JP2008272779A - Surface treated solder ball and surface treatment method of solder ball - Google Patents

Surface treated solder ball and surface treatment method of solder ball Download PDF

Info

Publication number
JP2008272779A
JP2008272779A JP2007117400A JP2007117400A JP2008272779A JP 2008272779 A JP2008272779 A JP 2008272779A JP 2007117400 A JP2007117400 A JP 2007117400A JP 2007117400 A JP2007117400 A JP 2007117400A JP 2008272779 A JP2008272779 A JP 2008272779A
Authority
JP
Japan
Prior art keywords
solder ball
acid
organic acid
carboxyl group
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007117400A
Other languages
Japanese (ja)
Other versions
JP4895328B2 (en
Inventor
Yukihiro Yamamoto
幸弘 山本
Masamoto Tanaka
将元 田中
Katsuichi Kimura
勝一 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Materials Co Ltd filed Critical Nippon Steel Materials Co Ltd
Priority to JP2007117400A priority Critical patent/JP4895328B2/en
Publication of JP2008272779A publication Critical patent/JP2008272779A/en
Application granted granted Critical
Publication of JP4895328B2 publication Critical patent/JP4895328B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface treated solder ball that causes no blackening phenomenon and that excels in storage stability as well as wettability, and also to provide a manufacturing method of the same. <P>SOLUTION: This is a solder ball the surface of which is covered with two or more kinds of organic acid having 10-25 carbon number. In the surface treated solder ball, the carboxyl group of the organic acid is coordinated in chelate with the solder ball surface, or infrared absorption peak caused by the carboxyl group of the organic acid is 1,650-1,700 cm<SP>-1</SP>. The surface treatment method of the ball includes: a process in which two or more kinds of organic acid having 10-25 carbon number is dissolved in an organic solvent; a process in which the solder balls are dispersed in the solution; a process in which the organic solvent is removed from the solder ball; and a process in which the solder ball with the organic solvent removed is thermally treated at 90-180°C and in which the carboxyl group of the organic acid is coordinated in chelate with the solder ball surface. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電子機器基板の表面実装でエレクトロニクス部品の接続に用いる、はんだボールに関するものであり、特に電子部品のバンプ形成に使用する、はんだボール及びはんだボールの表面処理方法に関する。   The present invention relates to a solder ball used for connecting an electronic component in surface mounting of an electronic device substrate, and more particularly to a solder ball and a solder ball surface treatment method used for forming a bump of the electronic component.

近年、電子機器の軽薄短小化が進み、電子機器に使用される電子部品も小型化、薄型化が要求されるようになっている。これに対応する為、半導体等を基板実装する電子部品には、はんだボールを使用したバンプ形成技術が用いられるようになってきた。BGA(Ball Grid Array)やCSP(Chip Size Package)と呼ばれる形態の高機能パッケージがある。これらで使用される、はんだボールは、ボール径が小さくなるとともに、高い寸法精度や安定した接合性が要求されている。安定した接合性に関しては、はんだボールの径が小さくなるほど、はんだボールの表面状態の影響が大きくなり、表面酸化等の表面状態の管理が重要となってくる。   In recent years, electronic devices are becoming lighter, thinner, and smaller, and electronic components used in electronic devices are required to be smaller and thinner. In order to cope with this, a bump forming technique using a solder ball has been used for an electronic component on which a semiconductor or the like is mounted on a substrate. There are high-function packages called BGA (Ball Grid Array) and CSP (Chip Size Package). The solder balls used in these are required to have a small ball diameter and high dimensional accuracy and stable bondability. Regarding stable bondability, the smaller the diameter of the solder ball, the greater the influence of the surface state of the solder ball, and the management of the surface state such as surface oxidation becomes important.

一方、環境問題が益々重要視される中で、はんだボールも鉛(Pb)を含まない、Pbフリーはんだが開発されてきた。例えば、Sn−Ag系、Sn−Ag−Cu系、Sn−Bi系、Sn−Zn系などである。しかしながら、Sn−Zn系に代表されるように、はんだボールにした場合、従来のはんだボールに比べて表面が酸化しやすく、はんだボール溶融時の濡れ性が十分ではないという問題点がある。そのため、Pbフリーはんだボールに適用できる、優れた表面処理方法の開発が望まれている。   On the other hand, Pb-free solder, in which solder balls do not contain lead (Pb), has been developed while environmental issues are increasingly regarded as important. For example, Sn-Ag system, Sn-Ag-Cu system, Sn-Bi system, Sn-Zn system, and the like. However, as represented by Sn—Zn, when solder balls are used, the surface is more likely to oxidize than conventional solder balls, and there is a problem that the wettability at the time of melting the solder balls is not sufficient. Therefore, it is desired to develop an excellent surface treatment method that can be applied to Pb-free solder balls.

はんだボールの表面処理としては、例えば、特許文献1では、はんだボールの黒化を防止するために、はんだボールの表面に滑剤を均一に被覆することが開示されている。はんだボールは、輸送中の振動でボール同士が衝突したりボールが容器壁と衝突したりして、はんだボールが黒化するという現象がある。はんだボールの黒化現象は、衝突や摩擦によって、はんだボールの表面が酸化するためであり、はんだボール溶融時の濡れ性の低下を招くものである。また、半導体実装工程では、はんだボール配置の良否を光検知するのに、黒化したはんだボールでは光反射率が悪く、検知ミスが生じるという問題もある。特許文献1では、前記問題を解決すべく、はんだボールの表面の潤滑性を上げるという目的で、脂肪酸アマイド系のステアリン酸アマイド(ステアリン酸アミド)等の滑剤を被覆している。滑剤で被覆してはんだ表面の潤滑性を上げると、衝突や摩擦による局部熱発生を低減でき、スズの酸化が防止できる、すなわち、黒化現象を抑制できるものと推測される。   As a surface treatment of the solder ball, for example, Patent Document 1 discloses that the surface of the solder ball is uniformly coated with a lubricant in order to prevent the solder ball from being blackened. The solder balls have a phenomenon that the balls collide with each other due to vibration during transportation or the balls collide with the container wall, resulting in blackening of the solder balls. The blackening phenomenon of the solder ball is because the surface of the solder ball is oxidized by collision or friction, and this causes a decrease in wettability when the solder ball is melted. Further, in the semiconductor mounting process, although the quality of the solder balls is detected with light, the blackened solder balls have a problem that the light reflectance is poor and a detection error occurs. In Patent Document 1, a lubricant such as fatty acid amide-based stearic acid amide (stearic acid amide) is coated for the purpose of improving the lubricity of the surface of the solder ball in order to solve the above-mentioned problem. If the lubricity of the solder surface is increased by coating with a lubricant, it is presumed that local heat generation due to collision and friction can be reduced, and oxidation of tin can be prevented, that is, the blackening phenomenon can be suppressed.

また、特許文献2では、はんだボール表面に、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸バリウム等の金属石鹸分子膜を吸着させて、微接着防止や濡れ性の改善を図ることが開示されている。はんだボールの直径が400μm以下になってくると、はんだボール同士の弱い接着(微接着)が問題となってくる。特許文献1の処理では黒化を低減できるが、前記微接着に対して効果はなく、むしろ、助長する場合がある。特許文献2の発明者らは、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸バリウム等の金属石鹸は、Na等の塩に比べて極性基部分が弱くなるために無極性有機酸がはんだボール表面に存在し、極性の強い水分をはじくために、水分吸着を起因とする微接着が発生し難くなると説明している。   Patent Document 2 discloses that a metal soap molecular film such as calcium stearate, magnesium stearate, and barium stearate is adsorbed on the surface of a solder ball to prevent fine adhesion and improve wettability. When the diameter of the solder balls becomes 400 μm or less, weak adhesion (fine adhesion) between the solder balls becomes a problem. Although the blackening can be reduced by the process of Patent Document 1, there is no effect on the fine adhesion, but it may be promoted. Inventors of Patent Document 2 show that a non-polar organic acid is present on the surface of a solder ball because a metal group such as calcium stearate, magnesium stearate, and barium stearate has a weak polar group compared to a salt such as Na. In order to repel moisture having a strong polarity, it is explained that fine adhesion caused by moisture adsorption is less likely to occur.

同様に、特許文献3では、はんだボール表面に、ラウリン酸、ミリスチン酸、パルミチン酸等の脂肪酸の有機酸塩を付着することが開示されている。特許文献3でも、はんだボールの表面に、ラウリン酸、ミリスチン酸、パルミチン酸等の脂肪酸の有機酸塩を有機皮膜として設けることが開示されている。前記有機酸塩をはんだボールの表面に施すことによって、黒化を抑制するとともに、はんだボールの凝集を抑制できるとしている。前記有機酸塩の中でも、フタル酸銅、クエン酸銅、ラウリン酸銅、ミリスチン酸銅、バルミチン酸銅、スレアリン酸銅などの有機酸銅塩が好適であることが記載されている。   Similarly, Patent Document 3 discloses that an organic acid salt of a fatty acid such as lauric acid, myristic acid, or palmitic acid is attached to the surface of the solder ball. Patent Document 3 also discloses that an organic acid salt of a fatty acid such as lauric acid, myristic acid, and palmitic acid is provided on the surface of the solder ball as an organic film. By applying the organic acid salt to the surface of the solder balls, blackening can be suppressed and aggregation of the solder balls can be suppressed. Among the organic acid salts, it is described that organic acid copper salts such as copper phthalate, copper citrate, copper laurate, copper myristic acid, copper valmitate, copper threaric acid are suitable.

また、フラックスとともにソルダーペーストを構成するはんだ粉末においても、はんだ粉末の表面に有機酸塩を付着させることが、特許文献4に開示されている。特に、Sn−Zn系はんだにおいては、濡れ性が十分でないために、前記有機酸塩を付着させることによって濡れ性を確保するとしている。有機酸塩としては、ラウリン酸塩、ミリスチン酸塩、パリミチン酸塩、ステアリン酸塩等の塩が挙げられている。
特開2000−288771号公報 特開2006−9112号公報 特開2005−254246号公報 特開2000−317682号公報
Further, Patent Document 4 discloses that an organic acid salt is attached to the surface of the solder powder even in the solder powder constituting the solder paste together with the flux. In particular, Sn—Zn-based solder has insufficient wettability, so that wettability is secured by attaching the organic acid salt. Examples of the organic acid salt include salts such as laurate, myristate, parimitinate and stearate.
Japanese Patent Laid-Open No. 2000-287771 JP 2006-9112 A JP 2005-254246 A JP 2000-317682 A

上述のように、はんだボールの表面を有機酸塩で被覆することによって、黒化現象や濡れ性の低下を抑制できるが、有機酸塩としてアミン塩や金属塩を使用すると、次のような問題が生ずる。   As described above, by covering the surface of the solder ball with an organic acid salt, the blackening phenomenon and the decrease in wettability can be suppressed. However, if an amine salt or a metal salt is used as the organic acid salt, the following problems occur: Will occur.

ステアリン酸アマイドのようなアミン塩では、はんだボールが溶融する際の温度で、表面に被覆されたステアリン酸アマイドが分解する際に、腐食性のアンモニアガスが生じ、実装部品にダメージを与えることになる。また、特許文献2でも指摘しているように、ステアリン酸アマイドでは、はんだボール同士が固着して凝集する傾向にあるという問題もある。   With amine salts such as stearic acid amide, corrosive ammonia gas is generated when the stearic acid amide coated on the surface decomposes at the temperature at which the solder ball melts, causing damage to the mounted components. Become. Further, as pointed out in Patent Document 2, stearic acid amide also has a problem that solder balls tend to adhere to each other and aggregate.

一方、有機酸塩が金属塩の場合は、はんだボールの溶融時に、有機酸部は分解するが金属イオンは異種金属の不純物としてはんだボール表面に残り、濡れ性の低下を招く。はんだボール合金の添加成分と同じ銅等の塩であっても、ボール表面の成分濃度が当初のはんだボール組成と異なってくるために、溶融時に濡れ性に不具合を来す。   On the other hand, when the organic acid salt is a metal salt, the organic acid portion is decomposed when the solder ball is melted, but the metal ions remain on the surface of the solder ball as foreign metal impurities, resulting in a decrease in wettability. Even with the same salt as copper and the like as the additive component of the solder ball alloy, the component concentration on the ball surface differs from the original solder ball composition, which causes a problem in wettability during melting.

本発明は、上記問題を解決するため、黒化現象が生じない保存安定性に優れ、濡れ性の良好な表面処理はんだボール及びその製造方法を提供することを目的とする。   In order to solve the above-described problems, an object of the present invention is to provide a surface-treated solder ball having excellent storage stability that does not cause a blackening phenomenon and good wettability, and a method for producing the same.

発明者らは、金属イオンを含まない、又はアミンをカウンターカチオンとしない有機酸そのものを、はんだボールの表面に被覆し、前記有機酸をはんだボール表面にキレート配位させることで、表面の酸化を抑制し、保存安定性に優れる特性が得られることを見いだした。すなわち、これは、単に有機酸をはんだボール表面に塗布するだけでは前記効果は生じないが、有機酸のカルボキシル基がキレート配位することによって達成できるものである。さらに、複数の有機酸を前記キレート配位させることにより、前記効果とともに、はんだボール溶融時に良好な濡れ性を示すことを見いだし、本発明を完成するに至った。   The inventors have coated the surface of a solder ball with an organic acid that does not contain a metal ion or does not use an amine as a counter cation, and chelates the surface of the solder ball with the organic acid to oxidize the surface. It has been found that a property that suppresses and has excellent storage stability can be obtained. That is, this is not achieved by simply applying an organic acid to the solder ball surface, but can be achieved by chelate coordination of the carboxyl group of the organic acid. Furthermore, it has been found that by combining a plurality of organic acids with the chelate, it exhibits good wettability when the solder balls are melted together with the above effects, and the present invention has been completed.

すなわち、本発明は、以下を要旨とするものである。
(1)炭素数が10〜25であってカルボキシル基を有する少なくとも2種類の有機酸を表面に被覆した、はんだボールであって、前記有機酸のカルボキシル基が前記はんだボールの表面とキレート配位していることを特徴とする表面処理はんだボール。
(2)前記有機酸のカルボキシル基に起因する赤外線吸収ピークが1650cm−1〜1700cm−1であることを特徴とする(1)記載の表面処理はんだボール。
(3)前記有機酸として、それぞれの融点の差が5℃〜45℃である少なくとも2種類の有機酸を含むことを特徴とする(1)又は(2)記載の表面処理はんだボール。
(4)前記有機酸として、少なくともステアリン酸とパルミチン酸を含むことを特徴とする(1)又は(2)記載の表面処理はんだボール。
(5)前記はんだボールが、鉛フリーはんだボールであることを特徴とする(1)又は(2)記載の表面処理はんだボール。
(6)前記鉛フリーはんだボールが、スズ単体はんだボール、又は、銅、銀、ビスマス、亜鉛、アンチモン、インジウム、アルミニウム、マグネシウム、リン、ヒ素、ビスマス、若しくはゲルマニウムの中から選ばれる1種以上の金属を含むスズ合金はんだボールであることを特徴とする(5)記載の表面処理はんだボール。
(7)炭素数が10〜25であってカルボキシル基を有する少なくとも2種類の有機酸を有機溶媒に溶解する工程と、
前記溶液に、はんだボールを分散する工程と、
前記有機溶媒を、はんだボールから除去する工程と、
有機溶媒を除去した、はんだボールを60℃〜180℃で熱処理して前記有機酸のカルボキシル基を前記はんだボール表面にキレート配位させる工程と、
を含むことを特徴とするはんだボールの表面処理方法。
That is, the gist of the present invention is as follows.
(1) A solder ball whose surface is coated with at least two kinds of organic acids having 10 to 25 carbon atoms and having a carboxyl group, wherein the carboxyl group of the organic acid is chelate coordinated with the surface of the solder ball A surface-treated solder ball characterized by
(2) the feature that (1) surface treatment of solder balls according to that infrared absorption peak attributable to a carboxyl group of the organic acid is 1650cm -1 ~1700cm -1.
(3) The surface-treated solder ball according to (1) or (2), wherein the organic acid contains at least two kinds of organic acids having a difference in melting point between 5 ° C. and 45 ° C.
(4) The surface-treated solder ball according to (1) or (2), wherein the organic acid includes at least stearic acid and palmitic acid.
(5) The surface-treated solder ball according to (1) or (2), wherein the solder ball is a lead-free solder ball.
(6) The lead-free solder ball is at least one selected from a tin simple solder ball, or copper, silver, bismuth, zinc, antimony, indium, aluminum, magnesium, phosphorus, arsenic, bismuth, or germanium. The surface-treated solder ball according to (5), which is a tin alloy solder ball containing metal.
(7) a step of dissolving at least two kinds of organic acids having 10 to 25 carbon atoms and having a carboxyl group in an organic solvent;
Dispersing solder balls in the solution;
Removing the organic solvent from the solder balls;
Removing the organic solvent, heat treating the solder ball at 60 ° C. to 180 ° C., and chelating the carboxyl group of the organic acid to the surface of the solder ball;
A method for surface treatment of a solder ball, comprising:

本発明の表面処理はんだボールは、2種類以上の有機酸をはんだボール表面にキレート配位させているので、輸送時の振動や機械的摩耗条件下での黒化現象等の表面性状の経時変化を抑制でき、極めて優れた保存安定性を有するものとなり、さらに、はんだボール溶融時に非常に高い濡れ性を示す。その結果、本発明の表面はんだボールによれば、半導体実装における接続不良を低減でき、高い歩留とすることができる。   Since the surface-treated solder ball of the present invention has two or more kinds of organic acids chelated to the surface of the solder ball, the surface property changes with time such as vibration during transportation and blackening phenomenon under mechanical wear conditions. It has a very excellent storage stability, and also exhibits very high wettability when the solder ball is melted. As a result, according to the surface solder ball of the present invention, connection failure in semiconductor mounting can be reduced, and high yield can be achieved.

有機酸は、図1に示したように、2つのカルボキシル基が会合した状態にある。会合した状態で、はんだボールの表面に被覆しても、会合により分極が中和されているので、弱い水素結合程度でしか表面と相互作用を持たない。したがって、前記状態では、炭素数10〜25のカルボキシル基含有有機酸は、はんだボール表面でベタツキがあり、そのままでは使用できない。これは、炭素数10〜25のカルボキシル基含有有機酸のほとんどが、100℃以下の低い融点であることが要因の一つである。したがって、特許文献1〜4では、有機酸を使用せず、融点が高くなるアミンや金属イオンとの塩の形で使用している。   As shown in FIG. 1, the organic acid is in a state in which two carboxyl groups are associated. Even if the surface of the solder ball is coated in an associated state, the polarization is neutralized by the association, so that it has an interaction with the surface only with a weak hydrogen bond. Therefore, in the said state, a C10-C25 carboxyl group-containing organic acid has stickiness on the surface of a solder ball, and cannot be used as it is. This is due to the fact that most of the C10-25 carboxyl group-containing organic acids have a low melting point of 100 ° C. or lower. Therefore, in patent documents 1-4, it does not use an organic acid, but uses it in the form of a salt with an amine and metal ion whose melting point becomes high.

しかしながら、発明者らは、塩でない前記有機酸でも、有機酸の会合を解き、図2に示すような、はんだボール表面とキレート配位させることにより、ベタツキが無く、はんだボール表面を覆うことができることを見いだした。キレート配位した有機酸は、見かけ上融点も高くなっていることが、ベタツキが無くなった原因と考える。また、キレート化した有機酸は、はんだボールの表面への、酸素や水分等の酸化剤の供給を遮断するので、表面酸化を抑制でき、黒化現象も起こらず、優れた保存安定性を示す。   However, the inventors of the present invention can cover the surface of the solder ball without stickiness by releasing the association of the organic acid and chelating with the surface of the solder ball as shown in FIG. I found what I could do. The apparently high melting point of the chelate-coordinated organic acid is considered to be the cause of no stickiness. In addition, chelated organic acid blocks the supply of oxidants such as oxygen and moisture to the surface of the solder ball, so that surface oxidation can be suppressed, blackening phenomenon does not occur, and excellent storage stability is exhibited. .

また、前記キレート化した有機酸は、はんだボールが溶融する際に、固体から溶融、蒸発、分解という一連の過程を経る。その際、はんだボール表面で有機酸が溶融体及び蒸気となって酸素を遮断し、はんだボールの表面の酸化を押さえる働き(作用)をする。また、有機酸は、はんだボール表面の酸化物を還元する作用もある。前記2つの作用が、はんだボールの濡れ性を向上させるのである。   The chelated organic acid undergoes a series of processes of melting, evaporation, and decomposition from a solid when the solder ball is melted. At that time, the organic acid acts as a melt and vapor on the surface of the solder ball to block oxygen and suppress the oxidation of the surface of the solder ball. The organic acid also has an action of reducing oxides on the surface of the solder balls. The two actions improve the wettability of the solder ball.

しかしながら、有機酸が1種類であると、融点、沸点、分解温度等がそれぞれ1点であるので、前記作用の温度幅が小さく、実質的な濡れ性の向上にはつながらない。そこで、はんだボール表面に2種類以上存在させると、それぞれの融点、沸点、及び分解温度が異なるので、はんだボールの溶融過程で前記有機酸による酸素遮断作用や還元作用が幅広い温度範囲で起こり、濡れ性を著しく向上させることになる。   However, when there is only one kind of organic acid, the melting point, boiling point, decomposition temperature, etc. are each one point, so the temperature range of the action is small, and the substantial wettability is not improved. Therefore, if two or more types exist on the surface of the solder ball, the melting point, boiling point, and decomposition temperature of each differ, so that the oxygen blocking action and reducing action by the organic acid occur in a wide temperature range during the melting process of the solder ball, and wetting Will significantly improve the performance.

上記の効果を発揮する有機酸は、カルボキシル基の炭素を含めた炭素数が10〜25である。炭素数が10未満であると、はんだボールの表面にキレート配位しても見かけ上の融点が低すぎたり、有機基が小さすぎたりするので酸素や水分等の進入を十分遮断できず、表面酸化の抑制が不十分である。炭素数が25を越えると、沸点が高くなりすぎて、はんだ溶融時にも液体で残存したり、分解に時間がかかったりして、結局、濡れ性を阻害することになる。   The organic acid that exhibits the above effect has 10 to 25 carbon atoms including carbon of the carboxyl group. If the number of carbon atoms is less than 10, even if chelate coordination is performed on the surface of the solder ball, the apparent melting point is too low or the organic group is too small, so that the entry of oxygen, moisture, etc. cannot be sufficiently blocked, and the surface Insufficient suppression of oxidation. When the number of carbons exceeds 25, the boiling point becomes too high and remains as a liquid even when the solder is melted, or it takes a long time to decompose, eventually impairing the wettability.

有機酸を例示すると、カプリン酸(デカン酸、CH3(CH2)8-COOH)、ラウリン酸(ドデカン酸、CH3(CH2)10-COOH)、ミリスチン酸(テトラデカン酸、CH3(CH2)12-COOH)、ペンタデシル酸(ペンタデカン酸、CH3(CH2)13-COOH)、パルミチン酸(ヘキサデカン酸、CH3(CH2)14-COOH)、パルミトイル酸(9-ヘキサデセン酸、CH3(CH2)5CH=CH(CH2)7-COOH)、マルガリン酸(ヘプタデカン酸、CH3(CH2)15-COOH)、ステアリン酸(オクタデカン酸、CH3(CH2)16-COOH)、オレイン酸(cis-9-オクタデセン酸、CH3(CH2)7CH=CH(CH2)7-COOH)、バクセン酸(11-オクタデセン酸、CH3(CH2)5CH=CH(CH2)9-COOH)、リノール酸(cis,cis-9,12-オクタデカジエン酸、CH3(CH2)3(CH2CH=CH)2(CH2)-COOH)、(9,12,15)-リノレン酸(9,12,15-オクタデカントリエン酸、CH3(CH2CH=CH)3(CH2)7-COOH)ツベルクロステアリン酸(ノナデカン酸、CH3(CH2)17-COOH)、アラキジン酸(エイコサン酸、CH3(CH2)18-COOH)、アラキドン酸(5,8,11-イコサテトラエン酸、CH3(CH2)3(CH2CH=CH)4(CH2)3-COOH)、ベヘン酸(ドコサン酸、CH3(CH2)20-COOH)、リグノセリン酸(テトラコサン酸、CH3(CH2)22-COOH)、ネルボン酸(cis-15-テトラコサン酸、CH3(CH2)6CH2CH=CH(CH2)13-COOH)、ペンタコサン酸(CH3(CH2)23-COOH)等が挙げられる。 Examples of organic acids include capric acid (decanoic acid, CH 3 (CH 2 ) 8 -COOH), lauric acid (dodecanoic acid, CH 3 (CH 2 ) 10 -COOH), myristic acid (tetradecanoic acid, CH 3 (CH 2) 12 -COOH), pentadecyl acid (pentadecanoic acid, CH 3 (CH 2) 13 -COOH), palmitic acid (hexadecanoic acid, CH 3 (CH 2) 14 -COOH), palmitoyl acid (9-hexadecenoic acid, CH 3 (CH 2 ) 5 CH = CH (CH 2 ) 7 -COOH), margaric acid (heptadecanoic acid, CH 3 (CH 2 ) 15 -COOH), stearic acid (octadecanoic acid, CH 3 (CH 2 ) 16 -COOH ), Oleic acid (cis-9-octadecenoic acid, CH 3 (CH 2 ) 7 CH═CH (CH 2 ) 7 —COOH), vaccenic acid (11-octadecenoic acid, CH 3 (CH 2 ) 5 CH═CH ( CH 2 ) 9 -COOH), linoleic acid (cis, cis-9,12-octadecadienoic acid, CH 3 (CH 2 ) 3 (CH 2 CH═CH) 2 (CH 2 ) 7 -COOH), (9 , 12,15) -Linolenic acid (9,12,15-octadecanetrienoic acid, CH 3 (CH 2 CH═CH) 3 (CH 2 ) 7 -CO OH) tuberculostearic acid (nonadecanoic acid, CH 3 (CH 2 ) 17 -COOH), arachidic acid (eicosanoic acid, CH 3 (CH 2 ) 18 -COOH), arachidonic acid (5,8,11-icosatetraenoic acid, CH 3 (CH 2 ) 3 (CH 2 CH = CH) 4 (CH 2 ) 3 -COOH), behenic acid (docosanoic acid, CH 3 (CH 2 ) 20 -COOH), lignoceric acid (tetracosanoic acid, CH 3 ( CH 2) 22 -COOH), nervonic acid (cis-15-tetracosanoic acid, CH 3 (CH 2) 6 CH 2 CH = CH (CH 2) 13 -COOH), pentacosanoic acid (CH 3 (CH 2) 23 - COOH).

前記は、飽和脂肪族及び不飽和脂肪族のモノカルボン酸であるが、ジカルボン酸やトリカルボン酸のように複数のカルボキシル基を有する有機酸であってもよい。例えば、デカン二酸(1,8-オクタンジカルボン酸、HOOC(CH2)8COOH)、ドデカン二酸(1,10-デカンジカルボン酸、HOOC(CH2)10COOH)等である。また、脂肪族カルボン酸に限らず、芳香族カルボン酸等であってもよい。芳香族カルボン酸としては、例えば、ヒドロキシジフェニル酢酸((CH5)2C(OH)CO2H), 3-(3-ヒドロキシ-4-メトキシフェニル)プロパン酸(3,4-HO(CH3O)C6H3CH2CH2CO2H))等が挙げられる。 The above are saturated aliphatic and unsaturated aliphatic monocarboxylic acids, but may be organic acids having a plurality of carboxyl groups such as dicarboxylic acids and tricarboxylic acids. Examples thereof include decanedioic acid (1,8-octanedicarboxylic acid, HOOC (CH 2 ) 8 COOH), dodecanedioic acid (1,10-decanedicarboxylic acid, HOOC (CH 2 ) 10 COOH), and the like. Moreover, not only aliphatic carboxylic acid but aromatic carboxylic acid etc. may be sufficient. Examples of the aromatic carboxylic acid include hydroxydiphenylacetic acid ((CH 5 ) 2 C (OH) CO 2 H), 3- (3-hydroxy-4-methoxyphenyl) propanoic acid (3,4-HO (CH 3 O) C 6 H 3 CH 2 CH 2 CO 2 H)) and the like.

有機酸は、前述のように、2種類以上含むのであるが、有機酸の融点の差が5℃〜45℃であるものを少なくとも2種類含まれているのが好ましい。有機酸の融点の差が、5℃未満では、はんだ溶融時の濡れ性が不十分である場合がある。一方、有機酸の融点の差が、45℃を越えると、はんだ溶融時に残存する有機酸が存在して濡れ性が低下する場合があったり、低温で蒸発してしまい濡れ性向上効果を発揮できなかったりする場合がある。はんだ溶融時の前記効果の有効温度の連続性を保つために、前記有機酸の融点の差は、より好ましくは、5℃〜30℃である。   As described above, two or more kinds of organic acids are contained, but it is preferable that at least two kinds of organic acids having a difference in melting point of the organic acids of 5 ° C. to 45 ° C. are contained. If the difference between the melting points of the organic acids is less than 5 ° C., the wettability during solder melting may be insufficient. On the other hand, if the difference between the melting points of the organic acids exceeds 45 ° C., there may be a decrease in wettability due to the presence of the organic acid remaining at the time of melting the solder, or it will evaporate at a low temperature and exhibit the effect of improving wettability. There may be no. In order to maintain the continuity of the effective temperature of the effect at the time of melting the solder, the difference in melting point of the organic acid is more preferably 5 ° C to 30 ° C.

有機酸の種類は、前述のように2種類以上であればよいが、10種類を越えると経済的でない場合がある。前記有機酸の少なくとも2種類は、モル比で1:4〜4:1の範囲で含まれることがより好ましい。   As described above, the number of organic acids may be two or more, but if it exceeds ten, it may not be economical. It is more preferable that at least two kinds of the organic acids are included in a molar ratio of 1: 4 to 4: 1.

有機酸の中でも、脂肪族カルボン酸がより好適に使用できる。水分や酸素の遮断による保存安定性、及びリフロー時のはんだボール表面付近の酸素遮断作用や還元作用の点で、特に、炭素数が、15〜20の脂肪族カルボン酸が好ましい。更に好ましいのは、炭素数18のステアリン酸(融点70℃)と炭素数16のパルミチン酸(融点62℃)を含むことである。前記炭素数であると、直鎖アルキル基部分が屈曲して隣の有機酸のキレート配位を邪魔することなく、はんだボール表面に有機酸が高密でキレート配位できる。前記炭素数より少なくなると、はんだボール表面にキレート配位する有機酸の密度は高いが、表面酸化の抑制力が低くなる場合がある。   Among organic acids, aliphatic carboxylic acids can be used more suitably. Aliphatic carboxylic acids having 15 to 20 carbon atoms are particularly preferred from the viewpoints of storage stability by blocking moisture and oxygen, and oxygen blocking action and reducing action near the solder ball surface during reflow. More preferably, it contains stearic acid having 18 carbon atoms (melting point: 70 ° C.) and palmitic acid having 16 carbon atoms (melting point: 62 ° C.). When the number of carbon atoms is above, the organic acid can be highly chelate-coordinated on the surface of the solder ball without bending the linear alkyl group portion and interfering with the chelate coordination of the adjacent organic acid. If the number of carbon atoms is less than the above, the density of the organic acid chelate-coordinated to the surface of the solder ball is high, but the ability to suppress surface oxidation may be low.

特に、前記2つのステアリン酸とパルミチン酸を主として含むことにより、濡れ性がさらに向上する。すなわち、2つの有機酸の融点が60℃〜70℃であるので、リフローによるはんだボール溶融時により効果的に揮発、分解し、有機酸によるボール表面付近の酸素遮断作用や還元作用が大きくなって濡れ性に優れる。また、2つの有機酸の融点温度差が、前記濡れ性効果をリフローによるボール溶融温度を中心として温度幅を連続的に広くできるものである。   In particular, wettability is further improved by mainly containing the two stearic acids and palmitic acid. That is, since the melting points of the two organic acids are 60 ° C. to 70 ° C., they volatilize and decompose more effectively when the solder ball is melted by reflow, and the oxygen blocking action and the reducing action near the ball surface by the organic acid are increased. Excellent wettability. Further, the melting point temperature difference between the two organic acids can continuously widen the temperature range with the wettability effect centered on the ball melting temperature by reflow.

ステアリン酸:パルミチン酸のモル比は、1:4〜4:1の範囲が好ましい。前記範囲を越えると、有機酸の揮発、分解によるボール表面付近の酸素遮断作用や還元作用において、どちらか一方の有機酸による効果が大きくなり、前記作用が発揮できる温度幅が実質的に狭くなる場合がある。前記モル比は、より好ましくは、3:4〜4:3の範囲である。   The molar ratio of stearic acid: palmitic acid is preferably in the range of 1: 4 to 4: 1. When the above range is exceeded, the effect of either one of the organic acids in the oxygen blocking action or reduction action near the ball surface due to the volatilization and decomposition of the organic acid is increased, and the temperature range at which the action can be exerted is substantially narrowed. There is a case. The molar ratio is more preferably in the range of 3: 4 to 4: 3.

本発明では、前述のように、有機酸のカルボキシル基がはんだボール表面とキレート配位していることが必要である。すなわち、本発明のキレート配位とは、図2に示すように、カルボキシル基の2カ所が、はんだボール表面の金属、又は前記金属表面酸素若しくは前記金属表面水酸基と配位結合している。有機酸は、図1のように会合しているが、会合状態では、前述のように本発明の効果が得られない。   In the present invention, as described above, it is necessary that the carboxyl group of the organic acid is chelated with the surface of the solder ball. That is, in the chelate coordination of the present invention, as shown in FIG. 2, two positions of the carboxyl group are coordinated with the metal on the surface of the solder ball, or with the metal surface oxygen or the metal surface hydroxyl group. Although the organic acid is associated as shown in FIG. 1, the effect of the present invention cannot be obtained in the associated state as described above.

前記カルボキシル基のキレート配位は、赤外分光法やラマン分光法等の振動スペクトル法、核磁気共鳴法、紫外光電子分光法、又はX線光電子分光法等で確認できる。例えば、赤外分光法やラマン分光法では、カルボン酸のC=O伸縮振動に基づく吸収ピークの変化からカルボキシル基のキレート配位が確認できる。具体的には、会合したカルボン酸、すなわち、キレート配位していないカルボキシル基は、1710cm−1以上に吸収ピークを有するが、キレート配位すると後述のように低波数側にシフトする。また、核磁気共鳴法では、カルボキシル基のCのケミカルシフトの変化からカルボキシル基のキレート配位が確認できる。紫外光電子分光法やX線光電子分光法では、カルボキシル基のCやOの結合エネルギーの変化からキレート配位が確認できる。 The chelate coordination of the carboxyl group can be confirmed by vibrational spectral methods such as infrared spectroscopy and Raman spectroscopy, nuclear magnetic resonance, ultraviolet photoelectron spectroscopy, or X-ray photoelectron spectroscopy. For example, in infrared spectroscopy or Raman spectroscopy, the chelate coordination of the carboxyl group can be confirmed from the change in the absorption peak based on the C═O stretching vibration of the carboxylic acid. Specifically, an associated carboxylic acid, that is, a carboxyl group that is not chelate-coordinated has an absorption peak at 1710 cm −1 or more, but when chelate is coordinated, it shifts to the low wavenumber side as described later. In the nuclear magnetic resonance method, the chelate coordination of the carboxyl group can be confirmed from the change in the chemical shift of C of the carboxyl group. In ultraviolet photoelectron spectroscopy and X-ray photoelectron spectroscopy, chelate coordination can be confirmed from changes in the C and O binding energy of the carboxyl group.

本発明のはんだボール表面に被覆した有機酸のカルボキシル基に起因する赤外線吸収ピークが、1650cm−1〜1700cm−1の範囲にあるのが好ましい。会合したカルボン酸は、1714cm−1にカルボキシル基に起因する赤外線吸収ピークを有し、会合が解かれるとC−O結合の結合強度が大きくなるので、高波数側(高エネルギー側)である1760cm−1にピークがシフトする。一方、金属塩やアミン塩となると、C−O結合から前記カウンターカチオンが強く電子を吸引し、その結果C−O結合の結合強度が低下するので、1600cm−1付近まで低波数側(低エネルギー側)までシフトする。 Infrared absorption peak attributable to a carboxyl group of an organic acid coated on the solder ball surface of the present invention is preferably in the range of 1650cm -1 ~1700cm -1. The associated carboxylic acid has an infrared absorption peak due to the carboxyl group at 1714 cm −1 , and when the association is released, the bond strength of the C—O bond increases, so that the high wave number side (high energy side) is 1760 cm. The peak shifts to -1 . On the other hand, in the case of a metal salt or amine salt, the counter cation strongly attracts electrons from the C—O bond, and as a result, the bond strength of the C—O bond decreases, so the low wavenumber side (low energy) is reduced to around 1600 cm −1. Shift to the side).

単純には、次のようなことから理解できる。質量数mとm´を持つ原子によって構成される2原子分子の伸縮振動数νは、式(1)で表すことができる。Cは光の速度、fは力の定数(バネのHookeの定数に対応する結合強度)である。赤外線吸収帯の位置は、結合強度と結合している原子の質量にかかわっている。結合強度に着目すると、結合強度が強いほど、その振動の吸収波数(赤外線吸収ピーク)は高波数側であり、結合強度が弱いほど、その反対の低波数側になる。   Simply, it can be understood from the following. The stretching frequency ν of a diatomic molecule composed of atoms having mass numbers m and m ′ can be expressed by equation (1). C is the speed of light, and f is a force constant (coupling strength corresponding to the spring Hooke constant). The position of the infrared absorption band is related to the bond strength and the mass of the bonded atom. Focusing on the coupling strength, the stronger the coupling strength, the higher the absorption wave number of the vibration (infrared absorption peak), and the lower the coupling strength, the lower the wave number side.

本発明では、図2に示したようなはんだボール表面とカルボキシル基がキレート配位しているので、配位結合によりC−O結合から電子が吸引され、C−O結合の結合強度が下がり、前述のような1650cm−1〜1700cm−1に赤外線吸収ピークが入ってくる。したがって、前記の波数範囲にあることが、はんだボールの保存安定性と濡れ性の観点で好ましい。1650cm−1未満では、図3に示したような遊離の塩となってしまい、はんだボール表面へキレート配位されていないので付着力が弱くなるので、良好な保存安定性と濡れ性が得られなくなってくる。一方、1700cm−1を超えると、カルボキシル基は、会合状態のままであり、はんだボール表面へキレート配位されていないので、上述のようにベトツキが生じて好ましくない。 In the present invention, since the solder ball surface and the carboxyl group as shown in FIG. 2 are chelate-coordinated, electrons are attracted from the C—O bond by the coordination bond, and the bond strength of the C—O bond is lowered. infrared absorption peak at 1650cm -1 ~1700cm -1, such as described above is incoming. Therefore, it is preferable that it is in the above-mentioned wave number range from the viewpoint of storage stability and wettability of the solder ball. If it is less than 1650 cm −1 , the free salt as shown in FIG. 3 is formed, and since the chelate is not coordinated to the surface of the solder ball, the adhesion is weakened, so that good storage stability and wettability can be obtained. It will disappear. On the other hand, if it exceeds 1700 cm −1 , the carboxyl group remains in an associated state and is not chelate coordinated to the surface of the solder ball.

図4にステアリン酸とパルミチン酸を1:1で混合した際のカルボキシル基の上記典型的な吸収スペクトル例を示す。図4のaの吸収ピークは、図1のようなキレート配位していない会合状態のカルボキシル基のよるものであり、1710cm−1付近に存在する。図4のb吸収ピークは、図2のようなキレート配位しているカルボキシル基によるものであり、1660cm−1付近に存在する。図4のcの吸収ピークは、カルボキシル基がSnと金属塩を形成したものであり、1600cm−1付近に存在する。 FIG. 4 shows an example of the typical absorption spectrum of the carboxyl group when stearic acid and palmitic acid are mixed at 1: 1. The absorption peak of a in FIG. 4 is due to the carboxyl group in an associated state that is not chelate coordinated as shown in FIG. 1, and is present in the vicinity of 1710 cm −1 . The b absorption peak in FIG. 4 is due to the chelate coordinated carboxyl group as shown in FIG. 2, and is present in the vicinity of 1660 cm −1 . The absorption peak of c in FIG. 4 is that in which the carboxyl group forms Sn and a metal salt, and exists in the vicinity of 1600 cm −1 .

本発明で使用するはんだボールは、特に限定されないが、例えば、Sn−Pb系、Sn−Pb−Ag系等の鉛系はんだボール、Sn−Ag系、Sn−Ag−Cu系、Sn−Bi系、Sn−Zn系等の鉛フリー系はんだボールなどが挙げられる。特に、鉛フリー系はんだボールは、濡れ性向上の観点から、本発明の被覆がより好適に使用される。鉛フリーはんだボールが、スズ単体はんだボール、又は、銅、銀、ビスマス、亜鉛、アンチモン、インジウム、アルミニウム、マグネシウム、リン、ヒ素、ビスマス、若しくはゲルマニウムの中から選ばれる1種以上の金属を含むスズ合金はんだボールである場合、より好適に本発明の被覆が適用できる。   The solder balls used in the present invention are not particularly limited. For example, lead-based solder balls such as Sn—Pb, Sn—Pb—Ag, Sn—Ag, Sn—Ag—Cu, Sn—Bi Sn-Zn based lead-free solder balls and the like. In particular, for the lead-free solder balls, the coating of the present invention is more preferably used from the viewpoint of improving wettability. The lead-free solder balls are tin simple solder balls or tin containing one or more metals selected from copper, silver, bismuth, zinc, antimony, indium, aluminum, magnesium, phosphorus, arsenic, bismuth, or germanium. In the case of an alloy solder ball, the coating of the present invention can be more suitably applied.

前記はんだボールのサイズは、特に限定しないが、直径が10μm〜1000μmであることがより好ましい。   The size of the solder ball is not particularly limited, but the diameter is more preferably 10 μm to 1000 μm.

本発明において、有機酸をはんだボール表面にキレート配位させて被覆する方法は、特に限定しないが、例えば、有機酸を溶融してはんだボールに塗布する方法、有機酸を常圧或いは減圧下で気化してはんだボール表面に付着させる方法、有機酸を有機溶媒に溶解して前記溶液をはんだボールに塗布して乾燥させる方法等が挙げられる。これらの中で、有機酸を溶解した有機溶媒を塗布する方法が、より好ましい。   In the present invention, the method for coating the surface of the solder ball by chelating the organic acid is not particularly limited. For example, the method of melting the organic acid and applying it to the solder ball, the organic acid under normal pressure or reduced pressure. Examples include a method of vaporizing and adhering to the solder ball surface, a method of dissolving an organic acid in an organic solvent, applying the solution onto the solder ball, and drying. Among these, a method of applying an organic solvent in which an organic acid is dissolved is more preferable.

具体的には、炭素数が10〜25である有機酸の2種類以上を有機溶媒に溶解し、前記溶媒にはんだボールを分散する。前記分散溶媒を濾過、蒸発、又は遠心分離等で溶媒を除去し、溶媒を除去したはんだボールを60℃〜180℃で熱処理して前記有機酸のカルボキシル基をはんだボール表面にキレート配位させてはんだボールの表面処理を行う。   Specifically, two or more kinds of organic acids having 10 to 25 carbon atoms are dissolved in an organic solvent, and solder balls are dispersed in the solvent. The dispersion solvent is removed by filtration, evaporation, centrifugation, or the like, and the solder ball from which the solvent has been removed is heat-treated at 60 ° C. to 180 ° C. so that the carboxyl group of the organic acid is chelated to the surface of the solder ball. Perform solder ball surface treatment.

前記熱処理温度が、60℃未満では、カルボキシル基が会合を解いてキレート配位しないので、ベトツキが残る。一方、180℃を越えると、前記のようなベトツキはないが、はんだ表面から遊離したスズ等の構成金属イオンと図3に示した遊離塩を形成するので、はんだボール表面へキレート配位されず付着力が弱くなり、良好な保存安定性と濡れ性が得られない。前記熱処理温度は、より好ましくは90℃〜160℃で、更に好ましくは、100℃〜150℃である。   When the heat treatment temperature is less than 60 ° C., the carboxyl group disassociates and does not chelate, so that stickiness remains. On the other hand, when the temperature exceeds 180 ° C., there is no such stickiness as mentioned above, but since the constituent metal ions such as tin liberated from the solder surface and the free salt shown in FIG. 3 are formed, the chelate coordination is not performed on the solder ball surface. Adhesive strength becomes weak, and good storage stability and wettability cannot be obtained. The heat treatment temperature is more preferably 90 ° C to 160 ° C, and further preferably 100 ° C to 150 ° C.

本発明で使用する有機溶媒としては、使用する有機酸を溶解できるものであれば、特に限定されないが、例えば、メタノール、エタノール、プロパノール、ブタノール等のアルコール、アセトン、メチルエチルケトン、酢酸エチル、トルエン、キシレン等が挙げられる。使用する有機溶媒は、上記の単一溶媒または、いくつか混合したものでも良い。   The organic solvent used in the present invention is not particularly limited as long as it can dissolve the organic acid to be used. For example, alcohol such as methanol, ethanol, propanol, butanol, acetone, methyl ethyl ketone, ethyl acetate, toluene, xylene Etc. The organic solvent to be used may be the above-mentioned single solvent or a mixture of several solvents.

本発明における有機溶媒中の有機酸の濃度は、特に限定されないが、0.002g/l(溶媒)〜20g/l(溶媒)で調製するのが好ましい。0.002g/l未満では、付着量が少なく、十分な効果が得られない場合がある。一方、20g/lを越えると、付着量が多くなり、はんだボール表面にキレート配位されない有機酸が多量に付着してベトツキが残る場合がある。   Although the density | concentration of the organic acid in the organic solvent in this invention is not specifically limited, It is preferable to prepare by 0.002g / l (solvent)-20g / l (solvent). If it is less than 0.002 g / l, the amount of adhesion is small and sufficient effects may not be obtained. On the other hand, when the amount exceeds 20 g / l, the amount of adhesion increases, and a large amount of organic acid that is not chelate coordinated adheres to the surface of the solder ball, and stickiness may remain.

有機酸の付着量は、特に限定しないが、例えば、脂肪酸で、300μm径のはんだボールであれば、100gのボールに対して0.0001g〜0.01g程度が好ましい。0.0001g未満では、付着量が少なく、十分な効果が得られない場合がある。0.01gを越えると、付着量が多くなり、はんだボール表面にキレート配位されない有機酸が多量に付着してベトツキが残る場合がある。   The adhesion amount of the organic acid is not particularly limited. For example, if the solder ball is a fatty acid and has a diameter of 300 μm, it is preferably about 0.0001 g to 0.01 g for a 100 g ball. If it is less than 0.0001 g, the amount of adhesion is small and a sufficient effect may not be obtained. If the amount exceeds 0.01 g, the amount of adhesion increases, and a large amount of organic acid that is not chelate-coordinated to the surface of the solder ball may adhere and leave stickiness.

本発明について、以下の実施例に基づいてより具体的に説明する。   The present invention will be described more specifically based on the following examples.

以下に、本発明の表面処理を施した実施例と比較例、並びに何も表面処理をしていない比較例を示す。   Below, the Example and comparative example which performed the surface treatment of this invention, and the comparative example which does not surface-treat anything are shown.

直径300μmのはんだボールを1kg用意した。なお、ボールの材質は、Sn−3.0Ag−0.5Cuを使用した。   1 kg of solder balls having a diameter of 300 μm were prepared. In addition, Sn-3.0Ag-0.5Cu was used for the material of the ball.

つぎに、アセトン2リットルにステアリン酸とパルミチン酸とをそれぞれ0.2gずつ溶解した(モル比で1.1:1.0)。その溶解液に前記はんだボールを投入し、激しく撹拌した。その後、溶媒を濾過で取り除き、常温で乾燥させた。そして、乾燥物を取り出した。   Next, 0.2 g each of stearic acid and palmitic acid was dissolved in 2 liters of acetone (in a molar ratio of 1.1: 1.0). The solder balls were put into the solution and stirred vigorously. Thereafter, the solvent was removed by filtration and dried at room temperature. Then, the dried product was taken out.

一部のサンプルは、カルボキシル基がキレート配位していない比較例としてそのまま評価した(乾燥サンプル、表1)。他の一部のサンプルは、更に、140℃で20分間熱処理を行い、カルボキシル基がキレート配位した表面処理はんだボールを作製した(表2)。   Some samples were evaluated as they were as comparative examples in which the carboxyl group was not chelated (dry sample, Table 1). Some other samples were further heat-treated at 140 ° C. for 20 minutes to produce surface-treated solder balls in which carboxyl groups were chelated (Table 2).

更に、前記と同様の条件で、ステアリン酸スズとパルミチン酸スズの塩を使用して表面処理したはんだボールを作製した(表3)。   Furthermore, under the same conditions as described above, solder balls surface-treated using a salt of tin stearate and tin palmitate were prepared (Table 3).

前記3種類の表面処理はんだボールの表面を、ラマン分光法で分析し、前記有機酸のカルボキシル基のキレート配位を確認した。乾燥サンプルでは、有機酸のカルボキシル基はキレート配位しておらず、原料のステアリン酸やパルミチン酸の会合したカルボキシル基と同じであった。140℃の熱処理では、有機酸のカルボキシル基がキレート配位していることが確認できた。スズ塩を使用したサンプルでは、有機酸がSn4+イオンとの塩を形成し、カルボキシル基ははんだボール表面にキレート配位していないことが確認できた。 The surfaces of the three types of surface-treated solder balls were analyzed by Raman spectroscopy, and the chelate coordination of the carboxyl group of the organic acid was confirmed. In the dried sample, the carboxyl group of the organic acid was not chelate coordinated and was the same as the carboxyl group associated with the raw materials stearic acid and palmitic acid. In the heat treatment at 140 ° C., it was confirmed that the carboxyl group of the organic acid was chelated. In the sample using a tin salt, it was confirmed that the organic acid formed a salt with Sn 4+ ions, and the carboxyl group was not chelated on the solder ball surface.

更に、前記表面処理したはんだボールを、15mm角で130μm径の銅電極3025個のついたプリント基板にフラックス無しで搭載し、250℃で40秒間、大気中でリフローした。そして、前記はんだボールを搭載した電極基板について、ボールの脱落数、ボール高さ、及びシェア強度でボールの特性の評価を行った。   Further, the surface-treated solder balls were mounted on a printed circuit board with 3025 copper electrodes having a diameter of 15 mm and a diameter of 130 μm without flux, and reflowed in the atmosphere at 250 ° C. for 40 seconds. And about the electrode board | substrate which mounted the said solder ball, the characteristic of the ball | bowl was evaluated by the number of drop | omission of a ball | bowl, ball height, and shear strength.

ボールの脱落数は、リフローして洗浄した後の脱落数とした。シェア強度の測定は、デージ社製ボールシェア強度測定器で行った。ボール高さとシェア強度は、20点の平均値で評価した。リフロー後に電極とボールとの濡れ性が良い場合は、より電極上にボールが濡れ広がるため、ボールの脱落数が小さく、ボールの基板からの高さが低くなり(理想的には233μm)、シェア試験を行うと濡れ性が良いほどシェア強度が大きくなるということになる。   The number of balls dropped out was the number of balls dropped after reflowing and washing. The shear strength was measured with a ball shear strength measuring instrument manufactured by Dage. The ball height and the shear strength were evaluated by an average value of 20 points. If the wettability between the electrode and the ball is good after reflow, the ball spreads further on the electrode, so the number of balls falling off is small and the height of the ball from the substrate is low (ideally 233 μm). When the test is performed, the better the wettability, the greater the shear strength.

ボールの脱落とシェア試験については、リフロー後ただちに測定した。さらに、1日後、7日後、及び1ヶ月後での同評価も行った。   Ball dropout and shear tests were measured immediately after reflow. Further, the same evaluation was performed after 1 day, 7 days, and 1 month later.

黒化については、ボール数gを小瓶に入れ、5時間振り混ぜた際に黒化するかどうかで評価した。   About blackening, it evaluated by whether the number g of balls was put into a small bottle and it blackened when shaken for 5 hours.

表面処理はんだボールの3種類、並びに未処理はんだボールの評価結果を、それぞれ、表1、表2、表3、並びに表4に示す。   Table 1, Table 2, Table 3, and Table 4 show the evaluation results of the three types of surface-treated solder balls and the untreated solder balls, respectively.

前記有機酸のカルボキシル基がはんだボール表面にキレート配位したもの(表2)は、1ヶ月間脱落数ゼロであった。黒化も見られなかった。すなわち、優れた濡れ性と保存安定性を示した。はんだボールの合金種を変えても、同様の結果を得ている。有機酸のカルボキシル基がはんだボール表面にキレート配位していない表1の試料は、塗布した有機酸にベトツキがあるとともに、濡れ性に劣り、黒化も観察され保存安定性が低かった。はんだボールの金属イオンと有機酸が塩を形成して遊離した表3の試料は、濡れ性に劣り、黒化も観察され保存安定性が低かった。さらに、表4に示すように、未処理のはんだボールでは、7日目に全て脱落した。また、黒化も作製直後から観察された。   Those in which the carboxyl group of the organic acid was coordinated with the chelate on the surface of the solder ball (Table 2) had no dropout for one month. There was no blackening. That is, it showed excellent wettability and storage stability. Similar results were obtained even when the alloy type of the solder balls was changed. The sample of Table 1 in which the carboxyl group of the organic acid was not chelate coordinated to the surface of the solder ball had stickiness in the applied organic acid, poor wettability, blackening was observed, and storage stability was low. The samples in Table 3 in which the metal ions of the solder balls and the organic acid were liberated by forming a salt were inferior in wettability, blackening was observed, and the storage stability was low. Furthermore, as shown in Table 4, all untreated solder balls dropped off on the seventh day. Blackening was also observed immediately after fabrication.

炭素数、融点の異なる有機酸を使用して、実施例1と同様にしてはんだボールの表面処理を行った。表5に示した熱処理温度等の条件は、実施例1と異なる。表面処理したはんだボールは、赤外分光法の拡散反射法で、カルボキシル基の赤外線(IR)吸収ピークを測定した。前記表面処理したはんだボールの特性は、実施例1と同様の方法で7日後に行った。評価結果を表6に示す。   The surface treatment of the solder balls was performed in the same manner as in Example 1 using organic acids having different carbon numbers and melting points. Conditions such as the heat treatment temperature shown in Table 5 are different from those in Example 1. The surface-treated solder balls were measured for infrared (IR) absorption peaks of carboxyl groups by the diffuse reflection method of infrared spectroscopy. The properties of the surface-treated solder balls were measured after 7 days in the same manner as in Example 1. The evaluation results are shown in Table 6.

炭素数が10〜25の有機酸を2種類使用し、カルボキシル基の赤外線吸収ピークが、1650cm−1〜1700cm−1にある試料は、良好な保存安定性と濡れ性を示した(No.2-3〜2-5、2-8〜2-13)。中でも、No.2-4、2-9、2-10は、より良好な性能を示した。カルボキシル基の赤外線吸収ピークが、1650cm−1〜1700cm−1の範囲外にある試料(No.2-1、2-2、2-6)は、十分な保存安定性と濡れ性が得られなかった。1種類の有機酸を使用した場合(No.2-7)は、十分な濡れ性が得られなかった。更に、酸素数が10〜25の有機酸が2種類含まない場合(No.2-14,15)も、十分な保存安定性或いは十分な濡れ性が得られなかった。 Carbon atoms and two using organic acids 10-25, infrared absorption peak of a carboxyl group, a sample in a 1650cm -1 ~1700cm -1 showed good storage stability and wettability (No.2 -3 to 2-5, 2-8 to 2-13). Among them, Nos. 2-4, 2-9, and 2-10 showed better performance. Infrared absorption peak of a carboxyl group, the sample (No.2-1,2-2,2-6) that is outside the range of 1650cm -1 ~1700cm -1 is not sufficient storage stability and wettability is obtained It was. When one kind of organic acid was used (No. 2-7), sufficient wettability could not be obtained. Further, even when two kinds of organic acids having 10 to 25 oxygen numbers were not included (No. 2-14, 15), sufficient storage stability or sufficient wettability could not be obtained.

有機酸のカルボキル基が会合している構造(パルミチン酸の例)を示す模式図である。It is a schematic diagram which shows the structure (example of palmitic acid) with which the carboxylic group of organic acid is associating. はんだボール表面に有機酸のカルボキシル基がキレート配位した構造(パルミチン酸の例)を示す模式図である。It is a schematic diagram which shows the structure (example of palmitic acid) which the carboxyl group of the organic acid carried out the chelate coordination on the solder ball surface. はんだボール表面の金属イオン(例えば、Sn4+イオン)と塩を形成して遊離した有機酸塩を示す模式図である。It is a schematic diagram showing an organic acid salt liberated by forming a salt with a metal ion (for example, Sn 4+ ion) on the surface of a solder ball. カルボキシル基の赤外吸収スペクトルであり、a:会合状態、b:配位状態、c:Sn塩形成状態を示す。It is an infrared absorption spectrum of a carboxyl group, and shows a: association state, b: coordination state, c: Sn salt formation state.

Claims (7)

炭素数が10〜25であってカルボキシル基を有する少なくとも2種類の有機酸を表面に被覆した、はんだボールであって、前記有機酸のカルボキシル基が前記はんだボールの表面とキレート配位していることを特徴とする表面処理はんだボール。 A solder ball having a surface coated with at least two kinds of organic acids having 10 to 25 carbon atoms and having a carboxyl group, wherein the carboxyl group of the organic acid is chelate-coordinated with the surface of the solder ball A surface-treated solder ball characterized by that. 前記有機酸のカルボキシル基に起因する赤外線吸収ピークが1650cm−1〜1700cm−1であることを特徴とする請求項1記載の表面処理はんだボール。 2. The surface-treated solder ball according to claim 1 , wherein an infrared absorption peak due to a carboxyl group of the organic acid is 1650 cm −1 to 1700 cm −1 . 前記有機酸として、それぞれの融点の差が5℃〜45℃である少なくとも2種類の有機酸を含むことを特徴とする請求項1又は2記載の表面処理はんだボール。 The surface-treated solder ball according to claim 1, wherein the organic acid contains at least two kinds of organic acids having a difference in melting point between 5 ° C. and 45 ° C. 前記有機酸として、少なくともステアリン酸とパルミチン酸を含むことを特徴とする請求項1又は2記載の表面処理はんだボール。 The surface-treated solder ball according to claim 1, wherein the organic acid contains at least stearic acid and palmitic acid. 前記はんだボールが、鉛フリーはんだボールであることを特徴とする請求項1又は2記載の表面処理はんだボール。 The surface-treated solder ball according to claim 1, wherein the solder ball is a lead-free solder ball. 前記鉛フリーはんだボールが、スズ単体はんだボール、又は、銅、銀、ビスマス、亜鉛、アンチモン、インジウム、アルミニウム、マグネシウム、リン、ヒ素、ビスマス、若しくはゲルマニウムの中から選ばれる1種以上の金属を含むスズ合金はんだボールであることを特徴とする請求項5記載の表面処理はんだボール。 The lead-free solder ball includes a tin simple solder ball or one or more metals selected from copper, silver, bismuth, zinc, antimony, indium, aluminum, magnesium, phosphorus, arsenic, bismuth, or germanium. 6. The surface-treated solder ball according to claim 5, wherein the surface-treated solder ball is a tin alloy solder ball. 炭素数が10〜25であってカルボキシル基を有する少なくとも2種類の有機酸を有機溶媒に溶解する工程と、
前記溶液に、はんだボールを分散する工程と、
前記有機溶媒を、はんだボールから除去する工程と、
有機溶媒を除去した、はんだボールを60℃〜180℃で熱処理して前記有機酸のカルボキシル基を前記はんだボール表面にキレート配位させる工程と、
を含むことを特徴とするはんだボールの表面処理方法。
Dissolving at least two organic acids having 10 to 25 carbon atoms and having a carboxyl group in an organic solvent;
Dispersing solder balls in the solution;
Removing the organic solvent from the solder balls;
Removing the organic solvent, heat treating the solder ball at 60 ° C. to 180 ° C., and chelating the carboxyl group of the organic acid to the surface of the solder ball;
A method for treating a surface of a solder ball, comprising:
JP2007117400A 2007-04-26 2007-04-26 Surface treatment solder ball and surface treatment method of solder ball Active JP4895328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007117400A JP4895328B2 (en) 2007-04-26 2007-04-26 Surface treatment solder ball and surface treatment method of solder ball

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007117400A JP4895328B2 (en) 2007-04-26 2007-04-26 Surface treatment solder ball and surface treatment method of solder ball

Publications (2)

Publication Number Publication Date
JP2008272779A true JP2008272779A (en) 2008-11-13
JP4895328B2 JP4895328B2 (en) 2012-03-14

Family

ID=40051420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007117400A Active JP4895328B2 (en) 2007-04-26 2007-04-26 Surface treatment solder ball and surface treatment method of solder ball

Country Status (1)

Country Link
JP (1) JP4895328B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010126719A (en) * 2008-12-01 2010-06-10 Mitsui Mining & Smelting Co Ltd Conductive adhesive
JP4485604B1 (en) * 2009-02-09 2010-06-23 日本ジョイント株式会社 Manufacturing method, manufacturing apparatus, and solder alloy for tin or solder alloy for electronic parts
WO2010089905A1 (en) * 2009-02-09 2010-08-12 日本ジョイント株式会社 Process and apparatus for producing tin or solder alloy for electronic part and solder alloy
JP2011009184A (en) * 2009-05-22 2011-01-13 Sekisui Chem Co Ltd Conductive particulate, anisotropic conductive material, and conductive connection structure
WO2014115695A1 (en) * 2013-01-28 2014-07-31 三菱マテリアル株式会社 Sn-ag-cu-based solder powder, and solder paste using said powder
JP2014161890A (en) * 2013-02-26 2014-09-08 Tamura Seisakusho Co Ltd Solder powder, solder composition, and printed wiring board
JP2015047614A (en) * 2013-08-30 2015-03-16 株式会社タムラ製作所 Solder composition for fine pattern application
WO2015146999A1 (en) * 2014-03-25 2015-10-01 住友金属鉱山株式会社 Coated solder material and method for producing same
JP2016140864A (en) * 2015-01-29 2016-08-08 住友金属鉱山株式会社 Coated solder wire and production method for the same
US9446484B2 (en) 2012-02-21 2016-09-20 Sekisui Chemical Co., Ltd. Conductive particles, method for producing conductive particles, conductive material and connection structure
WO2020209330A1 (en) * 2019-04-09 2020-10-15 石川技研株式会社 Method for manufacturing solder product, solder, soldered component, solder product, printed wiring board, printed circuit board, wire, soldered product, flexible printed board, electronic component, method for manufacturing tin molded article, method for manufacturing tin intermediate product, tin molded article, tin intermediate product, and conductive member
JP2021164947A (en) * 2020-04-08 2021-10-14 石川技研株式会社 Solder product, method for manufacturing solder product, printed wiring board, printed circuit board, wire, soldered product, flexible printed board, and electronic component
JP7189480B1 (en) 2022-02-09 2022-12-14 千住金属工業株式会社 FLUX COATED BALL AND METHOD FOR MANUFACTURING THE SAME

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1058190A (en) * 1996-08-15 1998-03-03 Mitsui Mining & Smelting Co Ltd Solder powder and its production method, solder paste using the solder powder
JP2000317682A (en) * 1998-07-02 2000-11-21 Matsushita Electric Ind Co Ltd Solder powder and manufacture thereof, and solder paste
JP2005254246A (en) * 2004-03-09 2005-09-22 Hitachi Metals Ltd Solder ball and its manufacturing method
JP2007523995A (en) * 2003-07-09 2007-08-23 フライズ メタルズ インコーポレイテッド Metal particle coating

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1058190A (en) * 1996-08-15 1998-03-03 Mitsui Mining & Smelting Co Ltd Solder powder and its production method, solder paste using the solder powder
JP2000317682A (en) * 1998-07-02 2000-11-21 Matsushita Electric Ind Co Ltd Solder powder and manufacture thereof, and solder paste
JP2007523995A (en) * 2003-07-09 2007-08-23 フライズ メタルズ インコーポレイテッド Metal particle coating
JP2005254246A (en) * 2004-03-09 2005-09-22 Hitachi Metals Ltd Solder ball and its manufacturing method

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010126719A (en) * 2008-12-01 2010-06-10 Mitsui Mining & Smelting Co Ltd Conductive adhesive
JP4485604B1 (en) * 2009-02-09 2010-06-23 日本ジョイント株式会社 Manufacturing method, manufacturing apparatus, and solder alloy for tin or solder alloy for electronic parts
WO2010089905A1 (en) * 2009-02-09 2010-08-12 日本ジョイント株式会社 Process and apparatus for producing tin or solder alloy for electronic part and solder alloy
US8138576B2 (en) 2009-02-09 2012-03-20 Nippon Joint Co., Ltd. Production method and production apparatus of tin or solder alloy for electronic components, and solder alloy
JP2011009184A (en) * 2009-05-22 2011-01-13 Sekisui Chem Co Ltd Conductive particulate, anisotropic conductive material, and conductive connection structure
US9446484B2 (en) 2012-02-21 2016-09-20 Sekisui Chemical Co., Ltd. Conductive particles, method for producing conductive particles, conductive material and connection structure
WO2014115695A1 (en) * 2013-01-28 2014-07-31 三菱マテリアル株式会社 Sn-ag-cu-based solder powder, and solder paste using said powder
JP2014144461A (en) * 2013-01-28 2014-08-14 Mitsubishi Materials Corp SnAgCu-BASED SOLDER POWDER AND PASTE FOR SOLDER USING THIS POWDER
JP2014161890A (en) * 2013-02-26 2014-09-08 Tamura Seisakusho Co Ltd Solder powder, solder composition, and printed wiring board
JP2015047614A (en) * 2013-08-30 2015-03-16 株式会社タムラ製作所 Solder composition for fine pattern application
US10512988B2 (en) 2014-03-25 2019-12-24 Sumitomo Metal Mining Co., Ltd. Coated solder material and method for producing same
CN106211763A (en) * 2014-03-25 2016-12-07 住友金属矿山株式会社 Coated solder material and manufacture method thereof
JPWO2015146999A1 (en) * 2014-03-25 2017-04-13 住友金属鉱山株式会社 Coated solder material and manufacturing method thereof
CN106211763B (en) * 2014-03-25 2019-08-27 住友金属矿山株式会社 Coated solder material and its manufacturing method
WO2015146999A1 (en) * 2014-03-25 2015-10-01 住友金属鉱山株式会社 Coated solder material and method for producing same
JP2016140864A (en) * 2015-01-29 2016-08-08 住友金属鉱山株式会社 Coated solder wire and production method for the same
WO2020209330A1 (en) * 2019-04-09 2020-10-15 石川技研株式会社 Method for manufacturing solder product, solder, soldered component, solder product, printed wiring board, printed circuit board, wire, soldered product, flexible printed board, electronic component, method for manufacturing tin molded article, method for manufacturing tin intermediate product, tin molded article, tin intermediate product, and conductive member
US11802322B2 (en) 2019-04-09 2023-10-31 Ishikawa Technology Laboratory Co., Ltd. Method for manufacturing solder product, solder, soldered component, printed wiring board, printed circuit board, wire, soldered product, flexible printed board, electronic component, method for manufacturing tin article, method for manufacturing tin intermediate product, tin intermediate product, and conductive member
JP2021164947A (en) * 2020-04-08 2021-10-14 石川技研株式会社 Solder product, method for manufacturing solder product, printed wiring board, printed circuit board, wire, soldered product, flexible printed board, and electronic component
JP7026907B2 (en) 2020-04-08 2022-03-01 石川技研株式会社 Manufacturing method of solder products, printed circuit boards, wire rods, flexible printed boards and electronic components
JP7189480B1 (en) 2022-02-09 2022-12-14 千住金属工業株式会社 FLUX COATED BALL AND METHOD FOR MANUFACTURING THE SAME
JP2023116315A (en) * 2022-02-09 2023-08-22 千住金属工業株式会社 Flux-coated ball and manufacturing method thereof

Also Published As

Publication number Publication date
JP4895328B2 (en) 2012-03-14

Similar Documents

Publication Publication Date Title
JP4895328B2 (en) Surface treatment solder ball and surface treatment method of solder ball
JP3788335B2 (en) Solder paste
JP2019076958A (en) Solder alloy and solder powder
KR20210002739A (en) Solder alloy, solder powder, solder paste and solder joints using these
JP2017192987A (en) Solder composition and method of manufacturing soldered product
JP5115915B2 (en) Lead-free solder, processed solder, solder paste and electronic component soldering board
JP2004339583A (en) Surface treatment agent for tin or tin alloy material, tin or tin alloy material, surface treatment method therefor, tin alloy based solder material, solder paste obtained by using the same, method of producing tin alloy based solder material, electronic component, printed circuit board and mounting structure for electronic component
WO2011071005A1 (en) Solder paste
JP6824208B2 (en) Flux and solder paste
US10780530B2 (en) Solder ball, solder joint, and joining method
WO2019132003A1 (en) Flux and solder paste
JP2010120030A (en) Solder ball
US5885369A (en) Solder powder, method for making the solder powder and solder paste using the solder powder
JP4084657B2 (en) Solder powder for solder paste
JP4392020B2 (en) Lead-free solder balls
JP2005254246A (en) Solder ball and its manufacturing method
JP6101514B2 (en) Solder composition and printed wiring board manufacturing method
JP5489179B2 (en) Solder particles and manufacturing method thereof, and solder paste and manufacturing method thereof
WO2020031693A1 (en) Flux and solder paste
JP6575713B1 (en) Flux and solder paste
JP4215235B2 (en) Surface treatment agent and surface treatment method for Sn alloy
JPWO2008084673A1 (en) Semiconductor device and manufacturing method thereof
JP5272166B2 (en) Solder paste composition
WO2020241319A1 (en) Solder alloy, solder paste, solder ball, solder preform, and solder joint
JP2007175776A (en) Solder joining method and solder joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111205

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111218

R150 Certificate of patent or registration of utility model

Ref document number: 4895328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250