JP2008272584A - Method of treating catalyst with degraded resolution - Google Patents

Method of treating catalyst with degraded resolution Download PDF

Info

Publication number
JP2008272584A
JP2008272584A JP2007033026A JP2007033026A JP2008272584A JP 2008272584 A JP2008272584 A JP 2008272584A JP 2007033026 A JP2007033026 A JP 2007033026A JP 2007033026 A JP2007033026 A JP 2007033026A JP 2008272584 A JP2008272584 A JP 2008272584A
Authority
JP
Japan
Prior art keywords
catalyst
washing
treating
isopropyl alcohol
organic chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007033026A
Other languages
Japanese (ja)
Other versions
JP4023816B1 (en
Inventor
Koichi Ito
鉱一 伊藤
Satoru Kanamori
悟 金森
Shigeru Otsuki
茂 大槻
Hitoshi Ogawa
仁 小川
Yoko Umeda
陽子 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2007033026A priority Critical patent/JP4023816B1/en
Application granted granted Critical
Publication of JP4023816B1 publication Critical patent/JP4023816B1/en
Publication of JP2008272584A publication Critical patent/JP2008272584A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of treating a catalyst capable of reusing a catalyst supporting noble metal with a degraded resolution used in decomposition of a high concentration organic chlorine compound free of deterioration oil. <P>SOLUTION: The method of treating catalyst capable of reusing the catalyst with degraded resolution in decomposition processing of circulating a mixed liquid of organic chlorine compound, alkali metal hydroxide and isopropyl alcohol in a catalyst column, and making the liquid contact with the catalyst supporting noble metal to decompose the organic chlorine compound, includes the step of cleaning the catalyst with degraded resolution with isopropyl alcohol and of cleaning the cleaned catalyst with water, and is characterized by drying the catalyst after cleaning with water. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、分解能が低下した触媒の再利用を可能にする触媒の処理方法であり、詳細には、高濃度有機塩素化合物(即ち、油中の低濃度有機塩素化合物は該当しない)の分解で用いられた分解能が低下した貴金属担持触媒の再利用を可能にすることができる、触媒の処理方法に関する。   The present invention is a method for treating a catalyst that enables the reuse of a catalyst with reduced resolution, and in particular, by the decomposition of high-concentration organochlorine compounds (ie, low-concentration organochlorine compounds in oil do not apply). The present invention relates to a method for treating a catalyst capable of reusing a noble metal-supported catalyst having a reduced resolution.

各種有機塩素化合物のなかでも、ポリ塩化ビフェニル(以下PCBと略称することがある。)は人体を含む生体に極めて有害であることから、1973年に特定化学物質に指定され、その製造、輸入、使用が禁止されている。しかし、その後適切な廃棄方法が決まらないまま数万トンのPCBが未処理の状態で放置されている。PCBは、高温分解では強毒性のダイオキシン類である塩素化ジベンゾ−p−ダイオキシン(PCDD)とジベンゾフラン(PCDF)が副生するため、技術的にPCBを安全に分解することは難しいことに鑑み、PCBの安全かつ効率的な分解処理方法が望まれている。   Among various organic chlorine compounds, polychlorinated biphenyl (hereinafter sometimes abbreviated as PCB) is extremely harmful to living organisms including the human body. Therefore, it was designated as a specified chemical substance in 1973, and its production, importation, Use is prohibited. However, after that, tens of thousands of tons of PCBs are left untreated without determining an appropriate disposal method. In view of the fact that PCB is a by-product of chlorinated dibenzo-p-dioxin (PCDD) and dibenzofuran (PCDF) which are highly toxic dioxins in high temperature decomposition, it is difficult to technically decompose PCB safely. A safe and efficient method for disassembling PCBs is desired.

このような背景から、PCB等の有機塩素化合物を脱塩素化する方法は、数多く知られている。その中でも、低温かつ短時間で分解できる方法として、PCB又は低濃度のPCBを含有する絶縁油に、水素供与体とアルカリ化合物を添加し、パラジウムを活性炭に担持させた触媒存在下にマイクロ波を照射することにより、PCBを効率的に分解する方法が開示されている(特許文献1,2等)。   Against this background, many methods for dechlorinating organochlorine compounds such as PCB are known. Among them, as a method that can be decomposed at a low temperature and in a short time, microwaves are added in the presence of a catalyst in which a hydrogen donor and an alkali compound are added to an insulating oil containing PCB or low-concentration PCB, and palladium is supported on activated carbon. A method for efficiently decomposing PCB by irradiation is disclosed (Patent Documents 1, 2, etc.).

しかしながら、分解を重ねることにより触媒は劣化し活性が低下する。一方、劣化した炭素系貴金属触媒の再生は困難であることがわかっている。特に絶縁油に含まれているPCBの分解処理に用いられた触媒の場合は、表面に劣化油、絶縁油添加物(酸化剤等)及びそれらの分解物が付着して触媒の活性サイトを塞いでしまうため、再生方法も触媒表面を液処理して洗浄する等の方法に限られて来る。   However, repeated decomposition degrades the catalyst and decreases its activity. On the other hand, regeneration of degraded carbon-based noble metal catalysts has proven difficult. In particular, in the case of a catalyst used for the decomposition treatment of PCB contained in insulating oil, deteriorated oil, insulating oil additives (oxidizer, etc.) and their decomposition products adhere to the surface and block the active site of the catalyst. Therefore, the regeneration method is limited to a method such as washing the catalyst surface by liquid treatment.

従来より、貴金属を担持させた炭素系触媒の再生方法として各種の方法が提案されているが(特許文献3〜7)、それらの方法は、一般の水素化触媒の場合(特許文献3〜5)及びPCBの脱塩素化触媒の場合(特許文献6〜7)も、触媒を液処理して洗浄する方法が主である。   Conventionally, various methods have been proposed as a method for regenerating a carbon-based catalyst on which a noble metal is supported (Patent Documents 3 to 7), but these methods are used in the case of a general hydrogenation catalyst (Patent Documents 3 to 5). ) And PCB dechlorination catalysts (Patent Documents 6 to 7) are mainly treated by washing the catalyst by liquid treatment.

特許文献3では、ジアセトキシブテンを水添してジアセトキシブタンを製造するのに用いた活性低下触媒を、40〜150℃の水蒸気又は温水で処理している。   In Patent Document 3, the activity decreasing catalyst used for hydrogenating diacetoxybutene to produce diacetoxybutane is treated with steam or warm water at 40 to 150 ° C.

特許文献4では、トリアルコキシプロパンを水素化分解するための水素化触媒を、6未満のpKa値を有する酸からなる媒質中で処理し、それを、水、メタノール又はエタノールで洗浄している。   In Patent Document 4, a hydrogenation catalyst for hydrocracking trialkoxypropane is treated in a medium composed of an acid having a pKa value of less than 6, and it is washed with water, methanol or ethanol.

特許文献5では、カルボン酸エステル製造時に用いられた劣化触媒を、メタノール、エタノール、ヒドラジン等の還元剤の存在下、0〜100℃の温度で0.1〜50時間処理している。   In patent document 5, the deterioration catalyst used at the time of carboxylic acid ester manufacture is processed at the temperature of 0-100 degreeC for 0.1 to 50 hours in presence of reducing agents, such as methanol, ethanol, and hydrazine.

特許文献6では、絶縁油中のPCBの脱塩素化処理に用いられた活性低下触媒を、洗浄剤で洗浄し、脱離した塩素とアルカリとの中和塩を除去することにより、触媒活性を復帰させている。また、特許文献7では、絶縁油中のPCBの脱塩素化処理に用いられた活性低下触媒を洗浄した後、溶媒抽出を行い、さらに還元処理することにより、触媒活性を復帰させている。
特許第3678740号公報 特許第3678738号公報 特開平10−202106号公報(請求項1等) 特開平9−141094号公報(請求項1等) 特開平9−253489号公報(請求項1等) 特開2005−270837号公報(請求項1等) 特願2005−307587(請求項1〜2等)
In Patent Document 6, the activity-reducing catalyst used in the PCB dechlorination treatment in the insulating oil is washed with a cleaning agent to remove the neutralized salt between the detached chlorine and alkali, thereby increasing the catalytic activity. I am returning. Moreover, in patent document 7, after wash | cleaning the activity fall catalyst used for the dechlorination process of PCB in insulating oil, solvent extraction is performed, and the catalytic activity is returned by further reducing.
Japanese Patent No. 3678740 Japanese Patent No. 3678738 JP-A-10-202106 (Claim 1 etc.) JP-A-9-141094 (Claim 1 etc.) Japanese Patent Laid-Open No. 9-253489 (Claim 1 etc.) JP 2005-270837 A (Claim 1 etc.) Japanese Patent Application No. 2005-307587 (Claims 1-2)

しかしながら、上記の方法で再生した触媒、例えば特許文献6で提案した方法で再生した触媒は、模擬油試験では良好な結果を示したものの、低濃度PCBを含む実油の分解試験に供した場合、活性低下触媒の分解能の回復度合は新品の70%程度までであった。このように、絶縁油に含まれる低濃度のPCB分解処理に用いられた触媒は、油の影響があるため、分解能を100%回復させることは極めて困難な状況にある。   However, the catalyst regenerated by the above method, for example, the catalyst regenerated by the method proposed in Patent Document 6, showed good results in the simulated oil test, but was subjected to a cracking test of real oil containing low-concentration PCB. The recovery degree of the resolution of the activity-reducing catalyst was up to about 70% of the new product. As described above, the catalyst used for the low-concentration PCB decomposition treatment contained in the insulating oil is affected by the oil, so that it is extremely difficult to recover the resolution to 100%.

一方では、分解処理に使用される貴金属担持触媒は高価なため、有機塩素化合物の分解処理コストを下げるには、1回でも多く触媒を再利用できるようにすることが、実用上不可欠である。また経験上、PCBの分解処理は高濃度PCBの方が、油中に含まれている低濃度PCBより分解し易いことが分かっている。   On the other hand, since the noble metal-supported catalyst used for the decomposition treatment is expensive, it is practically indispensable to reuse the catalyst as many times as possible in order to reduce the decomposition treatment cost of the organic chlorine compound. Further, experience has shown that the PCB decomposition treatment is easier to decompose in the high concentration PCB than in the low concentration PCB contained in the oil.

従って、劣化油が存在しない高濃度PCB分解処理の場合は、低濃度の分解処理とは異なる観点から触媒の再利用を検討することが必要であった。ところが、従来より触媒は高活性のものをできるだけ少量使用するという概念が定着しているため、触媒の活性向上、使用量の削減検討は多々なされているが、1回でも多く再利用するという見地からは検討されていないのが現状である。   Therefore, in the case of high-concentration PCB decomposition treatment in which no deteriorated oil is present, it is necessary to study the reuse of the catalyst from a viewpoint different from the low-concentration decomposition treatment. However, since the concept of using a catalyst with a high activity as little as possible has been established, there have been many studies on improving the activity of the catalyst and reducing the amount of use, but the point of reusing it even once. Is currently not being considered.

本発明は、上記事情に鑑みてなされたものであり、劣化油が存在しない高濃度有機塩素化合物の分解で用いられた、分解能が低下した貴金属担持触媒を再利用可能にする、触媒の処理方法を提供することを課題とする。   The present invention has been made in view of the above circumstances, and a method for treating a catalyst that enables reusability of a noble metal-supported catalyst with reduced resolution used in the decomposition of a high-concentration organochlorine compound that does not contain deteriorated oil. It is an issue to provide.

本発明者らは、前記課題を解決するため鋭意検討した。その結果、絶縁油に混入した低濃度PCBの分解処理とは異なり、特定の高濃度PCBの分解処理では、触媒活性阻害要因となる劣化油が存在しないため、触媒表面のPCB、ビフェニル、無機物等を除去するだけの処理でも、触媒を新品同様に再利用できることを見出した。   The present inventors diligently studied to solve the above problems. As a result, unlike the decomposition treatment of low-concentration PCB mixed in insulating oil, there is no deteriorated oil that becomes a catalyst activity inhibiting factor in the decomposition treatment of specific high-concentration PCB. Therefore, PCB, biphenyl, inorganic matter, etc. on the catalyst surface It has been found that the catalyst can be reused as if it were a new product even by simply removing the catalyst.

また、上記のような触媒の処理方法は、イソプロピルアルコールと水を使用する方法であるため、安全で現場でも使用できること;洗浄後の液の回収も比較的容易であること;貴金属担持触媒は一般的に高価であるが、貴金属を再利用するので、たとえ多量の触媒を用いても経済性に問題はなく、PCBの分解処理を工業的に有利に行えること等の利点を有するとの知見に基づいて、本発明を完成するに至った。   In addition, since the above-mentioned catalyst treatment method uses isopropyl alcohol and water, it is safe and can be used in the field; the liquid after washing is relatively easy to collect; Although it is expensive, the precious metal is reused, so even if a large amount of catalyst is used, there is no problem in economic efficiency, and there is an advantage that the decomposition process of PCB can be industrially advantageous. Based on this, the present invention has been completed.

すなわち、本発明は、以下の通りである。
1)有機塩素化合物、アルカリ金属水酸化物及びイソプロピルアルコールの混合液を、触媒カラムに流通し、貴金属を担体に担持させた触媒に接触させて有機塩素化合物を分解する分解処理において、
分解能が低下した触媒の再利用を可能にする触媒の処理方法であって、
分解能が低下した触媒をイソプロピルアルコールで洗浄する工程と、洗浄後の触媒を水で洗浄する工程、を含み、
水洗浄後の触媒を乾燥することを特徴とする触媒の処理方法。
2)イソプロピルアルコール洗浄後の触媒を、炭化水素系溶剤で洗浄する工程を設けた、前記1)に記載の触媒の処理方法。
3)炭化水素系溶剤で洗浄した触媒を、水性有機溶剤で置換する工程を設けた、前記2)に記載の触媒の処理方法。
4)イソプロピルアルコール、水及び炭化水素系溶剤による洗浄工程では、触媒が崩壊しない程度の洗浄処理を施す、前記1)〜3)のいずれかに記載の触媒の処理方法。
5)洗浄工程における洗浄剤の温度が、室温〜60℃である、前記1)〜4)のいずれかに記載の触媒の処理方法。
6)貴金属がパラジウムである、前記1)〜5)のいずれかに記載の触媒の処理方法。
7)担体が、炭素、樹脂及びそれらの組合せからなる群より選択されるものである、前記1)〜6)のいずれかに記載の触媒の処理方法。
8)有機塩素化合物が、PCB、ダイオキシン類、芳香族塩素化合物及びそれらの2種以上の混合物からなる群から選択される有機塩素化合物である、前記1)〜7)のいずれかに記載の触媒の処理方法。
That is, the present invention is as follows.
1) In a decomposition process in which a mixed liquid of an organic chlorine compound, an alkali metal hydroxide and isopropyl alcohol is passed through a catalyst column and brought into contact with a catalyst having a noble metal supported on a carrier to decompose the organic chlorine compound.
A method of treating a catalyst that enables reuse of a catalyst with reduced resolution,
Washing the catalyst with reduced resolution with isopropyl alcohol, and washing the washed catalyst with water,
A method for treating a catalyst, comprising drying the catalyst after washing with water.
2) The method for treating a catalyst according to 1) above, wherein a step of washing the catalyst after washing with isopropyl alcohol with a hydrocarbon solvent is provided.
3) The method for treating a catalyst according to 2) above, wherein a step of replacing the catalyst washed with the hydrocarbon solvent with an aqueous organic solvent is provided.
4) The method for treating a catalyst according to any one of 1) to 3), wherein in the washing step with isopropyl alcohol, water, and a hydrocarbon solvent, a washing treatment is performed to such an extent that the catalyst does not collapse.
5) The method for treating a catalyst according to any one of 1) to 4) above, wherein the temperature of the cleaning agent in the cleaning step is from room temperature to 60 ° C.
6) The method for treating a catalyst according to any one of 1) to 5) above, wherein the noble metal is palladium.
7) The method for treating a catalyst according to any one of 1) to 6) above, wherein the support is selected from the group consisting of carbon, a resin, and a combination thereof.
8) The catalyst according to any one of 1) to 7) above, wherein the organic chlorine compound is an organic chlorine compound selected from the group consisting of PCBs, dioxins, aromatic chlorine compounds, and mixtures of two or more thereof. Processing method.

本発明に係る触媒の処理方法によれば、新品と同等あるいはそれ以上の性能を有する、再利用可能な触媒を得ることができる。よって、触媒を再利用することにより、触媒コスト、ひいては高濃度有機塩素化合物の分解処理コストを下げることが可能になる。   According to the catalyst treatment method of the present invention, a reusable catalyst having performance equivalent to or better than that of a new product can be obtained. Therefore, by reusing the catalyst, it is possible to reduce the cost of the catalyst, and thus the decomposition treatment cost of the high concentration organochlorine compound.

本発明の触媒の処理方法は、有機塩素化合物、アルカリ金属水酸化物及びイソプロピルアルコールの混合液を、触媒カラムに流通し、貴金属を担体に担持させた触媒に接触させて有機塩素化合物を分解する分解処理において、
分解能が低下した触媒の再利用を可能にする触媒の処理方法であって、
分解能が低下した触媒をイソプロピルアルコールで洗浄する工程と、洗浄後の触媒を水で洗浄する工程、を含み、水洗浄後の触媒を乾燥することを特徴とするものである。
In the method for treating a catalyst according to the present invention, a mixed liquid of an organochlorine compound, an alkali metal hydroxide and isopropyl alcohol is passed through a catalyst column and brought into contact with a catalyst having a noble metal supported on a carrier to decompose the organochlorine compound. In the decomposition process,
A method of treating a catalyst that enables reuse of a catalyst with reduced resolution,
The method includes a step of washing the catalyst with reduced resolution with isopropyl alcohol and a step of washing the washed catalyst with water, and drying the catalyst after washing with water.

ここで、有機塩素化合物としては、PCB;ダイオキシン類;トリクロロベンゼン、ジクロロベンゼン等の芳香族塩素化合物及びそれらの2種以上の混合物からなる群から選択される有機塩素化合物が挙げられる。   Here, examples of the organic chlorine compound include PCB; dioxins; aromatic chlorine compounds such as trichlorobenzene and dichlorobenzene, and organic chlorine compounds selected from the group consisting of a mixture of two or more thereof.

有機塩素化合物は、柱上変圧器、大型トランス、OFケーブル絶縁油タンク、安定器等に充填又は保存されているもの等が挙げられる。   Examples of organochlorine compounds include those that are filled or stored in pole transformers, large transformers, OF cable insulating oil tanks, ballasts, and the like.

混合溶液には、有機塩素化合物から脱離した塩素を捕捉するためのアルカリが添加されるが、脱塩素化効率が高く、低コストで入手可能で、ハンドリング性が良く、しかもイソプロピルアルコールへの溶解性に優れている点より、NaOH、KOH等のアルカリ金属水酸化物が用いられる。アルカリ金属水酸化物は単独で用いても良いし2種以上を併用しても良い。   Alkaline is added to the mixed solution to capture chlorine desorbed from the organic chlorine compound, but it has high dechlorination efficiency, is available at low cost, is easy to handle, and dissolves in isopropyl alcohol. From the viewpoint of excellent properties, alkali metal hydroxides such as NaOH and KOH are used. An alkali metal hydroxide may be used independently and may use 2 or more types together.

また、混合溶液には、水素供与体が添加されるが、安全性が高く、低コストで入手可能であり、しかも有機塩素化合物の分解効率が高く、反応制御が容易で、難分解性のPCBの分解効率が高い点より、イソプロピルアルコールが好適に用いられる。   In addition, a hydrogen donor is added to the mixed solution, but it is highly safe, can be obtained at low cost, has high decomposition efficiency of the organic chlorine compound, is easy to control the reaction, and is hardly decomposed PCB. Isopropyl alcohol is preferably used because of its high decomposition efficiency.

イソプロピルアルコール以外の化合物も、有機塩素化合物から発生したラジカルに対して、水素原子を供与することができる化合物であれば、本発明の効果を阻害しない範囲でイソプロピルアルコールと併用することができる。このような水素供与体としては、例えば、複素環式化合物、アミン系化合物、アルコール系化合物、ケトン系化合物及び脂環式化合物等が挙げられる。   Any compound other than isopropyl alcohol can be used in combination with isopropyl alcohol as long as the effect of the present invention is not impaired as long as the compound can donate a hydrogen atom to a radical generated from an organic chlorine compound. Examples of such hydrogen donors include heterocyclic compounds, amine compounds, alcohol compounds, ketone compounds, and alicyclic compounds.

分解処理に用いられるアルカリ金属水酸化物及びイソプロピルアルコールの量は限定されないが、通常、アルカリ金属水酸化物は有機塩素化合物の対塩素比で1.0〜1.5当量、イソプロピルアルコールは有機塩素化合物に対し容量比で5〜50%使用するのが好ましい。また、アルカリ金属水酸化物はイソプロピルアルコールに対して0.1〜50%(wt/vol)使用するのが好ましく、より好ましくは0.1〜10%(wt/vol)である。アルカリ金属水酸化物が少なすぎると分解反応が進行しなくなり、一方、多すぎるとアルカリ金属水酸化物がイソプロピルアルコールに溶解しきれなくなる。   The amount of alkali metal hydroxide and isopropyl alcohol used for the decomposition treatment is not limited, but usually alkali metal hydroxide is 1.0 to 1.5 equivalents in terms of chlorine to organochlorine compound, and isopropyl alcohol is organochlorine. It is preferable to use 5 to 50% by volume with respect to the compound. The alkali metal hydroxide is preferably used in an amount of 0.1 to 50% (wt / vol), more preferably 0.1 to 10% (wt / vol) with respect to isopropyl alcohol. If the amount of the alkali metal hydroxide is too small, the decomposition reaction does not proceed. On the other hand, if the amount is too large, the alkali metal hydroxide cannot be completely dissolved in isopropyl alcohol.

分解方法としては、公知の方法を適用することができ、例えば、常温、常圧で放置して常温〜80℃で分解する方法、マイクロ波を照射して50〜200℃で分解する方法等が挙げられる。   As a decomposition method, a known method can be applied, for example, a method of leaving at normal temperature and normal pressure and decomposing at normal temperature to 80 ° C., a method of decomposing at 50 to 200 ° C. by irradiating with microwaves, and the like. Can be mentioned.

貴金属を担体に担持させた触媒としては、特に限定されるものではなく、有機塩素化合物の脱塩素化反応を促進し得るものであればよい。触媒における貴金属の担持量は、触媒全量に対する割合で1〜20質量%が好ましく、5〜10質量%がより好ましい。担持させる貴金属としては、パラジウム、ルテニウム、パラジウム、ロジウム、イリジウム、オスミウム及び白金が挙げられるが、脱塩素化効率の高さを考慮すると、パラジウム、ルテニウム、白金が好ましく、特にパラジウムが好ましい。   The catalyst in which the noble metal is supported on the carrier is not particularly limited as long as it can accelerate the dechlorination reaction of the organic chlorine compound. The supported amount of the noble metal in the catalyst is preferably 1 to 20% by mass, more preferably 5 to 10% by mass with respect to the total amount of the catalyst. Examples of the noble metal to be supported include palladium, ruthenium, palladium, rhodium, iridium, osmium and platinum. In consideration of high dechlorination efficiency, palladium, ruthenium and platinum are preferable, and palladium is particularly preferable.

担体としては、一般的に貴金属触媒の担体として用いられるものであればよい。具体的には、一般的に吸着剤として使用されている活性炭等の炭素;シリコーン樹脂、ポリエチレン樹脂、ポリスチレン樹脂等の樹脂;金属酸化物又は複合金属酸化物;等の耐アルカリ性に優れる担体が用いられる。これらの担体の中でも、マイクロ波の吸収性が高いことから炭素、樹脂が好ましく、炭素が特に好ましい。   Any carrier can be used as long as it is generally used as a carrier for a noble metal catalyst. Specifically, a carrier having excellent alkali resistance such as carbon such as activated carbon generally used as an adsorbent; resin such as silicone resin, polyethylene resin and polystyrene resin; metal oxide or composite metal oxide; It is done. Among these carriers, carbon and resin are preferable because of high microwave absorption, and carbon is particularly preferable.

金属を炭素担体に担持させた触媒の具体例としては、例えば、Pd/C(パラジウム担持炭素化合物)、Ru/C(ルテニウム担持炭素化合物)、Pt/C(白金担持炭素化合物)などが挙げられる。   Specific examples of catalysts in which a metal is supported on a carbon support include Pd / C (palladium-supported carbon compound), Ru / C (ruthenium-supported carbon compound), Pt / C (platinum-supported carbon compound), and the like. .

上記の触媒は、粒状のものでもハニカム状のものでもよい。触媒粒子径は75μm〜5mmが好ましく、5mmを超える場合はハンドリングが悪くなり、75μm未満の場合はカラム等に充填させた際に詰りやすくなる。より好ましくは150μm〜3mmである。   The catalyst may be granular or honeycomb. The catalyst particle diameter is preferably 75 μm to 5 mm, and if it exceeds 5 mm, handling becomes worse, and if it is less than 75 μm, clogging tends to occur when packed in a column or the like. More preferably, it is 150 μm to 3 mm.

処理を施す対象となる触媒は、高濃度有機塩素化合物に、アルカリ物質と水素供与体を添加し、これらの混合液を触媒カラムに流通し、触媒に接触させることにより有機塩素化合物を分解処理する際に用いられたものである。触媒を処理するタイミングは、触媒カラムの詰まり発生によって把握できるほか、GC−MSなど公知の有機塩素化合物分析装置を用いて反応溶液中の有機塩素化合物の濃度を測定する等の方法でも把握できる。   The catalyst to be treated is an organic chlorine compound decomposed by adding an alkaline substance and a hydrogen donor to a high-concentration organochlorine compound, passing the mixed solution through the catalyst column, and contacting the catalyst. It was used at the time. The timing of treating the catalyst can be grasped by occurrence of clogging of the catalyst column, or by a method such as measuring the concentration of the organochlorine compound in the reaction solution using a known organochlorine compound analyzer such as GC-MS.

本発明の触媒の処理方法では、分解能が低下した劣化触媒を、室温〜60℃のイソプロピルアルコールで洗浄し、有機塩素化合物、アルカリ、無機塩(塩素とアルカリの反応生成物:NaCl、KCl)、ビフェニル(PCBの反応分解物)の等の触媒表面の付着物を除去する。洗浄温度が低すぎる場合は無機塩が結晶化して除去しにくくなる。また、イソプロピルアルコールで洗浄することにより、未分解の有機塩素化合物が洗浄液に移行した場合でも、洗浄液を分解処理する際の反応溶媒として用いることができるので、余計な分離、回収操作が不要になる。   In the catalyst treatment method of the present invention, the deteriorated catalyst with reduced resolution is washed with isopropyl alcohol at room temperature to 60 ° C., and an organic chlorine compound, alkali, inorganic salt (reaction product of chlorine and alkali: NaCl, KCl), Deposits on the catalyst surface such as biphenyl (reactive decomposition product of PCB) are removed. If the washing temperature is too low, the inorganic salt crystallizes and is difficult to remove. In addition, by washing with isopropyl alcohol, even when the undecomposed organochlorine compound is transferred to the cleaning liquid, it can be used as a reaction solvent when the cleaning liquid is decomposed, so that unnecessary separation and recovery operations are not required. .

その後、水、温水又は水蒸気による水洗浄を行い、触媒に付着した無機塩、未反応アルカリを除去する。水洗浄は、触媒表面の付着アルカリを除去するため、洗浄液のpHが中性になるまで行うことが好ましい。   Then, water washing with water, warm water or steam is performed to remove inorganic salts and unreacted alkali attached to the catalyst. The water washing is preferably performed until the pH of the washing liquid becomes neutral in order to remove the alkali adhering to the catalyst surface.

逆に、水洗浄後にイソプロピルアルコール洗浄を行った場合は、触媒を再利用可能な程度まで処理することができない。その理由としては、ビフェニル等の分解生成物に補足される無機塩が残ってしまうためであると推察される。更に、最初に水洗浄した場合は、洗浄液に移行した未分解の有機塩素化合物の処理操作が煩雑になる。   On the other hand, when isopropyl alcohol cleaning is performed after water cleaning, the catalyst cannot be treated to the extent that it can be reused. The reason for this is presumed to be that inorganic salts supplemented by decomposition products such as biphenyl remain. Furthermore, in the case of first water washing, the processing operation of the undecomposed organochlorine compound transferred to the washing liquid becomes complicated.

一方、イソプロピルアルコール洗浄のみの場合は、触媒を再利用可能な程度まで処理することができない。その理由としては、触媒表面に付着した無機塩の除去効果が十分でないため、触媒表面上での脱塩素化反応が阻害されるためであると考えられる。   On the other hand, in the case of only isopropyl alcohol cleaning, the catalyst cannot be treated to the extent that it can be reused. The reason is considered to be that the dechlorination reaction on the catalyst surface is inhibited because the effect of removing the inorganic salt adhering to the catalyst surface is not sufficient.

イソプロピルアルコール洗浄後には、触媒表面に付着したビフェニルをより効果的に除去するため、n−ヘキサン、シクロヘキサン、トルエン、キシレン、クメン等の炭化水素系溶剤による洗浄を行うことが好ましい。水洗浄を行う前に、触媒表面の炭化水素系溶剤を置換する目的で、アセトン等の水性溶剤を用いることができる。この炭化水素系溶剤による洗浄をイソプロピルアルコール洗浄の前に行った場合は、洗浄液に移行する未分解の有機塩素化合物を分解処理する際の反応溶媒としては最適ではない。   After the isopropyl alcohol cleaning, in order to more effectively remove biphenyl adhering to the catalyst surface, it is preferable to perform cleaning with a hydrocarbon solvent such as n-hexane, cyclohexane, toluene, xylene, cumene and the like. An aqueous solvent such as acetone can be used for the purpose of replacing the hydrocarbon solvent on the surface of the catalyst before washing with water. When the cleaning with the hydrocarbon solvent is performed before the isopropyl alcohol cleaning, it is not optimal as a reaction solvent when decomposing the undecomposed organochlorine compound transferred to the cleaning liquid.

洗浄方式は、バッチ式や連続式などがあり特に限定されるものではなく、適宜の方法を用いることができる。バッチ式にて洗浄する場合は、触媒と洗浄剤とを混合、攪拌した後、触媒をデカンテーション、遠心分離、濾過で分離するなど公知の方法を用いることができる。連続式にて洗浄する場合は、触媒を充填した触媒カラムに洗浄剤を流通させ、洗浄剤を循環させながら洗浄するなど公知の方法を用いることができる。洗浄時は、触媒が崩壊しない程度の緩やかな攪拌を加える、或いは、洗浄剤を低流速でカラムに流通させる等の方法で洗浄するのがよい。   The cleaning method includes a batch method and a continuous method, and is not particularly limited, and an appropriate method can be used. When washing in batch mode, a known method such as mixing and stirring the catalyst and the cleaning agent, and then separating the catalyst by decantation, centrifugation, or filtration can be used. In the case of washing in a continuous manner, a known method such as washing by circulating a cleaning agent through a catalyst column packed with a catalyst and circulating the cleaning agent can be used. At the time of washing, it is preferable to carry out washing by a method such as adding gentle stirring that does not cause the catalyst to collapse, or passing the washing agent through the column at a low flow rate.

触媒の洗浄に供する洗浄剤量は、洗浄剤の種類や洗浄方式等によって異なるが、各洗浄工程において、洗浄剤(容量)/触媒(重量)=2/1〜50/1、より好ましくは2/1〜20/1の比率で使用するのがよい。洗浄時間は特に限定されないが、通常1分〜5時間程度である。各洗浄工程において、洗浄は1回のみでもよいし、複数回に分けて実施してもよい。   The amount of the cleaning agent used for cleaning the catalyst varies depending on the type of cleaning agent, the cleaning method, etc., but in each cleaning step, the cleaning agent (volume) / catalyst (weight) = 2/1 to 50/1, more preferably 2. It is better to use at a ratio of / 1 to 20/1. The washing time is not particularly limited, but is usually about 1 minute to 5 hours. In each cleaning step, cleaning may be performed only once, or may be performed in multiple steps.

水洗浄後、触媒を乾燥する。乾燥条件としては、触媒を変質させずに水分を除去することができる条件が好ましく、通常、温度70〜120℃で2〜24時間乾燥させる。乾燥温度が低すぎると水分除去が不十分となる。   After washing with water, the catalyst is dried. Drying conditions are preferably conditions that allow moisture to be removed without altering the catalyst, and are usually dried at a temperature of 70 to 120 ° C. for 2 to 24 hours. If the drying temperature is too low, moisture removal is insufficient.

本発明の処理方法で得られた触媒は、上述した、有機塩素化合物、アルカリ金属水酸化物及びイソプロピルアルコールの混合液を、触媒カラムに流通し、貴金属を担体に担持させた触媒に接触させて有機塩素化合物を分解する分解処理に再利用することができる。   The catalyst obtained by the treatment method of the present invention is obtained by contacting the above-described mixed liquid of an organic chlorine compound, an alkali metal hydroxide and isopropyl alcohol with a catalyst in which a noble metal is supported on a carrier through a catalyst column. It can be reused in the decomposition process for decomposing organochlorine compounds.

また、この分解処理を、触媒カラムを少なくとも2系統用いて実施することにより、一方の触媒カラムにおいて有機塩素化合物を分解している間に、他方の触媒カラムでは触媒の処理を行うことができるので、分解反応が進まなくなった場合でも装置を解体することなく、連続的に分解処理を継続できる。   In addition, by performing this decomposition treatment using at least two catalyst columns, the catalyst treatment can be performed in the other catalyst column while the organic chlorine compound is being decomposed in one catalyst column. Even if the decomposition reaction does not proceed, the decomposition process can be continued continuously without disassembling the apparatus.

以下、本発明を実施例および比較例を用いて具体的に説明するが、本発明は以下の実施例にのみ限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely using an Example and a comparative example, this invention is not limited only to a following example.

(PCB分解試験)
4塩化ポリ塩化ビフェニル(KC400)とトリクロロベンゼン(TCB)の混合液(混合比6:4)3.9mlに、水素供与体としてイソプロピルアルコール146.1ml及びアルカリ物質としてKOH5.98g(1.2当量)を添加し、PCB3%処理液を得た。カラムに新品のPd/C(パラジウムを5%担持した0.425〜1.7mmの活性炭)24gを充填し、四国計測工業(株)製の簡易型マイクロ波反応装置(温度制御タイプZMW−024型)によりマイクロ波を照射しながら温度を60℃に維持し、10ml/minの速度で試験油を流通させながら反応させた。反応油中のPCB濃度の経時変化を、DB5MSをキャピラリーカラムとする島津製作所製GC−MS(QP5050A)で分析した。PCB濃度が0.5ppmに到達するまでの時間は8時間であった。
(PCB decomposition test)
To 3.9 ml of a mixed solution of polychlorobiphenyl tetrachloride (KC400) and trichlorobenzene (TCB) (mixing ratio 6: 4), 146.1 ml of isopropyl alcohol as a hydrogen donor and 5.98 g (1.2 equivalents) of an alkaline substance ) Was added to obtain a PCB 3% treatment solution. The column was filled with 24 g of new Pd / C (0.425 to 1.7 mm activated carbon carrying 5% palladium), and a simple microwave reactor (temperature control type ZMW-024) manufactured by Shikoku Keiki Kogyo Co., Ltd. The temperature was maintained at 60 ° C. while irradiating microwaves with a mold, and the reaction was conducted while circulating test oil at a rate of 10 ml / min. The time course of PCB concentration in the reaction oil was analyzed by GC-MS (QP5050A) manufactured by Shimadzu Corporation using DB5MS as a capillary column. The time required for the PCB concentration to reach 0.5 ppm was 8 hours.

さらに上記分解試験を繰り返したところ、3回目の分解試験では触媒に詰まりが生じたため、試験を途中で中止した。   Further, when the above decomposition test was repeated, the catalyst was clogged in the third decomposition test, so the test was stopped halfway.

[実施例1]
(洗浄工程)
上記の分解試験を3回繰り返し、詰まりが生じた5%Pd/C触媒(以下、劣化触媒)を24g採取し、12gずつに分けて以下の方法で洗浄した。
劣化触媒12gにイソプロピルアルコール(IPA)50mlを加え、常温で1分間穏やかに攪拌し、触媒に付着しているPCBを洗浄した。
吸引ろ過でIPAを除去後、触媒にヘキサン50mlを加え、40℃で1分間穏やかに攪拌し、ビフェニルを洗浄した。吸引ろ過でヘキサンを除去後、触媒にアセトン50mlを加え、常温1分間穏やかに攪拌して、触媒に残留するヘキサンをアセトンに置換した。吸引ろ過でアセトンを除去後、純水50mlを加え、常温1分間穏やかに攪拌洗浄する工程を3回繰り返した。吸引ろ過で純水を除去後、80℃で5時間乾燥させた。
これらの操作により再生触媒を11.7g得た。
[Example 1]
(Washing process)
The above decomposition test was repeated three times, and 24 g of 5% Pd / C catalyst (hereinafter referred to as deteriorated catalyst) with clogging was sampled and washed in 12 g increments by the following method.
To 12 g of the deteriorated catalyst, 50 ml of isopropyl alcohol (IPA) was added and gently stirred at room temperature for 1 minute to wash the PCB adhering to the catalyst.
After removing IPA by suction filtration, 50 ml of hexane was added to the catalyst, and gently stirred at 40 ° C. for 1 minute to wash biphenyl. After removing hexane by suction filtration, 50 ml of acetone was added to the catalyst and stirred gently at room temperature for 1 minute to replace the hexane remaining on the catalyst with acetone. After removing acetone by suction filtration, the process of adding 50 ml of pure water and gently stirring and washing at room temperature for 1 minute was repeated 3 times. After removing pure water by suction filtration, it was dried at 80 ° C. for 5 hours.
By these operations, 11.7 g of a regenerated catalyst was obtained.

(PCB分解性能試験)
得られた再生触媒(約24g)のPCB分解性能評価を、前述のPCB分解試験と同様の条件にて行った。その結果、1回目処理液のPCB濃度が0.5ppmになるまでの到達時間は12時間であった。さらに上記分解試験を繰り返したところ、4回目の分解試験では触媒に詰まりが生じたため、試験を途中で中止した。
(PCB decomposition performance test)
Evaluation of PCB decomposition performance of the obtained regenerated catalyst (about 24 g) was performed under the same conditions as in the above PCB decomposition test. As a result, the arrival time until the PCB concentration of the first treatment liquid reached 0.5 ppm was 12 hours. Further, when the above decomposition test was repeated, the catalyst was clogged in the fourth decomposition test, so the test was stopped halfway.

以上の試験結果から、活性低下した触媒を本発明の方法で再生することにより、有機塩素化合物(PCB)の分解試験に再使用可能な程度まで触媒能を復帰させうることがわかった。特に実施例1の有機溶媒と純水を用いた洗浄方法は、新品同等に触媒能を復帰させうることがわかった。   From the above test results, it was found that by regenerating a catalyst having decreased activity by the method of the present invention, the catalytic ability can be restored to the extent that it can be reused in the decomposition test of organochlorine compound (PCB). In particular, it was found that the cleaning method using the organic solvent and pure water in Example 1 can restore the catalytic ability to the same level as that of a new product.

本発明の触媒の処理方法によれば、劣化触媒から新品或いはそれ以上の触媒を得ることができるので、高濃度有機塩素化合物の分解処理に使用することで、各種PCB及びダイオキシン類の分解処理コストを下げ、工業的に利用することを可能にする。   According to the method for treating a catalyst of the present invention, a new or higher catalyst can be obtained from a deteriorated catalyst, so that the cost for decomposing various PCBs and dioxins can be obtained by using them for decomposing high-concentration organochlorine compounds. To make it possible to use industrially.

Claims (8)

有機塩素化合物、アルカリ金属水酸化物及びイソプロピルアルコールの混合液を、触媒カラムに流通し、貴金属を担体に担持させた触媒に接触させて有機塩素化合物を分解する分解処理において、
分解能が低下した触媒の再利用を可能にする触媒の処理方法であって、
分解能が低下した触媒をイソプロピルアルコールで洗浄する工程と、洗浄後の触媒を水で洗浄する工程、を含み、
水洗浄後の触媒を乾燥することを特徴とする触媒の処理方法。
In a decomposition treatment in which a mixed liquid of an organic chlorine compound, an alkali metal hydroxide and isopropyl alcohol is passed through a catalyst column and contacted with a catalyst having a noble metal supported on a carrier to decompose the organic chlorine compound,
A method of treating a catalyst that enables reuse of a catalyst with reduced resolution,
Washing the catalyst with reduced resolution with isopropyl alcohol, and washing the washed catalyst with water,
A method for treating a catalyst, comprising drying the catalyst after washing with water.
イソプロピルアルコール洗浄後の触媒を、炭化水素系溶剤で洗浄する工程を設けた、請求項1に記載の触媒の処理方法。   The method for treating a catalyst according to claim 1, further comprising a step of washing the catalyst after washing with isopropyl alcohol with a hydrocarbon solvent. 炭化水素系溶剤で洗浄した触媒を、水性有機溶剤で置換する工程を設けた、請求項2に記載の触媒の処理方法。   The method for treating a catalyst according to claim 2, further comprising a step of replacing the catalyst washed with the hydrocarbon solvent with an aqueous organic solvent. イソプロピルアルコール、水及び炭化水素系溶剤による洗浄工程では、触媒が崩壊しない程度の洗浄処理を施す、請求項1〜3のいずれかに記載の触媒の処理方法。   The method for treating a catalyst according to any one of claims 1 to 3, wherein in the washing step using isopropyl alcohol, water and a hydrocarbon solvent, a washing treatment is performed to such an extent that the catalyst does not collapse. 洗浄工程における洗浄剤の温度が、室温〜60℃である、請求項1〜4のいずれかに記載の触媒の処理方法。   The processing method of the catalyst in any one of Claims 1-4 whose temperature of the cleaning agent in a washing | cleaning process is room temperature-60 degreeC. 貴金属がパラジウムである、請求項1〜5のいずれかに記載の触媒の処理方法。   The method for treating a catalyst according to any one of claims 1 to 5, wherein the noble metal is palladium. 担体が、炭素、樹脂及びそれらの組合せからなる群より選択されるものである、請求項1〜6のいずれかに記載の触媒の処理方法。   The method for treating a catalyst according to any one of claims 1 to 6, wherein the support is selected from the group consisting of carbon, a resin, and a combination thereof. 有機塩素化合物が、PCB、ダイオキシン類、芳香族塩素化合物及びそれらの2種以上の混合物からなる群から選択される有機塩素化合物である、請求項1〜7のいずれかに記載の触媒の処理方法。   The method for treating a catalyst according to any one of claims 1 to 7, wherein the organic chlorine compound is an organic chlorine compound selected from the group consisting of PCBs, dioxins, aromatic chlorine compounds, and mixtures of two or more thereof. .
JP2007033026A 2007-02-14 2007-02-14 Method for treating catalyst with reduced resolution Expired - Fee Related JP4023816B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007033026A JP4023816B1 (en) 2007-02-14 2007-02-14 Method for treating catalyst with reduced resolution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007033026A JP4023816B1 (en) 2007-02-14 2007-02-14 Method for treating catalyst with reduced resolution

Publications (2)

Publication Number Publication Date
JP4023816B1 JP4023816B1 (en) 2007-12-19
JP2008272584A true JP2008272584A (en) 2008-11-13

Family

ID=38935714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007033026A Expired - Fee Related JP4023816B1 (en) 2007-02-14 2007-02-14 Method for treating catalyst with reduced resolution

Country Status (1)

Country Link
JP (1) JP4023816B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009255072A (en) * 2008-03-28 2009-11-05 Tokyo Electric Power Co Inc:The Method for treating catalyst being lowered in degradation ability
JP2011088038A (en) * 2009-10-20 2011-05-06 Tokyo Electric Power Co Inc:The Catalyst to be used for treating halogenated organic compound
JP2011098253A (en) * 2009-11-04 2011-05-19 Tokyo Electric Power Co Inc:The Method of reactivating degraded catalyst
JP2012125675A (en) * 2010-12-14 2012-07-05 National Institute Of Advanced Industrial Science & Technology Method of preparing supported palladium catalyst and decomposition method of organic halogen compound using the catalyst

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009255072A (en) * 2008-03-28 2009-11-05 Tokyo Electric Power Co Inc:The Method for treating catalyst being lowered in degradation ability
JP2011088038A (en) * 2009-10-20 2011-05-06 Tokyo Electric Power Co Inc:The Catalyst to be used for treating halogenated organic compound
JP2011098253A (en) * 2009-11-04 2011-05-19 Tokyo Electric Power Co Inc:The Method of reactivating degraded catalyst
JP2012125675A (en) * 2010-12-14 2012-07-05 National Institute Of Advanced Industrial Science & Technology Method of preparing supported palladium catalyst and decomposition method of organic halogen compound using the catalyst

Also Published As

Publication number Publication date
JP4023816B1 (en) 2007-12-19

Similar Documents

Publication Publication Date Title
Zhang et al. Destruction of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) by ball milling
Lowry et al. Pd-catalyzed TCE dechlorination in groundwater: Solute effects, biological control, and oxidative catalyst regeneration
JP4023816B1 (en) Method for treating catalyst with reduced resolution
WO2009087994A1 (en) Method for dehalogenating aromatic halide
JP4836087B2 (en) Selective fixing agent and selective fixing method of halogenated aromatic compound contained in medium
Hashmi et al. Chemical remediation and advanced oxidation process of polychlorinated biphenyls in contaminated soils: a review
JP2006142278A (en) Method for detoxifying instrument containing organic halogen compound
JP3966886B2 (en) Method for regenerating dechlorination catalyst
JP4521571B2 (en) Method for treating volatile organic halogen compounds
JP4009607B2 (en) Method for regenerating catalyst and method for decomposing organic halogen compound using the regenerated catalyst
JP5544735B2 (en) Method for treating catalyst with reduced resolution
JP5499685B2 (en) Continuous detoxification treatment apparatus and continuous detoxification treatment system for chlorinated organic chlorine compounds
JP5402537B2 (en) Method for regenerating degraded catalyst
JP3976332B1 (en) Decomposition method of high-concentration organochlorine compounds
JP3969633B2 (en) Method for decomposing halogen-containing organic compounds
JP2006223345A (en) Method of detoxifying pcb-containing waste oil
JP2005253884A (en) Method for decomposition treatment and loop decomposition system for organic halogen compound
JP4963014B2 (en) Decomposition method of organic halogen compounds
JP3969634B2 (en) Method for decomposing halogen-containing organic compounds
JP3641554B2 (en) Organic halogen compound decomposition method and organic halogen compound decomposition apparatus
WO2019097720A1 (en) Regenerating treatment method for catalyst and catalyst regenerating treatment device
JP2001120902A (en) Method for purifying/regenerating waste oil
Strathmann et al. Heterogeneous catalytic reduction for water purification: nanoscale effects on catalytic activity, selectivity, and sustainability
JP2005270388A (en) Method for decomposing organic halogen compound
JP3969632B2 (en) Method for decomposing halogen-containing organic compounds

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20070927

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071001

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20101012

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20111012

LAPS Cancellation because of no payment of annual fees