調整された乾燥気体が加圧気体として供給される。すなわち、液体の供給エネルギは、乾燥気体供給源40からの加圧気体によって与えられ、特別な電動ポンプ等を有しない。なお、加圧気体によって液体タンク72から押し出される液体の流量は、液体流量設定手段である液体流量計74の設定によって調整される。図1では、液体流量計74は、「Q」として示されている。
ここで、乾燥気体供給源40は、乾燥空気を圧縮して加圧空気として収容するタンクである。勿論、乾燥窒素等の乾燥ガスを気液二相流れの気体として用いることもでき、その場合には、高圧窒素ボンベ等が乾燥気体供給源40となる。なお、一般大気をエアーコンプレッサ等で圧縮し、適当な乾燥手段を経由させて、これを乾燥空気として供給することもでき、この場合には、大気、エアーコンプレッサ、乾燥手段等が乾燥気体供給源40となる。
また、液体タンク72に収容される液体は、具体的には水である。勿論、水以外の液体、例えば、不凍液、アルコール等を気液二相流れの液体として用いることもでき、その場合には、これらの液体を収容する容器が液体タンク72に相当する。液体タンク72には、液体の温度を検出するための温度計が設けられることが好ましい。図1において、温度計は「T」として示されている。
気体供給路50は、乾燥気体供給路52と加湿気体供給路54とが接続されて構成される。乾燥気体供給路52は、乾燥気体供給源40に収容される乾燥気体を気液二相流れ供給装置20に供給するための流体流路である。乾燥気体の流量は、気体流量設定手段である気体流量計56の設定によって調整される。図1では、気体流量計56は、「Q」として示されている。
加湿気体供給路54は、加湿器60によって加湿された加湿気体を気液二相流れ供給装置20に供給するための流体流路である。加湿気体の流量は、乾燥気体供給路52と加湿気体供給路54とにそれぞれ設けられた二方弁の絞りを相互に調整することで行われる。すなわち、乾燥気体供給路52に設けられた二方弁の開度を大きくし、加湿気体供給路54に設けられた二方弁の開度を小さくすることで、乾燥気体/加湿気体の比を大きくでき、逆に、乾燥気体供給路52に設けられた二方弁の開度を小さくし、加湿気体供給路54に設けられた二方弁の開度を大きくすることで、乾燥気体/加湿気体の比を小さくできる。
加湿器60は、液体タンクであるが、液体中に乾燥気体が供給され、乾燥気体が液体を通過することで加湿されるものである。このような構造の加湿器60は、一般的にバブラとして知られているものである。このようなバブラを用いることで、液体加熱用の特別なヒータ等を要せずに、乾燥気体を加湿気体に変換することができる。
このように、加湿気体を適宜気液二相流れ供給装置20に供給することで、乾燥気体のみが気体として供給される場合に生じる液体の相変化、すなわち、液体が乾燥気体中に蒸発することを抑制することができる。例えば、気体供給路50から、液体の飽和蒸気圧を有する気体を供給することで、液体の蒸発を防ぎ、これによって、気液二相流れにおいて、液体の蒸発に起因する液体流量の目標値からの低下を抑制することができる。
図1の構成による気体供給路50と液体供給路70は、乾燥気体供給源40の気体圧を有効に用いることができ、電動ポンプ、液体加熱ヒータ等を要しない。したがって、気液二相流れ供給源の構成をコンパクトなものとできる。
このように、気液二相流れ供給装置20の環状管部26の他方端に気体供給路50に接続され、内側管24の他方端は、液体供給路70に接続される。そして、気液二相流れ供給装置20における流体圧と流出管29における流体圧との差である差圧を圧力損失として検出するために、差圧計17の一方端が気液二相流れ供給装置20に接続され、他方端が流出管29に接続される。図1では、差圧検出手段である差圧計17は、「ΔP」として示されている。また、気液二相流れの供給側には、「T」として示される温度計、「RH」として示される湿度計、「P」として示される圧力計が接続され、流出側、すなわち排出側には、「RH」として示される湿度計が接続される。
図5は、差圧計によって検出された多孔体の圧力損失ΔPと、液体(L)の質量速度である液体質量速度Gの関係について、測定結果を示す図である。ここでは、気体(G)の質量速度である気体質量速度Gをパラメータとしてある。また、シミュレーションによる計算結果も参考のため示されている。なお、質量速度とは、[質量/(面積×時間)]の次元を有する量で、単位時間、単位面積当たりに流れる質量の大きさを示すものである。図5の結果から、計算結果と測定結果とは比較的一致し、これらの結果から、気液二相流れにおいて、液体質量速度Gが目標値に近い値になっているものと考えることができる。
図6は、流出管側から多孔体の下面側を撮像装置で撮像した画面を示す図である。図6において、撮像画面に映っている要素には、図2、図3で対応する要素の符号を付してある。図6の撮像画面では、多孔体12から液体が流出し、液滴30となって落下する様子が示されている。すなわち、多孔体12の気液二相供給表面に液体が滞留することなく、液体が流出してきていることが分かる。
本発明に係る実施の形態における気液二相流れ評価システムの構成図である。 本発明に係る実施の形態において、気液二相流れ供給装置周辺の断面図である。 本発明に係る実施の形態において、気液二相流れ供給装置周辺の斜視図である。 従来技術において、気体と液体を流すときの様子を示す図である。 本発明に係る実施の形態において、多孔体の圧力損失の測定結果を示す図である。 本発明に係る実施の形態において、多孔体から液体が流出する様子を示す図である。
符号の説明
10 気液二相流れ評価システム、12 多孔体、13,15 保持板、14 保持部、16 シールリング、17 差圧計、18 締結部材、20 気液二相流れ供給装置、21 気液二相流れ、22 外側管、24 内側管、26 環状管部、28 空間、29 流出管、30 液滴、40 乾燥気体供給源、42 レギュレータ、50 気体供給路、52 乾燥気体供給路、54 加湿気体供給路、56 気体流量計、60 加湿器、70 液体供給路、72 液体タンク、74 液体流量計、80 管。

Claims (4)

  1. 測定対象物の一方側面に一方端が取り付けられる外側管と、
    外側管の内部に軸心を合わせて配置され、測定対象物の一方側面から任意の離間間隔で一方端が離間されて配置される内側管と、
    を有し、
    内側管の他方端から液体を供給し、外側管と内側管との間の環状管部の他方端から気体を供給し、測定対象物の一方側面と内側管の開口との間の空間において気体と液体を混合し気液二相流れとして測定対象物に供給することを特徴とする気液二相流れ供給装置。
  2. 測定対象物である多孔体の一方側面に一方端が取り付けられる外側管と、
    外側管の内部に軸心を合わせて配置され、多孔体の一方側面から任意の離間間隔で一方端が離間されて配置される内側管と、
    を有し、
    内側管の他方端から液体を供給し、外側管と内側管との間の環状管部の他方端から気体を供給し、多孔体の一方側面と内側管の開口との間の空間において気体と液体を混合し気液二相流れとして多孔体に供給することを特徴とする気液二相流れ供給装置。
  3. 測定対象物である多孔体を保持する保持部と、
    多孔体の一方側面に設けられ、気体と液体からなる気液二相流れを多孔体に供給する気液二相流れ供給装置と、
    多孔体の他方側面に設けられ、気液二相流れ供給装置から供給されて多孔体を透過した流体を流出させる流出管と、
    気液二相流れ供給装置における流体圧と流出管における流体圧との差である差圧を圧力損失として検出する手段と、
    を備え、
    気液二相流れ供給装置は、
    多孔体の一方側面に一方端が取り付けられる外側管と、
    外側管の内部に軸心を合わせて配置され、多孔体の一方側面から任意の離間間隔で一方端が離間されて配置される内側管と、
    を有し、
    内側管の他方端から液体を供給し、外側管と内側管との間の環状管部の他方端から気体を供給し、多孔体の一方側面と内側管の開口との間の空間において気体と液体を混合し気液二相流れとして多孔体に供給することを特徴とする気液二相流れ評価システム。
  4. 請求項3に記載の気液二相流れ評価システムにおいて、
    気液二相流れ供給装置の環状管部の他方端に乾燥気体流量設定手段を介して接続される乾燥気体供給源と、
    気液二相流れ供給装置の内側管の他方端に液体流量設定手段を介して接続され、乾燥気体供給源から供給される乾燥気体の圧力によって液体を供給する液体タンクと、
    気液二相流れ供給装置の環状管部の他方端に加湿気体流量設定手段を介して接続され、乾燥気体供給源から供給される乾燥気体を加湿し加湿気体として供給する加湿手段と、
    を備えることを特徴とする気液二相流れ評価システム。
JP2007116518A 2007-04-26 2007-04-26 気液二相流れ供給装置及び気液二相流れ評価システム Pending JP2008275356A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007116518A JP2008275356A (ja) 2007-04-26 2007-04-26 気液二相流れ供給装置及び気液二相流れ評価システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007116518A JP2008275356A (ja) 2007-04-26 2007-04-26 気液二相流れ供給装置及び気液二相流れ評価システム

Publications (1)

Publication Number Publication Date
JP2008275356A true JP2008275356A (ja) 2008-11-13

Family

ID=40053492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007116518A Pending JP2008275356A (ja) 2007-04-26 2007-04-26 気液二相流れ供給装置及び気液二相流れ評価システム

Country Status (1)

Country Link
JP (1) JP2008275356A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012208040A (ja) * 2011-03-30 2012-10-25 Ngk Insulators Ltd フィルタの検査方法、およびフィルタの検査装置
KR101257481B1 (ko) * 2011-08-17 2013-04-24 주식회사 싸이노스 반도체 제조공정에 사용하는 샤워헤드의 검사장치
KR101772126B1 (ko) * 2017-02-17 2017-08-28 하영근 용접용 토치어셈블리
CN108732162A (zh) * 2018-05-29 2018-11-02 四川理工学院 一种水中砷浓度的快速检测装置及检测方法
CN112378814A (zh) * 2020-10-28 2021-02-19 西南石油大学 一种疏水圆管中环状流气芯液滴观测装置
CN114607336B (zh) * 2022-03-08 2023-10-27 煤炭科学技术研究院有限公司 一种煤矿井下高压气液两相射流冲击卸压增透方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012208040A (ja) * 2011-03-30 2012-10-25 Ngk Insulators Ltd フィルタの検査方法、およびフィルタの検査装置
US8966959B2 (en) 2011-03-30 2015-03-03 Ngk Insulators, Ltd. Filter inspection method and filter inspection apparatus
KR101257481B1 (ko) * 2011-08-17 2013-04-24 주식회사 싸이노스 반도체 제조공정에 사용하는 샤워헤드의 검사장치
KR101772126B1 (ko) * 2017-02-17 2017-08-28 하영근 용접용 토치어셈블리
CN108732162A (zh) * 2018-05-29 2018-11-02 四川理工学院 一种水中砷浓度的快速检测装置及检测方法
CN112378814A (zh) * 2020-10-28 2021-02-19 西南石油大学 一种疏水圆管中环状流气芯液滴观测装置
CN114607336B (zh) * 2022-03-08 2023-10-27 煤炭科学技术研究院有限公司 一种煤矿井下高压气液两相射流冲击卸压增透方法

Similar Documents

Publication Publication Date Title
JP2008275356A (ja) 気液二相流れ供給装置及び気液二相流れ評価システム
US10953348B2 (en) Membrane gas/liquid contactor
Dindore et al. Membrane–solvent selection for CO2 removal using membrane gas–liquid contactors
TWI414361B (zh) Liquid vaporization system
Fernández-Pineda et al. Gas permeation and direct contact membrane distillation experiments and their analysis using different models
Scovazzo et al. Hydrophilic membrane-based humidity control
Ge et al. Material properties and measurements for semi-permeable membranes used in energy exchangers
US20050126211A1 (en) Droplet desorption process and system
KR100877020B1 (ko) 증발 장치 및 액체 흡수 부재
JP2009063352A (ja) ガス物理量検出装置,燃料電池システム,車両
Chen et al. Physical properties measurement and performance comparison of membranes for planar membrane humidifiers
KR101736082B1 (ko) 내연기관으로부터 배기가스 샘플을 제거하는 시스템
Gao et al. The investigation of desulphurization and water recovery from flue gas using ceramic composite membrane
Vangelooven et al. Design and evaluation of flow distributors for microfabricated pillar array columns
Beriault Run-around membrane energy exchanger prototype 4 design and laboratory testing
Uchytil et al. Influence of capillary condensation effects on mass transport through porous membranes
Min et al. Moisture permeation through porous membranes
JPH11128704A (ja) 液体中の溶存ガス濃度の調整装置及び調整方法
JP5810101B2 (ja) 液体気化器
JP2016176866A (ja) リーク検査方法リーク検査装置
Chiari Air humidification with membrane contactors: experimental and theoretical results
JP2014001898A (ja) 湿潤ガス発生方法と小流量用調湿装置
US8544828B2 (en) Liquid material vaporization apparatus
JPWO2011037255A1 (ja) 膜エレメント、気体分離装置及び内燃機関
CN112691562A (zh) 微纳米级气液混合制备装置及微纳米级气泡的制备方法