JP2008264900A - Polishing material for sand blasting and its manufacturing method - Google Patents
Polishing material for sand blasting and its manufacturing method Download PDFInfo
- Publication number
- JP2008264900A JP2008264900A JP2007108378A JP2007108378A JP2008264900A JP 2008264900 A JP2008264900 A JP 2008264900A JP 2007108378 A JP2007108378 A JP 2007108378A JP 2007108378 A JP2007108378 A JP 2007108378A JP 2008264900 A JP2008264900 A JP 2008264900A
- Authority
- JP
- Japan
- Prior art keywords
- sandblasting
- abrasive
- spherical
- particle size
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005488 sandblasting Methods 0.000 title claims abstract description 36
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 12
- 238000005498 polishing Methods 0.000 title abstract description 16
- 239000000463 material Substances 0.000 title abstract description 6
- 239000002245 particle Substances 0.000 claims abstract description 60
- 238000000034 method Methods 0.000 claims abstract description 22
- 229910000990 Ni alloy Inorganic materials 0.000 claims abstract description 19
- 238000009826 distribution Methods 0.000 claims abstract description 17
- 229910000765 intermetallic Inorganic materials 0.000 claims description 13
- 229910052752 metalloid Inorganic materials 0.000 claims description 8
- 238000000790 scattering method Methods 0.000 claims description 4
- 239000003082 abrasive agent Substances 0.000 claims description 3
- 230000001186 cumulative effect Effects 0.000 claims description 2
- 150000002738 metalloids Chemical class 0.000 claims 1
- 238000010438 heat treatment Methods 0.000 abstract description 14
- 239000002184 metal Substances 0.000 abstract description 10
- 229910052751 metal Inorganic materials 0.000 abstract description 10
- 238000011946 reduction process Methods 0.000 abstract 2
- 238000009792 diffusion process Methods 0.000 abstract 1
- 238000003754 machining Methods 0.000 abstract 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 22
- 238000006722 reduction reaction Methods 0.000 description 13
- 239000007864 aqueous solution Substances 0.000 description 10
- 230000005484 gravity Effects 0.000 description 9
- 239000013078 crystal Substances 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 239000012071 phase Substances 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 5
- 239000010419 fine particle Substances 0.000 description 5
- 239000002344 surface layer Substances 0.000 description 5
- 239000003638 chemical reducing agent Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000011859 microparticle Substances 0.000 description 3
- 238000005192 partition Methods 0.000 description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000012798 spherical particle Substances 0.000 description 2
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910018104 Ni-P Inorganic materials 0.000 description 1
- 229910018536 Ni—P Inorganic materials 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000006061 abrasive grain Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000010299 mechanically pulverizing process Methods 0.000 description 1
- 229910001510 metal chloride Inorganic materials 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- RRIWRJBSCGCBID-UHFFFAOYSA-L nickel sulfate hexahydrate Chemical compound O.O.O.O.O.O.[Ni+2].[O-]S([O-])(=O)=O RRIWRJBSCGCBID-UHFFFAOYSA-L 0.000 description 1
- 229940116202 nickel sulfate hexahydrate Drugs 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- SIGUVTURIMRFDD-UHFFFAOYSA-M sodium dioxidophosphanium Chemical compound [Na+].[O-][PH2]=O SIGUVTURIMRFDD-UHFFFAOYSA-M 0.000 description 1
- 229910001379 sodium hypophosphite Inorganic materials 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
本発明は、サンドブラスト用の研磨材として使用される金属微小粒子と、その製造方法に関するものである。 The present invention relates to fine metal particles used as an abrasive for sandblasting and a method for producing the same.
近年、携帯電話、ノート型パソコンをはじめとするモバイル製品は、高性能、多機能化の一途をたどっており、その構成部材への要求特性は厳しさを増している。中でも、ディスプレイや回路基板等の分野においては、無機材料への精密で微細なパターンニングを行なう技術のニーズが高まっている。ディスプレイ分野のプラズマディスプレイパネル(Plasma Display Panel、以下PDP)は大画面化、高精細化、省スペースが可能であることから、CRT(Cathode
Ray
Tube)、LCD(Liquid Crystal Display)に続く第3のディスプレイとして注目をされており、そのガス放電パネルを構成する表示セルの仕切りである壁隔には、高精度のパターン加工の技術向上が望まれている。
In recent years, mobile products such as mobile phones and notebook personal computers have been continually becoming higher performance and multifunctional, and the required characteristics of their constituent members have become increasingly severe. In particular, in the fields of displays, circuit boards, and the like, there is an increasing need for techniques for performing precise and fine patterning on inorganic materials. Plasma display panels (hereinafter referred to as PDP) in the display field are capable of large screens, high definition, and space saving, so CRT (Cathode)
Ray
(Tube) and the third display following LCD (Liquid Crystal Display), and the wall space, which is a partition of the display cells constituting the gas discharge panel, is expected to improve technology for high-precision pattern processing. It is rare.
PDPの隔壁はガラス等の無機材料であり、低いイニシャルコストで高効率に隔壁を形成できる方法の例として、研磨材を圧縮空気等のキャリアガスに混ぜてノズルから噴射し、対象物に衝突させて加工を行なうサンドブラスト法が用いられている。一般に研磨材としては、アルミナ、ジルコニア、炭化珪素、ガラスビーズなどが用いられているが、その形状は不定形であり、粒径の分布がブロードであるため、高精度の加工が困難であり、また、比重の軽い研磨材に起因した汚染が発生するという問題があった。 PDP partition walls are made of an inorganic material such as glass. As an example of a method that can form partition walls with low initial cost and high efficiency, an abrasive is mixed with a carrier gas such as compressed air and injected from a nozzle to collide with an object. Sand blasting is used for processing. Generally, alumina, zirconia, silicon carbide, glass beads, etc. are used as abrasives, but the shape is irregular and the particle size distribution is broad, so high-precision processing is difficult, In addition, there is a problem that contamination due to the abrasive having a light specific gravity occurs.
一方、これらの技術分野に対しては、本発明者は、回路基板の配線接続に用いる異方性導電フィルムについて、それに混合させる導電粒子を提案している(特許文献1)。この導電粒子は、優れた導電特性を有している一方では、高硬度かつ均一な形状および粒子分布をも達成していることから、異方性導電フィルムに最適なものとなっている。
殊、高精度の微細加工を行なうためのサンドブラスト用研磨材としては、形状が定形かつサイズの揃った、例えば粒径にて約50μm以下の域で、均一で微細な球状粒子が好適である。しかし、このような微細粒子であっても、その硬さ、あるいは比重が低すぎると、高精度の微細加工に支障を来たす。特に、比重の軽い研磨材の場合、それに起因する汚染の発生問題に加えては、十分な衝突エネルギーが得られないため、加工能力に乏しく、高い生産効率を望み難い。サンドブラスト用研磨材としては、例えばビッカース硬さで1000Hv前後の高硬度と、鋼球並みの7.8前後の比重が必要である。 In particular, as a sandblasting abrasive for performing high-precision microfabrication, uniform and fine spherical particles having a uniform shape and a uniform size, for example, in a region having a particle size of about 50 μm or less, are suitable. However, even with such fine particles, if the hardness or specific gravity is too low, it will hinder high-precision fine processing. In particular, in the case of an abrasive having a low specific gravity, in addition to the problem of contamination caused by it, a sufficient collision energy cannot be obtained, so that the processing ability is poor and it is difficult to expect high production efficiency. As an abrasive for sandblasting, for example, a high hardness of about 1000 Hv in terms of Vickers hardness and a specific gravity of about 7.8, which is similar to a steel ball, are required.
本発明の目的は、特にサンドブラスト用研磨材に使用するのに好適で、粒子自体が研磨に必要な硬さと比重を有する粒子径の揃った研磨材およびその製造方法を提供することである。 An object of the present invention is to provide an abrasive having a uniform particle diameter and a method for producing the same, particularly suitable for use in an abrasive for sandblasting, in which the particles themselves have hardness and specific gravity necessary for polishing.
本発明者は、高精度の微細加工が可能なサンドブラスト用研磨材について検討した。その結果、先に提案した特許文献1の異方性導電フィルム用導電粒子が、本研磨材に求められる種々の特性をも満たし得、つまり、サンドブラスト用研磨材に好適である結果を得た。 The present inventor has examined an abrasive for sandblasting capable of high-precision fine processing. As a result, the previously proposed conductive particles for anisotropic conductive film of Patent Document 1 can satisfy various properties required for the present abrasive, that is, suitable for sandblasting abrasive.
すなわち、本発明は、無電解還元法により作製された、Niと半金属で構成された球状Ni合金粒子であって、その組織中にはNiと該半金属の金属間化合物が析出していることを特徴とするサンドブラスト用研磨材である。また、上記半金属がPであることを特徴とするサンドブラスト用研磨材である。 That is, the present invention is a spherical Ni alloy particle composed of Ni and a semimetal produced by an electroless reduction method, and Ni and the intermetallic compound of the semimetal are precipitated in the structure. This is an abrasive for sandblasting. The sand blasting abrasive is characterized in that the semimetal is P.
そして、レーザー回折散乱法による平均粒径(d50)が1〜15μmであり、かつその粒度分布が[(d90−d10)/d50]≦1.0(d90、d10、d50:積算分布曲線において、90体積%、10体積%、50体積%を示す粒子径)であることを特徴とするサンドブラスト用研磨材である。 Then, the average particle diameter measured by a laser diffraction scattering method (d 50) is 1 to 15 m, and the particle size distribution [(d 90 -d 10) / d 50] ≦ 1.0 (d 90, d 10, d 50 : Particle size showing 90% by volume, 10% by volume, and 50% by volume in the cumulative distribution curve).
更に、上記本発明のサンドブラスト用研磨材の製造方法であって、無電解還元法により作製された球状Ni合金粒子を少なくとも加熱処理することを特徴とするサンドブラスト用研磨材の製造方法である。 Furthermore, it is a method for producing an abrasive for sandblasting according to the present invention, wherein the spherical Ni alloy particles produced by an electroless reduction method are at least heat-treated.
本発明の球状Ni合金粒子でなるサンドブラスト用研磨材は、研磨材としての必要な硬さと比重を有していることから、高い生産性と低いコストのサンドブラストが可能となる。そして、微細な球状となっていることでキャリアガスに混ぜた際に良好な分散性を示し、また粒子サイズが揃っていることから研磨材の一定量供給も可能となることから、高精度で精密なサンドブラスト加工に好適である。 Since the abrasive for sandblasting comprising the spherical Ni alloy particles of the present invention has the necessary hardness and specific gravity as an abrasive, high productivity and low cost sandblasting are possible. And since it has a fine spherical shape, it shows good dispersibility when mixed with a carrier gas, and because it has a uniform particle size, it can also supply a certain amount of abrasive, so it can be used with high precision. Suitable for precision sandblasting.
本発明のサンドブラスト用研磨材の重要な特徴は、Niと半金属で構成された球状Ni合金粒子において、その組織中にはNiと該半金属(好ましくは、P)の金属間化合物が析出していることにある。望ましくは、レーザー回折散乱法による平均粒径(d50)が1〜15μmであり、かつその粒度分布が[(d90−d10)/d50]≦1.0という、粒子サイズの揃った球状Ni合金粒子であって、これらは無電解還元法により製造する。 An important feature of the abrasive material for sandblasting of the present invention is that in a spherical Ni alloy particle composed of Ni and a semimetal, an intermetallic compound of Ni and the semimetal (preferably P) is precipitated in the structure. There is in being. Desirably, the average particle diameter (d 50 ) by laser diffraction scattering method is 1 to 15 μm, and the particle size distribution is [(d 90 −d 10 ) / d 50 ] ≦ 1.0. Spherical Ni alloy particles, which are produced by an electroless reduction method.
また、無電解還元法により製造した時には、非晶質の組織状態にある球状Ni合金粒子に対しては、これに加熱処理を行なうことが、サンドブラスト用研磨材の製造方法として好適である。以下、その好ましい製造方法と共に本発明のサンドブラスト用研磨材について説明する。 In addition, when manufactured by an electroless reduction method, it is suitable as a method for manufacturing an abrasive for sandblasting to heat-treat spherical Ni alloy particles in an amorphous structure. Hereinafter, the abrasive for sandblasting of the present invention will be described together with its preferable production method.
後述の無電解還元法により作製される本発明のサンドブラスト用研磨材は、Niと半金属で構成された球状Ni合金粒子である。純金属のNiの硬さは、ビッカース硬さ200Hv程度であり、サンドブラストの研磨材として用いる場合、硬さが不足している。そこで、上記の必要硬さを付与する有効な手段として、本発明では、Niに半金属元素を添加し、更に組織を調整することにより、金属間化合物を形成する手法を採用する。上記の金属間化合物の析出により、非常に硬く、且つ、優れた耐摩耗性と耐食性を有するNi合金粒子を得ることが可能となる。半金属元素としては、C、B、P等があるが、中でもPは適切な比率の添加と加熱処理を行なうことで、Ni3Pの金属間化合物が生成され、本発明にとっての好適な半金属元素種である。 The abrasive for sandblasting of the present invention produced by an electroless reduction method described later is spherical Ni alloy particles composed of Ni and a semimetal. The pure metal Ni has a Vickers hardness of about 200 Hv, and is insufficient in hardness when used as an abrasive for sandblasting. Therefore, as an effective means for imparting the above required hardness, the present invention employs a method of forming an intermetallic compound by adding a metalloid element to Ni and further adjusting the structure. The precipitation of the intermetallic compound makes it possible to obtain Ni alloy particles that are very hard and have excellent wear resistance and corrosion resistance. There are C, B, P, and the like as the metalloid elements. Among these, P is a suitable semimetal compound for the present invention by adding an appropriate ratio and heat treatment to produce an Ni 3 P intermetallic compound. It is a metal element species.
ところで、一般的な無電解めっきにおけるNi−P皮膜の結晶構造は、Pの含有量が4質量%前後と低い場合には面心立方晶であり、約7.4質量%程度から非晶質構造となる。そして、その非晶質構造は、加熱処理を行なうことで、体心正方晶のNi3Pを析出して、硬さを増す。本発明における半金属元素にPを採用している理由は、球状Ni合金粒子を無電解還元法により還元析出させる時のpH等を調整することで、Niと金属間化合物を生成するP濃度の制御が容易となり、その粒子の硬さの制御が可能だからである。 By the way, the crystal structure of the Ni-P film in general electroless plating is a face-centered cubic crystal when the P content is as low as about 4% by mass, and it is amorphous from about 7.4% by mass. It becomes a structure. And the amorphous structure precipitates body-centered tetragonal Ni 3 P by heat treatment to increase the hardness. The reason why P is adopted as the metalloid element in the present invention is that the concentration of P that generates Ni and an intermetallic compound is adjusted by adjusting the pH when the spherical Ni alloy particles are reduced and precipitated by the electroless reduction method. This is because the control becomes easy and the hardness of the particles can be controlled.
本発明の球状Ni合金粒子でなるサンドブラスト用研磨材の粒子径は、d50の数値を1〜15μmとすることが望ましい(d50:積算分布曲線において、50体積%を示す粒子径)。この粒子径が1μm未満の場合には、粒子の取り扱いが困難となるだけでなく、サンドブラスト用研磨材として使用した際に、1つの粒子の質量が小さいことから、ブラスト研磨に必要な衝突エネルギーが得られ難く、生産効率が著しく低下する。また、d50の値が15μmを超える場合には、粒子1個の質量が大きくなり、それに伴って衝突エネルギーが増大して研磨能率が向上するが、研磨部分へ割れ、欠け、チッピング等のダメージを与える可能性があり、更に、微細な研磨パターンへ嵌り込んでしまう危険性がある。よって、本発明のサンドブラスト用研磨材は、特に高精度で微細な研磨に最適なものとしては、d50の値を1〜15μmとする。しかしながら、この粒子径はサンドブラストで研磨を行なう対象物の、寸法および形状に合わせて任意に選定することが望ましい。 As for the particle diameter of the abrasive for sandblasting comprising the spherical Ni alloy particles of the present invention, it is desirable that the value of d 50 is 1 to 15 μm (d 50 : particle diameter indicating 50 vol% in the integrated distribution curve). When the particle size is less than 1 μm, not only the handling of the particles becomes difficult, but also when used as a sandblasting abrasive, the mass of one particle is small, so that the collision energy required for blast polishing is low. It is difficult to obtain and production efficiency is significantly reduced. In addition, when the value of d 50 exceeds 15 μm, the mass of one particle increases, and accordingly, the collision energy increases and the polishing efficiency is improved. However, damage such as cracking, chipping, and chipping to the polishing portion. Further, there is a risk of being fitted into a fine polishing pattern. Therefore, the sand blasting abrasive of the present invention has a d 50 value of 1 to 15 μm, particularly for high precision and optimum for fine polishing. However, it is desirable that the particle size is arbitrarily selected according to the size and shape of the object to be polished by sandblasting.
そして、本発明の球状Ni合金粒子でなるサンドブラスト用研磨材は、均一な粒径分布を呈しているところにも特徴がある。高精度で微細なブラスト研磨を行なう場合には、研磨材を一定量、安定して供給する必要がある。粒子のサイズのバラツキを小さくすることで、一定量の研磨材の供給が容易となり、高精度で微細な研磨が実現できる。その際の粒度分布は[(d90−d10)/d50]で与えられる数値が小さい方が好ましいが(d90、d10:積算分布曲線において、90体積%、10体積%を示す粒子径)、それに伴って研磨材のコストが増加する。よって、[(d90−d10)/d50]は1.0以下であることが望ましい。 And the abrasive | polishing material for sandblasts which consists of spherical Ni alloy particle | grains of this invention has the characteristics also in the place which exhibits uniform particle size distribution. When performing fine blast polishing with high accuracy, it is necessary to stably supply a certain amount of abrasive. By reducing the variation in the size of the particles, it becomes easy to supply a certain amount of abrasive, and high-precision and fine polishing can be realized. In this case, the particle size distribution preferably has a smaller numerical value given by [(d 90 -d 10 ) / d 50 ] (d 90 , d 10 : particles showing 90 vol% and 10 vol% in the integrated distribution curve) Diameter), which increases the cost of the abrasive. Therefore, [(d 90 -d 10 ) / d 50 ] is preferably 1.0 or less.
このような、ミクロンサイズの金属微小粒子を得る製造方法としては、溶融金属に水またはガスを噴射するアトマイズ法や機械的に粉砕を行なう物理的方法、有機金属化合物を熱分解する方法や金属塩化物を加熱気化し、水素等のガスと反応させて粒子を生成する気相還元法、あるいは、水溶液または非水溶液系の分散媒で、金属化合物や金属イオンを還元剤により還元析出させる液相還元法などが代表として挙げられる。しかしながら、本発明者の経験によると、ここに列挙した何れの製造方法においても、粒子径が10μmを下回るサイズから、少なからず粒子同士が凝集しており、独立した単分散の粒子が得られ難いという課題がある。そこで、この課題に対し、本発明者が提案した、Ni塩水溶液と、半金属元素を含む還元剤水溶液とを混合して、球状粒子を還元析出させる、すなわち無電解還元法を適用することで、微細でありながらも単分散の球状Ni合金粒子を得ることが可能となる。 Manufacturing methods for obtaining such micron-sized metal microparticles include atomizing methods in which water or gas is sprayed on molten metal, physical methods for mechanically pulverizing, methods for thermally decomposing organometallic compounds, and metal chlorides. Gas phase reduction method in which a substance is heated and vaporized and reacted with a gas such as hydrogen, or liquid phase reduction in which a metal compound or metal ion is reduced and precipitated with a reducing agent in an aqueous or non-aqueous dispersion medium. The law is a representative example. However, according to the experience of the present inventor, in any of the production methods listed here, the particle diameter is less than 10 μm, and the particles are aggregated at least, and it is difficult to obtain independent monodisperse particles. There is a problem. Therefore, to solve this problem, the present inventors have proposed a method in which a Ni salt aqueous solution and a reducing agent aqueous solution containing a metalloid element are mixed to reduce and precipitate spherical particles, that is, by applying an electroless reduction method. It is possible to obtain fine but monodispersed spherical Ni alloy particles.
ここで、無電解還元法により還元析出させたままの球状Ni合金粒子は、Niの素地に半金属元素が固溶した状態であり、その硬さは純金属のNiとほぼ同程度で、サンドブラスト用の研磨材としては硬さが不足している。そこで、無電解還元法により得られた球状Ni合金粒子に加熱処理を行なうことで、Niと半金属元素の金属間化合物を形成することが有効である。この時の加熱処理の条件は、金属間化合物を形成するに必要な温度と処理時間とする。 Here, the spherical Ni alloy particles that have been reduced and precipitated by the electroless reduction method are in a state in which the metalloid element is in solid solution on the Ni substrate, and the hardness thereof is substantially the same as that of pure metal Ni, and sand blasting. Hardness is insufficient as a polishing material for use. Therefore, it is effective to form an intermetallic compound of Ni and a metalloid element by subjecting the spherical Ni alloy particles obtained by the electroless reduction method to heat treatment. The conditions for the heat treatment at this time are a temperature and a treatment time necessary for forming the intermetallic compound.
加熱処理は550℃を越える温度とした場合、粒子の極表層部分が溶融し、粒子同士が焼結されて凝集体となり、単分散性が損なわれるだけでなく、半金属元素がPであれば、Ni3P相の成長に伴って、P量の低いNi結晶の成長が進むため、硬さを減じてしまう。また加熱処理温度を、300℃未満とした場合には、非常に硬い金属間化合物(例えばNi3P)の析出が不完全となり、所望の硬さが得られ難い。そこで、好ましくは300℃〜550℃で数十分から数時間の加熱処理を行なう。更に好ましくは、350℃〜450℃の範囲で加熱処理することにより、硬度の高い球状Ni合金粒子が効率良く得られる。そして、その加熱処理を行なう雰囲気は、非酸化性雰囲気が好ましく、Ar等の不活性ガス雰囲気中が更に好ましい。また、水素等の還元ガス雰囲気中又は、真空雰囲気中でも良い。 When the heat treatment is performed at a temperature exceeding 550 ° C., the extreme surface layer portions of the particles are melted and the particles are sintered to form an aggregate, not only the monodispersibility is impaired, but also the metalloid element is P With the growth of the Ni 3 P phase, the growth of Ni crystals with a low amount of P proceeds, so the hardness is reduced. Further, when the heat treatment temperature is less than 300 ° C., the precipitation of a very hard intermetallic compound (for example, Ni 3 P) becomes incomplete, and it is difficult to obtain a desired hardness. Therefore, the heat treatment is preferably performed at 300 ° C. to 550 ° C. for several tens of minutes to several hours. More preferably, high-hardness spherical Ni alloy particles can be obtained efficiently by heat treatment in the range of 350 ° C. to 450 ° C. The atmosphere for the heat treatment is preferably a non-oxidizing atmosphere, and more preferably in an inert gas atmosphere such as Ar. Further, it may be in a reducing gas atmosphere such as hydrogen or in a vacuum atmosphere.
(本発明例)
硫酸ニッケル六水和物を純水に溶解して0.6(kmol/m3)の金属塩水溶液を15(dm3)作製した。また、水酸化ナトリウムと酢酸ナトリウムを純水に溶解して15(dm3)とし、それぞれ0.7(kmol/m3)、1.0(kmol/m3)の濃度のpH調製水溶液を作製した。そして、上記の金属塩水溶液とpH調製水溶液を撹拌混合し、30(dm3)の混合水溶液を作製して、N2ガスをバブリングしながら外部ヒーターにより348(K)に加熱保持し、撹拌を続けた。
(Example of the present invention)
Nickel sulfate hexahydrate was dissolved in pure water to produce 15 (dm 3 ) of 0.6 (kmol / m 3 ) aqueous metal salt solution. In addition, sodium hydroxide and sodium acetate are dissolved in pure water to 15 (dm 3 ), and pH adjusted aqueous solutions having concentrations of 0.7 (kmol / m 3 ) and 1.0 (kmol / m 3 ) are prepared. did. Then, the above metal salt aqueous solution and the pH adjusting aqueous solution are stirred and mixed to prepare a mixed aqueous solution of 30 (dm 3 ), heated and held at 348 (K) by an external heater while bubbling N 2 gas, and stirred. Continued.
一方で、純水に1.8(kmol/m3)の濃度でホスフィン酸ナトリウムを溶解した還元剤水溶液を15(dm3)作製し、こちらも外部ヒーターによって348(K)に加熱した。そして、上記、30(dm3)の混合水溶液と15(dm3)の還元剤水溶液を、2つの水溶液の温度が348±1(K)となるように調製した後に混合し、無電解還元反応により微小粒子を得た。 On the other hand, 15 (dm 3 ) of a reducing agent aqueous solution in which sodium phosphinate was dissolved in pure water at a concentration of 1.8 (kmol / m 3 ) was prepared, and this was also heated to 348 (K) by an external heater. Then, the mixed aqueous solution of 30 (dm 3 ) and the reducing agent aqueous solution of 15 (dm 3 ) are prepared so that the temperature of the two aqueous solutions becomes 348 ± 1 (K), and then mixed to obtain an electroless reduction reaction. To obtain fine particles.
得られた微小粒子を乾燥させた後、不活性ガス(Ar)雰囲気中において673(K)で加熱処理を行なってから、レーザー回折散乱法による粒度分布計でサイズを測定した。平均粒径d50の値は2.9μmで、d90とd10はそれぞれ、4.5μmと2.0μmあり、[(d90−d10)/d50]の式で与えられる粒度分布は0.86であった。また、SEM(走査型電子顕微鏡)で観察した結果は図1の通りであり、単分散の球形状であることが確認された。そして、図2に示すCoターゲットによるXRD(X線回折)のチャートから、その結晶構造には、Ni相と、本発明の特徴とするNi3P相の金属間化合物が確認された。 The obtained microparticles were dried and then subjected to heat treatment at 673 (K) in an inert gas (Ar) atmosphere, and then the size was measured with a particle size distribution meter by a laser diffraction scattering method. The average particle size d 50 is 2.9 μm, d 90 and d 10 are 4.5 μm and 2.0 μm, respectively, and the particle size distribution given by the formula [(d 90 −d 10 ) / d 50 ] is 0.86. Moreover, the result observed with SEM (scanning electron microscope) is as FIG. 1, and it was confirmed that it is a monodisperse spherical shape. Then, from the XRD (X-ray diffraction) chart by the Co target shown in FIG. 2, the crystal structure confirmed the Ni phase and the intermetallic compound of the Ni 3 P phase, which is a feature of the present invention.
なお、上記で得られた本発明例の微小粒子は、その中心部分から表層部分へ向かってはPが約2.5(mass%)から約7(mass%)に増加する勾配組成を有していた。そして、その組織構造は、中心部分では柱状晶であり、表層部分においては微結晶であることが確認された。 The fine particles of the present invention obtained above have a gradient composition in which P increases from about 2.5 (mass%) to about 7 (mass%) from the central portion toward the surface layer portion. It was. It was confirmed that the structure was a columnar crystal in the central part and a microcrystal in the surface layer part.
(比較例)
本発明例の微小粒子に対しては、その無電解還元反応により得られた微小粒子の加熱処理前の状態について、調査した。その結果、半径の約1/2を境界にして、中心部分は約2(mass%)のPを含有する柱状晶からなる微結晶領域であり、表層部分においてはP濃度が約7(mass%)の非結晶構造を呈しており、Pの分布状況については本発明例と同様の傾向が確認された。なお、d50、d90、d10の値は、本発明例に同等であった。
(Comparative example)
For the fine particles of the present invention example, the state before the heat treatment of the fine particles obtained by the electroless reduction reaction was investigated. As a result, the central portion is a microcrystalline region composed of columnar crystals containing about 2 (mass%) of P with a boundary of about ½ of the radius, and the P concentration is about 7 (mass%) in the surface layer portion. ), And the same tendency as in the present invention was confirmed with respect to the distribution of P. The value of d 50, d 90, d 10 was equal to the inventive examples.
しかしながら、本発明例と同じ方法によりXRDを行なった結果を図3に示すが、2θ:44.5°付近と51.9°付近にNiのブロードなピークが確認されたものの、本発明の特徴とするNi3P相の金属間化合物は認められなかった。 However, FIG. 3 shows the result of XRD performed by the same method as that of the present invention example, and although Ni broad peaks were confirmed at 2θ: around 44.5 ° and around 51.9 °, the features of the present invention No Ni 3 P phase intermetallic compound was found.
実施例1で作製した、加熱処理を行なった本発明例と、加熱処理を行なわなかった比較例の、それぞれの微小粒子について、その比重およびビッカース硬さを測定した。結果は表1の通りである。表層部分に本発明の特徴とするNi3P相の金属間化合物が析出している本発明例は、サンドブラスト用研磨材としての十分な比重に加えては、その十分な硬さをも具備していることがわかる。 The specific gravity and Vickers hardness of each of the microparticles produced in Example 1 of the present invention with heat treatment and the comparative example without heat treatment were measured. The results are shown in Table 1. The example of the present invention in which the intermetallic compound of the Ni 3 P phase, which is a feature of the present invention, is deposited on the surface layer portion has sufficient hardness in addition to sufficient specific gravity as an abrasive for sandblasting. You can see that
適切な比重および硬さと、均一な球形状および粒径分布を有する本発明のサンドブラスト用研磨材は、磁性を有していることから、本用途に加えては、複雑形状や管内面の研磨が可能な、磁気研磨の砥粒としても用いることが可能である。 Since the sandblasting abrasive of the present invention having an appropriate specific gravity and hardness, and a uniform spherical shape and particle size distribution has magnetism, in addition to this application, polishing of complex shapes and pipe inner surfaces is possible. It can also be used as an abrasive grain for magnetic polishing.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007108378A JP2008264900A (en) | 2007-04-17 | 2007-04-17 | Polishing material for sand blasting and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007108378A JP2008264900A (en) | 2007-04-17 | 2007-04-17 | Polishing material for sand blasting and its manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008264900A true JP2008264900A (en) | 2008-11-06 |
Family
ID=40045136
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007108378A Pending JP2008264900A (en) | 2007-04-17 | 2007-04-17 | Polishing material for sand blasting and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008264900A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012139790A (en) * | 2011-01-04 | 2012-07-26 | Sanyo Special Steel Co Ltd | Method of shot peening superior in lifetime of shot material |
JP2013008474A (en) * | 2011-06-22 | 2013-01-10 | Nippon Shokubai Co Ltd | Manufacturing method of conductive particulate |
-
2007
- 2007-04-17 JP JP2007108378A patent/JP2008264900A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012139790A (en) * | 2011-01-04 | 2012-07-26 | Sanyo Special Steel Co Ltd | Method of shot peening superior in lifetime of shot material |
JP2013008474A (en) * | 2011-06-22 | 2013-01-10 | Nippon Shokubai Co Ltd | Manufacturing method of conductive particulate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6939853B2 (en) | Thermal spray coating, method of manufacturing thermal spray coating, and thermal spraying member | |
TWI636149B (en) | Ferromagnetic sputtering target | |
US7837967B2 (en) | Thermal spray powder and method for forming thermal spray coating | |
JP2020007642A (en) | Production method of sputtering target | |
JP4018974B2 (en) | Tin oxide powder, method for producing the same, and method for producing high-density indium tin oxide target using the same | |
US20150060268A1 (en) | Sputtering Target for forming Magnetic Recording Film and Process for Producing Same | |
TW201116642A (en) | Method of manufacturing sputtering target and sputtering target | |
JP2007270312A (en) | Method for manufacturing silver powder, and silver powder | |
TW200302289A (en) | Target of high-purity nickel or nickel alloy and its producing method | |
JPWO2007060907A1 (en) | Tungsten alloy grain, processing method using the same, and manufacturing method thereof | |
JP3936655B2 (en) | Indium oxide powder, method for producing the same, and method for producing high-density indium tin oxide target using the same | |
JPWO2013175884A1 (en) | Fe-Pt-Ag-C based sputtering target in which C particles are dispersed and method for producing the same | |
JP2002348653A (en) | Particles of rare-earths oxide for thermal spraying, thermal sprayed member and corrosion resistant member | |
WO2018043680A1 (en) | NON-MAGNETIC MATERIAL-DISPERSED Fe-Pt SPUTTERING TARGET | |
JP4273292B2 (en) | Thermal spray particles and thermal spray member using the particles | |
JP4879762B2 (en) | Silver powder manufacturing method and silver powder | |
CN110144484B (en) | Cu-NbMoTaW alloy and preparation method thereof | |
JP2011093729A (en) | Method for producing ito sintered compact, and method for producing ito sputtering target | |
JP2009155722A (en) | Ni-W BASED SINTERED TARGET MATERIAL | |
JP2008264900A (en) | Polishing material for sand blasting and its manufacturing method | |
TW202244286A (en) | Film-forming material, film-forming slurry, spray coated film, and spray coated member | |
JP4650598B2 (en) | Particles for oxide spraying for semiconductor manufacturing apparatus, manufacturing method thereof, and member for semiconductor manufacturing apparatus | |
JP6094848B2 (en) | Method for producing Fe-Co alloy soft magnetic film for perpendicular magnetic recording medium | |
CN105164303A (en) | Method for depositing corrosion-protection coating | |
JP2008260970A (en) | SINTERED SPUTTERING-TARGET MATERIAL OF Co-Zr-BASED ALLOY AND MANUFACTURING METHOD THEREFOR |