JP2008274859A - エンジン - Google Patents

エンジン Download PDF

Info

Publication number
JP2008274859A
JP2008274859A JP2007119981A JP2007119981A JP2008274859A JP 2008274859 A JP2008274859 A JP 2008274859A JP 2007119981 A JP2007119981 A JP 2007119981A JP 2007119981 A JP2007119981 A JP 2007119981A JP 2008274859 A JP2008274859 A JP 2008274859A
Authority
JP
Japan
Prior art keywords
engine
fuel injection
fuel
common rail
water temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007119981A
Other languages
English (en)
Inventor
Yoshinao Okubo
善直 大久保
Masaaki Suga
公明 菅
Hiroshige Eguchi
裕滋 江口
Akiro Tamura
彰朗 田村
Shinji Okubo
真司 大久保
Kenji Adachi
憲司 足立
Kenichi Tsubota
健一 坪田
Junji Nakada
純二 中田
Hiroshi Morimoto
宏 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Original Assignee
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd, Iseki Agricultural Machinery Mfg Co Ltd filed Critical Iseki and Co Ltd
Priority to JP2007119981A priority Critical patent/JP2008274859A/ja
Publication of JP2008274859A publication Critical patent/JP2008274859A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

【課題】エンジン始動後における失火気味や失火の発生を防止と、エンジン回転の安定化を短い時間で図ることを課題とする。
【解決手段】燃料を蓄圧するコモンレール1と、該コモンレール1から供給される燃料をエンジンのシリンダ5内に噴射する燃料噴射ノズル6と、エンジンの冷却水温を検出する水温センサ12と、エンジン回転数を検出するエンジン回転数センサ13と、シリンダ5内への燃料噴射量を検出する燃料噴射量センサ14を備えたエンジンにおいて、エンジン始動後のエンジン回転数が低回転数であって燃料噴射量が冷却水温度に対する適正な値から外れている場合には、燃料の噴射タイミングを進角させるエンジンコントロールユニット100を設けたことを特徴とするエンジンの構成とする。
【選択図】図3

Description

この発明は、コモンレールを備えたエンジンに関する。
エンジン回転数を安定させると共に失火防止の手段として、燃料噴射ノズル自体に圧力調整弁を設け、噴射される燃料圧力を変化させる構成である。(例えば、特許文献1参照。)。
特開平11−182376号公報
前述のような技術では、燃料噴射ノズル自体の構成が複雑で高価なものとなる。そして、燃料噴射ノズルの構成が複雑であるので、一旦故障すると燃料噴射ノズルの交換等が必要となり、エンジンの耐久性が低下するという欠点がある。
本発明の課題は、前述のような不具合を解消する作業車を提供することである。
本発明の上記課題は次の構成によって達成される。
すなわち、請求項1記載の発明では、燃料を蓄圧するコモンレール(1)と、該コモンレール(1)から供給される燃料をエンジンのシリンダ(5)内に噴射する燃料噴射ノズル(6)と、エンジンの冷却水温を検出する水温センサ(12)と、エンジン回転数を検出するエンジン回転数センサ(13)と、シリンダ(5)内への燃料噴射量を検出する燃料噴射量センサ(14)を備えたエンジンにおいて、エンジン始動後のエンジン回転数が低回転数であって燃料噴射量が冷却水温度に対する適正な値から外れている場合には、燃料の噴射タイミングを進角させるエンジンコントロールユニット(100)を設けたことを特徴とするエンジンとしたものである。
請求項1の作用は、エンジン始動後にエンジン回転数センサ(13)でエンジン回転数を検出する。また、エンジンの冷却水温と燃料噴射量を検出する。そして、エンジン始動後のエンジン回転数が低回転数であって燃料噴射量が冷却水温度に対する適正な値から外れている場合には、燃料の噴射タイミングを進角させる。
請求項2記載の発明では、前記エンジンコントロールユニット(100)は、前記エンジン回転数センサ(13)でエンジン始動前のクランキング速度を検出し、このクランキング速度に応じて燃料噴射量を変化させるように構成したことを特徴とする請求項1に記載のエンジンとしたものである。
請求項2の作用は、請求項1の作用に加え、クランキング速度が遅い原因としては、使用するエンジンオイル(粘度等)の種類や環境(気温が低い等)に影響されるので、エンジン始動前のクランキング速度を検出し、このクランキング速度に応じて燃料噴射量を変化させる。クランキング速度が遅い場合においては、燃料噴射量を増大させるようにする。
本発明は上述のごとく構成したので、請求項1記載の発明においては、エンジン始動後における失火気味や失火の発生を防止できるようになり、エンジン回転の安定化を短い時間で図れるようになる。
請求項2記載の発明においては、請求項1の効果に加え、特にクランキング速度が遅い場合において、スムーズなエンジン始動ができるようになる。
本発明を実施するための最良の形態を説明する。
図1は、蓄圧式燃料噴射装置の全体構成図である。蓄圧式燃料噴射装置は、例えば、多気筒ディーゼル機関に適用されるものであるが、ガソリン機関やその他の液体燃料、例えばバイオ燃料等を用いた内燃機関でもよい。そして、蓄圧式燃料噴射装置は、噴射圧力に相当する高圧燃料を蓄圧するコモンレール1と、このコモンレール1に取り付けられる圧力センサ2と、燃料タンク3より汲み上げた燃料を加圧してコモンレール1に圧送する高圧ポンプ4と、コモンレール1に蓄圧された高圧燃料をエンジンEのシリンダー5内に噴射する燃料噴射ノズル6と、前記高圧ポンプ4と燃料噴射ノズル6等の動作を制御する制御装置100(ECU)等から構成される。ECUとは、エンジンコントロールユニットの略称である。
このように、コモンレール1は、エンジンEの各シリンダー5へ燃料を噴射するものであり、燃料供給を要求された圧力とするものである。
前記燃料タンク3内の燃料は吸入通路により燃料フィルタ7を介してエンジンEで駆動される高圧ポンプ4に吸入され、この高圧ポンプ4によって加圧された高圧燃料は吐出通路8からコモンレール1に導かれて該コモンレール1に蓄えられる。
コモンレール1内の高圧燃料は各高圧燃料供給通路9により気筒数分(図1の実施例では4気筒)の燃料噴射ノズル6に供給され、ECU100からの指令に基づき各シリンダーの燃料噴射ノズル6が作動して、高圧燃料がエンジンEの各シリンダー5室内に噴射供給される。そして、各燃料噴射ノズル6での余剰燃料(リターン燃料)は各リターン通路10から共通のリターン通路10aへ導かれ、このリターン通路10aから燃料タンク3へ戻される。
また、コモンレール1内の燃料圧力(コモンレール圧)を制御するため高圧ポンプ4に圧力制御弁11が設けられており、この圧力制御弁11はECU100からのデューティ信号によって、高圧ポンプ4から燃料タンク3への余剰燃料のリターン通路10aの流路面積を調整するものであり、これによりコモンレール1側への燃料吐出量を調整してコモンレール圧を制御することができる構成となっている。
具体的には、エンジン運転条件に応じて目標コモンレール圧を設定し、レール圧力センサ2により検出されるコモンレール圧が目標コモンレール圧と一致するよう、圧力制御弁11を介してコモンレール圧をフィードバック制御する構成としている。
作業車(農作業機)におけるコモンレール1を有するディーゼルエンジンのECU100は、図2に示すように、回転数と出力トルクの関係において走行モードAと通常作業モードB及び重作業モードCの三種類の制御モードを有する構成としている。
走行モードAは、エンジン回転数の変動で出力も変動する、いわゆるドループ制御である。農作業を行わず移動走行する場合に使用するものである。例えば、ブレーキを掛けて走行速度を減速したり停止したりすると、このブレーキによる走行負荷の増大に伴ってエンジン回転数が低下するため、走行速度の減速や停止を安全に行うことができるものである。
通常作業モードBは、負荷が変動してもエンジン回転数を一定に保持するもので、出力を負荷に応じて変更するアイソクロナス制御である。通常の農作業を行う場合に使用するものである。例えば、トラクターであれば耕耘作業時に耕地が固く耕耘刃に抵抗が掛かるときであり、コンバインであれば収穫作業時に収穫物が多く負荷が増大するような場合である。このような場合においては、出力が変動してエンジン回転数が低下しようとしても、エンジン回転数を一定に保持して良好な作業状態を維持するときである。
重作業モードCは、通常作業モードBと同様に負荷が変動してもエンジン回転数を一定にし、出力を負荷に応じて変更するアイソクロナス制御に加え、負荷限界近くになるとエンジン回転数を上昇させて出力を上げる重負荷制御を加えた制御である。特に、負荷限界近くで農作業を行う場合に使用するものである。例えば、トラクターで耕耘作業を行っている際に、特に、固い耕地に遭遇してもエンジン出力が通常の限界を越えて増大するので作業を中断することがなく、効率の良い作業が可能となる。
これらの作業モードA,B,Cは、各作業モードA,B,Cを切り替え可能な作業モード切替スイッチの操作、又は農作業車(トラクター、コンバイン、田植機等)の走行変速レバーの変速操作、又は作業クラッチ(トラクターであればロータリであり、コンバインであれば刈取部、脱穀部である)の入り切り操作等によって切り替わるように構成する。
ディーゼルエンジンでは、メイン噴射に先立って少量の燃料をパルス的に噴射するパイロット噴射を行うことにより、着火遅れを短縮してディーゼルエンジン特有のノック音を低減し、騒音を低減することが可能な構成としている。
このパイロット噴射は、メイン噴射の前に1回又は2回に限定して行われるものであったが、前記コモンレール1の蓄圧式燃料噴射装置を用いることで、ディーゼルエンジンの状況に応じてパイロット噴射の状態を変化させ、騒音の低減や不完全燃焼による白煙又は黒煙の発生を抑制できるようになる。また、メイン噴射に先立って少量の燃料をパルス的に噴射するパイロット噴射を行うことにより、排ガス中の窒素酸化物の量が減少するようになる。
図3は、エンジンの冷却水温と燃料噴射量との関係を示している。この冷却水温と燃料噴射量との関係については、ローアイドル回転数のときのみにおいて適用される。
ラインL1は、エンジンの冷却水温に対する適正な燃料噴射量のラインである。このラインL1よりも上側の領域T1を異常領域とする。即ち、ECU100はエンジンの水温センサ12からの信号と、エンジン回転数センサ13からの信号と、燃料噴射量センサ14からの信号を監視し、エンジン回転数がローアイドルの場合のときにおいて、冷却水温度に対する燃料噴射量が適正な値(ラインL1)を越えた異常領域T1の状態を検出すると、燃料の噴射タイミングを進角(アドバンス)させるように構成する。この制御は、補正する必要がなくなるまで続ける構成とする。
これにより、エンジン始動後における失火気味や失火の発生を防止できるようになり、エンジン回転の安定化が短い時間で図れるようになる。
仮に、異常領域T1の状態が続くと失火気味になったり失火が発生してしまい、エンジン始動後における燃焼が安定しない状態が続く結果となる。そして、エンスト等が起こりエンジンを再始動させたりしなくてはならなくなるが、このような不具合を防止できるようになる。
前記燃料噴射量センサ14については、コモンレール1と燃料噴射ノズル6との間に設ける構成としているので、4気筒の場合は4個必要である。しかしながら、各燃料噴射ノズル6から各シリンダ5内に噴射される量の違いは微差であるので、燃料噴射センサ14は1個だけ設け、気筒数分を合計した値でもよい。
次に、図4から図6について説明する。図4はエンジンの冷却水温と必要なグロー通電時間の関係を示している。水温が低いほど必要なグロー通電時間は長くなる関係にある。
しかしながら、車両に搭載されたエンジンを始動する際には、必要なグロー通電時間を無視してエンジン始動する状況が多い。このような場合は、エンジンの始動性が悪くなるばかりでなく、バッテリーの充電量が減ってしまう不具合がある。そこで、不足したグロー時間に応じて燃料噴射を増量させるようにする。図5は、不足グロー時間と燃料増量の関係を示している。燃料増量については、始動時の基準の噴射量に対する増量である。図6にはフローチャートを示している。
ステップS1でエンジンの水温を検出する。ステップS2必要なグロー時間を算出する。ステップS3で実際のグロー時間を計測する。ステップS4で必要なグロー時間と実際のグロー時間の比較を行なう。そして、必要なグロー時間に対して実際のグロー時間が短い場合には、ステップS5へ進んで燃料噴射量を増量する構成とする。このときの増量は、図5に基づいて行う構成とする。これにより、低温時、特に極低温時におけるエンジンの始動性が向上するようになる。
図1に示す15はレールヒーターである。そして、図7にはエンジンの冷却水温と前記レールヒーター15の予熱時間の関係を示している。レールヒーター15の作動は、基本的には冷却水温が略5度C以下のときに行う構成とする。そして、冷却水温が低くなるほどラインL2に沿って予熱時間を長くなるようにする。これにより、低温時の燃料の粘度上昇を防止してレール圧の精度の高い制御を可能とし、低温時の始動性向上や白煙発生を防止できるようになる。
図8は、エンジンスタートキーの作動と、グローの作動と、スタータモータの作動の関係について示したものである。従来においては、ラインL3のスタートキーの動作において、ON状態(パネル内の計器類が点灯通電し、スターターモーター作動の直前の状態)になると、グロー通電するように構成していた(ラインL4の点線部分)。そして、ラインL3のスタートになると、ラインL5のようにスタータモーターが作動する構成としていた。
これに対して、ラインL4の実線に示すように、ラインL3のACC状態(パネル内の計器類が点灯しない通電状態)でグロー通電するようにすることで、グローの待ち時間が短くなり、エンジンの始動性も向上するようになる。
また、ラインL3に示すスターターキーがOFF状態においても、運転者が車両のシートに着座することで、グローに通電するように構成してもよい。この場合、シートに着座センサを設けておく必要がある。このように、一早くグロー通電することで、エンジンの始動性がさらに向上するようになる。
また、図示はしないが、ラインL3のスターターキーの位置に関係なく、車両のクラッチペダルを踏み込み操作することで、グロー通電するように構成してもよい。また、キースイッチが車両本体に差し込まれた時点でグロー通電するように構成してもよい。この場合、エンジンの冷却水温を検出して、冷却水温が所定値以下の低い場合のみに限定してもよい。
図9は、エンジン始動時におけるクランキング速度と燃料噴射量との関係を示している。クランキング速度は、エンジン回転数センサ13からの信号で検出している。クランキング速度が遅い原因としては、使用するエンジンオイル(粘度等)の種類や環境(気温が低い等)に影響される。
そこで、クランキング速度が遅い場合においては、燃料噴射量を増大させるようにする。このときの増大は、通常始動時における燃料噴射量である。これにより、スムーズなエンジン始動ができるようになる。
図1で説明したように、各燃料噴射ノズル6での余剰燃料(リターン燃料)は各リターン通路10から共通のリターン通路10aへ導かれ、このリターン通路10aから燃料タンク3へ戻される構成としている。このリターン通路10aに切換バルブ16を設け、エンジン始動時、特に低温でのエンジン始動時においては、切換バルブ16を切り換えて燃料を高圧ポンプ4に戻すように構成する。低温の判定は、冷却水温センサ12や気温センサ等で検出する。この場合、冷却水温が低い状態であっても、燃料はコモンレール1で一度高圧状態になっているので、リターン燃料の温度が高い状態となっている。このような高い温度の燃料を高圧ポンプ4に戻すことで、比較的高い温度の燃料が再びエンジンに供給されることになり、エンジンの始動性が向上するようになる。また、燃料フィルタ7の通過流量を減少させることができるので、燃料フィルターの寿命を長くすることができるようになる。
図10は、シリンダ5内で燃焼後の排気ガスを浄化するための後処理装置16を示している。排気ガスは、後処理装置16を通過してマフラー17から大気中に排出される。本実施例では、後処理装置16はマフラー17の後方であってマフラー17と一体的に構成している。後処理装置16は、酸化触媒(DOC)18とディーゼルパティキュレートフィルター(DPF)19とから構成されている。
酸化触媒(DOC)18は不燃物室を燃焼させるものであり、ディーゼルパティキュレートフィルター(DPF)19は粒状化物室(PM)を捕集するためのものである。後処理装置16はディーゼルパティキュレートフィルター(DPF)19のみで構成してもよいが、酸化触媒(DOC)18を設けると不燃物質が燃焼するので、よりクリーンな排気ガスとなる。
DPF19は、排気ガスの温度が低い状態(低負荷)が長時間続くと、PMが溜まってきて能力の低下が懸念される。そこで、酸化触媒(DOC)18を含むディーゼルパティキュレートフィルター(DPF)19については、外ケース20と内ケース21の二重のケースで覆う構成とする。さらに、内ケース21の後部であってディーゼルパティキュレートフィルター(DPF)19の下流側には、複数の穴21aを設ける構成とする。すると、この穴21aから温度の高い一部の排気ガスが内ケース21と外ケース20との間に入り込むようになる。これにより、高い温度の影響により、DPF19の再生が可能となる。即ち、高い温度の排気ガスがDPF19を通過すると、DPF19内に存在しているPMが焼き飛ばされることでDPF19が再生されるようになる。
また、図11に示すように、前記穴21aについては、マフラー17に設けるように構成してもよい。また、マフラー17と酸化触媒(DOC)18との間であって内ケース21に穴21bを設けるように構成してもよい。この穴21bについては、内ケース21と外ケース20との間に導入された排気ガスを、再び排気通路22に戻すためのものである。これにより、酸化触媒(DOC)18とDPF19の温度分布が高温で均一化するようになるので、酸化触媒(DOC)18とDPF19の機能低下を防止できるようになる。
図12と図13の構成について説明する。内ケース21に穴を設けるにあたり、マフラー17と酸化触媒(DOC)18との間に穴21cを設け、酸化触媒(DOC)18とDPF19との間に穴21dを設ける構成とする。すると、穴21cから高温の排気ガスが内ケース21と外ケース20の間に入り込み、再び穴21dから通常の排気経路22に戻るようになる。これにより、酸化触媒(DOC)18とDPF19が保温されて酸化触媒(DOC)18とDPF19の機能低下を防止できるようになる。しかしながら、このような状態であっても、長い時間が経過すると、DPF19内には粒状化物室(PM)が堆積してDPF19の機能が低下してくる。そこで、メイン噴射の後にポスト噴射を行うことで排気ガスの温度を向上させてDPF19の再生を図るように構成する。このとき、図13に示すように、ポスト噴射で未燃燃料が流されると酸化触媒(DOC)18で酸化(燃焼)して温度と圧力が上昇するために、矢印23と矢印24のように流れが逆転する。これにより、酸化触媒(DOC)18をバイパスさせることなくDPF19の昇温と再生を早めることができるようになる。
前記ポスト噴射については、図15に示している。前述のごとく、ポスト噴射は排気温度を昇温させるためのものであるが、昇温するステップとして、まずポスト噴射量を必要最小値で固定し、図15(a)のように、ポスト噴射タイミングをリタード(遅角)することで、排気温度を上昇させるようにする。さらに、リタード(遅角)が限界までくると、図15(b)のように、ポスト噴射量を増やすようにする。リタード(遅角)限界については、エンジンの状態(温度、圧力等)により決定するものである。
ポスト噴射は、出力への変換効率が悪いので、少量であることと上死点近傍で噴射することが望ましいが、しかしながら、排気温度上昇の目的のために使用する場合については、リタード(遅角)と多量に噴射することが望ましいという特徴がある。前述のような構成にすることで、相反するこれらの内容を両立させることができるようになる。
図14の構成については、マフラー17の後端部に円板25を設け、さらにこの円板25には、図14(b)に示すように、中心部には小径穴25aを設け、外側に向かうほど大径穴25bを設ける構成とする。これにより、排気ガスは矢印26のように、外側の大径穴25bから出て来る量が多くなるので、内ケース20と外ケース21との間に入り込む排気ガスの量が多くなる。また、内ケース20と外ケース21の間に入り込んだ排気ガスは、壁27で堰き止める構成としている。これにより、酸化触媒(DOC)18とDPF19の機能低下を防止できるようになる。
トラクターやコンバイン等の農作業機を始め一般車両にも利用可能である。
蓄圧式燃料噴射装置の全体構成図 制御モードによるエンジン回転数と出力トルクの関係を示す線図 冷却水温と燃料噴射量との関係を示す図 冷却水温と必要グロー時間の関係を示す図 不足グロー時間と始動時燃料増加量の関係を示す図 フローチャート図 冷却水温と予熱時間の関係を示す図 キースイッチをグロー開始の関係を示す図 クランキング速度と燃料噴射量の関係を示す図 後処理装置の断面図 後処理装置の断面図 後処理装置の断面図 後処理装置の断面図 (a)後処理装置の断面図 (b)マフラー後部の円板背面図 ポスト噴射と遅角の関係を示す図
符号の説明
1 コモンレール
5 シリンダ
6 燃料噴射ノズル
12 水温センサ
13 エンジン回転数センサ
14 燃料噴射量センサ
100 エンジンコントロールユニット(ECU)

Claims (2)

  1. 燃料を蓄圧するコモンレール(1)と、該コモンレール(1)から供給される燃料をエンジンのシリンダ(5)内に噴射する燃料噴射ノズル(6)と、エンジンの冷却水温を検出する水温センサ(12)と、エンジン回転数を検出するエンジン回転数センサ(13)と、シリンダ(5)内への燃料噴射量を検出する燃料噴射量センサ(14)を備えたエンジンにおいて、エンジン始動後のエンジン回転数が低回転数であって燃料噴射量が冷却水温度に対する適正な値から外れている場合には、燃料の噴射タイミングを進角させるエンジンコントロールユニット(100)を設けたことを特徴とするエンジン。
  2. 前記エンジンコントロールユニット(100)は、前記エンジン回転数センサ(13)でエンジン始動前のクランキング速度を検出し、このクランキング速度に応じて燃料噴射量を変化させるように構成したことを特徴とする請求項1に記載のエンジン。
JP2007119981A 2007-04-27 2007-04-27 エンジン Pending JP2008274859A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007119981A JP2008274859A (ja) 2007-04-27 2007-04-27 エンジン

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007119981A JP2008274859A (ja) 2007-04-27 2007-04-27 エンジン

Publications (1)

Publication Number Publication Date
JP2008274859A true JP2008274859A (ja) 2008-11-13

Family

ID=40053121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007119981A Pending JP2008274859A (ja) 2007-04-27 2007-04-27 エンジン

Country Status (1)

Country Link
JP (1) JP2008274859A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2459018A (en) * 2008-04-10 2009-10-14 Denso Corp Common-Rail Pressure Control on Engine Start up.
JP2010229990A (ja) * 2009-03-30 2010-10-14 Yanmar Co Ltd コンバイン
JP2011144723A (ja) * 2010-01-13 2011-07-28 Aisan Industry Co Ltd 蒸発燃料処理装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2459018A (en) * 2008-04-10 2009-10-14 Denso Corp Common-Rail Pressure Control on Engine Start up.
GB2459018B (en) * 2008-04-10 2012-09-19 Denso Corp Common-rail pressure control apparatus and fuel injection system having the same
JP2010229990A (ja) * 2009-03-30 2010-10-14 Yanmar Co Ltd コンバイン
JP2011144723A (ja) * 2010-01-13 2011-07-28 Aisan Industry Co Ltd 蒸発燃料処理装置

Similar Documents

Publication Publication Date Title
CN105840275B (zh) 用于维持dfso的方法和系统
JP2007247610A (ja) 燃料噴射制御装置
JP2013181406A (ja) 作業車両
JP5176834B2 (ja) 作業車両
JP2008082292A (ja) 排気浄化装置
JP2010156208A (ja) ディーゼルエンジン
JP2015086813A (ja) トラクタ
JP2008274859A (ja) エンジン
JP2014009639A (ja) 作業車両
JP2012233430A (ja) 作業車両
JP2014214719A (ja) トラクタ
JP2015143509A (ja) トラクタ
JP2016142157A (ja) トラクタ
JP2014088860A (ja) 作業車両
JP2015027836A (ja) トラクターの排気ガス処理装置
JP2017057804A (ja) エンジンの起動時制御方法
JP2013096294A (ja) トラクタ
JP2018141454A (ja) トラクタ
JP2017155617A (ja) トラクタ
JP2010255535A (ja) ディーゼルエンジン
JP2016033354A (ja) トラクタ
JP2006152875A (ja) 内燃機関の触媒昇温システム
JP2023096960A (ja) 作業車両
JP2023096961A (ja) 作業車両
JP2014148914A (ja) 作業車両