JP2008268724A - Reflection diffraction polarizer and optical apparatus - Google Patents

Reflection diffraction polarizer and optical apparatus Download PDF

Info

Publication number
JP2008268724A
JP2008268724A JP2007114310A JP2007114310A JP2008268724A JP 2008268724 A JP2008268724 A JP 2008268724A JP 2007114310 A JP2007114310 A JP 2007114310A JP 2007114310 A JP2007114310 A JP 2007114310A JP 2008268724 A JP2008268724 A JP 2008268724A
Authority
JP
Japan
Prior art keywords
light
liquid crystal
polarizer
reflection
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007114310A
Other languages
Japanese (ja)
Other versions
JP5012171B2 (en
JP2008268724A5 (en
Inventor
Hiromasa Sato
弘昌 佐藤
Koji Miyasaka
浩司 宮坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2007114310A priority Critical patent/JP5012171B2/en
Publication of JP2008268724A publication Critical patent/JP2008268724A/en
Publication of JP2008268724A5 publication Critical patent/JP2008268724A5/ja
Application granted granted Critical
Publication of JP5012171B2 publication Critical patent/JP5012171B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Head (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reflection diffraction polarizer, having a function to nearly reflect the light to a side where only the light of the circularly polarized light in a specific rotation direction is made incident in a prescribed frequency band, and to transmit the light of the circularly polarized light different from the rotation direction in the prescribed frequency band. <P>SOLUTION: The reflection diffraction polarizer includes a birefringent film comprising a cholesteric phase liquid crystal, and is such that the thickness direction of the birefringent film and the screw axis of the liquid crystal molecules are parallel; the helical pitch of the liquid crystal molecules of the birefringent film is substantially equal to the wavelength of the incident light; a plurality of grooves of a uniform depth are formed on the surface; and the period of the pitch of the grooves adjacent to each other substantially is equal. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、自然光など偏光状態がランダムな入射光を、特定の偏光状態に変換する偏光子および、光イメージング、光ストレージ、光通信などの特定の偏光に対して作用する光学部品を有する光学装置に関する。   The present invention relates to an optical device having a polarizer that converts incident light having a random polarization state such as natural light into a specific polarization state, and an optical component that acts on the specific polarization such as optical imaging, optical storage, and optical communication. About.

光学装置に用いる光源には、多くの種類の偏光状態を有するものがある。光イメージング分野では、例えば投影型表示装置の光源として用いられるメタルハライドランプなどの白色光源は一般的にはランダムな偏光状態を有している。一方、光ストレージや光通信で用いられる半導体レーザーは直線偏光の光を出射するが、製造ばらつきや使用環境温度変化により、その偏光方向にばらつきや時間的変動を有する場合がある。光イメージング分野で投影型表示装置の画像情報を変調する液晶素子や光ストレージや光通信分野で光線経路の切り替えに用いる偏光ビームスプリッタなどは、入射する光の偏光状態に依存するので、一方向に揃った直線偏光の光を利用する光学系に適している。光の偏光方向を一定にするために光学系内に、特定の偏光のみを透過させる偏光子が用いられており、この偏光子の消光比が高いほど光学系の特性が良くなることから、偏光子の消光比は重要な性能のひとつとされている。   Some light sources used in optical devices have many types of polarization states. In the field of optical imaging, for example, a white light source such as a metal halide lamp used as a light source of a projection display device generally has a random polarization state. On the other hand, semiconductor lasers used in optical storage and optical communication emit linearly polarized light, but may have variations in polarization direction and temporal variations due to manufacturing variations and changes in use environment temperature. Liquid crystal elements that modulate the image information of projection display devices in the field of optical imaging, and polarization beam splitters that are used to switch the light path in the field of optical storage and optical communication depend on the polarization state of the incident light. It is suitable for optical systems that use uniform linearly polarized light. In order to make the polarization direction of light constant, a polarizer that transmits only specific polarized light is used in the optical system. The higher the extinction ratio of this polarizer, the better the characteristics of the optical system. The extinction ratio of the child is regarded as one of the important performances.

従来の偏光子は、光が入射されると特定の偏光方向の光に対して高い吸収能を有する吸収型偏光子が用いられていたが、光の吸収により偏光子自体の温度が上昇し、劣化しやすいという問題があった。また、代表的に用いられている色素系フィルムに関しては、高温、高温高湿条件で劣化が発生しやすいという問題点も合わせて有していた。係る問題を解決する手段として、耐熱性を有する構造複屈折型偏光板を用いることが提案されている(たとえば、特許文献1参照)。また、吸収を用いない偏光子として回折型偏光子が提案されている(たとえば、特許文献2参照)。   Conventional polarizers have used absorption polarizers that have high absorptivity for light in a specific polarization direction when light is incident, but the temperature of the polarizer itself rises due to light absorption, There was a problem that it was easy to deteriorate. In addition, the dye-based film that is typically used also has a problem that it easily deteriorates under high temperature and high temperature and high humidity conditions. As means for solving such a problem, it has been proposed to use a heat-resistant structural birefringent polarizing plate (for example, see Patent Document 1). Further, a diffractive polarizer has been proposed as a polarizer that does not use absorption (see, for example, Patent Document 2).

また、非吸収性コレステリック液晶は、光の偏光状態が液晶分子の螺旋方向と同じ円偏光で螺旋ピッチとほぼ等しい波長の光が螺旋軸に平行して入射されると、一定の帯域の波長において入射する光がほぼ反射する特性を有する。一方、液晶分子の螺旋方向と逆方向の円偏光で入射する光は、ほぼ透過する特性を有する(非特許文献1参照)。   In addition, non-absorbing cholesteric liquid crystals have a constant band of wavelengths when light with the same polarization state as the spiral direction of the liquid crystal molecules and light having a wavelength approximately equal to the spiral pitch is incident parallel to the spiral axis. It has a characteristic that incident light is substantially reflected. On the other hand, light that is incident as circularly polarized light in the direction opposite to the spiral direction of the liquid crystal molecules has a characteristic of almost transmitting (see Non-Patent Document 1).

特開2001−281615号公報JP 2001-281615 A 特開2005−18813号公報JP 2005-18813 A チャンドラカーセル著「液晶の物理」吉岡書店1995年Chandra Carsell's "Physics of Liquid Crystal" Yoshioka Shoten 1995

しかしながら、特許文献1に記載の構造複屈折型偏光板は、光を光軸に対して斜めから入射させる必要があるため、偏光手段を光軸に対して斜めに配置しなければならず、その分のスペースが必要となり、小型化が難しいという問題があった。とくに、投影型表示装置で、全面黒の表示を行う場合は、用いられる液晶パネルから光が出射される側に置かれる検光子の役割を持つ偏光子にも構造複屈折型偏光板を使用する必要があり、上記検光子を光軸に対して斜めに配置しなければならず、ますます小型化が困難となっていた。   However, since the structural birefringent polarizing plate described in Patent Document 1 requires light to be incident obliquely with respect to the optical axis, the polarizing means must be disposed obliquely with respect to the optical axis. Minute space was required, and there was a problem that miniaturization was difficult. In particular, when a black display is displayed on a projection display device, a structural birefringent polarizing plate is also used for a polarizer having the role of an analyzer placed on the side from which light is emitted from the liquid crystal panel used. Therefore, it is necessary to arrange the analyzer obliquely with respect to the optical axis, which makes it difficult to reduce the size.

また、特許文献2に記載の回折型偏光子は、小型化には有利ではあるが使用しない偏光成分が後方へ回折することから、投影型表示装置で高いコントラストを得るには光軸上から十分に離れた回折角となるように設定する必要がある。このため、回折格子構造の格子ピッチを狭くしなければならないという制約があるという問題があった。また、回折した光の光学経路に設置された部品による反射迷光の影響も受けやすく、回折光を遮光する絞り手段なしでは、コントラストが低下しやすいという問題点があった。   In addition, the diffractive polarizer described in Patent Document 2 is advantageous for downsizing, but a polarization component that is not used is diffracted backward, so that it is sufficient from the optical axis to obtain high contrast in a projection display device. It is necessary to set the diffraction angle to be far away from each other. For this reason, there is a problem that there is a restriction that the grating pitch of the diffraction grating structure must be narrowed. In addition, there is a problem that the contrast is likely to be lowered without a diaphragm unit that shields the diffracted light because it is easily affected by reflected stray light from components installed in the optical path of the diffracted light.

また、非特許文献1では、非吸収型コレステリック液晶の光物性に関して記載しているが、偏光子としての具体的な態様について提案はない。   Non-Patent Document 1 describes optical properties of non-absorbing cholesteric liquid crystals, but there is no proposal for a specific mode as a polarizer.

本発明はこのような問題を解決するためになされたもので、安定して高い消光比が得られると共に、小型化され耐久性のある偏光子およびそれを用いた光学装置を提供することを目的とする。   The present invention has been made to solve such a problem, and an object of the present invention is to provide a polarizer that is stable and has a high extinction ratio and is small in size and durable, and an optical device using the same. And

上記目的を達成するため、右回りまたは左回りの円偏光で入射する所定の波長範囲の光のうちいずれか一方の回転方向の光を反射させる反射回折偏光子であって、反射回折偏光子は屈折率異方性を有するコレステリック相液晶からなる複屈折膜を有していて、前記複屈折膜の厚さ方向と前記コレステリック相液晶の液晶分子の螺旋軸とが平行で前記液晶分子の厚さ方向の螺旋ピッチが一様となっており、前記複屈折膜が、一方の表面に実質的に等しい幅と深さを有する複数の溝の凹凸の回折格子構造を有し、隣り合う前記溝の格子ピッチが一定の周期である反射回折偏光子を提供する。   In order to achieve the above object, a reflective diffractive polarizer that reflects light in one of the rotation directions of light in a predetermined wavelength range that is incident as clockwise or counterclockwise circularly polarized light, the reflective diffractive polarizer is A birefringent film composed of cholesteric phase liquid crystal having refractive index anisotropy, wherein the thickness direction of the birefringent film is parallel to the helical axis of the liquid crystal molecules of the cholesteric phase liquid crystal and the thickness of the liquid crystal molecules The birefringent film has a diffractive grating structure of a plurality of grooves having substantially the same width and depth on one surface, and the birefringent film has a uniform spiral pitch in the direction. A reflection diffractive polarizer having a constant grating pitch is provided.

この構成によれば、前記コレステリック相液晶の螺旋の方向と、同じ回転方向を有する円偏光の光を反射回折し、逆の回転方向を有する円偏光の光を直進透過する反射回折偏光子を実現できる。   According to this configuration, a reflective diffractive polarizer that reflects and diffracts circularly polarized light having the same rotational direction as that of the cholesteric phase liquid crystal and transmits circularly polarized light having the opposite rotational direction is realized. it can.

また、上記目的を達成するため、前記複屈折膜がコレステリック相高分子液晶からなる上記に記載の反射回折偏光子を提供する。   In order to achieve the above object, there is provided the reflective diffractive polarizer according to the above, wherein the birefringent film comprises a cholesteric phase polymer liquid crystal.

この構成によれば、耐久性が高く信頼性のある複屈折膜による反射回折偏光子を実現できる。   According to this configuration, it is possible to realize a reflective diffractive polarizer using a birefringent film having high durability and reliability.

また、上記目的を達成するため、前記凹凸を前記複屈折膜の異常光屈折率と常光屈折率との間の屈折率を有する等方性材料で充填平坦化されている上記に記載の反射回折偏光子を提供する。   Further, in order to achieve the above object, the reflection diffraction according to the above, wherein the unevenness is filled and flattened with an isotropic material having a refractive index between the extraordinary refractive index and the ordinary refractive index of the birefringent film. A polarizer is provided.

この構成によれば、前記コレステリック相液晶の液晶分子の螺旋の方向と、逆の回転方向を有する所定の波長の円偏光の光が入射すると、複屈折膜の表面に形成された凹凸の位相差が小さくなることから高い透過率が実現でき、入射する円偏光の光の回転方向によって高い消光比の反射回折偏光子を実現できる。   According to this configuration, when circularly polarized light having a predetermined wavelength having a rotation direction opposite to the spiral direction of the liquid crystal molecules of the cholesteric phase liquid crystal is incident, the phase difference of the unevenness formed on the surface of the birefringent film Therefore, a high transmittance can be realized, and a reflection diffractive polarizer having a high extinction ratio can be realized depending on the rotation direction of incident circularly polarized light.

また、上記目的を達成するため、前記複屈折膜を2枚以上含む上記に記載の反射回折偏光子を提供する。   Moreover, in order to achieve the said objective, the reflection diffraction polarizer as described in the above containing two or more of the birefringent films is provided.

この構成によれば、複屈折膜の層が単層となる反射回折偏光子と比較してより高い消光比が実現できる。   According to this configuration, a higher extinction ratio can be realized as compared with a reflective diffraction polarizer in which the birefringent film layer is a single layer.

また、上記目的を達成するため、2枚以上の前記複屈折膜の螺旋ピッチが互いに異なる上記に記載の反射回折偏光子を提供する。   In order to achieve the above object, there is provided the reflective diffraction polarizer according to the above, wherein the two or more birefringent films have different helical pitches.

この構成によれば、反射波長帯域特性が異なるコレステリック相液晶を積層することで、高い消光比が得られる光の波長範囲を拡大したり、複数の波長に対して反射回折させるなどの機能を実現できる。   According to this configuration, by stacking cholesteric phase liquid crystals with different reflection wavelength band characteristics, functions such as expanding the wavelength range of light that can provide a high extinction ratio and reflecting and diffracting multiple wavelengths are realized. it can.

また、上記目的を達成するため、入射する光の波長λに対して位相差が(0.25+m)λとなる1/4波長板を含む上記に記載の反射回折素子を提供する(mは整数を示す)。   In order to achieve the above object, the reflection diffraction element described above including a quarter-wave plate having a phase difference of (0.25 + m) λ with respect to the wavelength λ of incident light (m is an integer) is provided. Showing).

この構成によれば、反射回折偏光子を直進透過する直線偏光が、1/4波長板によっていずれかの回転方向を有する円偏光の光に変換され、複屈折層の液晶分子の回転方向と同じ円偏光の光が選択的に反射させることができる。   According to this configuration, the linearly polarized light that travels straight through the reflective diffractive polarizer is converted into circularly polarized light having one of the rotation directions by the quarter-wave plate, and is the same as the rotation direction of the liquid crystal molecules in the birefringent layer. Circularly polarized light can be selectively reflected.

また、上記目的を達成するために、前記複屈折膜が、進相軸または遅相軸が直交されて配置された2枚の前記1/4波長板に挟まれている上記に記載の反射回折偏光子を提供する。   In order to achieve the above object, the birefringent film is sandwiched between two quarter-wave plates arranged with the fast axis or slow axis orthogonal to each other, and the reflection diffraction as described above A polarizer is provided.

この構成によれば部品を追加することなく、入射するA方向の振動方向を有する直線偏光の光を、液晶分子の螺旋の方向と同じでもっとも高い反射回折効率が得られる回転方向の円偏光の光に変換することができる。一方、A方向と直行する振動方向を有するB方向の直線偏光の光を、液晶分子の螺旋の方向と逆方向でもっとも高い透過率が得られる回転方向の円偏光の光に変換することができる。このことから、入射する直線偏光の光に対しても反射回折偏光子として作用させることができる。   According to this configuration, without adding parts, the incident linearly polarized light having the vibration direction in the A direction is the same as the direction of the spiral of the liquid crystal molecules, and the circularly polarized light in the rotational direction can obtain the highest reflection diffraction efficiency. Can be converted to light. On the other hand, linearly polarized light in the B direction having a vibration direction orthogonal to the A direction can be converted into circularly polarized light in the rotational direction that provides the highest transmittance in the direction opposite to the spiral direction of the liquid crystal molecules. . From this, it can be made to act as a reflection diffraction polarizer also to the incident linearly polarized light.

また、上記目的を達成するために、光源と、前記光源からの可視光を複数の色の光に分離する色分離手段と、表示する画像に応じて前記複数の色の光を変調する複数の液晶パネルと、前記色分離手段が分離した前記複数の色の光を対応する前記複数の液晶パネルに導く複数の反射ミラーと、前記光源から前記複数の液晶パネルまでの光路上に配置され光の偏光状態を変える複数の第1の偏光手段と、前記複数の液晶パネルの光を透過する側に配置され光の偏光状態を変える複数の第2の偏光手段と、前記複数の第2の偏光手段を透過する光を合成する光合成手段と、前記光合成手段によって合成された光を拡大投影する投影手段とを備えた投射型表示装置において、前記複数の第1の偏光手段および前記複数の第2の偏光手段のうちの少なくとも一方の偏光手段が、上記に記載の反射回折偏光子によって構成されていることを特徴とする投射型表示装置を提供する。   In order to achieve the above object, a light source, a color separation unit that separates visible light from the light source into light of a plurality of colors, and a plurality of light that modulates the light of the plurality of colors according to an image to be displayed. A liquid crystal panel, a plurality of reflection mirrors for guiding the light of the plurality of colors separated by the color separation means to the corresponding liquid crystal panel, and an optical path disposed on the optical path from the light source to the plurality of liquid crystal panels. A plurality of first polarization means for changing the polarization state, a plurality of second polarization means for changing the polarization state of light disposed on the light transmitting side of the plurality of liquid crystal panels, and the plurality of second polarization means A projection-type display device comprising: a light combining unit that combines light transmitted through the light combining unit; and a projection unit that magnifies and projects the light combined by the light combining unit. The plurality of first polarization units and the plurality of second units Less of polarization means One polarization means also provides a projection display device characterized by being constituted by a reflective diffraction polarizer described above.

この構成によれば、使用しない偏光成分の光は、反射回折偏光子の後方に反射回折することから、反射回折偏光子の前方方向には迷光成分の光が少なく、入射光軸方向の正反射(0次回折)する光も少ない、コンパクトでコントラストが高い光学装置を反射回折偏光子表面の回折格子構造の格子ピッチの制約なく高い生産性で実現できる。後方とは、光が入射する膜面に対して面より光の入射側へ向かう方向であり、対して、前方とは、光が入射する膜面に対して反対側の面より光の入射側と反対方向(出射側)へ向かう方向と定義する。   According to this configuration, light of a polarization component that is not used is reflected and diffracted behind the reflection diffraction polarizer, so that there is little stray light component in the forward direction of the reflection diffraction polarizer, and regular reflection in the incident optical axis direction. A compact and high-contrast optical device with little (0-order diffraction) light can be realized with high productivity without any restrictions on the grating pitch of the diffraction grating structure on the surface of the reflective diffraction polarizer. The rear is the direction from the surface toward the light incident side with respect to the film surface on which light is incident, whereas the front is the light incident side from the surface opposite to the film surface on which light is incident. And the direction toward the opposite direction (outgoing side).

また、上記目的を達成するため、光源と、前記光源からの出射光を光記録媒体上に集光させる対物レンズと、集光されて前記光記録媒体によって反射された反射光を前記出射光の光路とは異なる光路へ偏向分離する偏光ビームスプリッタと、前記偏光ビームスプリッタに入射する前記光源からの出射光から前記光記録媒体と異なる光路へ分離されるモニタ光を受光するモニタ光検出器と、偏向分離された前記反射光を検出する光検出器と、を備える光ヘッド装置において、前記光源と前記光検出器との間の光路中または、前記偏光ビームスプリッタと前記モニタ光検出器との間の光路中に、上記に記載の反射回折偏光子が設置されていることを特徴とする光ヘッド装置を提供する。   In order to achieve the above object, a light source, an objective lens that condenses the light emitted from the light source on the optical recording medium, and reflected light that is collected and reflected by the optical recording medium A polarization beam splitter that deflects and separates into an optical path different from the optical path, and a monitor photodetector that receives monitor light that is separated from the light emitted from the light source incident on the polarization beam splitter into an optical path different from the optical recording medium; An optical head device comprising: a photodetector for detecting the reflected light that has been deflected and separated; in an optical path between the light source and the photodetector, or between the polarization beam splitter and the monitor photodetector. An optical head device is provided in which the reflection diffraction polarizer described above is installed in the optical path.

この構成によれば、光源である半導体レーザーの製品ばらつきや環境温度変化により生じる不要な偏光成分は、後方に反射回折する。したがって、迷光となる光が前方に進む成分が少なく、入射光軸方向に正反射(0次回折)する光も少ないため精度よく情報の読み出し、書き込みができる。また、反射回折偏光子表面の回折格子構造の格子ピッチの制約なく、コンパクトで安定性の高い光学装置を高い生産性で実現できる。   According to this configuration, unnecessary polarization components generated due to product variations of the semiconductor laser as a light source and environmental temperature changes are reflected and diffracted backward. Therefore, there are few components that stray light travels forward, and there is little light that is regularly reflected (0th order diffraction) in the direction of the incident optical axis, so that information can be read and written with high accuracy. In addition, a compact and highly stable optical device can be realized with high productivity without restriction of the grating pitch of the diffraction grating structure on the surface of the reflective diffraction polarizer.

本発明は、コレステリック相液晶の液晶分子の螺旋軸方向が厚さ方向に平行で一様である複屈折膜を有し、前記複屈折膜の一方の表面に実質的に等しい幅と深さを有する複数の溝の凹凸の回折格子構造を有し、隣り合う前記溝の格子ピッチが一定の周期であることを特徴とする反射回折偏光子および反射回折偏光子を用いた光学装置を提供することができるものである。   The present invention has a birefringent film in which the spiral axis direction of the liquid crystal molecules of the cholesteric phase liquid crystal is parallel to and uniform in the thickness direction, and has substantially the same width and depth on one surface of the birefringent film. Provided are a reflection diffraction polarizer having an uneven diffraction grating structure of a plurality of grooves, and a grating pitch of adjacent grooves having a constant period, and an optical device using the reflection diffraction polarizer It is something that can be done.

以下、本発明の実施の形態について図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1の実施の態様)
図1は、本実施の形態に係る反射回折偏光子10の概念的な構成を示す図である。図1(a)において、反射回折偏光子10は複屈折材料として、重合部位を有する液晶とカイラル材からなるコレステリック相液晶を重合・高分子化した高分子液晶膜を用いている。図1(a)に示されるように、透明基板11上に形成された図示しないポリイミド膜を塗布・焼成し、ラビング処理を施して配向膜とする。重合部位を有するコレステリック相液晶モノマーを、配向膜上に塗布した後、紫外線照射により重合固定化しコレステリック相高分子液晶膜12とする。コレステリック液晶相は重合固定化しなくても液晶分子の螺旋軸が厚さ方向に平行で一定のピッチで螺旋していれば同じ効果が得られるが、重合固定化すると信頼性が向上し好ましい。
(First Embodiment)
FIG. 1 is a diagram illustrating a conceptual configuration of a reflective diffraction polarizer 10 according to the present embodiment. In FIG. 1A, the reflective diffractive polarizer 10 uses, as a birefringent material, a polymer liquid crystal film obtained by polymerizing and polymerizing a cholesteric phase liquid crystal composed of a liquid crystal having a polymerization site and a chiral material. As shown in FIG. 1A, a polyimide film (not shown) formed on the transparent substrate 11 is applied and baked, and a rubbing process is performed to form an alignment film. A cholesteric phase liquid crystal monomer having a polymerization site is applied onto the alignment film, and then polymerized and fixed by ultraviolet irradiation to form a cholesteric phase polymer liquid crystal film 12. Even if the cholesteric liquid crystal phase is not polymerized and fixed, the same effect can be obtained if the helical axes of the liquid crystal molecules are spiraled at a constant pitch parallel to the thickness direction.

コレステリック相高分子液晶膜12の表面には、深さと幅が等しい複数の溝を有する凹凸13が形成されている。格子ピッチは隣り合う溝の凹部の中心点間の最短距離である。凹凸13は、たとえばフォトリソグラフィープロセスで形成することが可能である。凹凸13は、コレステリック相高分子液晶12の螺旋の方向と逆の回転方向となる円偏光の光が螺旋軸と平行に入射するときの屈折率と略等しい等方性材料14で充填されており、対向面が透明基板15と接着されている。   On the surface of the cholesteric phase polymer liquid crystal film 12, irregularities 13 having a plurality of grooves having the same depth and width are formed. The lattice pitch is the shortest distance between the center points of the recesses of adjacent grooves. The unevenness 13 can be formed by, for example, a photolithography process. The unevenness 13 is filled with an isotropic material 14 having a refractive index substantially equal to the refractive index when circularly polarized light having a rotation direction opposite to the spiral direction of the cholesteric phase polymer liquid crystal 12 is incident in parallel to the spiral axis. The opposing surface is bonded to the transparent substrate 15.

コレステリック相液晶は、螺旋ピッチPが入射光の波長λとコレステリック液晶相の屈折率nとの積と同程度の場合、螺旋軸方向と平行に入射する光のうち、液晶分子のねじれ方向と同じ回転方向となる円偏光がほぼ反射され、逆向きの回転方向となる円偏光はほぼ透過する円偏光依存性を有する。この反射特性を示す波長帯域の中心波長λは、螺旋ピッチをP、液晶の常光屈折率をn、異常光屈折率をnとすると(1)式の関係で示される。また、反射帯域幅Δλは、(2)式の関係で示される。また、以下(λ±Δλ)を反射波長帯域と定義する。 A cholesteric phase liquid crystal is the same as the twist direction of liquid crystal molecules in light incident parallel to the helical axis direction when the helical pitch P is about the same as the product of the wavelength λ of incident light and the refractive index n of the cholesteric liquid crystal phase. The circularly polarized light in the rotational direction is substantially reflected, and the circularly polarized light in the reverse rotational direction has a circular polarization dependency that is substantially transmitted. Central wavelength lambda 0 of the wavelength band showing the reflection characteristic, the helical pitch P, and ordinary refractive index of the liquid crystal n o, shown the extraordinary refractive index in relation to when the n e (1) formula. Further, the reflection bandwidth Δλ is expressed by the relationship of the expression (2). Hereinafter, (λ 0 ± Δλ) is defined as a reflection wavelength band.

Figure 2008268724
Figure 2008268724

このことから、反射波長帯域の光が、液晶分子の螺旋軸方向と平行で液晶分子のねじれ方向と同じ回転方向となる円偏光である場合、コレステリック相高分子液晶膜12は反射膜として作用する。反射波長帯域の反射率は、コレステリック相高分子液晶膜12内部の螺旋ピッチ数に依存する。螺旋ピッチ数は液晶分子の回転数で表す。略10回転以上の螺旋ピッチ数では膜厚に依存せず反射波長帯域でほぼ一様に高い反射率を示す。図2(a)に、例えば中心波長λが約455nmで反射波長帯域幅Δλが約70nmである厚さ4.5μmのコレステリック相高分子液晶膜に、液晶分子のねじれ方向と同じ回転方向となる円偏光の光が螺旋軸と平行に入射するときの反射スペクトル計算値を示す。これより、反射波長帯域では、高い反射率が得られることが確認できる。 From this, when the light in the reflected wavelength band is circularly polarized light that is parallel to the spiral axis direction of the liquid crystal molecules and has the same rotational direction as the twist direction of the liquid crystal molecules, the cholesteric phase polymer liquid crystal film 12 acts as a reflective film. . The reflectance in the reflection wavelength band depends on the number of helical pitches in the cholesteric phase polymer liquid crystal film 12. The number of helical pitches is represented by the number of rotations of liquid crystal molecules. A spiral pitch number of about 10 revolutions or more shows a high reflectance almost uniformly in the reflection wavelength band without depending on the film thickness. In FIG. 2A, for example, a cholesteric phase polymer liquid crystal film having a thickness of 4.5 μm with a center wavelength λ 0 of about 455 nm and a reflection wavelength bandwidth Δλ of about 70 nm is provided with the same rotation direction as the twist direction of the liquid crystal molecules The calculated reflection spectrum when circularly polarized light is incident parallel to the helical axis is shown. From this, it can be confirmed that a high reflectance is obtained in the reflection wavelength band.

前記コレステリック相高分子液晶膜の表面に形成された周期的な凹凸13の深さをdとし、凹凸を充填する等方性材料14の屈折率をnとして、波長λの光が入射するとする。このとき(3)式の関係を満たす場合、凹凸が作用して全回折の特性を示し、直進反射光量が略ゼロとなる。   It is assumed that light having a wavelength λ is incident, where d is the depth of the periodic unevenness 13 formed on the surface of the cholesteric phase polymer liquid crystal film, and n is the refractive index of the isotropic material 14 filling the unevenness. At this time, when the relationship of the expression (3) is satisfied, the unevenness acts to show the characteristics of total diffraction, and the amount of linearly reflected light becomes substantially zero.

Figure 2008268724
Figure 2008268724

これに対して、液晶のねじれ方向と逆の回転方向となる円偏光の光が入射される場合、反射波長帯域が存在しないためコレステリック相高分子膜12を全透過する。さらに、凹凸13と凹凸を充填する等方性材料14の屈折率が略等しいため、回折も発生しない。図2(b)に、等方性材料14屈折率nが約1.7、コレステリック相液晶膜表面の凹凸の深さdが約67nmとする反射回折偏光子の反射0次回折効率を示す。455nmの波長を中心に0次以外に回折され、0次反射光量が抑制されることが確認できる。   On the other hand, when circularly polarized light having a rotation direction opposite to the twist direction of the liquid crystal is incident, since there is no reflection wavelength band, the cholesteric phase polymer film 12 is totally transmitted. Furthermore, since the refractive index of the unevenness 13 and the isotropic material 14 filling the unevenness are substantially equal, diffraction does not occur. FIG. 2B shows the reflection zero-order diffraction efficiency of the reflective diffraction polarizer in which the isotropic material 14 has a refractive index n of about 1.7 and a depth d of irregularities on the surface of the cholesteric phase liquid crystal film of about 67 nm. It can be confirmed that the light is diffracted to other than the 0th order around the wavelength of 455 nm, and the 0th order reflected light amount is suppressed.

図2(a)および図2(b)で示すように、液晶分子のねじれ方向と同じ回転方向となる円偏光の光が液晶分子の螺旋軸と平行に入射されると高い反射率および低い反射0次回折効率が得られる。一方、液晶分子のねじれ方向と逆の回転方向となる円偏光の光が液晶分子の螺旋軸と平行に入射されると高い透過率および無回折特性を示すことから、本発明の反射型偏光子はコレステリック相高分子液晶の反射波長帯域の波長の光において、偏光子として機能する。例えば、図1(b)に示すように、液晶分子のねじれ方向と同じ回転方向をとなる第1の円偏光21の光は、ほぼ0次以外で反射回折し、液晶分子のねじれ方向と逆の回転方向となる第2の円偏光22の光はほぼ透過する。したがって、入射する光の偏光状態によって高い消光比を持つ反射回折型偏光子として機能する。   As shown in FIGS. 2A and 2B, when circularly polarized light having the same rotational direction as the twist direction of the liquid crystal molecules is incident in parallel to the spiral axis of the liquid crystal molecules, high reflectance and low reflection are obtained. Zero order diffraction efficiency is obtained. On the other hand, when circularly polarized light having a rotation direction opposite to the twist direction of the liquid crystal molecules is incident in parallel to the spiral axis of the liquid crystal molecules, it exhibits high transmittance and non-diffractive characteristics. Functions as a polarizer in light having a wavelength in the reflection wavelength band of the cholesteric phase polymer liquid crystal. For example, as shown in FIG. 1B, the light of the first circularly polarized light 21 having the same rotational direction as the twisted direction of the liquid crystal molecules is reflected and diffracted at almost other than the 0th order, and is opposite to the twisted direction of the liquid crystal molecules. The light of the second circularly polarized light 22 in the rotation direction is substantially transmitted. Therefore, it functions as a reflection diffraction type polarizer having a high extinction ratio depending on the polarization state of incident light.

選択反射波長帯域の中心波長λと反射波長帯域幅Δλは、本計算例に限定されるのものでなく、使用する液晶材料やカイラル材およびその混合比により任意に設定が可能である。また、コレステリック相高分子液晶膜の設計上、凹凸の凹みの深さを最適化することで、偏光子として作用させる任意の中心波長および反射波長帯域幅を設定することが可能である。 The center wavelength λ 0 and the reflection wavelength bandwidth Δλ of the selective reflection wavelength band are not limited to those in this calculation example, and can be arbitrarily set depending on the liquid crystal material or chiral material used and the mixing ratio thereof. In addition, by designing the cholesteric phase polymer liquid crystal film, it is possible to set an arbitrary center wavelength and reflection wavelength bandwidth to act as a polarizer by optimizing the depth of the concave and convex portions.

また、本発明の機能は、図2(a)に示す反射率特性と図2(b)に示す反射0次回折特性の複合効果によるものであり、反射波長帯域に含まれない波長では、偏光状態に関わらず高い透過率を示し、偏光子としては機能しない。したがって、液晶分子のねじれ方向と同じ回転方向となる円偏光の光に対して、透過または反射の波長選択性も有する反射回折型偏光子として機能させることも可能である。   The function of the present invention is based on the combined effect of the reflectance characteristic shown in FIG. 2A and the reflection zero-order diffraction characteristic shown in FIG. 2B, and is polarized at wavelengths not included in the reflection wavelength band. It shows high transmittance regardless of the state and does not function as a polarizer. Therefore, it is possible to function as a reflection diffraction type polarizer having wavelength selectivity of transmission or reflection with respect to circularly polarized light having the same rotational direction as the twist direction of the liquid crystal molecules.

反射回折偏光子機能となるコレステリック相高分子液晶膜と等方性媒体との境界部が実効的に周期的な凹凸を有していればよく、あらかじめ作製した周期的な凹凸を有する基板の上にコレステリック相高分子液晶膜を成膜しても同様の効果が得られる。この場合、透明基板そのものに周期的な凹凸に加工してもよいし、透明基板上に成膜された等方性材料に周期的な凹凸に加工してもよい。等方性材料としては、たとえばアクリル系樹脂、エポキシ系樹脂、ポリイミド樹脂などの有機材料や、SiO、SiON、TiO、Ta、などの無機材料膜、そしてこれらから形成される多層膜などで構成してもよい。 The boundary portion between the cholesteric phase polymer liquid crystal film serving as a reflection diffraction polarizer and the isotropic medium only needs to have effective periodic unevenness, and the surface of the substrate having the periodic unevenness prepared in advance is sufficient. The same effect can be obtained by forming a cholesteric phase polymer liquid crystal film. In this case, the transparent substrate itself may be processed into periodic unevenness, or the isotropic material formed on the transparent substrate may be processed into periodic unevenness. Examples of isotropic materials include organic materials such as acrylic resins, epoxy resins, and polyimide resins, inorganic material films such as SiO 2 , SiON, TiO 2 , and Ta 2 O 5 , and multilayers formed from these materials. You may comprise with a film | membrane etc.

また、コレステリック相高分子液晶膜と接する等方性材料の屈折率は、液晶分子の螺旋方向と逆の回転方向の円偏光に対する屈折率と略等しいと高い消光比を得られ好ましい。具体的には、屈折率が1.5〜1.7の範囲の等方性材料が好ましく、1.55〜1.65の範囲であれば、さらに高いコントラストが得られるのでより好ましい。   In addition, it is preferable that the refractive index of the isotropic material in contact with the cholesteric phase polymer liquid crystal film is approximately equal to the refractive index with respect to the circularly polarized light in the rotation direction opposite to the spiral direction of the liquid crystal molecules because a high extinction ratio can be obtained. Specifically, an isotropic material having a refractive index in the range of 1.5 to 1.7 is preferable, and a range of 1.55 to 1.65 is more preferable because higher contrast can be obtained.

(第2の実施の態様)
図3は、本実施の形態に係る反射回折偏光子30の概念的な構成を示す図である。第1の実施の態様と比較して複層のコレステリック相高分子液晶層が配置されている点が異なる。図3(a)に示されるように、反射回折偏光子30は、第1の実施の態様と同様に透明基板31上に成膜された第1のコレステリック相高分子液晶膜32の表面に周期的な凹凸33を形成し、周期的な凹凸33は、コレステリック相高分子液晶の螺旋の方向と逆の回転方向となる円偏光の光が螺旋軸と平行に入射するときの屈折率と略等しい等方性材料34で充填されており、対向面が透明基板35と接着されている。
(Second Embodiment)
FIG. 3 is a diagram illustrating a conceptual configuration of the reflective diffraction polarizer 30 according to the present embodiment. The difference from the first embodiment is that a multilayer cholesteric phase polymer liquid crystal layer is disposed. As shown in FIG. 3A, the reflective diffractive polarizer 30 has a period on the surface of the first cholesteric phase polymer liquid crystal film 32 formed on the transparent substrate 31 as in the first embodiment. The periodic unevenness 33 is formed, and the periodic unevenness 33 is substantially equal to the refractive index when circularly polarized light having a rotation direction opposite to the spiral direction of the cholesteric phase polymer liquid crystal is incident in parallel to the spiral axis. It is filled with an isotropic material 34, and the opposite surface is bonded to the transparent substrate 35.

同様に第1のコレステリック相液晶と同じ螺旋の方向を有し、螺旋ピッチの異なる第2のコレステリック相高分子液晶膜36の表面に周期的な凹凸37を形成し、周期的な凹凸37が液晶分子の、螺旋軸の回転方向と逆の回転方向となる円偏光の光の屈折率と略等しい等方性材料38で充填されており、対向面が透明基板39と接着されている。これら2層のコレステリック相高分子液晶膜を積層して反射回折偏光子30としている。   Similarly, periodic irregularities 37 are formed on the surface of the second cholesteric phase polymer liquid crystal film 36 having the same spiral direction as the first cholesteric phase liquid crystal and having a different helical pitch. The molecule is filled with an isotropic material 38 that is substantially equal to the refractive index of circularly polarized light that has a rotational direction opposite to the rotational direction of the helical axis, and the opposite surface is bonded to the transparent substrate 39. These two cholesteric phase polymer liquid crystal films are laminated to form a reflective diffraction polarizer 30.

図4(a)に、中心波長λが約420nmで反射波長帯域幅Δλが約65nmである厚さ4.5μmのコレステリック相高分子液晶膜に、液晶分子のねじれ方向と同じ回転方向となる円偏光の光の反射スペクトル計算値を実線で示す。このときの反射波長帯域を第1反射波長帯域とする。同様に中心波長λが約490nmで反射波長帯域幅Δλが約75nmである厚さ4.5μmのコレステリック相高分子液晶膜に、液晶分子のねじれ方向と同じ回転方向となる円偏光の光の反射スペクトル計算値を破線で示す。このときの反射波長帯域を第2反射波長帯域とする。図3のように2層のコレステリック層高分子液晶を積層することにより約390nm〜525nmの波長の光に対して連続する反射波長帯域が得られることが確認できる。 In FIG. 4A, a cholesteric phase polymer liquid crystal film having a thickness of 4.5 μm with a center wavelength λ 0 of about 420 nm and a reflection wavelength bandwidth Δλ of about 65 nm has the same rotational direction as the twist direction of the liquid crystal molecules. The reflection spectrum calculation value of the circularly polarized light is shown by a solid line. The reflection wavelength band at this time is defined as a first reflection wavelength band. Similarly, circularly polarized light having the same rotational direction as the twist direction of the liquid crystal molecules is applied to a cholesteric phase polymer liquid crystal film having a thickness of 4.5 μm with a center wavelength λ 0 of about 490 nm and a reflection wavelength bandwidth Δλ of about 75 nm. The calculated reflection spectrum is indicated by a broken line. The reflection wavelength band at this time is defined as a second reflection wavelength band. It can be confirmed that a continuous reflection wavelength band can be obtained for light having a wavelength of about 390 nm to 525 nm by laminating two cholesteric layer polymer liquid crystals as shown in FIG.

図4(b)に、等方性材料の屈折率nが約1.7、第1反射波長帯域に対応する周期的な凹凸の深さdが約61nmの反射回折偏光子とする反射0次回折効率をのスペクトル計算値を実線で示す。また。第2反射波長帯域に対応する周期的な凹凸の深さdが約72nmの反射回折偏光子とする反射0次回折効率のスペクトル計算値を破線で示す。これらの計算値より、第1反射波長帯域では420nmの波長、第2反射波長帯域では490nmの波長を中心に0次以外に回折され、0次反射光量が抑制されることが確認できる。   FIG. 4 (b) shows a reflection diffraction polarizer in which the refractive index n of the isotropic material is about 1.7 and the periodic unevenness depth d corresponding to the first reflection wavelength band is about 61 nm. The calculated spectrum of the folding efficiency is shown by a solid line. Also. A spectral calculation value of the reflection zero-order diffraction efficiency for a reflection diffraction polarizer having a periodic unevenness depth d corresponding to the second reflection wavelength band of about 72 nm is indicated by a broken line. From these calculated values, it can be confirmed that the first reflection wavelength band is diffracted to other than the 0th order around the wavelength of 420 nm and the second reflection wavelength band is 490 nm, and the 0th order reflected light amount is suppressed.

図4(a)および図4(b)で示すように、液晶分子のねじれ方向と同じ回転方向となる円偏光の光が液晶分子の螺旋軸と平行に入射されると第1反射波長帯域と第2反射波長帯域の広い範囲の波長で、高い反射率および低い0次回折効率が得られる。一方、液晶のねじれ方向と逆の回転方向となる円偏光の光が液晶分子の螺旋軸と平行に入射されると高い透過率および無回折特性を示すことから、本発明の反射型偏光子は第1反射波長帯域と第2の反射波長帯域からなる広い範囲の波長において、偏光子として機能する。   As shown in FIGS. 4A and 4B, when circularly polarized light having the same rotational direction as the twist direction of the liquid crystal molecules is incident parallel to the spiral axis of the liquid crystal molecules, the first reflection wavelength band High reflectivity and low zero-order diffraction efficiency are obtained at a wide range of wavelengths in the second reflection wavelength band. On the other hand, when the circularly polarized light having the rotation direction opposite to the twist direction of the liquid crystal is incident in parallel with the spiral axis of the liquid crystal molecule, it exhibits high transmittance and non-diffractive characteristics. It functions as a polarizer in a wide range of wavelengths composed of the first reflection wavelength band and the second reflection wavelength band.

例えば、図3(b)に示すようにコレステリック相高分子液晶膜36、32を、それぞれ図4(a)、図4(b)に示す第1反射波長帯域および第2反射波長帯域が反射波長帯域となるコレステリック相高分子液晶膜を積層する。この場合、液晶分子のねじれ方向と同じ回転方向となる円偏光の光が入射すると、第1反射波長帯域の円偏光41の光は、コレステリック相高分子液晶膜36表面に形成された周期的な凹凸、第2反射波長帯域の円偏光42の光は、コレステリック相高分子液晶膜32表面に形成された周期的な凹凸で、それぞれの光がほぼ反射回折される。一方、液晶分子のねじれ方向と逆の回転方向となる円偏光の光が入射すると、光はほぼ透過する。したがって、入射する光の偏光状態によって高い消光比を持つ反射回折偏光子として機能する。   For example, as shown in FIG. 3 (b), the cholesteric phase polymer liquid crystal films 36 and 32 have a reflection wavelength of the first reflection wavelength band and the second reflection wavelength band shown in FIGS. 4 (a) and 4 (b), respectively. A cholesteric phase polymer liquid crystal film to be a band is laminated. In this case, when circularly polarized light having the same rotational direction as the twist direction of the liquid crystal molecules is incident, the light of the circularly polarized light 41 in the first reflection wavelength band is periodically formed on the surface of the cholesteric phase polymer liquid crystal film 36. The light of the circularly polarized light 42 of the unevenness and the second reflection wavelength band is a periodic unevenness formed on the surface of the cholesteric phase polymer liquid crystal film 32, and each light is substantially reflected and diffracted. On the other hand, when circularly polarized light having a rotation direction opposite to the twist direction of the liquid crystal molecules is incident, the light is almost transmitted. Therefore, it functions as a reflection diffraction polarizer having a high extinction ratio depending on the polarization state of incident light.

(第3の実施の態様)
図5は、本実施の形態に係る反射回折偏光子50の概念的な構成を示す図である。第1の実施の態様と比較してコレステリック相高分子液晶層が2枚の位相差板に挟まれた構成となっている点が異なる。図5(a)に示すように、反射回折偏光子50は、透明基板51上に成膜されたコレステリック相高分子液晶膜52の表面に周期的な凹凸53を形成する。周期的な凹凸53は、コレステリック相高分子液晶の螺旋の方向と逆の回転方向となる円偏光の光が螺旋軸と平行に入射するときの屈折率と略等しい等方性材料54で充填されており、対向面が透明基板55と接着されている。さらに図示しない接着層を第1の位相差板56および第2の位相差板57の上下面に設け、透明基板58および59に接着積層した構成である。
(Third embodiment)
FIG. 5 is a diagram showing a conceptual configuration of the reflective diffraction polarizer 50 according to the present embodiment. Compared to the first embodiment, the difference is that the cholesteric polymer liquid crystal layer is sandwiched between two retardation plates. As shown in FIG. 5A, the reflective diffractive polarizer 50 forms periodic irregularities 53 on the surface of a cholesteric phase polymer liquid crystal film 52 formed on a transparent substrate 51. The periodic irregularities 53 are filled with an isotropic material 54 that is substantially equal to the refractive index when circularly polarized light having a rotation direction opposite to the spiral direction of the cholesteric phase polymer liquid crystal is incident parallel to the spiral axis. The opposing surface is bonded to the transparent substrate 55. Furthermore, an adhesive layer (not shown) is provided on the upper and lower surfaces of the first retardation plate 56 and the second retardation plate 57 and is laminated on the transparent substrates 58 and 59.

コレステリック相高分子液晶膜54が図2(a)および図2(b)に示す特性である場合、第1の位相差板56のリタデーションRは、中心波長λの光に対して、R=(0.25+m)λ(mは正の整数を示す)である1/4波長板が用いられる。このときに反射回折偏光子50に入射する光が波長λの直線偏光である場合、第1の位相差板56で直線偏光から円偏光に変換される。円偏光に変換された光は、実施の形態1と同様にコレステリック相高分子液晶膜の螺旋する液晶分子の回転方向により、透過または反射回折する。第2の位相差板57のリタデーションRは、同様に中心波長λの光に対して、R=(0.25+n)λ(nは正の整数を示す)である1/4波長板が用いられる。第1の位相差板を透過した円偏光は、第2の位相差板で再び直線偏光に変換され、反射回折偏光子50を通過する。 When the cholesteric phase polymer liquid crystal film 54 has the characteristics shown in FIGS. 2A and 2B, the retardation R 1 of the first retardation plate 56 is R for the light having the center wavelength λ 0. A quarter-wave plate in which 1 = (0.25 + m) λ 0 (m represents a positive integer) is used. At this time, when the light incident on the reflection diffraction polarizer 50 is linearly polarized light having a wavelength λ 0 , the first retardation plate 56 converts the linearly polarized light into circularly polarized light. The light converted into the circularly polarized light is transmitted or reflected and diffracted according to the rotation direction of the spiral liquid crystal molecules of the cholesteric phase polymer liquid crystal film as in the first embodiment. Similarly, the retardation R 2 of the second retardation plate 57 is a quarter wavelength that is R 2 = (0.25 + n) λ 0 (n represents a positive integer) with respect to the light having the center wavelength λ 0. A plate is used. The circularly polarized light that has passed through the first retardation plate is converted again to linearly polarized light by the second retardation plate and passes through the reflection diffraction polarizer 50.

ここで、第1の位相差板のリタデーションと第2の位相差板のリタデーションとを実質的に等しくし、2枚の位相差板の光学軸を直交させて配置とすることで、透過する光の偏光状態を入射前の光の偏光状態に戻すことが可能となる。また、反射波長帯域以外の波長の直線偏光の光が入射すると、第1の位相差板のリタデーションの波長分散に応じて楕円偏光の光に変換されるが、同様に第2の位相差板で再び入射前の直線偏光に変換されて透過する。例えば、図5(b)に示すように紙面に平行な振動方向の第1直線偏光61の光は第1の位相差板で液晶分子の回転方向と同じ円偏光に変換されて反射回折する。一方、紙面に垂直な振動方向の第2直線偏光62の光は、液晶分子の回転方向と逆となる円偏光に変換されて透過する。また、反射波長帯域に含まれない波長に関しては入射する光の偏光状態を維持して透過させるので、波長選択機能も有する。   Here, the retardation of the first retardation plate and the retardation of the second retardation plate are substantially equal, and the optical axes of the two retardation plates are arranged so as to be orthogonal to each other to transmit light. It is possible to return the polarization state of the light to the polarization state of the light before incidence. Further, when linearly polarized light having a wavelength other than the reflection wavelength band is incident, it is converted into elliptically polarized light according to the wavelength dispersion of the retardation of the first retardation plate. The light is again converted into linearly polarized light before incidence and transmitted. For example, as shown in FIG. 5B, the light of the first linearly polarized light 61 in the vibration direction parallel to the paper surface is converted to circularly polarized light that is the same as the rotation direction of the liquid crystal molecules by the first retardation plate, and is reflected and diffracted. On the other hand, the light of the second linearly polarized light 62 in the vibration direction perpendicular to the paper surface is converted into circularly polarized light that is opposite to the rotation direction of the liquid crystal molecules and is transmitted. Further, since the wavelength not included in the reflection wavelength band is transmitted while maintaining the polarization state of incident light, it also has a wavelength selection function.

位相差板の材料には、配向処理によって屈折率異方性を発現する高分子液晶や、延伸によって屈折率異方性を発現するポリマーフィルムなどが好適に用いられる。また、反射波長帯域全体にわたり広く直線偏光から円偏光への変換特性を改善させるために、複数の複屈折材料の層を積層してなる位相差板を用いて、反射波長帯域全体で消光比を向上させてもよい。この場合も、単一層の位相差板を使用する場合と同様に、互いに逆の偏光変換特性を有する2枚の位相差板を使用することで入射前の光の偏光状態に再変換して光を透過させることが可能である。   As the material of the retardation plate, a polymer liquid crystal that exhibits refractive index anisotropy by orientation treatment, a polymer film that exhibits refractive index anisotropy by stretching, and the like are preferably used. In addition, in order to improve the conversion characteristics from linearly polarized light to circularly polarized light over the entire reflection wavelength band, a retardation plate formed by laminating a plurality of birefringent material layers is used to reduce the extinction ratio over the entire reflection wavelength band. It may be improved. In this case as well, as in the case of using a single layer retardation plate, by using two retardation plates having opposite polarization conversion characteristics, the light is reconverted to the polarization state of the light before incidence. Can be transmitted.

本発明の反射回折偏光子は円偏光の光に対して作用することから、直線偏光の入射光に対応して1/4波長板を組み合わせて用いる場合があり、位相差板と一体化した反射回折偏光子とすると、部品点数の削減や小型化が可能となり好ましい。また、その他の偏光子および偏光を用いたデバイスと組み合わせが容易となり、好ましい。   Since the reflective diffractive polarizer of the present invention acts on circularly polarized light, a quarter wave plate may be used in combination with linearly polarized incident light. A diffractive polarizer is preferable because the number of parts can be reduced and the size can be reduced. Further, it is easy to combine with other polarizers and devices using polarized light, which is preferable.

(第4の実施の態様)
図6は、本発明の第1の実施の形態に係る反射回折型偏光子を用いた投影型表示装置の構成を示す図である。図6において、投影型表示装置100は、可視光を発するメタルハライドランプ等の白色の光源101と、入射する光をR(赤)、G(緑)、B(青)の3つの色成分の光に分離する色分離手段であるダイクロイックミラー131、132と、表示する画像に応じて入射光を変調する複数の液晶パネル141、142、143と、ダイクロイックミラー131、132が分離した各色の光をそれぞれ対応する液晶パネル141、142、143に導く反射ミラー131a、133a、133bと、光源101から各液晶パネル141、142、143までの光路上に配置された第1の偏光手段となる反射回折偏光子121、122、123と、各液晶パネル141、142、143の光の出射側に配置された第2の偏光手段となる検光子151、152、153と、各検光子151、152、153を透過する光を合成する光合成手段としてのダイクロイックプリズム160と、ダイクロイックプリズム160によって合成された光を拡大投影する投影手段としての投射レンズ系170とを備える。ここで、投射レンズ系170から出射された光は、スクリーン180上に投影される。
(Fourth embodiment)
FIG. 6 is a diagram showing a configuration of a projection display device using the reflection diffraction type polarizer according to the first embodiment of the present invention. In FIG. 6, a projection display device 100 includes a white light source 101 such as a metal halide lamp that emits visible light, and incident light of three color components R (red), G (green), and B (blue). The dichroic mirrors 131 and 132, which are color separation means for separating the light, the plurality of liquid crystal panels 141, 142, and 143 that modulate incident light according to the image to be displayed, and the light of each color separated by the dichroic mirrors 131 and 132, respectively. Reflective mirrors 131a, 133a, and 133b that lead to the corresponding liquid crystal panels 141, 142, and 143, and a reflective diffraction polarizer that serves as a first polarizing means disposed on the optical path from the light source 101 to each of the liquid crystal panels 141, 142, and 143 121, 122, 123 and an analyzer 15 serving as a second polarizing means disposed on the light emission side of each of the liquid crystal panels 141, 142, 143 , 152, 153, a dichroic prism 160 as light combining means for combining light transmitted through the analyzers 151, 152, 153, and a projection lens system 170 as projection means for enlarging and projecting the light combined by the dichroic prism 160 With. Here, the light emitted from the projection lens system 170 is projected onto the screen 180.

この投影型表示装置100では、反射回折偏光子121がダイクロイックミラー131と反射ミラー131aとの間に、反射回折偏光子122がダイクロイックミラー132と液晶パネル142との間に、反射回折偏光子123が反射ミラー133aと反射ミラー133bとの間に、それぞれ配置されている。すなわち、反射回折偏光子121、122、123が、色分離手段としてのダイクロイックミラー131、132と液晶パネル141、142、143との間にそれぞれ配置された構成となる。   In the projection display device 100, the reflective diffraction polarizer 121 is disposed between the dichroic mirror 131 and the reflective mirror 131 a, the reflective diffraction polarizer 122 is disposed between the dichroic mirror 132 and the liquid crystal panel 142, and the reflective diffraction polarizer 123 is disposed. They are respectively disposed between the reflection mirror 133a and the reflection mirror 133b. That is, the reflection diffraction polarizers 121, 122, and 123 are arranged between the dichroic mirrors 131 and 132 as color separation means and the liquid crystal panels 141, 142, and 143, respectively.

光源101から出射するランダムな偏光状態の白色の可視光は、ダイクロイックミラー131によってR(赤)成分の光が透過(分離)し、R(赤)成分の光は反射回折偏光子121を透過し、反射ミラー131aで反射されて液晶パネル141に入射する。また、ダイクロイックミラー131によってR(赤)成分が分離され反射された光は、ダイクロイックミラー132でG(緑)成分の光が反射して分離され、G(緑)成分の光は反射回折型偏光子122を透過して液晶パネル142に入射する。さらに、ダイクロイックミラー132によってG(緑)成分が分離されて透過されたB(青)成分の光は、反射ミラー133aで反射され、反射回折型偏光子123を透過し、反射ミラー133bで反射されて液晶パネル143に入射する。   Randomly polarized white visible light emitted from the light source 101 is transmitted (separated) by R (red) component light by the dichroic mirror 131, and R (red) component light is transmitted through the reflective diffraction polarizer 121. Then, the light is reflected by the reflection mirror 131a and enters the liquid crystal panel 141. In addition, the light having the R (red) component separated and reflected by the dichroic mirror 131 is separated by the G (green) component light reflected by the dichroic mirror 132, and the G (green) component light is reflected and diffracted polarized light. The light passes through the child 122 and enters the liquid crystal panel 142. Further, the light of the B (blue) component that is transmitted after the G (green) component is separated by the dichroic mirror 132 is reflected by the reflection mirror 133a, passes through the reflection diffraction type polarizer 123, and is reflected by the reflection mirror 133b. Incident on the liquid crystal panel 143.

液晶パネル141、142、143に入射した各色成分の光は、それぞれ表示する画像に応じて変調され、検光子151、152、153をそれぞれ透過して特定方向に直線偏光となる光が取り出される。検光子151、152、153を透過した光は、ダイクロイックプリズム160によって再度合成された後、投射レンズ系170を介してスクリーン180に投射され、カラー画像が表示される。   The light of each color component incident on the liquid crystal panels 141, 142, and 143 is modulated according to the image to be displayed, and light that is transmitted through the analyzers 151, 152, and 153 and linearly polarized in a specific direction is extracted. The lights that have passed through the analyzers 151, 152, and 153 are synthesized again by the dichroic prism 160, and then projected onto the screen 180 via the projection lens system 170 to display a color image.

反射回折偏光子121、122、123は、第3の実施の態様で図3を用いて説明した反射回折偏光子50と同じ構成である。ここで、反射回折偏光子121、122、123は、それぞれ、R(赤)用、G(緑)用、B(青)用の波長帯域に反射波長帯域が実質的に一致するように最適設定されている。具体的な設計例としてコレステリック相高分子液晶膜の、反射波長帯域の中心波長λ、反射波長帯域幅Δλ、および周期的な凹凸の深さdの条件を表1に示す。また、図7(a)および図7(b)にそれぞれ、反射回折型偏光子121、122、123に用いるコレステリック相高分子液晶膜の反射スペクトルおよび反射0次回折効率を示す。 The reflective diffraction polarizers 121, 122, and 123 have the same configuration as the reflective diffraction polarizer 50 described with reference to FIG. 3 in the third embodiment. Here, the reflection diffractive polarizers 121, 122, and 123 are optimally set so that the reflection wavelength bands substantially coincide with the wavelength bands for R (red), G (green), and B (blue), respectively. Has been. As a specific design example, Table 1 shows the conditions of the central wavelength λ 0 of the reflection wavelength band, the reflection wavelength band Δλ, and the periodic unevenness depth d of the cholesteric phase polymer liquid crystal film. FIGS. 7A and 7B show the reflection spectrum and the reflection zero-order diffraction efficiency of the cholesteric phase polymer liquid crystal film used for the reflection diffraction polarizers 121, 122, and 123, respectively.

Figure 2008268724
Figure 2008268724

それぞれの反射回折偏光子を用いることで、R、G、Bいずれの波長帯域においても透過する直線偏光の偏光度が上がり、加えて不要偏光成分が反射回折して透過されないため高い消光比が得られる。   By using the respective reflective diffraction polarizers, the degree of polarization of linearly polarized light that is transmitted in any wavelength band of R, G, and B is increased, and in addition, unnecessary polarization components are reflected and diffracted and are not transmitted, resulting in a high extinction ratio. It is done.

本実施の態様では、R、G、Bの波長帯域がそれぞれ反射波長帯域と略一致する反射回折偏光子を個別に配置しているが、3つの反射回折偏光子の機能を一体化することも可能であり、調整の簡略化、部品点数削減、小型化等の点で好ましい。R、G、Bの波長帯域全てに対応し一体化された反射回折偏光子とするには、本実施の態様に用いた3つの偏光子を積層してもよいし、R、G、Bの波長帯域にそれぞれ対応する3層のコレステリック相高分子液晶膜を、これらの波長帯域に対応する広帯域波長板で挟んだ構成としてもよい。この場合、2層以上の複屈折材料からなる層を積層して構成される波長帯域の広い位相差板が好適に用いられ、積層される層数や透明基板数が削減され好ましい。   In this embodiment, the reflective diffractive polarizers in which the wavelength bands of R, G, and B substantially coincide with the reflected wavelength band are individually arranged, but the functions of the three reflective diffractive polarizers may be integrated. This is preferable in terms of simplification of adjustment, reduction in the number of parts, miniaturization, and the like. In order to obtain an integrated reflection / diffraction polarizer corresponding to all the wavelength bands of R, G, and B, the three polarizers used in this embodiment may be laminated, or R, G, and B A three-layer cholesteric polymer liquid crystal film corresponding to each wavelength band may be sandwiched between broadband wave plates corresponding to these wavelength bands. In this case, a retardation plate having a wide wavelength band constituted by laminating two or more layers of birefringent materials is preferably used, and the number of laminated layers and the number of transparent substrates are preferably reduced.

同一の機能を有する反射回折偏光子を複数用いることでさらにコントラストを向上させることが可能となり好ましく、同様に積層一体化した反射回折偏光子とすると部品点数が削減され好ましい。また、第2の実施の形態で記載した反射波長帯域および周期的な凹凸を波長シフトさせた反射回折偏光子を用いて回折反射させる波長帯域を広くすることも可能となり好ましい。   By using a plurality of reflection diffraction polarizers having the same function, it is possible to further improve the contrast. Similarly, a reflection diffraction polarizer integrated in a stacked manner is preferable because the number of components is reduced. In addition, the reflection wavelength band described in the second embodiment and the wavelength band to be diffracted and reflected by using a reflection diffractive polarizer in which the periodic unevenness is wavelength-shifted can be widened, which is preferable.

(第5の実施の態様)
図8は、本発明の第1の実施の形態に係る反射回折偏光子を用いた光ヘッド装置200の構成を示す。
(Fifth embodiment)
FIG. 8 shows a configuration of an optical head device 200 using the reflection diffraction polarizer according to the first embodiment of the present invention.

半導体レーザ201からDVDの情報を記録・再生する約660nmの波長の直線偏光の光(紙面に平行)を出射する。光は、回折素子203によりトラッキング用の3ビームに回折され、偏光ビームスプリッタ204によってほぼ光ディスク方向に反射され、コリメートレンズ205により平行光化される。直線偏光の光は1/4波長板206で円偏光の光に変換され、対物レンズ207によりDVD用光ディスク208の情報記録層に集光される。なお、対物レンズ207はフォーカスサーボおよびトラッキングサーボ用のアクチュエータ(図示せず)により可動する。光ディスクの反射面で反射され、光ディスクに向かうときの光に対して逆回りの円偏光に変換された光は、再び対物レンズ207、1/4波長板206を透過して、入射光と直交する(紙面に直交)偏光面を有する直線偏光に変換される。コリメートレンズ205で集光された光は、ほぼ偏光ビームスプリッタ204を透過し、非点収差法によるフォーカスサーボ用に設けられたシリンドリカルレンズ209を透過して光検出器210に集光される。   The semiconductor laser 201 emits linearly polarized light (parallel to the paper surface) having a wavelength of about 660 nm for recording / reproducing DVD information. The light is diffracted into three tracking beams by the diffraction element 203, reflected by the polarization beam splitter 204 almost in the direction of the optical disk, and converted into parallel light by the collimator lens 205. The linearly polarized light is converted into circularly polarized light by the quarter-wave plate 206 and condensed by the objective lens 207 on the information recording layer of the DVD optical disk 208. The objective lens 207 is moved by an actuator (not shown) for focus servo and tracking servo. The light reflected by the reflecting surface of the optical disk and converted into circularly polarized light that is reverse to the light traveling toward the optical disk is transmitted through the objective lens 207 and the quarter-wave plate 206 again and is orthogonal to the incident light. It is converted into linearly polarized light having a polarization plane (perpendicular to the paper). The light condensed by the collimator lens 205 is substantially transmitted through the polarization beam splitter 204, is transmitted through the cylindrical lens 209 provided for focus servo by the astigmatism method, and is collected on the photodetector 210.

この光ヘッド装置200によってDVDなどの光ディスクの記録・再生を安定に実現するために、半導体レーザーからの光が偏光ビームスプリッタ204を僅かに透過する微弱な光を集光レンズ211でモニタ光検出器212に集光して半導体レーザーからの出射光の制御を行っている。この光学系に設置された後述する反射回折偏光子202により、半導体レーザーの個体差や取り付け精度ばらつきおよび環境温度により出射光の偏光面が所定の方向から回転しても、反射回折偏光子を透過することによって、偏光ビームスプリッタ204へ入射される光は、所定の方向の直線偏光となる。これにより、光ディスクへ入射される光の光量とモニタ光検出器にモニタされる光の光量との比率は、偏光ビームスプリッタの偏光分離比特性にきわめて安定して一致する。したがって、モニタ光検出器212での微弱な光量により、半導体レーザーの出射光量を制御することで光ディスク208へ入射する光量を制御することができる。反射回折偏光子により不要な成分の光または不要な周波数の光は回折され、光軸からははずれて折り返されることから半導体レーザ201に対しての影響も少ない。また、前方への迷光成分もないため安定した光ヘッドの特性が得られる。   In order to stably realize recording / reproducing of an optical disk such as a DVD by the optical head device 200, a monitor light detector uses a condenser lens 211 to detect weak light in which light from a semiconductor laser is slightly transmitted through the polarization beam splitter 204. The light emitted from the semiconductor laser is controlled by being focused on 212. A reflection diffraction polarizer 202, which will be described later, installed in this optical system transmits the reflection diffraction polarizer even if the polarization plane of the emitted light rotates from a predetermined direction due to individual differences of semiconductor lasers, mounting accuracy variations, and environmental temperature. By doing so, the light incident on the polarization beam splitter 204 becomes linearly polarized light in a predetermined direction. As a result, the ratio between the amount of light incident on the optical disc and the amount of light monitored by the monitor light detector matches the polarization separation ratio characteristic of the polarization beam splitter very stably. Therefore, the amount of light incident on the optical disk 208 can be controlled by controlling the amount of light emitted from the semiconductor laser by the weak amount of light from the monitor light detector 212. Light of an unnecessary component or light of an unnecessary frequency is diffracted by the reflection diffractive polarizer, and is reflected off the optical axis, so that the influence on the semiconductor laser 201 is small. Further, since there is no forward stray light component, stable optical head characteristics can be obtained.

反射回折偏光子202としては、第3の実施の態様で図5を用いて説明した反射回折型偏光子50と等しい構成のものを用いる。反射波長帯域の中心波長λが約660nm、反射波長帯域幅Δλが約100nmとなるコレステリック相高分子液晶膜の表面に、深さdが約98nmの周期的な凹凸を有し、リタデーションが約165nmとなる2枚の位相差板で挟まれ積層された反射回折偏光子が好適に用いられる。また、反射回折偏光子202と回折素子203を一体化することによって、部品点数の削減が可能となり好ましい。回折素子203は、反射回折偏光子の光の出射側の面に一体化して形成することで不要となる迷光の発生が抑制されるため好ましい。反射回折偏光子との積層一体化は前述の回折素子に限定されるものではなく、光学系が成立する範囲においてさまざまな光学機能を有する素子との積層一体化が可能であり、調整簡略化、部品点数削減、小型化などの点から好ましい。 As the reflection diffraction polarizer 202, one having the same configuration as that of the reflection diffraction polarizer 50 described with reference to FIG. 5 in the third embodiment is used. The surface of the cholesteric phase polymer liquid crystal film in which the central wavelength λ 0 of the reflection wavelength band is about 660 nm and the reflection wavelength band width Δλ is about 100 nm has periodic irregularities with a depth d of about 98 nm, and the retardation is about A reflective diffractive polarizer that is sandwiched and laminated between two retardation plates of 165 nm is preferably used. Further, it is preferable to integrate the reflective diffraction polarizer 202 and the diffraction element 203 because the number of parts can be reduced. The diffraction element 203 is preferably formed integrally with the light exit surface of the reflective diffractive polarizer because generation of unnecessary stray light is suppressed. Lamination integration with the reflective diffractive polarizer is not limited to the above-mentioned diffraction element, and lamination integration with elements having various optical functions is possible within the range where the optical system is established, adjustment simplification, This is preferable from the viewpoint of reducing the number of parts and miniaturization.

反射回折偏光子はこれまで述べてきたように使用する光の波長に対して最適化することができるので、本実施の形態に示した波長が約660nmのDVD用に限定されるものではなく、波長が約785nmであるCD用、波長が約405nmの高密度記録再生用青色光ディスクに対しても適応できるので好ましい。また、これらの複数の波長の光を出射する半導体レーザーに対して選択的に偏光子として作用させることも可能であり、光学系の設計自由度が高く好ましい。   Since the reflective diffractive polarizer can be optimized for the wavelength of light used as described above, it is not limited to a DVD having a wavelength of about 660 nm shown in this embodiment. This is preferable because it can be applied to a CD having a wavelength of about 785 nm and a blue optical disc for recording and reproducing at a high density of about 405 nm. In addition, it is possible to selectively act as a polarizer on a semiconductor laser that emits light having a plurality of wavelengths, which is preferable because of a high degree of freedom in designing an optical system.

また、不要光となる迷光は反射回折偏光子の前方へ透過せずに後方へ反射されるので、反射回折偏光子の前方にある光学部品への影響を抑えることができる。したがって、回折方向を決める格子ピッチの自由度は大きいが、反射回折偏光子の後方への反射光の影響を低減するため、格子ピッチは10μm以下が好ましく、さらには5μm以下が好ましい。格子パターンは、直線でもよいし、曲線状でも、同心円状でもよい。曲線状や同心円状とすることで、反射回折偏光子の後方の特定の位置に配置された光学部品に対して反射光の入射を回避でき、光学設計の自由度がさらに向上し好ましい。   Further, since stray light that becomes unnecessary light is reflected backward without being transmitted to the front of the reflective diffractive polarizer, it is possible to suppress the influence on the optical component in front of the reflective diffractive polarizer. Therefore, although the degree of freedom of the grating pitch for determining the diffraction direction is large, the grating pitch is preferably 10 μm or less, and more preferably 5 μm or less in order to reduce the influence of reflected light behind the reflective diffractive polarizer. The lattice pattern may be straight, curved, or concentric. The curved shape or the concentric shape is preferable because it is possible to avoid the incidence of reflected light on an optical component disposed at a specific position behind the reflective diffraction polarizer, and the degree of freedom in optical design is further improved.

以下に、実施例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

(実施例1)
本実施例では、図1および図2を参照しながら第1の実施態様に係る偏光解消素子の具体的な作製方法を説明する。図示しない低反射コートを施した透明基板11上に形成された図示しないポリイミド膜を塗布・焼成し、ポリイミド膜表面にラビングを施して配向膜とする。重合部位を有する液晶とカイラル材の混合物からなるコレステリック相液晶を配向膜上に塗布し、波長365nmの紫外線を照射して重合・高分子化し、厚さが約5μmのコレステリック相高分子液晶膜12とする。コレステリック相高分子液晶膜12の入射する円偏光の光の波長に対する反射率スペクトルは、図2(a)に等しく、中心波長が約455nmで反射波長帯域幅は約65nmである。
Example 1
In this example, a specific method of manufacturing the depolarizer according to the first embodiment will be described with reference to FIGS. 1 and 2. A polyimide film (not shown) formed on the transparent substrate 11 with a low reflection coating (not shown) is applied and baked, and the polyimide film surface is rubbed to form an alignment film. A cholesteric phase liquid crystal film made of a mixture of a liquid crystal having a polymerization site and a chiral material is applied onto the alignment film, and polymerized and polymerized by irradiating with an ultraviolet ray having a wavelength of 365 nm to have a thickness of about 5 μm. And The reflectance spectrum with respect to the wavelength of the circularly polarized light incident on the cholesteric phase polymer liquid crystal film 12 is the same as that shown in FIG. 2A, the central wavelength is about 455 nm, and the reflection wavelength bandwidth is about 65 nm.

このコレステリック相高分子液晶層12の上面にフォトレジストを塗布し、フォトマスクを用いて、格子ピッチが5μmのレジストマスクを形成する。Oガスを主成分としたドライエッチングプロセスにより、コレステリック相高分子液晶膜12の表面に、格子ピッチが5μmで深さが約68nmの周期的な凹凸13を形成し、モノマー状態の等方性ポリマーで充填し、表面を平行化する。このとき重合後の等方性ポリマーが約455nmの波長の光に対する屈折率が約1.7となるように調整する。その後、図示しない低反射コートを施した透明基板15と接着させ、波長365nmの紫外線を照射し接着硬化する。最後に、ダイシングソーを用いて、外形が約10mm×約10mm角の反射回折偏光子とする。 A photoresist is applied to the upper surface of the cholesteric phase polymer liquid crystal layer 12, and a resist mask having a lattice pitch of 5 μm is formed using a photomask. By a dry etching process using O 2 gas as a main component, periodic irregularities 13 having a lattice pitch of 5 μm and a depth of about 68 nm are formed on the surface of the cholesteric phase polymer liquid crystal film 12, and the isotropic state of the monomer state Fill with polymer to parallelize the surface. At this time, the isotropic polymer after polymerization is adjusted to have a refractive index of about 1.7 with respect to light having a wavelength of about 455 nm. Thereafter, it is bonded to a transparent substrate 15 having a low reflection coating (not shown), and is cured by being irradiated with ultraviolet rays having a wavelength of 365 nm. Finally, a dicing saw is used to obtain a reflective diffraction polarizer having an outer shape of about 10 mm × about 10 mm square.

光源から出射する光は、1/4波長板、反射回折偏光子の順の光路となるように配置する。457nmの波長のArレーザーの直線偏光の光をリタデーションが約114nmの1/4波長板面に垂直に入射して楕円率約0.98の円偏光の光とし、反射回折偏光子10の透明基板15面に垂直に入射すると光はほぼ透過する。一方、上記に対して直線偏光の光の振動方向を90°回転して入射すると、反射回折偏光子には上記と回転方向となる逆回りの円偏光の光が入射すると光はほぼ反射する。これらの透過率の比は約100以上であり、高い消光比が得られることが確認できる。   The light emitted from the light source is arranged so as to have an optical path in the order of the quarter-wave plate and the reflective diffractive polarizer. A linearly polarized light of Ar laser having a wavelength of 457 nm is perpendicularly incident on a quarter-wave plate surface having a retardation of about 114 nm to form circularly polarized light having an ellipticity of about 0.98, and the transparent substrate of the reflective diffraction polarizer 10 When the light is vertically incident on the 15th surface, the light is almost transmitted. On the other hand, when the oscillation direction of linearly polarized light is rotated by 90 ° with respect to the above, the light is substantially reflected when the reversely polarized circularly polarized light having the rotation direction is incident on the reflection diffraction polarizer. The ratio of these transmittances is about 100 or more, and it can be confirmed that a high extinction ratio can be obtained.

(実施例2)
本実施例では、図3および図4を参照しながら第2の実施態様に係る偏光解消素子の具体的な作製方法を説明する。実施例1と同様に図示しない低反射コートを施した透明基板31と透明基板35上に、コレステリック相高分子液晶膜32および36を重合・高分子化により形成する。コレステリック相高分子液晶膜36の入射する円偏光の光の波長に対する反射スペクトルは、図4(a)に実線で示した第1波長帯域で高反射特性を示すスペクトルと等しく、中心波長が約420nmで反射波長帯域幅は約60nmである。また、コレステリック相高分子液晶膜32の入射する円偏光の光の波長に対する反射スペクトルは、図4(a)に破線で示した第2の波長帯域で高反射特性を示すスペクトルと等しく、中心波長が約490nmで反射波長帯域幅は約70nmである。
(Example 2)
In this example, a specific method for manufacturing the depolarizing element according to the second embodiment will be described with reference to FIGS. Cholesteric phase polymer liquid crystal films 32 and 36 are formed by polymerization / polymerization on the transparent substrate 31 and the transparent substrate 35 on which low reflection coating (not shown) is applied as in the first embodiment. The reflection spectrum of the cholesteric phase polymer liquid crystal film 36 with respect to the wavelength of the incident circularly polarized light is equal to the spectrum exhibiting high reflection characteristics in the first wavelength band indicated by the solid line in FIG. 4A, and the center wavelength is about 420 nm. The reflection wavelength bandwidth is about 60 nm. Further, the reflection spectrum of the cholesteric phase polymer liquid crystal film 32 with respect to the wavelength of the incident circularly polarized light is equal to the spectrum exhibiting high reflection characteristics in the second wavelength band indicated by the broken line in FIG. Is about 490 nm and the reflection wavelength bandwidth is about 70 nm.

これらのコレステリック相高分子液晶層32、36の上に、実施例1と同様に、格子ピッチが5μmで、深さがそれぞれ約61nmと72nmの周期的な凹凸33および37を形成し、等方性ポリマーで充填し表面を平行化する。実施例1と同様に、約455nmの波長の光に対する屈折率が約1.7となるように調整する。その後、図示しない低反射コートを施した透明基板39とこれらの層を積層し、波長365nmの紫外線を照射し接着硬化する。その後ダイシングソーを用いて、外形が約20mm×約20mm角の反射回折偏光子とする。   On the cholesteric phase polymer liquid crystal layers 32 and 36, as in the first embodiment, periodic irregularities 33 and 37 having a lattice pitch of 5 μm and a depth of about 61 nm and 72 nm, respectively, are formed. The surface is made parallel by filling with a conductive polymer. In the same manner as in Example 1, the refractive index for light having a wavelength of about 455 nm is adjusted to be about 1.7. Thereafter, these layers are laminated with a transparent substrate 39 having a low reflection coating (not shown), and are cured by irradiation with ultraviolet rays having a wavelength of 365 nm. Thereafter, a dicing saw is used to form a reflection diffraction polarizer having an outer shape of about 20 mm × about 20 mm square.

光源から出射する光は、後述する吸収型偏光子、後述する広帯域1/4波長板、反射回折偏光子の順の光路となるように配置する。吸収型偏光子は、偏光方向が略ランダムな白色光源からの光を直線偏光の光に変換させる光学素子である。広帯域1/4波長板は、リタデーションが約228nmとなる位相差板と、リタデーションが約114nmとなる位相差板を積層させて、直線偏光の光が400nm〜510nmの波長の範囲で楕円率が0.9以上となる光学素子である。吸収型偏光子を通過する直線偏光の光は、広帯域1/4波長板に入射して円偏光の光に変換され、反射回折偏光子の透明基板39側から入射する。このとき、広帯域1/4波長板の光学軸を90°回転して右回りまたは左回りの円偏光の光が反射回転偏光子に入射するように調整するとき、光の透過率の比は400nm〜510nmの波長の範囲で約50以上であり、広帯域にわたり高い消光比が得られることが確認できる。   The light emitted from the light source is arranged so as to have an optical path in the order of an absorbing polarizer described later, a broadband quarter-wave plate described later, and a reflective diffraction polarizer. An absorptive polarizer is an optical element that converts light from a white light source whose polarization direction is substantially random into linearly polarized light. The broadband quarter-wave plate is formed by laminating a retardation plate having a retardation of about 228 nm and a retardation plate having a retardation of about 114 nm, and the ellipticity is 0 in the wavelength range of linearly polarized light from 400 nm to 510 nm. .9 or more optical element. The linearly polarized light that passes through the absorption polarizer enters the broadband quarter-wave plate, is converted into circularly polarized light, and enters from the transparent substrate 39 side of the reflective diffractive polarizer. At this time, when the optical axis of the broadband quarter-wave plate is rotated by 90 ° so that clockwise or counterclockwise circularly polarized light is incident on the reflection rotating polarizer, the light transmittance ratio is 400 nm. It is about 50 or more in the wavelength range of ˜510 nm, and it can be confirmed that a high extinction ratio is obtained over a wide band.

(実施例3)
本実施例では、図5を参照しながら第3の実施態様に係る偏光解消素子の具体的な作製方法を説明する。図示しない低反射コートを施した透明基板58および59上に図示しない接着剤で、455nmの波長におけるリタデーションが114nmのポリカーボネートを延伸し作製したリタデーションが1/4波長となる第1の位相差板56、第2の位相差板57をそれぞれ積層し、図示しない低反射コートを施した透明基板51、54で挟み接着層にて積層接着する。それ以外のコレステリック相高分子液晶膜および等方性材料の充填に関する製造方法は実施例1と同様である。
(Example 3)
In this example, a specific method for manufacturing the depolarizing element according to the third embodiment will be described with reference to FIG. A first retardation plate 56 having a retardation of 1/4 wavelength produced by stretching a polycarbonate having a retardation of 114 nm at a wavelength of 455 nm with an adhesive not shown on the transparent substrates 58 and 59 having low reflection coating (not shown). The second retardation plate 57 is laminated, sandwiched between transparent substrates 51 and 54 having a low reflection coating (not shown), and laminated and adhered with an adhesive layer. The other production methods relating to the filling of the cholesteric phase polymer liquid crystal film and the isotropic material are the same as in Example 1.

実施例1と同様に、457nmの波長のArレーザーの直線偏光の光を第1の1/4位相差板で円偏光になる互いに直交する2方向から入射させる。透過する回転方向となる直線偏光の光の透過率と、反射回折する回転方向となる直線偏光の光の透過率の比は約100以上であり、高い消光比が得られることが確認できる。   In the same manner as in Example 1, linearly polarized light of an Ar laser having a wavelength of 457 nm is incident from two directions that are orthogonal to each other and become circularly polarized light by the first quarter retardation plate. The ratio of the transmittance of the linearly polarized light, which is the direction of rotation for transmission, and the transmittance of the linearly polarized light, which is the direction of rotation, which is reflected and diffracted, is about 100 or more, and it can be confirmed that a high extinction ratio is obtained.

(実施例4)
本実施例では、図6および図7を参照しながら第4の実施態様に係る偏光解消素子を用いた投影型表示装置を具体的に説明する。本実施例で使用する反射回折偏光子121、122、123は、実施例3の反射回折偏光子と等しい構成である。配置する反射回折偏光子のコレステリック相高分子液晶膜の材料および周期的凹凸の深さを、反射波長帯域がそれぞれ121が赤用(R)、122が緑用(G)、123が青用(B)となるように設計する。これは、図7に示したそれぞれの特性と等しい。
Example 4
In this example, a projection display device using the depolarizing element according to the fourth embodiment will be specifically described with reference to FIGS. The reflective diffractive polarizers 121, 122, and 123 used in this embodiment have the same configuration as the reflective diffractive polarizer of the third embodiment. The material of the cholesteric phase polymer liquid crystal film of the reflection diffractive polarizer to be arranged and the depth of the periodic unevenness, the reflection wavelength band 121 for red (R), 122 for green (G), 123 for blue ( B). This is equal to each characteristic shown in FIG.

これらの反射回折偏光子121、122、123を、第4の実施の態様で説明した投影型表示装置100に、吸収型偏光子用の放熱基板なしで配置する。ランダムな偏光の光を発する白色光源を使用して画像を表示すると、十分にコントラストが高い実用レベルの表示特性が得られることが確認できる。投影型表示装置として組み立てられた筐体の内部温度は室温と比較して高温であるが、温度上昇による反射回折型偏光子の特性変化は確認されず、良好な画像表示を継続することができる。   These reflection diffraction polarizers 121, 122, and 123 are arranged in the projection display device 100 described in the fourth embodiment without a heat dissipation substrate for the absorption polarizer. When an image is displayed using a white light source that emits light of random polarization, it can be confirmed that display characteristics at a practical level with sufficiently high contrast can be obtained. Although the internal temperature of the housing assembled as the projection display device is higher than the room temperature, no change in the characteristics of the reflection diffraction type polarizer due to the temperature rise is confirmed, and good image display can be continued. .

(実施例5)
本実施例では、図8を参照しながら第5の実施態様に係る偏光解消素子を用いた光ヘッド装置を具体的に説明する。本実施例で使用する反射回折型偏光子202は、実施例3と等しい構成である。反射波長帯域の中心波長λが約660nm、反射波長帯域幅Δλが約100nmとなるコレステリック相高分子液晶膜の表面に、周期的で格子ピッチが3μmで深さdが98nmの凹凸を有し、リタデーションが約165nmの2枚の位相差板で挟まれ積層された反射回折型偏光子202とし、外形を2mm×2mm角になるように切断する。
(Example 5)
In this example, an optical head device using the depolarizing element according to the fifth embodiment will be specifically described with reference to FIG. The reflective diffraction polarizer 202 used in this embodiment has the same configuration as that of the third embodiment. The surface of the cholesteric phase polymer liquid crystal film having a central wavelength λ 0 of the reflection wavelength band of about 660 nm and a reflection wavelength band Δλ of about 100 nm has irregularities with a periodic lattice pitch of 3 μm and a depth d of 98 nm. The reflection diffraction type polarizer 202 is sandwiched and laminated between two retardation plates having a retardation of about 165 nm, and the outer shape is cut to a 2 mm × 2 mm square.

反射回折偏光子202は、半導体レーザー201と2mmの離れた位置で光が垂直に入射するように配置する。反射回折偏光子202と回折素子203を透過して偏光ビームスプリッタ204に入射する光は、半導体レーザーから出射される直線偏光の方向を基準として光軸が−15°〜+15°の範囲で回転しても、一定の直線偏光状態を維持する。したがって、偏光ビームスプリッタ204により光ディスク208に向かう光とモニタ光検出器に212に入射する光の比率は、半導体レーザーからの直線偏光の光の一定の範囲の回転に対して変化せず安定する。モニタ光検出器の光量が一定になるように半導体レーザーの注入電流にフィードバックして調整することで、光ディスク208上の光量を安定して制御することができる。   The reflective diffractive polarizer 202 is arranged so that light is incident perpendicularly at a position 2 mm away from the semiconductor laser 201. The light that passes through the reflective diffractive polarizer 202 and the diffraction element 203 and enters the polarization beam splitter 204 rotates in the range of −15 ° to + 15 ° with respect to the direction of linearly polarized light emitted from the semiconductor laser. Even so, a constant linear polarization state is maintained. Therefore, the ratio of the light directed to the optical disk 208 by the polarization beam splitter 204 and the light incident on the monitor light detector 212 is stable without changing with respect to the rotation of the linearly polarized light from the semiconductor laser within a certain range. By feeding back and adjusting the injection current of the semiconductor laser so that the light amount of the monitor light detector becomes constant, the light amount on the optical disk 208 can be stably controlled.

本発明によれば、反射回折偏光子は特定の偏光状態および波長帯域を有する入射光を透過させ、それ以外の光を反射回折させる機能があり、投射型表示装置や光ヘッド装置などに搭載することができる。   According to the present invention, the reflective diffractive polarizer has a function of transmitting incident light having a specific polarization state and wavelength band and reflecting and diffracting other light, and is mounted on a projection display device, an optical head device, or the like. be able to.

本発明の第1の実施態様における反射回折偏光子の構成例と効果を示す模式図。The schematic diagram which shows the structural example and effect of the reflection diffraction polarizer in the 1st embodiment of this invention. 本発明の第1の実施態様における反射回折偏光子の光学特性を示す図。The figure which shows the optical characteristic of the reflection diffraction polarizer in the 1st embodiment of this invention. 本発明の第2の実施態様における反射回折偏光子の構成例と効果を示す模式図。The schematic diagram which shows the structural example and effect of the reflection diffraction polarizer in the 2nd embodiment of this invention. 本発明の第2の実施態様における反射回折偏光子の光学特性を示す図。The figure which shows the optical characteristic of the reflection diffraction polarizer in the 2nd embodiment of this invention. 本発明の第3の実施態様における反射回折偏光子の構成例と効果を示す模式図。The schematic diagram which shows the structural example and effect of the reflection diffraction polarizer in the 3rd embodiment of this invention. 本発明の第4の実施態様における反射回折偏光子を使用した投射型表示装置の模式図。The schematic diagram of the projection type display apparatus using the reflective diffraction polarizer in the 4th embodiment of this invention. 本発明の第4の実施態様における反射回折偏光子の光学特性を示す図。The figure which shows the optical characteristic of the reflection diffraction polarizer in the 4th embodiment of this invention. 本発明の第5の実施態様における反射回折偏光子を使用した光ヘッド装置の模式図。The schematic diagram of the optical head apparatus which uses the reflective diffraction polarizer in the 5th embodiment of this invention.

符号の説明Explanation of symbols

10、30、50、121、122、123、202:反射回折偏光子
11、15、31、35、39、51、55、58、59:透明基板
12、32、36、52:コレステリック相高分子液晶膜
13、33、37、53:周期的凹凸
14、34、38、54:等方性材料
21:第1の円偏光
22:第2の円偏光
41:第1反射波長帯域の円偏光
42:第2反射波長帯域の円偏光
56:第1の位相差板
57:第2の位相差板
61:第1直線偏光
62:第2直線偏光
100:投影型表示装置
101:光源
131、132:ダイクロイックミラー
131a、133a、133b:ミラー
141、142、143:液晶パネル
151、152、153:検光子
160:ダイクロイックプリズム
170:投影レンズ系
180:スクリーン
200:光ヘッド装置
201:半導体レーザ
203:回折素子
204:偏光ビームスプリッタ
205:コリメートレンズ
206:1/4位相差板
207:対物レンズ
208:光ディスク
209:シリンドリカルレンズ
210:光検出器
211:集光レンズ
212:モニタ光検出器
10, 30, 50, 121, 122, 123, 202: Reflective diffraction polarizer 11, 15, 31, 35, 39, 51, 55, 58, 59: Transparent substrate 12, 32, 36, 52: Cholesteric phase polymer Liquid crystal films 13, 33, 37, 53: Periodic irregularities 14, 34, 38, 54: Isotropic material 21: First circularly polarized light 22: Second circularly polarized light 41: Circularly polarized light 42 in the first reflection wavelength band : Circularly polarized light 56 in the second reflection wavelength band: first phase difference plate 57: second phase difference plate 61: first linearly polarized light 62: second linearly polarized light 100: projection display device 101: light sources 131 and 132: Dichroic mirrors 131a, 133a, 133b: mirrors 141, 142, 143: liquid crystal panels 151, 152, 153: analyzer 160: dichroic prism 170: projection lens system 180: screen 200: light 201: Semiconductor laser 203: Diffraction element 204: Polarizing beam splitter 205: Collimating lens 206: 1/4 phase plate 207: Objective lens 208: Optical disk 209: Cylindrical lens 210: Photo detector 211: Condensing lens 212 : Monitor light detector

Claims (9)

右回りまたは左回りの円偏光で入射する所定の波長範囲の光のうちいずれか一方の回転方向の光を反射させる反射回折偏光子であって、
反射回折偏光子は屈折率異方性を有するコレステリック相液晶からなる複屈折膜を有していて、
前記複屈折膜の厚さ方向と前記コレステリック相液晶の液晶分子の螺旋軸とが平行で前記液晶分子の厚さ方向の螺旋ピッチが一様となっており、
前記複屈折膜が、一方の表面に実質的に等しい幅と深さを有する複数の溝の凹凸の回折格子構造を有し、
隣り合う前記溝の格子ピッチが一定の周期である反射回折偏光子。
A reflective diffractive polarizer that reflects light in a rotational direction of either one of light in a predetermined wavelength range that is incident as clockwise or counterclockwise circularly polarized light,
The reflective diffractive polarizer has a birefringent film made of a cholesteric phase liquid crystal having refractive index anisotropy,
The thickness direction of the birefringent film and the helical axis of the liquid crystal molecules of the cholesteric phase liquid crystal are parallel and the helical pitch in the thickness direction of the liquid crystal molecules is uniform,
The birefringent film has a concave and convex diffraction grating structure of a plurality of grooves having substantially the same width and depth on one surface;
A reflective diffractive polarizer in which the grating pitch of adjacent grooves is a constant period.
前記複屈折膜がコレステリック相高分子液晶からなる請求項1に記載の反射回折偏光子。   The reflective diffractive polarizer according to claim 1, wherein the birefringent film is made of a cholesteric phase polymer liquid crystal. 前記凹凸を前記複屈折膜の異常光屈折率と常光屈折率との間の屈折率を有する等方性材料で充填平坦化されている請求項1または請求項2に記載の反射回折偏光子。   The reflective diffractive polarizer according to claim 1 or 2, wherein the unevenness is filled and flattened with an isotropic material having a refractive index between the extraordinary refractive index and the ordinary refractive index of the birefringent film. 前記複屈折膜を2枚以上含む請求項1〜請求項3のいずれか一項に記載の反射回折偏光子。   The reflective diffraction polarizer according to any one of claims 1 to 3, comprising two or more birefringent films. 2枚以上の前記複屈折膜の螺旋ピッチが互いに異なる請求項4に記載の反射回折偏光子。   The reflective diffractive polarizer according to claim 4, wherein the two or more birefringent films have different helical pitches. 入射する光の波長λに対して位相差が(0.25+m)λとなる1/4波長板を含む請求項1〜請求項5のいずれか一項に記載の反射回折素子(mは整数を示す)。   The reflective diffraction element according to any one of claims 1 to 5, including a quarter-wave plate having a phase difference of (0.25 + m) λ with respect to the wavelength λ of incident light. Show). 前記複屈折膜が、進相軸または遅相軸が直交されて配置された2枚の前記1/4波長板に挟まれている請求項6に記載の反射回折偏光子。   The reflective diffractive polarizer according to claim 6, wherein the birefringent film is sandwiched between the two quarter-wave plates arranged such that the fast axis or the slow axis is orthogonal. 光源と、前記光源からの可視光を複数の色の光に分離する色分離手段と、表示する画像に応じて前記複数の色の光を変調する複数の液晶パネルと、前記色分離手段が分離した前記複数の色の光を対応する前記複数の液晶パネルに導く複数の反射ミラーと、前記光源から前記複数の液晶パネルまでの光路上に配置され光の偏光状態を変える複数の第1の偏光手段と、前記複数の液晶パネルの光を透過する側に配置され光の偏光状態を変える複数の第2の偏光手段と、前記複数の第2の偏光手段を透過する光を合成する光合成手段と、前記光合成手段によって合成された光を拡大投影する投影手段とを備えた投射型表示装置において、
前記複数の第1の偏光手段および前記複数の第2の偏光手段のうちの少なくとも一方の偏光手段が、請求項1〜請求項7のいずれか一項に記載の反射回折偏光子によって構成されていることを特徴とする投射型表示装置。
A light source, a color separation unit that separates visible light from the light source into light of a plurality of colors, a plurality of liquid crystal panels that modulate light of the plurality of colors according to an image to be displayed, and the color separation unit A plurality of reflection mirrors for guiding the plurality of colors of light to the corresponding plurality of liquid crystal panels, and a plurality of first polarizations arranged on an optical path from the light source to the plurality of liquid crystal panels to change the polarization state of the light Means, a plurality of second polarizing means disposed on the light transmitting side of the plurality of liquid crystal panels to change the polarization state of the light, and a light combining means for combining the light transmitted through the plurality of second polarizing means A projection display device comprising projection means for enlarging and projecting the light synthesized by the light synthesis means,
The at least one polarizing means of the plurality of first polarizing means and the plurality of second polarizing means is constituted by the reflective diffractive polarizer according to any one of claims 1 to 7. A projection display device characterized by comprising:
光源と、前記光源からの出射光を光記録媒体上に集光させる対物レンズと、集光されて前記光記録媒体によって反射された反射光を前記出射光の光路とは異なる光路へ偏向分離する偏光ビームスプリッタと、前記偏光ビームスプリッタに入射する前記光源からの出射光から前記光記録媒体と異なる光路へ分離されるモニタ光を受光するモニタ光検出器と、偏向分離された前記反射光を検出する光検出器と、を備える光ヘッド装置において、前記光源と前記光検出器との間の光路中または、前記偏光ビームスプリッタと前記モニタ光検出器との間の光路中に、請求項1〜請求項7のいずれか一項に記載の反射回折偏光子が設置されていることを特徴とする光ヘッド装置。   A light source, an objective lens that condenses the light emitted from the light source on the optical recording medium, and the reflected light that is collected and reflected by the optical recording medium is deflected and separated into an optical path different from the optical path of the outgoing light. A polarization beam splitter; a monitor light detector that receives monitor light separated from the light emitted from the light source incident on the polarization beam splitter into a different optical path from the optical recording medium; and detects the reflected light that has been deflected and separated An optical head device comprising: a light detector, wherein the optical head device is in an optical path between the light source and the photodetector or in an optical path between the polarization beam splitter and the monitor photodetector. An optical head device comprising the reflective diffractive polarizer according to claim 7.
JP2007114310A 2007-04-24 2007-04-24 Reflective diffractive polarizer and optical device Active JP5012171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007114310A JP5012171B2 (en) 2007-04-24 2007-04-24 Reflective diffractive polarizer and optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007114310A JP5012171B2 (en) 2007-04-24 2007-04-24 Reflective diffractive polarizer and optical device

Publications (3)

Publication Number Publication Date
JP2008268724A true JP2008268724A (en) 2008-11-06
JP2008268724A5 JP2008268724A5 (en) 2010-02-18
JP5012171B2 JP5012171B2 (en) 2012-08-29

Family

ID=40048282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007114310A Active JP5012171B2 (en) 2007-04-24 2007-04-24 Reflective diffractive polarizer and optical device

Country Status (1)

Country Link
JP (1) JP5012171B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010186526A (en) * 2009-02-13 2010-08-26 Asahi Glass Co Ltd Selection optical element and optical pickup device
CN102540314A (en) * 2010-12-31 2012-07-04 京东方科技集团股份有限公司 Polaroid and making method thereof, and 3D display device with polaroid
CN103353633A (en) * 2013-08-05 2013-10-16 武汉邮电科学研究院 Wavelength selection switch and wavelength selection method
WO2018092589A1 (en) * 2016-11-15 2018-05-24 日東電工株式会社 Optical communication device and polarization plate set
US10620479B2 (en) 2016-12-27 2020-04-14 Fujifilm Corporation Optical film and method of producing same
US11016230B2 (en) 2017-05-19 2021-05-25 Fujifilm Corporation Optical element and optical device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6321988B2 (en) * 2014-02-20 2018-05-09 富士フイルム株式会社 Reflective member usable for heat shielding applications and projector including the reflective member

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0950642A (en) * 1995-06-01 1997-02-18 Asahi Glass Co Ltd Optical head device and its production
JP2001174614A (en) * 1999-12-15 2001-06-29 Asahi Glass Co Ltd Diffraction device for two wavelength and optical head device
JP2001311824A (en) * 2000-04-28 2001-11-09 Minolta Co Ltd Polarized light separation element
JP2004338257A (en) * 2003-05-16 2004-12-02 Nhk Spring Co Ltd Object identification medium and identification method
JP2005209327A (en) * 2003-12-26 2005-08-04 Asahi Glass Co Ltd Polarizing diffraction element and optical head device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0950642A (en) * 1995-06-01 1997-02-18 Asahi Glass Co Ltd Optical head device and its production
JP2001174614A (en) * 1999-12-15 2001-06-29 Asahi Glass Co Ltd Diffraction device for two wavelength and optical head device
JP2001311824A (en) * 2000-04-28 2001-11-09 Minolta Co Ltd Polarized light separation element
JP2004338257A (en) * 2003-05-16 2004-12-02 Nhk Spring Co Ltd Object identification medium and identification method
JP2005209327A (en) * 2003-12-26 2005-08-04 Asahi Glass Co Ltd Polarizing diffraction element and optical head device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010186526A (en) * 2009-02-13 2010-08-26 Asahi Glass Co Ltd Selection optical element and optical pickup device
CN102540314A (en) * 2010-12-31 2012-07-04 京东方科技集团股份有限公司 Polaroid and making method thereof, and 3D display device with polaroid
CN103353633A (en) * 2013-08-05 2013-10-16 武汉邮电科学研究院 Wavelength selection switch and wavelength selection method
US9380361B2 (en) 2013-08-05 2016-06-28 Wuhan Research Institute Of Posts And Telecommunications Wavelength selective switch and wavelength selection method
WO2018092589A1 (en) * 2016-11-15 2018-05-24 日東電工株式会社 Optical communication device and polarization plate set
JP2018082262A (en) * 2016-11-15 2018-05-24 日東電工株式会社 Optical communication device and set of polarizers
CN109952722A (en) * 2016-11-15 2019-06-28 日东电工株式会社 Optical communication apparatus and polarizer component
EP3544207A4 (en) * 2016-11-15 2020-06-03 Nitto Denko Corporation Optical communication device and polarization plate set
JP7027035B2 (en) 2016-11-15 2022-03-01 日東電工株式会社 Set of optical communication device and polarizing plate
US11598910B2 (en) 2016-11-15 2023-03-07 Nitto Denko Corporation Optical communication device and polarization plate set
US10620479B2 (en) 2016-12-27 2020-04-14 Fujifilm Corporation Optical film and method of producing same
US11016230B2 (en) 2017-05-19 2021-05-25 Fujifilm Corporation Optical element and optical device

Also Published As

Publication number Publication date
JP5012171B2 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
US8643822B2 (en) Non-etched flat polarization-selective diffractive optical elements
US7894133B2 (en) Optical element and optical device
US20090009668A1 (en) Non-Etched Flat Polarization-Selective Diffractive Optical Elements
US20050226122A1 (en) Phase correction element and optical head device
JP5012171B2 (en) Reflective diffractive polarizer and optical device
JP5251671B2 (en) Laminated half-wave plate, optical pickup device, polarization conversion element, and projection display device
JP4534907B2 (en) Optical head device
JP2008008990A (en) Wavelength plate, image projector, and optical pick-up
JP2007073088A (en) Liquid crystal lens and optical head unit
WO2011049144A1 (en) Reflection type wavelength plate and optical head device
JP4300784B2 (en) Optical head device
JP5333434B2 (en) Wavelength selective optical rotator and optical head device
JP5347911B2 (en) 1/2 wavelength plate, optical pickup device, polarization conversion element, and projection display device
JP2007280460A (en) Optical head device
JP4218393B2 (en) Optical head device
JP4985799B2 (en) Polarization diffraction element and laminated optical element
JP2011233208A (en) Wavelength selective wave plate, wavelength selective diffraction element and optical head device
JP2011186252A (en) Polarization converting element
JP2012009096A (en) Wavelength selection wavelength plate, wavelength selection diffraction element and optical head device
JP5131244B2 (en) Laminated phase plate and optical head device
JP2001344800A (en) Optical head device
JP2008004146A (en) Optical element and optical head device provided with optical element
JP2013130810A (en) Depolarizing element, optical measuring device, and projection type display device
JP4876826B2 (en) Phase difference element and optical head device
JP2004069977A (en) Diffraction optical element and optical head unit

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100217

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5012171

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250