JP2008272832A - Method and apparatus for cutting brittle material by laser - Google Patents

Method and apparatus for cutting brittle material by laser Download PDF

Info

Publication number
JP2008272832A
JP2008272832A JP2008116263A JP2008116263A JP2008272832A JP 2008272832 A JP2008272832 A JP 2008272832A JP 2008116263 A JP2008116263 A JP 2008116263A JP 2008116263 A JP2008116263 A JP 2008116263A JP 2008272832 A JP2008272832 A JP 2008272832A
Authority
JP
Japan
Prior art keywords
laser
laser beam
beam path
point
brittle material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008116263A
Other languages
Japanese (ja)
Inventor
Goro Morita
悟郎 森田
Fumio Matsuhashi
文雄 松橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBELE COM KK
Bbelecom Kk
Original Assignee
BBELE COM KK
Bbelecom Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBELE COM KK, Bbelecom Kk filed Critical BBELE COM KK
Priority to JP2008116263A priority Critical patent/JP2008272832A/en
Publication of JP2008272832A publication Critical patent/JP2008272832A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cutting method and apparatus that make a cross section a smooth cut end like a mirror when a brittle planar material to be cut (glass, ceramics, crystal, crystalline silicon, etc.) is cut by laser. <P>SOLUTION: 1. A cutting position of a brittle material is irradiated with laser and heated to generate a compressive stress and then, with a refrigerant immediately sprayed thereon, to generate a tensile stress. The stress generated by the action of these two stresses cuts the brittle material at the cutting position. 2. The laser used therein is configured such that an invisible laser beam path from a laser oscillator to a target laser irradiation point is superimposed with a separately oscillated visible light beam and disguised in a visible laser beam path. Into the laser beam path, a shutter having a laser cut-off function and a reflection mirror for selecting directions are inserted, and three lens devices that adjust items such as intensity of a laser emitted to the laser irradiation point are also inserted. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、脆性材料(ガラス、セラミック、水晶、結晶系シリコン等。)の切断方法及び切断装置に関し、詳しくは、ガスレーザのうち特にCO2レーザ(以下、レーザとする。)を用いて、脆性材料基板の切断面をより緻密な平滑面とすることを目的とした脆性材料の切断方法及び切断装置に関する。  The present invention relates to a cutting method and a cutting apparatus for a brittle material (glass, ceramic, crystal, crystalline silicon, etc.), and more particularly, using a CO2 laser (hereinafter referred to as a laser) among gas lasers, and using the brittle material. The present invention relates to a brittle material cutting method and a cutting apparatus for the purpose of making a cut surface of a substrate a finer smooth surface.

従来、脆性材料基板を切断する方法としては、脆性材料基板の表面に切断予定線を罫書き、この始点にダイヤモンド等の超硬度の刃物等を使用して機械的に瑕疵点を設ける。脆性材料基板を切断線の走査方向に走査させながら、レーザを照射して加熱、更に冷媒による冷却を行って切断予定線上に亀裂を入れて切断する方法が普遍的に実施されているが、次のような欠点があった。
▲1▼カレットと言われる微細な切り屑が発生する。
▲2▼切断面に機械的な応力が残留しているため、外力や熱サイクルに弱く割れやすい。
▲3▼加熱による溶融または冷却による破損が起き易い。
特に上記▲1▼のような欠点のために切断工程後、脆性材料基板の端面を研磨する仕上げ作業を行ったり、この研磨により発生するカレットを洗浄する洗浄工程や、更に端面の面取り工程等が必要となって多大の労力並びに時間が費やされ、一連の切断工程に附随する工程が多種類必要になるなど非能率であった。
Conventionally, as a method of cutting a brittle material substrate, a cutting line is marked on the surface of the brittle material substrate, and a saddle point is mechanically provided at the starting point by using a superhard blade such as diamond. While a brittle material substrate is scanned in the scanning direction of the cutting line, a method of irradiating with a laser and heating, further cooling with a refrigerant to make a crack on the planned cutting line and cutting it is universally implemented. There was a fault like.
(1) Fine chips called cullet are generated.
(2) Since mechanical stress remains on the cut surface, it is susceptible to external forces and thermal cycles and is susceptible to cracking.
(3) Fracture due to melting or cooling due to heating is likely to occur.
In particular, due to the above-mentioned defects (1), after the cutting process, a finishing operation for polishing the end face of the brittle material substrate, a cleaning process for cleaning the cullet generated by this polishing, a chamfering process for the end face, etc. A great deal of labor and time is required and it is inefficient because many kinds of processes accompanying the series of cutting processes are required.

前述のカレットの発生を、防止或いは発生させないための技術が先願文献として開示されているが、その一例として(特開2002−60234)の技術を開示してみるに、脆性材料基板の切断予定線に沿って表裏に保護フィルムを貼着し、該保護フィルムとともに脆性材料基板を切断したとき発生するカレットの飛散を該保護フィルムが防止するに過ぎない技術内容であって、この実施例はカレット発生の防止と次元の異なった技術のものである。  A technique for preventing or preventing the occurrence of cullet has been disclosed as a prior application document. As an example, the technique disclosed in Japanese Patent Laid-Open No. 2002-60234 is disclosed. A protective film is attached to the front and back along the line, and the protective film only prevents the cullet from being scattered when the brittle material substrate is cut together with the protective film. It is a technology with different dimensions and prevention.

さらに、脆性材料基板の切断によって発生する欠陥を解消する手段として、該分野における背景技術はレーザを用いる切断方法の展開へと進展し、脆性材料基板の切断時のクラック深さを制御して切断面精度を向上させ、更に低いレーザ出力を期待することを特徴とする装置(特開2007−314414)。
また、透明及び半透明の脆性材料基板の切断にも使用される。例えば、一方向に移動するガラス板に対してレーザ光を照射して加熱し、その加熱部分の下流側(加熱部分が通過した跡)においてノズルを用いて冷媒を吹き付け急速冷却することでガラス板を切断するガラス切断装置。(特開2000−233936)。(特開2005−305462)。
Furthermore, as a means for eliminating defects caused by cutting a brittle material substrate, the background technology in this field has progressed to the development of a cutting method using a laser, and cutting by controlling the crack depth when cutting a brittle material substrate. An apparatus that improves surface accuracy and expects a lower laser output (Japanese Patent Laid-Open No. 2007-314414).
It is also used for cutting transparent and translucent brittle material substrates. For example, a glass plate moving in one direction is heated by irradiating it with laser light, and a nozzle is used on the downstream side of the heated portion (the trace where the heated portion has passed) to spray the refrigerant and rapidly cool the glass plate. Cutting glass cutting equipment. (JP 2000-233936 A). (Japanese Patent Laid-Open No. 2005-305462).

また、脆性材料基板の切断には、ダイヤモンド工具の刃先角度や力の加え方などに熟練度が必要とされるため特に脆いものについては、切断予定線を罫書き、赤外線レーザを用いて軟化点以下の温度にて表面を加熱し、該レーザ光を相対的に移動させてクラックを成生して切断する方法が開発されている。(特表平8−509947)。  In addition, cutting a brittle material substrate requires skill in applying the cutting edge angle and force of the diamond tool, so for particularly brittle ones, the cut line is marked and the softening point is determined using an infrared laser. A method has been developed in which the surface is heated at the following temperature, the laser light is relatively moved, cracks are generated and cut. (Special Table hei 8-50947).

前記にレーザを用いた脆性材料基板の切断方法及び切断装置を列挙したが、現在該分野において使用するレーザは、殆どのものが次の如き形態で脆性材料基板のレーザ照射点に照射し脆性材料基板の切断に供している。  Although the method and apparatus for cutting a brittle material substrate using a laser have been listed above, most of the lasers currently used in this field are irradiated to the laser irradiation point of the brittle material substrate in the following form. It is used for cutting substrates.

前段落(0006)のレーザを図2、図3にて説明すれば、レーザ発振器より照射されたレーザを脆性材料基板表面に一点のみ設けたレーザ照射点(図2の(イ))に照射すれば、照射熱量が過大となって脆性材料基板の表面が溶融する現象が生ずる。この現象を解消するためレーザを分光器(19)によって分光し、レーザ照射点への照射を複数カ所に分光し、図2の(ロ)に示すようなレーザ照射点列を発生させる。(図例では5個のレーザ照射点列。)以降、本発明では使用しないが本発明を理解するための一助として分光器(19)内部における機能を説明する。  2 and FIG. 3, the laser irradiated from the laser oscillator is irradiated to the laser irradiation point (FIG. 2 (A)) provided on the surface of the brittle material substrate. For example, the amount of irradiation heat becomes excessive, and the surface of the brittle material substrate melts. In order to eliminate this phenomenon, the laser is dispersed by the spectroscope (19), and the irradiation to the laser irradiation point is dispersed at a plurality of locations, thereby generating a laser irradiation point sequence as shown in FIG. (In the example shown in the figure, a sequence of five laser irradiation points.) Hereinafter, although not used in the present invention, functions inside the spectroscope (19) will be described as an aid for understanding the present invention.

図3にて分光器(19)の内部を示し、その構成と機能をみて前述のレーザ照射点(図3においてはc1.c2.c3.c4.c5)への照射量不均一、レーザ照射点のサイズ不統一が発生する原因を説明する。
レーザ(2)は分光器(19)の切り欠き部(22)から傾斜した入射角(α)をもって分光器(19)内部に射入する。レーザ(2)が最初に衝突するポイントは、塗布膜等で透過率を50%に設定した平板(20)の第一ポイント(a1)である。該ポイント(a1)に衝突したレーザ(2)の50%は透過直進してレーザ照射点列(23)のレーザ照射点(c1)を照射する。一方、第一ポイント(a1)にて反射したレーザ(2)の残50%のレーザ(2)は入射角と45°の角度をもった出射角で、平板(20)に平行に設けられた全反射板(21)の第一全反射点(d1)へ直進し全反射する。第一全反射点(d1)に到達したレーザ(2)は、第一ポイント(a1)にて約50%の照射量に減衰し、第一全反射点ポイント(d1)の入射角(α)に対称の出射角にて反射し、平板(20)の第二ポイント(a2)に直進する。この第二ポイント(a2)では、前出の第一ポイント(a1)における現象と同様に、レーザ(2)の透過量及び反射量がそれぞれ約50%の配分状態となり、透過するレーザ(2)は平板(20)を透過してレーザ照射点列(23)のレーザ照射点(c2)を照射する。反射する50%のレーザ(2)は全反射板(21)の第二全反射点(d2)へ直進し全反射して第三ポイント(a3)を照射する。以降、レーザ照射点(c5)に至るまで同様に透過及び反射の繰り返しとなって、図1の切断予定線(7)上及び図2の(ロ)に示すように、脆性材料基板(11)に、レーザ照射点(c1)からレーザ照射点(c5)まで5個のレーザ照射点の列ができる。しかし、脆性材料基板(11)に照射されるレーザ照射点(c1)からレーザ照射点(c5)までのレーザ個々は、上述の如き方法にて構成されるため、そのサイズ及び照射量が一定ではあり得ない。一定化への調整技術は困難であり、最適な切断技術は開発途上である。
The inside of the spectroscope (19) is shown in FIG. 3, and in view of its configuration and function, the amount of irradiation at the laser irradiation points (c1.c2.c3.c4.c5 in FIG. 3) is uneven, and the laser irradiation point. The reason for the inconsistency in size will be explained.
The laser (2) enters the spectroscope (19) with an incident angle (α) inclined from the notch (22) of the spectroscope (19). The point where the laser (2) collides first is the first point (a1) of the flat plate (20) whose transmittance is set to 50% with a coating film or the like. 50% of the laser (2) colliding with the point (a1) travels straight through and irradiates the laser irradiation point (c1) of the laser irradiation point sequence (23). On the other hand, the remaining 50% of the laser (2) reflected by the first point (a1) (2) was provided parallel to the flat plate (20) with an emission angle of 45 ° with respect to the incident angle. It goes straight to the first total reflection point (d1) of the total reflection plate (21) and is totally reflected. The laser (2) that has reached the first total reflection point (d1) is attenuated to a dose of about 50% at the first point (a1), and the incident angle (α) of the first total reflection point (d1). To the second point (a2) of the flat plate (20). At the second point (a2), similarly to the phenomenon at the first point (a1) described above, the transmission amount and the reflection amount of the laser (2) are approximately 50%, and the transmitted laser (2). Irradiates the laser irradiation point (c2) of the laser irradiation point sequence (23) through the flat plate (20). The reflected 50% of the laser (2) goes straight to the second total reflection point (d2) of the total reflection plate (21) and totally reflects to irradiate the third point (a3). Thereafter, transmission and reflection are similarly repeated until the laser irradiation point (c5), and the brittle material substrate (11) is formed on the planned cutting line (7) in FIG. 1 and (b) in FIG. In addition, five laser irradiation points are formed from the laser irradiation point (c1) to the laser irradiation point (c5). However, since each laser from the laser irradiation point (c1) to the laser irradiation point (c5) irradiated to the brittle material substrate (11) is configured by the method as described above, its size and irradiation amount are not constant. impossible. It is difficult to adjust to a constant level, and an optimal cutting technique is still under development.

発明が解決しょうとする課題Problems to be solved by the invention

背景技術にて列挙した従来技術においては、図2において(イ)として表示したような一点のみへのレーザ照射をすれば照射量が過大になり、対象脆性材料の表面溶解が生ずる。このため同図2における(ロ)表示のようにレーザを複数本に分光し照射すれば、レーザの全照射量を複数のレーザ照射点(C1,C2,C3,C4,C5)に分光することによってレーザ照射点一カ所あたりの照射量が過大にならず表面溶解が生ずる不都合を解消するばかりでなく切断精度が向上する。このため現時点では5点照射とする切断方法及び切断装置が開発され、現在主流として多用されている。しかし、各レーザ照射点への照射量の適正化及びレーザ照射点のサイズの均一化が制御できず、調整に困難を来しているのが現状である。脆性材料を切断して高緻密な切断面を精製する結果を得るには、切断方法が従来の方法(溶融または蒸発)及びこの方法による装置を使用している限り不可能である。本発明は、このような欠陥を取り除き脆性材料の切断面を、高精度で緻密な平滑面に仕上げるための切断方法及び切断装置を提供するものである。  In the prior art enumerated in the background art, if only one point as indicated by (a) in FIG. 2 is irradiated with laser, the irradiation amount becomes excessive, and the surface brittle material is dissolved. For this reason, if the laser is split and irradiated as shown in (b) of FIG. 2, the total laser irradiation amount is split into a plurality of laser irradiation points (C1, C2, C3, C4, C5). As a result, the amount of irradiation per laser irradiation point does not become excessive and the problem of surface dissolution is eliminated, and the cutting accuracy is improved. For this reason, a cutting method and a cutting apparatus for irradiating five points have been developed at present, and are widely used at present. However, the present situation is that adjustment of the irradiation amount to each laser irradiation point and uniformity of the size of the laser irradiation point cannot be controlled, and adjustment is difficult. In order to obtain a result of cutting a brittle material and purifying a highly dense cut surface, it is not possible as long as the cutting method uses a conventional method (melting or evaporation) and an apparatus according to this method. The present invention provides a cutting method and a cutting apparatus for removing such defects and finishing a cut surface of a brittle material into a precise and dense smooth surface.

課題を解決するための手段Means for solving the problem

図1により解決手段の実施例を説明すれば、
切断しようとする脆性材料基板(11)の表面に罫書いた切断予定線(7)の始点(24)に超硬度の刃物等で瑕疵点を設けこれをレーザ照射点(6)としてレーザを照射し、溶融点以下の範囲内で加熱して圧縮応力を発生させた直後に、冷却剤ノズル(8)より冷却剤を吹き付けて冷却すれば圧縮応力と逆の引っ張り応力が発生する。この2つの応力の作用によってレーザ照射点(6)内部にクラックが生成され、切断予定線(7)上にレーザ照射を行いながら脆性材料基板(11)を走査方向に走査させれば脆性材料基板(11)を切断予定線(7)にて切断することができる。
An embodiment of the solving means will be described with reference to FIG.
A saddle point is provided with a super-hard cutter at the starting point (24) of the planned cutting line (7) marked on the surface of the brittle material substrate (11) to be cut, and this is used as a laser irradiation point (6) for laser irradiation. Then, immediately after heating within the range below the melting point to generate a compressive stress, if a coolant is sprayed from the coolant nozzle (8) to cool it, a tensile stress opposite to the compressive stress is generated. Cracks are generated inside the laser irradiation point (6) by the action of these two stresses, and if the brittle material substrate (11) is scanned in the scanning direction while performing laser irradiation on the planned cutting line (7), the brittle material substrate. (11) can be cut along the planned cutting line (7).

本発明の、課題を解決するためには更に(その2の解決手段として)、図1にて示すようにレーザ(2)の照射光路(レーザ(2)がレーザ発振器(1)より発信されて、脆性材料基板(11)に設けられたレーザ照射点(6)に到達するまでの直進する路を指し、レーザ光路(2)とする。)の中間地点部分に、レーザ(2)の特性を利用、応用或いはこれらを組み合わせることによって、レーザ(2)の照射諸元を変化させる目的で、以下に述べるような部品の挿入、或いは構成を行う。  In order to solve the problem of the present invention (as the second solution), the irradiation optical path of the laser (2) (laser (2) is transmitted from the laser oscillator (1) as shown in FIG. The laser beam (2) at the middle point of the laser beam path (2) is defined as a straight line that reaches the laser irradiation point (6) provided on the brittle material substrate (11). For the purpose of changing the irradiation parameters of the laser (2) by using, applying or combining them, the following parts are inserted or configured.

図1においてレーザ発振器(1)より発振されたレーザ(2)は、不可視レーザであるためレーザ光路(2)に諸装置を介入し操作することが困難である。このためレーザ光路(2)にレーザ結合器(3)を挿入し、別に発生させた可視レーザ(10)を該レーザ結合器(3)にて重畳させ、本来ならば不可視レーザ光路(2)であるものを可視レーザ光路(2)に擬装させる。  In FIG. 1, since the laser (2) oscillated from the laser oscillator (1) is an invisible laser, it is difficult to intervene and operate various devices in the laser optical path (2). For this purpose, a laser coupler (3) is inserted into the laser beam path (2), and a separately generated visible laser (10) is superposed by the laser coupler (3). Something is disguised as a visible laser beam path (2).

シャッタ(4)の目的は、可視レーザ光路(2)の目標であるレーザ照射点(6)をレーザ(2)が照射する(ON)、照射しない(OFF)のスイッチ操作を行うものである。レーザ照射点(6)上での照射が不必要な場合はシャッタ(4)にて遮断し、不透過状態(Off状態)となった可視レーザ光路(2)は、パワーメータ(12)へ導入され、保留状態となる。可視レーザ(2)に照射されるパワーメータ(12)のセンサ部は加熱され不具合が発生する。これを解消するため、水冷式のパワーメータ(12)を採用し加熱を制御する。レーザ照射点(6)において照射が必要であれば可視レーザ光路(2)を目的のレーザ照射点(6)に送るため接続(ON状態)とする。  The purpose of the shutter (4) is to perform a switch operation that the laser (2) irradiates (ON) or does not irradiate (OFF) the laser irradiation point (6) that is the target of the visible laser beam path (2). When irradiation on the laser irradiation point (6) is unnecessary, the visible laser beam path (2) that is blocked by the shutter (4) and is in the non-transmission state (Off state) is introduced into the power meter (12). Is put on hold. The sensor part of the power meter (12) irradiated to the visible laser (2) is heated and a malfunction occurs. In order to solve this problem, a water-cooled power meter (12) is employed to control heating. If irradiation is necessary at the laser irradiation point (6), the visible laser beam path (2) is connected (ON state) to send it to the target laser irradiation point (6).

可視レーザ光路(2)は狭隘な装置内の空間を選んで照射方向を定めなければならないが、狭隘な装置内の空間を選んで可視レーザ光路(2)の方向設定は限られた空間状況の中では条件的に困難である。このため広範囲な角度に方向変換が可能な反射鏡であるコーナーミラー(5)を設置し、可視レーザ光路(2)の反射方向が支障のない空間を選べるよう設定する。  For the visible laser beam path (2), the irradiation direction must be determined by selecting a space in a narrow apparatus, but the direction setting of the visible laser beam path (2) is limited in a limited space situation. It is difficult conditionally. For this reason, a corner mirror (5), which is a reflecting mirror capable of changing the direction to a wide range of angles, is installed so that the reflection direction of the visible laser light path (2) can be selected without any problem.

コーナーミラー(5)表面にて反射するレーザ光路(2)の反射方向は、コーナーミラー(5)の方向変換操作によって広範囲な角度に反射することが可能である。図1の例示においてはレーザ光路(2)の照射方向が脆性材料基板(11)上のレーザ照射点(6)を指向している。図1はレーザ発振器(1)より発振されたレーザ(2)が、コーナミラー(5)によって反射され、脆性材料基板(11)上のレーザ照射点(6)を照射して切断工程を実施する一連のレーザ(2)光路を概念的に図示したものである。  The reflection direction of the laser beam path (2) reflected from the surface of the corner mirror (5) can be reflected at a wide range of angles by the direction changing operation of the corner mirror (5). In the illustration of FIG. 1, the irradiation direction of the laser optical path (2) is directed to the laser irradiation point (6) on the brittle material substrate (11). In FIG. 1, a laser (2) oscillated from a laser oscillator (1) is reflected by a corner mirror (5), and a laser irradiation point (6) on a brittle material substrate (11) is irradiated to perform a cutting process. A series of laser (2) optical paths are conceptually illustrated.

詳しくは、レーザ発振器(1)より照射されたレーザ(2)は、波長10.6μmのビームであって非可視光レーザである。従ってレーザ(2)の照射点を始めその光路をも感知することができない。この欠陥を解消するため、レーザ光源(9)より可視光レーザ(10)を放射し、レーザ結合器(3)を介してレーザ光路(2)に重畳させる。以降レーザ(2)は可視光レーザとして、レーザ(2)の操作及び加工に効果的な形状となる。レーザ結合器(3)はこのように非可視レーザであるレーザ(2)を可視レーザと見なすことができるように、擬製する機能を持つものである。  Specifically, the laser (2) irradiated from the laser oscillator (1) is a beam with a wavelength of 10.6 μm and is an invisible laser. Accordingly, the optical path including the irradiation point of the laser (2) cannot be sensed. In order to eliminate this defect, a visible light laser (10) is emitted from the laser light source (9) and is superimposed on the laser light path (2) via the laser coupler (3). Thereafter, the laser (2) is a visible light laser and has an effective shape for the operation and processing of the laser (2). The laser coupler (3) has a function of imitation so that the laser (2), which is an invisible laser, can be regarded as a visible laser.

本発明は、前述した分光器(19)を使用しないため、図2の(ロ)のようなレーザ照射点(6)を複数個に分光して照射する方式は採らない。同図のように各照射点を照射する照射レーザの大きさ不揃いや、照射量の過大または過小などの現象は、脆性材料基板(11)の切断面に平滑性が期待できず従来の切断技術と同様のレベルとなるからである。  Since the present invention does not use the spectroscope (19) described above, a method of splitting and irradiating a plurality of laser irradiation points (6) as shown in FIG. As shown in the figure, the unevenness of the size of the irradiation laser for irradiating each irradiation point and the phenomenon that the irradiation amount is too large or too small cannot expect smoothness on the cut surface of the brittle material substrate (11). It is because it becomes the same level as.

本発明の照射法としては、図2の(ハ)のような形態のレーザをレーザ照射点(6)に照射しなければならない。このようなレーザ形態とするためには、コーナミラー(5)を反射した後レーザ照射点(6)にもっとも近いレーザ光路(2)の中間地点位置に、レーザ照射点(6)を照射するレーザ形態の諸元を最良の条件とするため、レーザ拡大縮小レンズ(13)、長さ調整レンズ(14)、幅調整レンズ(15)の3個のレンズ装置を設ける。  In the irradiation method of the present invention, the laser irradiation point (6) must be irradiated with a laser having a form as shown in FIG. In order to obtain such a laser form, a laser that irradiates the laser irradiation point (6) at the intermediate position of the laser optical path (2) that is closest to the laser irradiation point (6) after reflecting the corner mirror (5). In order to make the specifications of the form the best condition, three lens devices of a laser magnification / reduction lens (13), a length adjustment lens (14), and a width adjustment lens (15) are provided.

上述の3個のレンズ装置を操作して、照射するレーザ(2)の成形、照射量、幅、長さ等の諸元を調整すれば、従来の切断方法である溶融、蒸発、外力による切断面と異なった内部応力を利用した切断面が形成される。  By operating the above-mentioned three lens devices and adjusting the specifications of the laser (2) to be irradiated, such as shaping, irradiation amount, width, length, etc., conventional cutting methods such as melting, evaporation, and cutting by external force A cut surface using an internal stress different from the surface is formed.

発明の効果The invention's effect

従来のダイヤモンド加工における切断工程及びレーザの1点照射切断並びに分光照射切断と比較すれば、本発明による脆性材料基板の切断面は緻密な平滑面として完璧に近い仕上げ状態となるため、切断面のカレット処理工程、面取り工程、洗浄工程、乾燥工程等が不必要となり、少なくとも4工程は不用となって、装置部品の省略化及び全切断工程時間の短縮を図ることが可能となる。  Compared with the conventional cutting process in diamond processing, laser one-point irradiation cutting, and spectral irradiation cutting, the cutting surface of the brittle material substrate according to the present invention is a nearly smooth finished surface as a dense smooth surface. A cullet treatment process, a chamfering process, a cleaning process, a drying process, and the like are unnecessary, and at least four processes are unnecessary, so that the apparatus parts can be omitted and the entire cutting process time can be shortened.

従来から実施されている一般的なレーザによる脆性材料基板の切断手法では、レーザによる加熱で脆性材料基板表面が溶融し、これを冷却すれば溶融部分が劣化し脆性材料基板としての素質が損なわれる。本発明はレーザの形成方法が従来のものと異なり、脆性材料基板内部の圧縮応力、引っ張り応力によるストレスによってクラックが自然発生して切断されるため脆性材料基板は劣化しない。  In a conventional method for cutting a brittle material substrate using a laser, the surface of the brittle material substrate is melted by heating with the laser, and if this is cooled, the melted portion deteriorates and the quality of the brittle material substrate is impaired. . Unlike the conventional laser forming method of the present invention, the brittle material substrate is not deteriorated because cracks are naturally generated and cut by stress caused by compressive stress and tensile stress inside the brittle material substrate.

脆性材料基板の切断面に機械的な応力が残留しないため、外力や熱サイクルに対して強く容易に破損しない。  Since mechanical stress does not remain on the cut surface of the brittle material substrate, it is not easily damaged due to external force or thermal cycle.

レーザ拡大縮小レンズ、長さ調整レンズ、幅調整レンズは手動による可動構造のため、レーザ照射中であっても調整操作が可能である。  Since the laser enlargement / reduction lens, length adjustment lens, and width adjustment lens are manually movable structures, adjustment operations can be performed even during laser irradiation.

発明を実施する他の実施例Other embodiments embodying the invention

前述までの実施例においては、切断対象の脆性材料は基板を対象としてその実施例を述べてきたが、切断対象は脆性材料基板ばかりでなく水晶等の鋳塊をワイヤ及び本発明のレーザにて切断・研磨等の工程を重ねて極小の部材を生成し、水晶発振器又は水晶振動子の基材とする実施例もある。In the above-described embodiments, the brittle material to be cut has been described with respect to the substrate. However, the cut target is not only the brittle material substrate but also the ingot such as crystal with the wire and the laser of the present invention. There is also an embodiment in which processes such as cutting and polishing are repeated to produce a very small member, which is used as a base material for a crystal oscillator or a crystal resonator.

切断方法及び切断装置の概念図      Conceptual diagram of cutting method and cutting device レーザ照射点の形態説明図      Laser irradiation point configuration illustration 分光器の原理図      Spectrometer principle diagram

符号の説明Explanation of symbols

1 レーザ発振器
2 レーザ及びレーザ光路
3 レーザ結合器
4 シャッタ
5 コーナミラー
6 レーザ照射点
7 切断予定線
8 冷却剤ノズル
9 可視レーザ光源
10 可視光レーザ
11 脆性材料基板
12 パワーメータ
13 拡大縮小調整レンズ
14 長さ調整レンズ
15 幅調整レンズ
16 ダイヤモンドチップ
17 クラック
18 テーブル
19 分光器
20 平板
21 全反射板
22 切り欠き部
23 レーザ照射点列
24 切断予定線始点
25 切断予定線終点
(イ) 一点レーザ照射点
(ロ) 五点レーザ照射点
(ハ) 本発明のレーザ照射点
a1 レーザが平板にて反射し透過する第一ポイント
a2 レーザが平板にて反射し透過する第二ポイント
a3 レーザが平板にて反射し透過する第二ポイント
a4 レーザが平板にて反射し透過する第四ポイント
a5 レーザが平板にて反射し透過する第五ポイント
b1 第一ポイントにて反射するレーザ
b2 第二ポイントにて反射するレーザ
b3 第三ポイントにて反射するレーザ
b4 第四ポイントにて反射するレーザ
c1 レーザ照射点
c2 レーザ照射点
c3 レーザ照射点
c4 レーザ照射点
c5 レーザ照射点
d1 第一反射点
d2 第二反射点
d3 第三反射点
d4 第四反射点
DESCRIPTION OF SYMBOLS 1 Laser oscillator 2 Laser and laser optical path 3 Laser coupler 4 Shutter 5 Corner mirror 6 Laser irradiation point 7 Planned cutting line 8 Coolant nozzle 9 Visible laser light source 10 Visible laser 11 Brittle material substrate 12 Power meter 13 Enlargement / reduction adjustment lens 14 Length adjustment lens 15 Width adjustment lens 16 Diamond chip 17 Crack 18 Table 19 Spectrometer 20 Flat plate 21 Total reflection plate 22 Notch portion 23 Laser irradiation point row 24 Planned cutting line start point 25 Cutting planned line end point (b) Single point laser irradiation point (B) Five-point laser irradiation point (c) Laser irradiation point of the present invention a1 First point a2 where the laser is reflected and transmitted by the flat plate a2 Second point a3 where the laser is reflected and transmitted by the flat plate Laser is reflected by the flat plate The second point a4 where the laser is transmitted and the fourth point a5 where the laser is reflected and transmitted by the flat plate The fifth point b1 reflected by the flat plate and transmitted The laser b2 reflected at the first point b2 The laser reflected at the second point b3 The laser reflected at the third point b4 The laser c1 reflected at the fourth point Laser Irradiation point c2 Laser irradiation point c3 Laser irradiation point c4 Laser irradiation point c5 Laser irradiation point d1 First reflection point d2 Second reflection point d3 Third reflection point d4 Fourth reflection point

Claims (3)

切断しようとする脆性材料基板(11)の表面に罫書いた切断予定線(7)の始点(24)に超硬度の刃物等で瑕疵点を設け、これをレーザ照射点(6)としてレーザを照射し、溶融点以下の範囲内で加熱して圧縮応力を発生させた直後に、冷却剤ノズル(8)より冷却剤を吹き付けて冷却すれば引っ張り応力が発生して、レーザ照射点(6)内部にクラックが生成する。切断予定線(7)上にレーザ照射を行いながら脆性材料基板(11)を走査方向に走査させ脆性材料基板(11)を切断予定線(7)にて切断することを特徴とするレーザによる脆性材料の切断方法及び切断装置。  At the starting point (24) of the planned cutting line (7) marked on the surface of the brittle material substrate (11) to be cut, a saddle point is provided with an ultra-hard knife or the like, and this is used as the laser irradiation point (6) for the laser. Immediately after irradiating and heating within the range below the melting point to generate a compressive stress, if a coolant is sprayed from the coolant nozzle (8) and cooled, a tensile stress is generated and the laser irradiated point (6) Cracks are generated inside. The brittle material substrate (11) is scanned in the scanning direction while irradiating laser on the planned cutting line (7), and the brittle material substrate (11) is cut along the planned cutting line (7). Material cutting method and apparatus. レーザ発振器(1)より発振したレーザを、脆性材料基板(11)上のレーザ照射点(6)に到達するまでの光束をレーザ光路(2)と呼び、レーザの諸元を修正することに効果的なレーザ光路(2)の中間地点複数箇所に、次ぎに列記する装置を挿入或いは干渉させる。
1.前記レーザ光路(2)の先頭部分にレーザ結合器(3)を挿入しCO2レーザである不可視レーザ光路(2)へ、別に発振した可視レーザ(10)を重畳させて可視レーザ光路(2)(以下、レーザ光路(2)とする。)に擬装する。
2.レーザ光路(2)が目標のレーザ照射点(6)を照射する、しないのスイッチ機能を持ったシャッタ(4)を、レーザ光路(2)の中間部分に干渉し、レーザ光路(2)がシャッタ(4)を透過してレーザ照射点(6)を照射する状態をON、シャッタ(4)にて遮断しレーザ照射点(6)を照射しない状態をOFFとし、OFFの状態のレーザ光路(2)は照射方向を変更してパワーメータ(12)へ誘導し保持する。
3.レーザ光路(2)が正確にレーザ照射点(6)を照射する方向を指向するため、広範囲に反射方向を変更可能な反射鏡を、挿入地点位置の状況からコーナミラー(5)と称してレーザ光路(2)の適宜な中間部分に挿入する。
4.レーザ照射点(6)を照射するレーザの諸元を設定調整するため、レンズ装置3個をレーザ照射点(6)に接近する位置に設置し、設定調整を行った後のレーザ光路(2)には他所からのいかなる干渉、妨害をも寄せ付けない防護をする。
前記1.2.3.4の諸装置及びレーザを用いてレーザ光路(2)を構成することを特徴とする請求項1記載の脆性材料の切断方法及び切断装置。
A laser beam oscillated from the laser oscillator (1) is referred to as a laser beam path (2) until reaching a laser irradiation point (6) on the brittle material substrate (11), and it is effective in correcting the specifications of the laser. Next, a device listed next is inserted or interfered with at a plurality of intermediate points of the laser beam path (2).
1. A laser coupler (3) is inserted at the head of the laser beam path (2), and a visible laser beam (10) separately oscillated is superimposed on the invisible laser beam path (2) which is a CO2 laser, so that the visible laser beam path (2) ( Hereinafter, it is disguised as a laser beam path (2).
2. The laser beam path (2) irradiates the target laser irradiation point (6), the shutter (4) having a switching function interferes with the intermediate portion of the laser beam path (2), and the laser beam path (2) is the shutter. The state in which the laser irradiation point (6) is transmitted through (4) is turned on, the state in which the laser irradiation point (6) is cut off by the shutter (4) and not irradiated is turned off, and the laser beam path (2 in the off state) ) Changes the irradiation direction and guides it to the power meter (12) to hold it.
3. Since the laser beam path (2) is accurately directed in the direction of irradiating the laser irradiation point (6), a reflecting mirror capable of changing the reflection direction over a wide range is referred to as a corner mirror (5) from the situation of the insertion point position. Insert into the appropriate middle part of the optical path (2).
4). In order to set and adjust the specifications of the laser that irradiates the laser irradiation point (6), three lens devices are installed at positions close to the laser irradiation point (6), and the laser beam path (2) after the setting adjustment is performed. Protects against any interference or interference from other places.
The brittle material cutting method and cutting device according to claim 1, wherein the laser beam path (2) is configured by using the devices and lasers of 1.2.3.4.
レーザ光路(2)に設置してレーザの諸元を変更調整するレンズ装置3個は、
1.照射するレーザの拡大縮小を拡大縮小調整レンズ(13)にて操作し、
2.照射するレーザの長さ調整を長さ調整レンズ(14)にて操作し、
3.照射するレーザの幅調整を幅調整レンズ(15)にて操作する。
上記3個のレンズ装置は、レーザ光路(2)照射中においても操作可能な構造とし、該レーザの照射形状(大きさ、幅、長さ)、照射量、照射温度等の諸元の調整に際してもレーザ光路(2)を遮断することなく、図2における(ハ)形状のレーザを成形することを特徴とする請求項1記載の脆性材料の切断方法及び切断装置。
Three lens devices installed in the laser beam path (2) to change and adjust the specifications of the laser,
1. The enlargement / reduction of the laser to be irradiated is operated by the enlargement / reduction adjustment lens (13),
2. The length adjustment lens (14) is used to adjust the length of the irradiated laser,
3. The width adjustment of the laser to be irradiated is operated by the width adjustment lens (15).
The above three lens devices have a structure that can be operated even during irradiation of the laser beam path (2), and when adjusting specifications such as irradiation shape (size, width, length), irradiation amount, irradiation temperature, etc. of the laser. 2. The brittle material cutting method and cutting apparatus according to claim 1, wherein the laser beam having the shape (c) in FIG. 2 is formed without blocking the laser beam path (2).
JP2008116263A 2007-04-03 2008-03-31 Method and apparatus for cutting brittle material by laser Withdrawn JP2008272832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008116263A JP2008272832A (en) 2007-04-03 2008-03-31 Method and apparatus for cutting brittle material by laser

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007121258 2007-04-03
JP2008116263A JP2008272832A (en) 2007-04-03 2008-03-31 Method and apparatus for cutting brittle material by laser

Publications (1)

Publication Number Publication Date
JP2008272832A true JP2008272832A (en) 2008-11-13

Family

ID=40051464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008116263A Withdrawn JP2008272832A (en) 2007-04-03 2008-03-31 Method and apparatus for cutting brittle material by laser

Country Status (1)

Country Link
JP (1) JP2008272832A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101048362B1 (en) * 2009-02-04 2011-07-11 (주)미래컴퍼니 Laser processing apparatus and method
KR101094319B1 (en) * 2009-06-23 2011-12-19 (주)미래컴퍼니 Laser beam machining apparatus and machining method
KR101198088B1 (en) 2010-12-10 2012-11-09 에이앤이테크놀로지(주) Cutting device of glass plate
JP2013112532A (en) * 2011-11-25 2013-06-10 Mitsuboshi Diamond Industrial Co Ltd Scribing method of brittle material substrate
KR101443110B1 (en) 2013-06-11 2014-09-29 두레 주식회사 Glass plate cutting method and cutting device utilizing a laser beam
CN106392303A (en) * 2016-11-08 2017-02-15 西安交通大学 Machining method for cooling metal surface laser microtextures
CN113714656A (en) * 2020-05-12 2021-11-30 大族激光科技产业集团股份有限公司 Battery piece cutting device and method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101048362B1 (en) * 2009-02-04 2011-07-11 (주)미래컴퍼니 Laser processing apparatus and method
KR101094319B1 (en) * 2009-06-23 2011-12-19 (주)미래컴퍼니 Laser beam machining apparatus and machining method
KR101198088B1 (en) 2010-12-10 2012-11-09 에이앤이테크놀로지(주) Cutting device of glass plate
JP2013112532A (en) * 2011-11-25 2013-06-10 Mitsuboshi Diamond Industrial Co Ltd Scribing method of brittle material substrate
KR101440481B1 (en) * 2011-11-25 2014-09-18 미쓰보시 다이야몬도 고교 가부시키가이샤 Method for scribing brittle material substrate and device for scribing brittle material substrate
TWI488703B (en) * 2011-11-25 2015-06-21 Mitsuboshi Diamond Ind Co Ltd Scribing method and scribing apparatus for substrate of brittle material
KR101443110B1 (en) 2013-06-11 2014-09-29 두레 주식회사 Glass plate cutting method and cutting device utilizing a laser beam
CN106392303A (en) * 2016-11-08 2017-02-15 西安交通大学 Machining method for cooling metal surface laser microtextures
CN113714656A (en) * 2020-05-12 2021-11-30 大族激光科技产业集团股份有限公司 Battery piece cutting device and method

Similar Documents

Publication Publication Date Title
KR102230762B1 (en) Method of and device for the laser-based machining of sheet-like substrates using a laser beam focal line
KR101753184B1 (en) System for performing laser filamentation within transparent materials
EP2465634B1 (en) Laser machining device and laser machining method
JP2008272832A (en) Method and apparatus for cutting brittle material by laser
KR101891341B1 (en) Laminated-substrate processing method and processing apparatus
TWI323203B (en)
JP3722731B2 (en) Laser processing method
JP4050534B2 (en) Laser processing method
WO2017044646A1 (en) Laser processing apparatus, methods of laser-processing workpieces and related arrangements
CN114728371A (en) Method for laser machining a workpiece, machining tool and laser machining device
JP5050099B2 (en) Processing method of brittle material substrate
US20090045179A1 (en) Method and system for cutting solid materials using short pulsed laser
JP2009066851A (en) Method of chamfering brittle substrate
JP2011246349A (en) Control of cracking depth in laser scoring
WO2013039012A1 (en) Laser machining method and laser machining device
JP4615231B2 (en) Scribing apparatus and scribing method using the apparatus
KR100636852B1 (en) Scribing method and cutting method for glass using mode-locked uv-laser
KR20040020605A (en) A Laser Apparatus for Cutting through a Flat Workpiece and Cutting Method of Brittle Material, especially Glass Using Same
TWI653113B (en) Mirror cutting method without processing sectional ends of a mirror
KR100787236B1 (en) Processing apparatus and mehtod of using ultrashort pulse laser
US11420894B2 (en) Brittle object cutting apparatus and cutting method thereof
JP2010037140A (en) Method and device for cutting glass plate
KR100843411B1 (en) Laser beam machining system and method for cutting of substrate using the same
EP3085487B1 (en) Brittle object cutting apparatus and cutting method thereof
US20160311060A1 (en) Brittle object cutting apparatus and cutting method thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090716

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110607