JP2008263015A - Semiconductor light-emitting element - Google Patents

Semiconductor light-emitting element Download PDF

Info

Publication number
JP2008263015A
JP2008263015A JP2007103710A JP2007103710A JP2008263015A JP 2008263015 A JP2008263015 A JP 2008263015A JP 2007103710 A JP2007103710 A JP 2007103710A JP 2007103710 A JP2007103710 A JP 2007103710A JP 2008263015 A JP2008263015 A JP 2008263015A
Authority
JP
Japan
Prior art keywords
layer
metal
support substrate
light emitting
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007103710A
Other languages
Japanese (ja)
Other versions
JP4985067B2 (en
Inventor
Masahiro Arai
優洋 新井
Kazuyuki Iizuka
和幸 飯塚
Sadanari Watanabe
禎就 渡邊
Kenji Tsukahara
健志 塚原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2007103710A priority Critical patent/JP4985067B2/en
Publication of JP2008263015A publication Critical patent/JP2008263015A/en
Application granted granted Critical
Publication of JP4985067B2 publication Critical patent/JP4985067B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-power semiconductor light-emitting element which can achieve the proper bonding of a substrate and can improve an yield. <P>SOLUTION: A light-emitting diode 100 is provided with a compound semiconductor layer 14 which has a light-emitting layer part, a conductive support substrate 10 which supports the compound semiconductor layer 14, a metal light reflection layer 9 which is arranged between the compound semiconductor layer 14 and the conductive support substrate 10 and reflects light from the light-emitting layer part, an interface electrode 8 which is formed in a part of a joint interface between the compound semiconductor layer 14 and the metal light reflection layer 9, a Ti layer 18 which is formed in contact with the major surface of the conductive support substrate 10 on the side of the metal light reflection layer 9, a metal joining layer 11 of Au which is formed in contact with the major surface of the Ti layer 18 on the side of the metal light reflection layer 9, a surface electrode 12 which is formed on the side of a first major surface as the light extraction surface of the compound semiconductor layer 14 and a back electrode 13 which is formed on the major surface on the other side of the Ti layer 18 of the conductive support substrate 10. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は半導体発光素子に関し、更に詳しくは、発光層部を備えた化合物半導体層を、基板貼替え技術を用いて導電性支持基板によって支持した構造の半導体発光素子に関するものである。   The present invention relates to a semiconductor light-emitting device, and more particularly to a semiconductor light-emitting device having a structure in which a compound semiconductor layer having a light-emitting layer portion is supported by a conductive support substrate using a substrate pasting technique.

近年、半導体発光素子である発光ダイオード(LED;Light Emitting Diode)は、GaN系やAlGaInP系の高品質結晶をMOVPE法で成長出来る様になったことから、青色、緑色、橙色、黄色、赤色の高輝度LEDが製作出来る様になった。そして、LEDの高輝度化に伴い、その用途は自動車のブレーキランプや液晶ディスプレイのバックライト等へと広がり、LEDの需要も年々増加している。   In recent years, light emitting diodes (LEDs), which are semiconductor light emitting devices, have been able to grow GaN-based and AlGaInP-based high-quality crystals by the MOVPE method, so blue, green, orange, yellow, red High brightness LED can be manufactured. And with the increase in brightness of LEDs, their uses have expanded to automobile brake lamps, liquid crystal display backlights, and the like, and demand for LEDs has been increasing year by year.

現在、MOVPE法によって高品質の結晶が成長可能となってから、特にAlGaInP系LEDの内部量子効率は理論的に限界値に近づきつつある。しかし、LED素子からの光取出し効率はまだまだ低く、光取出し効率を向上することが重要となっている。   Currently, since high-quality crystals can be grown by the MOVPE method, the internal quantum efficiency of AlGaInP-based LEDs in particular is approaching a theoretical limit value. However, the light extraction efficiency from the LED element is still low, and it is important to improve the light extraction efficiency.

例えば、高輝度赤色LEDは、AlGaInP系の材料で形成され、導電性のGaAs基板上に格子整合する組成のAlGaInP系の材料から成るn型AlGaInP層とp型AlGaInP層とそれらに挟まれたAlGaInP又はGaInPから成る発光層(活性層)を有するダブルヘテロ構造と成っている。しかしながら、GaAs基板のバンドギャップは発光層のバンドギャップよりも狭い為に、発光層からの光の多くがGaAs基板に吸収され、光取出し効率が著しく低下する。   For example, a high-intensity red LED is formed of an AlGaInP-based material, and includes an n-type AlGaInP layer and a p-type AlGaInP layer made of an AlGaInP-based material having a lattice-matched composition on a conductive GaAs substrate, and an AlGaInP layer sandwiched between them. Alternatively, a double heterostructure having a light emitting layer (active layer) made of GaInP is formed. However, since the band gap of the GaAs substrate is narrower than the band gap of the light emitting layer, most of the light from the light emitting layer is absorbed by the GaAs substrate, and the light extraction efficiency is significantly reduced.

こういった物理的な問題に対し、例えば特許文献1にあるように、発光層とGaAs基板との間に、屈折率の異なる半導体層を積層した多層反射膜構造を形成し、GaAs基板での光吸収を低減し、光取出し効率を向上させる方法がある。しかし、この方法では、発光層から多層反射膜構造へ向かう光の内、限定された小さな入射角の光しか反射することが出来ない。   To deal with these physical problems, for example, as disclosed in Patent Document 1, a multilayer reflective film structure in which semiconductor layers having different refractive indexes are laminated between a light emitting layer and a GaAs substrate is formed. There is a method for reducing light absorption and improving light extraction efficiency. However, in this method, only light with a limited small incident angle can be reflected from the light traveling from the light emitting layer to the multilayer reflective film structure.

そこで、例えば特許文献2にあるように、AlGaInP系の材料から成るダブルへテロ構造を反射率の高いAu系金属層(基板貼合わせの金属接合層でもある)を介してSi支持基板に貼り付け、その後、成長用に用いたGaAs基板を除去する方法が考案されている。この方法を用いた場合には、反射膜として金属層を用いている為、金属層への光の入射角を選ばずに高い反射率を得ることが可能となる。   Therefore, as disclosed in Patent Document 2, for example, a double heterostructure made of an AlGaInP-based material is bonded to a Si support substrate via an Au-based metal layer (also a substrate bonding metal bonding layer) having a high reflectance. Thereafter, a method of removing the GaAs substrate used for growth has been devised. When this method is used, since a metal layer is used as the reflective film, it is possible to obtain a high reflectance without selecting an incident angle of light to the metal layer.

金属層を介した貼合せ方法の場合、熱圧着接合、または共晶接合のいずれかの接合方式を採用するにしても、貼合せるエピタキシャル成長用基板および支持基板は、十分な接合強度を得るためなどの目的で、例えば150℃〜400℃程度の温度まで加熱する必要がある。しかし、成長用基板と支持基板との線膨張係数差があまりに大きい場合、基板を加熱接合する際に線膨張係数差に起因した大きな反りが発生し、基板が割れたり、クラックが発生したりする場合がある。したがって、支持基板の材料の選択にあっては、成長用基板(出発基板であり、主にGaAs基板)と支持基板との線膨張係数差が小さいことが、重要な選択理由となる。
つまり、貼合せる際の接合温度および成長用基板に対する支持基板の材料を適宜選択することは、貼合せ工程において基板に「割れ」や「クラック」を発生させないために極めて重要なパラメータとなっており、特許文献2において支持基板の材料にSi基板を用いる理由は、これらが要因になっている所が大きい。
In the case of a laminating method through a metal layer, even if either a thermocompression bonding or a eutectic bonding method is adopted, the epitaxial growth substrate to be bonded and the support substrate have sufficient bonding strength, etc. For this purpose, it is necessary to heat to a temperature of about 150 ° C. to 400 ° C., for example. However, if the difference in linear expansion coefficient between the growth substrate and the support substrate is too large, a large warp due to the difference in linear expansion coefficient occurs when the substrates are heat-bonded, and the substrate is cracked or cracked. There is a case. Therefore, in selecting a material for the support substrate, an important reason for selection is that the difference in linear expansion coefficient between the growth substrate (starting substrate, mainly a GaAs substrate) and the support substrate is small.
In other words, selecting the bonding temperature for bonding and the material of the support substrate for the growth substrate is an extremely important parameter in order to prevent the generation of “cracks” and “cracks” in the bonding process. The reason why the Si substrate is used as the material of the support substrate in Patent Document 2 is largely due to these factors.

しかし、上記の特許文献2の方法では、支持基板であるSi基板とAu系金属層との間に、AuSb(金・アンチモン合金)もしくはAuSn(金・錫合金)から成る基板側接合層が挿入されている。基板側接合層は、Si基板とのオーミック性接触を良好にするために設けられた層であり、Si基板との直列抵抗の低減に有効であるが、主成分がAuで構成されていることから、Siとの合金化反応を非常に起こし易い。このため、貼合せ工程において、Si基板とAu系の基板側接合層とのAu‐Si合金化反応は、反射層であるAu系金属層の合金化反応へと拡がって、Au系金属層の反射率の低下を招く。更に、LEDウェハの電極アロイ工程などにおいて、アロイ中にSi基板とAu系金属層との合金化反応によってAu‐Si合金がメルト化し、その上のエピタキシャル層が剥離しかかる現象が生じる。   However, in the method disclosed in Patent Document 2, a substrate-side bonding layer made of AuSb (gold / antimony alloy) or AuSn (gold / tin alloy) is inserted between the Si substrate as the support substrate and the Au-based metal layer. Has been. The substrate-side bonding layer is a layer provided in order to improve the ohmic contact with the Si substrate and is effective for reducing the series resistance with the Si substrate, but the main component is composed of Au. Therefore, it is very easy to cause an alloying reaction with Si. For this reason, in the bonding process, the Au-Si alloying reaction between the Si substrate and the Au-based substrate side bonding layer spreads to the alloying reaction of the Au-based metal layer that is the reflective layer, and the Au-based metal layer Decreases reflectivity. Further, in the electrode alloy process of the LED wafer, the Au—Si alloy is melted by alloying reaction between the Si substrate and the Au-based metal layer in the alloy, and the epitaxial layer thereon is peeled off.

そこで、反射層である上記Au系金属層の合金化反応を防止してAu系金属層の光反射率の低下を抑止するために、Au系金属層自体が純粋な状態に保てるように、特許文献3には、Au系金属層とSi支持基板に接合されたAu系の基板側接合層との間に、TiまたはNiを主成分とする拡散阻止用金属層を設ける方法が開示されている。   Therefore, in order to prevent the alloying reaction of the Au-based metal layer, which is a reflective layer, and to suppress a decrease in the light reflectance of the Au-based metal layer, a patent is made so that the Au-based metal layer itself can be kept pure. Document 3 discloses a method of providing a diffusion-preventing metal layer mainly composed of Ti or Ni between an Au-based metal layer and an Au-based substrate-side bonding layer bonded to a Si support substrate. .

特開平7−66455号公報JP-A-7-66455 特開2004−235581号公報JP 2004-235581 A 特開2004−235506号公報JP 2004-235506 A

上述した特許文献3の方法では、拡散阻止用金属層を設けることにより、Au系金属層へのSiの拡散を阻止・抑制することができる。しかしながら、Au系の基板側接合層のAu‐Si合金メルト化によって、エピタキシャル層が剥離しかかる現象までを抑えることは出来ない。何故ならば、この剥離現象は、Si支持基板とエピタキシャル層との間にメルト化層が発生することによってエピタキシャル層が応力などから物理的に解放されるために生じるからである。また、特許文献3には、拡散阻止用金属層にNiを用いる例が示されているが、NiもSiと合金化反応を起こし易い材料であり、上述したAuとSiとの合金化反応の問題と同様に懸念材料が増えることになり、好ましい材料とは言い難い。   In the method of Patent Document 3 described above, by providing the diffusion preventing metal layer, it is possible to prevent and suppress the diffusion of Si into the Au-based metal layer. However, the phenomenon that the epitaxial layer is peeled off cannot be suppressed by melting the Au-based substrate side bonding layer into an Au—Si alloy. This is because this exfoliation phenomenon occurs because the melted layer is generated between the Si support substrate and the epitaxial layer, so that the epitaxial layer is physically released from stress and the like. Patent Document 3 shows an example in which Ni is used for the diffusion-preventing metal layer. Ni is also a material that easily causes an alloying reaction with Si, and the above-described alloying reaction between Au and Si. Like the problem, the material of concern increases, and it is difficult to say that it is a preferable material.

本発明は、上記課題を解決し、良好な基板貼合せを実現でき、半導体発光素子の歩留りを向上できる高出力の半導体発光素子を提供することにある。   An object of the present invention is to provide a high-output semiconductor light-emitting device that can solve the above-described problems, can realize good substrate bonding, and can improve the yield of the semiconductor light-emitting device.

上記課題を解決するために、本発明は次のように構成されている。
本発明の第1の態様は、発光層部を有する化合物半導体層と、前記化合物半導体層を支持する導電性支持基板と、前記化合物半導体層と前記導電性支持基板との間に設けられ、前記発光層部からの光を反射する金属光反射層と、前記化合物半導体層と前記金属光反射層との接合界面の一部に形成された界面電極と、前記導電性支持基板の前記金属光反射層側の主表面に接して形成されたTi層と、前記Ti層の前記金属光反射層側の主表面に接して形成されたAuからなる金属接合層と、前記化合物半導体層の光取出し面となる第一主表面側に形成された表面電極と、前記導電性支持基板の前記Ti層とは反対側の主表面側に形成された裏面電極と、を備えたことを特徴とする半導体発光素子である。
In order to solve the above problems, the present invention is configured as follows.
According to a first aspect of the present invention, there is provided a compound semiconductor layer having a light emitting layer portion, a conductive support substrate that supports the compound semiconductor layer, and the compound semiconductor layer and the conductive support substrate. A metal light reflection layer that reflects light from the light emitting layer, an interface electrode formed at a part of a bonding interface between the compound semiconductor layer and the metal light reflection layer, and the metal light reflection of the conductive support substrate A Ti layer formed in contact with the main surface on the layer side; a metal bonding layer made of Au formed in contact with the main surface on the metal light reflecting layer side of the Ti layer; and a light extraction surface of the compound semiconductor layer And a back electrode formed on the main surface opposite to the Ti layer of the conductive support substrate, and a semiconductor light emitting device comprising: It is an element.

本発明の第2の態様は、第1の態様の半導体発光素子において、前記導電性支持基板がSi基板であり、且つ当該Si基板の抵抗率が0.1Ω・cm以下であることを特徴とす
る。
According to a second aspect of the present invention, in the semiconductor light emitting device according to the first aspect, the conductive support substrate is a Si substrate, and the resistivity of the Si substrate is 0.1 Ω · cm or less. To do.

本発明の第3の態様は、第1の態様又は第2の態様の半導体発光素子において、前記Ti層の厚さが50nm以上2μm以下であることを特徴とする。   According to a third aspect of the present invention, in the semiconductor light emitting device according to the first or second aspect, the thickness of the Ti layer is 50 nm or more and 2 μm or less.

本発明の第4の態様は、第1〜第3の態様のいずれかの半導体発光素子おいて、前記金属接合層の厚みが0.5μm以上3μm以下であることを特徴とする。   According to a fourth aspect of the present invention, in the semiconductor light emitting device according to any one of the first to third aspects, a thickness of the metal bonding layer is 0.5 μm or more and 3 μm or less.

本発明の第5の態様は、第1〜第4の態様のいずれかの半導体発光素子において、前記界面電極が、前記化合物半導体層と前記金属光反射層との間に形成された誘電体層の開口部に、前記化合物半導体層の第二主表面と前記金属光反射層とを接続して形成された金属層であることを特徴とする。   According to a fifth aspect of the present invention, in the semiconductor light emitting device according to any one of the first to fourth aspects, the interface electrode is a dielectric layer formed between the compound semiconductor layer and the metal light reflection layer. The metal layer is formed by connecting the second main surface of the compound semiconductor layer and the metal light reflection layer to the opening.

本発明の第6の態様は、第1〜第5の態様のいずれかの半導体発光素子において、前記化合物半導体層の第二主表面の表面積に対する、前記界面電極が前記化合物半導体層の第二主表面に接する面の表面積の割合が、30%以下であることを特徴とする。   According to a sixth aspect of the present invention, in the semiconductor light emitting device according to any one of the first to fifth aspects, the interface electrode is a second main surface of the compound semiconductor layer with respect to the surface area of the second main surface of the compound semiconductor layer. The ratio of the surface area of the surface in contact with the surface is 30% or less.

本発明の第7の態様は、第1〜第6の態様のいずれかの半導体発光素子において、前記界面電極が、前記表面電極の直下の領域外に分散して形成されていることを特徴とする。   According to a seventh aspect of the present invention, in the semiconductor light emitting device according to any one of the first to sixth aspects, the interface electrode is formed dispersedly outside a region immediately below the surface electrode. To do.

本発明の第8の態様は、第5〜第7の態様のいずれかの半導体発光素子において、前記誘電体層の主成分がSiOであることを特徴とする。 According to an eighth aspect of the present invention, in the semiconductor light emitting device according to any one of the fifth to seventh aspects, the main component of the dielectric layer is SiO 2 .

本発明によれば、Si等からなる導電性支持基板とAuからなる金属接合層との間に、Ti層のみを設ける構造としたことにより、Ti層はSi等からなる導電性支持基板と合金化反応をしないか或いは合金化反応を極めて起こし難いので、製造中の熱処理による合金メルト化を確実に防止でき、また、Si等からなる導電性支持基板とAuからなる金属接合層との合金化反応をTi層によって効果的に抑止できると共に、導電性支持基板との良好なオーミック性接触が可能となる。これにより、貼り替え型の半導体発光素子の歩留まりを著しく向上でき、更に高出力で低動作電圧の半導体発光素子が得られる。   According to the present invention, by providing a structure in which only the Ti layer is provided between the conductive support substrate made of Si or the like and the metal bonding layer made of Au, the Ti layer is made of a conductive support substrate made of Si or the like and an alloy. The alloying reaction is not caused or the alloying reaction is hardly caused, so that the alloy melt can be surely prevented by the heat treatment during the production, and the alloying of the conductive support substrate made of Si or the like and the metal bonding layer made of Au is made. The reaction can be effectively suppressed by the Ti layer, and good ohmic contact with the conductive support substrate is possible. As a result, the yield of the replaceable semiconductor light emitting device can be remarkably improved, and a semiconductor light emitting device having a high output and a low operating voltage can be obtained.

以下、本発明の半導体発光素子の一実施形態に係る発光ダイオード(LED)を図面を用いて説明する。図1は、本実施形態のLED素子の構造を示す断面図である。   Hereinafter, a light emitting diode (LED) according to an embodiment of a semiconductor light emitting device of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing the structure of the LED element of this embodiment.

図1に示すように、LED素子100は、発光層部を有する化合物半導体層14と、化合物半導体層14を支持する導電性支持基板(Si基板など)10と、化合物半導体層14と導電性支持基板10との間に設けられ、前記発光層部からの光を反射する金属光反射層9と、化合物半導体層14と金属光反射層9との接合界面の一部に形成された界面電極8と、導電性支持基板10の金属光反射層9側の主表面に接して形成されたTi層18と、Ti層18の金属光反射層9側の主表面に接して形成されたAuからなる金属接合層11(11a及び11b)と、化合物半導体層14の光取出し面となる第一主表面側に形成された表面電極12と、導電性支持基板10のTi層18とは反対側の主表面側に形成された裏面電極13とを備えている。   As shown in FIG. 1, the LED element 100 includes a compound semiconductor layer 14 having a light emitting layer portion, a conductive support substrate (Si substrate or the like) 10 that supports the compound semiconductor layer 14, a compound semiconductor layer 14, and a conductive support. A metal light reflection layer 9 provided between the substrate 10 and reflecting the light from the light emitting layer portion, and an interface electrode 8 formed at a part of the bonding interface between the compound semiconductor layer 14 and the metal light reflection layer 9. And Ti layer 18 formed in contact with the main surface of the conductive support substrate 10 on the metal light reflecting layer 9 side, and Au formed in contact with the main surface of the Ti layer 18 on the metal light reflecting layer 9 side. The metal bonding layer 11 (11a and 11b), the surface electrode 12 formed on the first main surface side to be the light extraction surface of the compound semiconductor layer 14, and the main layer on the opposite side to the Ti layer 18 of the conductive support substrate 10 And a back electrode 13 formed on the front surface side. .

化合物半導体層14をエピタキシャル成長によって形成する為の成長用基板(出発基板)の材料に特に制限はない。成長用基板の材料としては、GaAsの他に、InP、Ge、サファイア等を用いてもよい。化合物半導体層14、界面電極8、金属光反射層9及び金属接合層11aを有する成長用基板は、Ti層18、金属接合層11bを有する導電性支持基板10に貼り合わされ、貼り合わせ基板から成長用基板がエッチング等により除去
された後、表面電極12,13が形成される。
There is no particular limitation on the material of the growth substrate (starting substrate) for forming the compound semiconductor layer 14 by epitaxial growth. In addition to GaAs, InP, Ge, sapphire, or the like may be used as a material for the growth substrate. The growth substrate having the compound semiconductor layer 14, the interface electrode 8, the metal light reflecting layer 9, and the metal bonding layer 11a is bonded to the conductive support substrate 10 having the Ti layer 18 and the metal bonding layer 11b, and is grown from the bonded substrate. After the working substrate is removed by etching or the like, the surface electrodes 12 and 13 are formed.

化合物半導体層14の発光層部の材料としては、AlGaAs系化合物半導体、AlGaInP系化合物半導体の他に、GaN系化合物半導体、InGaAsP系化合物半導体等、を選択しても良い。但し、黄色帯〜赤色帯の高出力半導体発光素子を得る場合、成長用基板材料はGaAsが好適であり、化合物半導体層材料にはAlGaInP系材料が好適である。
図1の高輝度赤色LEDの場合には、発光層部は、導電性のn型GaAs基板上に格子整合する組成のn型AlGaInPクラッド層4と、p型AlGaInPクラッド層6と、それらに挟まれたAlGaInP活性層(発光層)5とのダブルヘテロ構造となっている。また、図1の化合物半導体層14では、n型AlGaInPクラッド層4と表面電極12との間にn型GaAsコンタクト層3が、またp型AlGaInPクラッド層6と界面電極8との間にp型GaPコンタクト層7がそれぞれ設けられている。
化合物半導体層14のエピタキシャル成長には、MOCVD装置を用いてMOVPE(有機金属気相成長)法による気相成長を行うのが好ましいが、これに限定されるものではなく、例えばLPE法(液相成長)などの別の製造方法によって作製しても勿論よい。
As a material for the light emitting layer portion of the compound semiconductor layer 14, in addition to the AlGaAs compound semiconductor and the AlGaInP compound semiconductor, a GaN compound semiconductor, an InGaAsP compound semiconductor, and the like may be selected. However, when obtaining a high-power semiconductor light emitting device of yellow band to red band, the growth substrate material is preferably GaAs, and the compound semiconductor layer material is preferably an AlGaInP-based material.
In the case of the high-brightness red LED of FIG. 1, the light emitting layer is sandwiched between an n-type AlGaInP clad layer 4 and a p-type AlGaInP clad layer 6 having a lattice-matched composition on a conductive n-type GaAs substrate. It has a double hetero structure with the AlGaInP active layer (light emitting layer) 5 formed. In the compound semiconductor layer 14 of FIG. 1, the n-type GaAs contact layer 3 is between the n-type AlGaInP cladding layer 4 and the surface electrode 12, and the p-type is between the p-type AlGaInP cladding layer 6 and the interface electrode 8. GaP contact layers 7 are respectively provided.
For epitaxial growth of the compound semiconductor layer 14, it is preferable to perform vapor phase growth by MOVPE (metal organic vapor phase epitaxy) method using an MOCVD apparatus, but is not limited to this, for example, LPE method (liquid phase growth) Of course, it may be produced by another manufacturing method such as

界面電極8は、p型GaPコンタクト層7と金属光反射層9との間に形成された誘電体層15の開口部に、化合物半導体層14の第二主表面となるp型GaPコンタクト層7界面と金属光反射層9とを接続して形成された金属層である。誘電体層15の開口部、すなわち界面電極8は、表面電極12の直下の領域外に分散して形成するのが、光取出し効率の向上が図れるので好ましい。p型GaPコンタクト層7の第二主表面の表面積に対する、界面電極8のコンタクト層7に接する面の表面積の割合は、30%以下が好ましい。また、誘電体層15の主成分はSiOが好適である。 The interface electrode 8 is formed in the p-type GaP contact layer 7 serving as the second main surface of the compound semiconductor layer 14 in the opening of the dielectric layer 15 formed between the p-type GaP contact layer 7 and the metal light reflection layer 9. It is a metal layer formed by connecting the interface and the metal light reflection layer 9. The openings of the dielectric layer 15, that is, the interface electrodes 8 are preferably dispersed and formed outside the region immediately below the surface electrode 12 because the light extraction efficiency can be improved. The ratio of the surface area of the surface of the interface electrode 8 in contact with the contact layer 7 to the surface area of the second main surface of the p-type GaP contact layer 7 is preferably 30% or less. The main component of the dielectric layer 15 is preferably SiO 2 .

金属光反射層9とAu金属接合層11との間には、本実施形態では、Pt等からなる合金化バリア層16が設けられている。金属接合層11は、成長用基板側の金属接合層11aと、支持基板10側の金属接合層11bとからなる。成長用基板と支持基板10とを貼り合わせるときには、金属接合層11a面と金属接合層11b面とを密着させ圧力を加え保持した状態で加熱して接合する。金属接合層11の厚みは0.5μm以上3μm以下が
好適である。
In this embodiment, an alloying barrier layer 16 made of Pt or the like is provided between the metal light reflection layer 9 and the Au metal bonding layer 11. The metal bonding layer 11 includes a metal bonding layer 11a on the growth substrate side and a metal bonding layer 11b on the support substrate 10 side. When the growth substrate and the support substrate 10 are bonded to each other, the surfaces of the metal bonding layer 11a and the metal bonding layer 11b are brought into close contact with each other and heated and bonded together under pressure. The thickness of the metal bonding layer 11 is preferably 0.5 μm or more and 3 μm or less.

また、導電性支持基板10に接触して形成されるTi層18は、酸化物基板、化合物半導体基板、金属基板の何れに対しても良好な密着性を有し、更にTi層18はほとんどの材料に対して低い接触抵抗で接合できる。従って、貼り合わせに用いる導電性支持基板10の材料は特に限定されるものでは無い。Ti層18の厚さは50nm以上2μm以下であるのが好ましい。
導電性支持基板10は、熱伝導や電気伝導を考慮すると、化合物や合金よりも単体が望ましく、例えば、シリコン、ゲルマニウム、アルミニウム、金、銀、銅、白金、チタン、モリブデン、タングステン等が挙げられる。しかし、支持基板10の材料は、必ずしもこれらに限定されるものではなく、例えば、支持基板と成長用基板やエピタキシャル層との線膨張係数の差があまりにも大きくなると、エピタキシャル層や基板の割れ、クラックの問題が生じる為、これらを考慮すると、GaPやCu‐W合金、Cu‐Mo合金などの化合物や合金も、支持基板10材料の選択の範囲となる。
また、貼合せに用いる支持基板材料は、工業的に安価に入手でき、且つGaAsとの線膨張係数差が大きく離れていないSi基板が好適であると言える。Si基板の場合、その抵抗率は0.1Ω・cm以下が好ましい。また、支持基板材料に半導体を用いる場合にお
いては、Ti層18との直列抵抗を低減させる為、0.05Ω・cm以下の抵抗率を有す
る低抵抗基板を用いることが好ましい。
Further, the Ti layer 18 formed in contact with the conductive support substrate 10 has good adhesion to any of an oxide substrate, a compound semiconductor substrate, and a metal substrate. Can be bonded to materials with low contact resistance. Therefore, the material of the conductive support substrate 10 used for bonding is not particularly limited. The thickness of the Ti layer 18 is preferably 50 nm or more and 2 μm or less.
In consideration of heat conduction and electric conduction, the conductive support substrate 10 is preferably a simple substance rather than a compound or alloy, and examples thereof include silicon, germanium, aluminum, gold, silver, copper, platinum, titanium, molybdenum, and tungsten. . However, the material of the support substrate 10 is not necessarily limited to these. For example, if the difference in the linear expansion coefficient between the support substrate and the growth substrate or the epitaxial layer becomes too large, the epitaxial layer or the substrate cracks, In view of these problems, compounds and alloys such as GaP, Cu—W alloy, Cu—Mo alloy, and the like are also within the range of selection of the support substrate 10 material.
Moreover, it can be said that the support substrate material used for bonding is preferably an Si substrate that is industrially available at a low cost and does not have a large difference in linear expansion coefficient from GaAs. In the case of a Si substrate, the resistivity is preferably 0.1 Ω · cm or less. When a semiconductor is used as the support substrate material, it is preferable to use a low resistance substrate having a resistivity of 0.05 Ω · cm or less in order to reduce the series resistance with the Ti layer 18.

上述した実施形態の発光ダイオード構造を採用した根拠・理由などを、次に述べる。   The grounds and reasons for adopting the light emitting diode structure of the above-described embodiment will be described next.

第1に、導電性支持基板10がSiから成る場合、Si支持基板の抵抗率は少なくとも0.1Ω・cm以下であることが好ましい。その根拠は、Si支持基板の第一主表面、お
よび第二主表面に形成するTi層18、裏面電極13との接触抵抗を低く抑え、ひいてはLED素子の動作電圧を低く抑える為である。また、抵抗率を0.1Ω・cmよりも高く
してしまうと、電極13,18とのオーミック性接触が得られないばかりか、LEDを動作させる上での支持基板による直列抵抗があまりにも大きくなり過ぎる為、LEDの動作電圧が異常に高くなってしまう。
First, when the conductive support substrate 10 is made of Si, the resistivity of the Si support substrate is preferably at least 0.1 Ω · cm or less. The reason for this is to keep the contact resistance with the Ti main layer 18 and the back electrode 13 formed on the first main surface and the second main surface of the Si support substrate low, and hence the operating voltage of the LED element low. Further, if the resistivity is higher than 0.1 Ω · cm, not only ohmic contact with the electrodes 13 and 18 can be obtained, but also the series resistance by the support substrate in operating the LED is too large. Therefore, the operating voltage of the LED becomes abnormally high.

第2に、Si等からなる支持基板10の第一主表面上のTi層18の膜厚は、50nm以上2μm以下の範囲にあることが好ましい。Ti層18の膜厚の下限値50nmの根拠は次の様なことである。例えば、あまりにTi層18が薄くなり過ぎると、Ti層18とSi支持基板10との間でオーミック性接触が得られにくくなってくるばかりか、Si支持基板10のSiとAu金属接合層11のAuとのSi‐Au合金化反応をTi層18によって抑止する効果も低くなってしまう為である。
また、上限値2μmの根拠は次の様なことである。LED素子の特性上、Ti層18の膜厚は、例え5μmや10μmの厚さになっても特に問題は無いが、Ti層18の意図する所の合金化バリア効果、及びオーミック電極としての働きは、Ti層がもっと薄い膜厚であっても十分に得ることが出来る。したがって過剰にTi層を厚くすることは、AuやPtと比較すればTiは安価な材料ではあるが、原料使用量が増える他、真空蒸着に掛かるスループットの悪化など、コストを上げる要因にしかならない。また、Ti層をスパッタ法、真空蒸着法のいずれの方法で形成しても、Ti層を過剰に堆積することは装置内の温度が異常に熱くなる他、過剰堆積によるメンテナンス周期の短期化など、装置への負担が大きくなる。したがって、過剰に堆積しない好適な範囲としておよそ2μm程度が好ましいのである。上述した、オーミック性接触を得ること、AuとSiとの合金化反応を抑止することなどに対して更に好適であるTi層の膜厚範囲は、製造上のウェハ貼合せ時の加熱温度、電極アロイ時のアロイ温度にも依存するが、およそ100nm以上1μm以内であると言える。
Second, the thickness of the Ti layer 18 on the first main surface of the support substrate 10 made of Si or the like is preferably in the range of 50 nm to 2 μm. The grounds for the lower limit of 50 nm of the thickness of the Ti layer 18 are as follows. For example, if the Ti layer 18 becomes too thin, ohmic contact between the Ti layer 18 and the Si support substrate 10 becomes difficult to obtain, and the Si and Au metal bonding layers 11 of the Si support substrate 10 become difficult to obtain. This is because the effect of suppressing the Si—Au alloying reaction with Au by the Ti layer 18 is also reduced.
The grounds for the upper limit of 2 μm are as follows. There is no particular problem even if the thickness of the Ti layer 18 becomes 5 μm or 10 μm, for example, due to the characteristics of the LED element, but the alloying barrier effect as intended by the Ti layer 18 and the function as an ohmic electrode Can be sufficiently obtained even when the Ti layer is thinner. Therefore, excessively thickening the Ti layer is a cheaper material compared to Au and Pt, but it only increases the amount of raw materials used and increases the cost, such as a decrease in the throughput of vacuum deposition. . Moreover, even if the Ti layer is formed by either sputtering or vacuum evaporation, excessive deposition of the Ti layer will cause the temperature inside the apparatus to become abnormally hot, and shorten the maintenance cycle due to excessive deposition. This increases the burden on the device. Therefore, about 2 μm is preferable as a suitable range in which no excessive deposition occurs. As described above, the film thickness range of the Ti layer that is more suitable for obtaining ohmic contact, inhibiting the alloying reaction between Au and Si, etc. includes the heating temperature at the time of wafer bonding in manufacturing, and the electrode. Although depending on the alloy temperature at the time of alloying, it can be said that it is about 100 nm or more and 1 μm or less.

第3に、金属接合層11の膜厚は、ウェハ同士の接合界面において0.5μm以上3.0μm以下の範囲にあることが好ましい。これは、金属接合層11の膜厚が貼合せにおける歩留りに対して極めて重要であるからである。基本的に金属接合層11の膜厚が厚ければ、例えば貼合せ界面において凸形状の異物が付着してあったとしても、その異物を柔らかく包含するように金属接合層11が緩衝層として働くことが出来る。つまり、金属接合層11が厚ければ異物などに起因するボイド(接合不良部)を無くすことが出来る、若しくは小さく抑えることが出来るようになるのである。即ち、貼り替え型LEDの製造において良好な貼合せ歩留りを得る為には、接合界面における金属接合層11の膜厚はおよそ0.5μm以上は必要なのである。それよりも薄い膜厚になると、極めて微小な異物であっ
ても大きなボイドを発生させ、更には貼合せを行う際の圧力印加の偏りが大きな影響となってボイドに反映されることが多くなってしまう。
金属接合層11の膜厚による貼合せ歩留りへの影響は、基本的に厚ければ厚い方が良好な結果を得ることが出来る。しかし、当然ながら歩留りには限界があり、金属接合層11の膜厚を増加させても歩留り向上の効果は徐々に飽和する傾向にある。この飽和状態に近づくほどに金属接合層11の膜厚を厚くすることは、LED素子の取得率を向上させることよりもLED製造に掛かる原料費用のデメリットの方が大きくなり、とても得策とは言い難い。したがって、金属接合層11の膜厚には上限があり、十分な接合歩留りを得られる範囲としては3.0μmが適当である。
更に、金属接合層11を構成する材料はAuが好適である。金属を接合層とした熱圧着による接合では、例えばAgやInなど、色々な材料を用いることが可能であるが、Au
は接合面が酸化し難く、且つ高融点であることから、Auは非常に金属接合層11に好適な材料と言える。しかもAuは、AgやAg合金などの金属接合層で接合した場合と比較し、強力な接合強度を有している。これも貼り替え型LEDを製造する上で非常に重要な要因の一つとなっている。金属接合層11の上限膜厚については先に述べた通りであるが、金属接合層の材料がAuであると、その原材料費は非常に高い為、尚更、上限値が重要となってくる。
Third, the film thickness of the metal bonding layer 11 is preferably in the range of 0.5 μm or more and 3.0 μm or less at the bonding interface between the wafers. This is because the film thickness of the metal bonding layer 11 is extremely important for the yield in bonding. Basically, if the thickness of the metal bonding layer 11 is large, for example, even if a convex foreign material adheres at the bonding interface, the metal bonding layer 11 acts as a buffer layer so as to softly include the foreign material. I can do it. That is, if the metal bonding layer 11 is thick, voids (bonding failure portions) due to foreign matters or the like can be eliminated or suppressed. That is, in order to obtain a good bonding yield in the manufacture of the replaceable LED, the thickness of the metal bonding layer 11 at the bonding interface is required to be approximately 0.5 μm or more. If the film thickness is thinner than that, a large void will be generated even if it is a very small foreign object, and the bias of pressure application during bonding will be greatly influenced and reflected in the void. End up.
As for the influence of the film thickness of the metal bonding layer 11 on the bonding yield, the thicker the film, the better the result. However, as a matter of course, there is a limit to the yield, and even if the film thickness of the metal bonding layer 11 is increased, the yield improvement effect tends to be gradually saturated. Increasing the film thickness of the metal bonding layer 11 as it approaches the saturation state increases the disadvantage of raw material costs for LED manufacturing rather than improving the acquisition rate of LED elements, and is very advantageous. hard. Accordingly, the film thickness of the metal bonding layer 11 has an upper limit, and 3.0 μm is appropriate as a range in which a sufficient bonding yield can be obtained.
Furthermore, Au is suitable for the material constituting the metal bonding layer 11. In thermocompression bonding using metal as a bonding layer, various materials such as Ag and In can be used.
Since the bonding surface is difficult to oxidize and has a high melting point, it can be said that Au is a very suitable material for the metal bonding layer 11. Moreover, Au has a stronger bonding strength than when bonded by a metal bonding layer such as Ag or an Ag alloy. This is also one of the very important factors in manufacturing the replaceable LED. The upper limit film thickness of the metal bonding layer 11 is as described above. However, if the material of the metal bonding layer is Au, the raw material cost is very high, so the upper limit value becomes more important.

第4に、界面電極8の占有面積率は30%以下であることが好適である。ちなみに界面電極の占有面積率とは、化合物半導体層の第二主表面における表面積に対して、界面電極の化合物半導体層の第二主表面に接する面における表面積の割合のことを指している。発光層5から放射された光の一部は化合物半導体層14の第一主表面から外部に放出されるが、それ以外の多くの光は化合物半導体層14の第二主表面側、即ち金属光反射層9、界面電極8の方向に向かっていく。LED素子の構成上、金属光反射層9の部分は発光層5から放射された光に対して良好な光反射率(およそ80%以上)を有する。図5には、波長400〜700nmの光に対する、Al,Ag,Au(金属光反射層9として用いられる)の反射率の測定結果を示す。
しかし、界面電極8の部分はそれとは異なり、非常に低い光反射率(およそ50%以下)を有している。これは、界面電極8が化合物半導体層14とオーミック性接触を得る為に設けられた金属電極であり、その為、一般的には化合物半導体層14と合金化した状態を形成する。半導体と合金化した金属の反射率が低下することは既知の通りであり、この為に界面電極8は光反射特性が期待出来ない領域となっているのである。つまりこれらの事から、化合物半導体層14の第二主表面における界面電極8の占有面積率が多くなり過ぎるとLED素子の出力低下が生じてしまうのである。図6には、界面電極の占有面積率(%)に対する、LED素子の発光出力(mW)及び動作電圧(V)の測定結果を示す。
以上の事から、良好な出力特性を有するLED素子の製造においては少なくとも界面電極8の占有面積率が30%以下であることが好ましく、更に好適には15%以下である事が好ましい。
Fourth, the occupation area ratio of the interface electrode 8 is preferably 30% or less. Incidentally, the occupied area ratio of the interface electrode refers to the ratio of the surface area of the surface of the interface electrode in contact with the second main surface of the compound semiconductor layer to the surface area of the compound semiconductor layer at the second main surface. A part of the light emitted from the light emitting layer 5 is emitted to the outside from the first main surface of the compound semiconductor layer 14, but many other lights are on the second main surface side of the compound semiconductor layer 14, that is, metal light. It goes toward the reflective layer 9 and the interface electrode 8. Due to the configuration of the LED element, the metal light reflecting layer 9 has a good light reflectance (approximately 80% or more) with respect to the light emitted from the light emitting layer 5. In FIG. 5, the measurement result of the reflectance of Al, Ag, Au (used as the metal light reflection layer 9) with respect to light having a wavelength of 400 to 700 nm is shown.
However, the interface electrode 8 portion has a very low light reflectance (approximately 50% or less). This is a metal electrode provided for the interface electrode 8 to obtain ohmic contact with the compound semiconductor layer 14, and therefore generally forms an alloyed state with the compound semiconductor layer 14. It is known that the reflectivity of a metal alloyed with a semiconductor is lowered. For this reason, the interface electrode 8 is a region where light reflection characteristics cannot be expected. That is, for these reasons, if the occupied area ratio of the interface electrode 8 on the second main surface of the compound semiconductor layer 14 is too large, the output of the LED element is reduced. FIG. 6 shows the measurement results of the light emission output (mW) and the operating voltage (V) of the LED element with respect to the occupied area ratio (%) of the interface electrode.
From the above, in the manufacture of an LED element having good output characteristics, at least the occupation area ratio of the interface electrode 8 is preferably 30% or less, and more preferably 15% or less.

第5に、化合物半導体層14と金属光反射層9との間に形成される誘電体層15の材料はSiOであることが好ましい。その理由は、SiOの成膜は、種々の誘電体膜の形成に対して、一般的且つ簡便であり、更に、化合物半導体による発光素子が放射する光に対し、極めて良好な透過特性、つまり吸収損失の低さを誇る為である。また、金属光反射層9に用いる材料、例えばAlなどとの密着性が非常に強く、接合界面におけるボイドなどが発生しにくい特徴も有する。以上の事から、誘電体層15に用いる材料にはSiOが好適であると言える。 Fifth, the material of the dielectric layer 15 formed between the compound semiconductor layer 14 and the metal light reflection layer 9 is preferably SiO 2 . The reason for this is that the formation of SiO 2 is general and simple with respect to the formation of various dielectric films, and furthermore, extremely good transmission characteristics with respect to the light emitted from the light emitting element made of a compound semiconductor, that is, This is because of its low absorption loss. Further, the metal light reflection layer 9 has a feature that adhesion to a material used for example, Al, for example, is very strong, and voids at the bonding interface are not easily generated. From the above, it can be said that SiO 2 is suitable for the material used for the dielectric layer 15.

なお、図1に示す上記実施形態では、AlGaInP活性層(発光層)5をアンドープのバルク層としたが、活性層(発光層)5を多重量子井戸構造または歪み多重量子井戸構造としてもよい。また、上記実施形態では、例えば出発基板に用いるGaAs基板の導電性をn型とし、GaPコンタクト層7の導電性をp型とし、貼り替え型LED用エピタキシャルウェハの完成時には、いわゆるnサイドアップの構造を採用したが、pサイドアップの構造を採る様に各層の導電性を逆にしても、同様な効果が得られる。   In the embodiment shown in FIG. 1, the AlGaInP active layer (light emitting layer) 5 is an undoped bulk layer, but the active layer (light emitting layer) 5 may have a multiple quantum well structure or a strained multiple quantum well structure. In the above embodiment, for example, the conductivity of the GaAs substrate used as the starting substrate is n-type, and the conductivity of the GaP contact layer 7 is p-type. Although the structure is adopted, the same effect can be obtained even if the conductivity of each layer is reversed so as to adopt a p-side-up structure.

次に、本発明の実施例を説明する。
(実施例)
図1に示した上記実施形態と同じ断面構造を有し、発光波長が630nm付近の赤色LED素子を作製した。図2A及び図2Bに、本実施例のLED素子の製造工程の工程図を示す。
Next, examples of the present invention will be described.
(Example)
A red LED element having the same cross-sectional structure as that of the above embodiment shown in FIG. 1 and having an emission wavelength of around 630 nm was produced. 2A and 2B show process diagrams of the manufacturing process of the LED element of this example.

まず、図2A(a)に示す構造の発光波長630nm付近の赤色LED用エピタキシャルウェハを作製した。エピタキシャル成長方法、エピタキシャル層膜厚、エピタキシャル構造や電極形成方法、及びLED素子製作方法は、以下の通りである。   First, a red LED epitaxial wafer having an emission wavelength of about 630 nm and having the structure shown in FIG. 2A (a) was produced. The epitaxial growth method, the epitaxial layer thickness, the epitaxial structure, the electrode formation method, and the LED element manufacturing method are as follows.

直径3インチのn型GaAs基板1上に、MOVPE法で、n型(Al0.7Ga0.30.5In0.5Pエッチングストップ層(Siドープ、膜厚200nm、キャリア濃度1×1018/cm)2、n型GaAsコンタクト層(Siドープ、膜厚l00nm、キャリア濃度1×1018/cm)3、n型(Alo.7Ga0.30.5In0.5Pクラッド層(Siドープ、膜厚2.0μm、キャリア濃度1×1018/cm)4、ア
ンドープ(Al0.1Ga0.90.5In0.5P活性層(膜厚500nm)5、p型(Al0.7Ga0.30.5In0.5Pクラッド層(Mgドープ、膜厚400nm、キャリア濃度1.2×1018/cm)6、p型GaPコンタクト層(Mgドープ、膜厚8
00nm、キャリア濃度1×1018/cm)7を、順次積層成長させ、出発基板であるGaAs基板1上に化合物半導体層14を作製した。なお、ここでいう「アンドープ(un-dope)」とは、ドーパントの積極的添加を行なわない、との意味であり、通常の製造
工程上、不可避的に混入するドーパント成分の含有(例えば1013〜1016/cm程度を上限とする)をも排除するものではない。
An n-type (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P etching stop layer (Si-doped, film thickness 200 nm, carrier concentration 1 is formed on an n-type GaAs substrate 1 having a diameter of 3 inches by MOVPE. × 10 18 / cm 3 ) 2, n-type GaAs contact layer (Si doped, film thickness 100 nm, carrier concentration 1 × 10 18 / cm 3 ) 3, n-type (Al o.7 Ga 0.3 ) 0.5 In 0.5 P clad layer (Si-doped, film thickness 2.0 μm, carrier concentration 1 × 10 18 / cm 3 ) 4, undoped (Al 0.1 Ga 0.9 ) 0.5 In 0.5 P active layer ( 500 nm thick) 5, p-type (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P clad layer (Mg doped, 400 nm thick, carrier concentration 1.2 × 10 18 / cm 3 ) 6, p-type GaP contact layer (Mg doped, film thickness 8
00 nm, carrier concentration of 1 × 10 18 / cm 3 ) 7 were sequentially stacked and grown, and the compound semiconductor layer 14 was formed on the GaAs substrate 1 as a starting substrate. Here, “un-dope” means that dopant is not actively added, and inclusion of a dopant component inevitably mixed in a normal manufacturing process (for example, 10 13). 10 to 10 16 / cm 3 is the upper limit).

ここで、上記した化合物半導体層14の成長パラメータ、使用原料などは次の様に定めた。まず、MOCVD装置を用いたMOVPE法による成長温度は650℃とし、成長圧力約6666Pa(50Torr)、各層の成長速度は0.3〜1.0nm/sec、V/III比は約200前後で行った。因みにここで言うV/III比とは、分母をTMGaやTMAlな
どのIII族原料のモル数とし、分子をAsH、PHなどのV族原料のモル数とした場
合の比率(商)を指す。MOVPE成長における原料としては、例えばトリメチルガリウム(TMGa)、トリエチルガリウム(TEGa)、トリメチルアルミニウム(TMAl)、又はトリメチルインジウム(TMIn)等の有機金属ガスや、アルシン(AsH)、ホスフィン(PH)等の水素化物ガスを用いた。n型半導体層の導電型決定不純物の添加物原料としては、ジシラン(Si)を用い、p型半導体層の導電型決定不純物の添加物原料としては、ビスシクロペンタジエニルマグネシウム(CpMg)を用いた。その他に、n型層の導電型決定不純物の添加物原料として、セレン化水素(HSe)、モノシラン(SiH)、ジエチルテルル(DETe)、ジメチルテルル(DMTe)を用いることもできる。その他に、p型層のp型添加物原料として、ジメチルジンク(DMZn)、ジエチルジンク(DEZn)などを用いる事も出来る。
Here, the growth parameters and the raw materials used for the compound semiconductor layer 14 were determined as follows. First, the growth temperature by the MOVPE method using the MOCVD apparatus is set to 650 ° C., the growth pressure is about 6666 Pa (50 Torr), the growth rate of each layer is 0.3 to 1.0 nm / sec, and the V / III ratio is about 200. It was. Incidentally, the V / III ratio referred to here is the ratio (quotient) when the denominator is the number of moles of a group III material such as TMGa or TMAl and the molecule is the number of moles of a group V material such as AsH 3 or PH 3. Point to. Examples of raw materials for MOVPE growth include organometallic gases such as trimethylgallium (TMGa), triethylgallium (TEGa), trimethylaluminum (TMAl), and trimethylindium (TMIn), arsine (AsH 3 ), and phosphine (PH 3 ). A hydride gas such as was used. Disilane (Si 2 H 6 ) is used as an additive material for the conductivity type determining impurity of the n-type semiconductor layer, and biscyclopentadienyl magnesium (Cp) is used as an additive material for the conductivity type determining impurity of the p-type semiconductor layer. 2 Mg) was used. In addition, hydrogen selenide (H 2 Se), monosilane (SiH 4 ), diethyl tellurium (DETe), or dimethyl tellurium (DMTe) can also be used as an additive material for the conductivity determining impurity of the n-type layer. In addition, dimethyl zinc (DMZn), diethyl zinc (DEZn), or the like can be used as a p-type additive material for the p-type layer.

次に、このLED用エピタキシャルウェハをMOCVD装置から搬出した後、p型GaPコンタクト層7の表面にp‐CVD(プラズマCVD)装置でSiO膜15を約110nm成膜した(図2A(b))。そして更に、レジストやマスクアライナなどの一般的なフォトリソグラフィー装置・技術を用いると共に、純水で希釈したフッ酸エッチング液を用いてSiO膜15に開口部を形成し、更にその開口部には真空蒸着法によって界面電極8を形成した(図2A(c))。界面電極8の材料にはAuZn合金(金・亜鉛合金、Au:95wt%、Zn:5wt%)を用いた。また、界面電極8は、後に形成される表面電極12の直下以外の領域に配置される様に適宜設計されている。界面電極8の配置は次の通りである。 Next, after this LED epitaxial wafer was unloaded from the MOCVD apparatus, a SiO 2 film 15 of about 110 nm was formed on the surface of the p-type GaP contact layer 7 by a p-CVD (plasma CVD) apparatus (FIG. 2A (b)). ). Further, a general photolithography apparatus / technology such as a resist or a mask aligner is used, and an opening is formed in the SiO 2 film 15 using a hydrofluoric acid etching solution diluted with pure water. The interface electrode 8 was formed by the vacuum evaporation method (FIG. 2A (c)). AuZn alloy (gold / zinc alloy, Au: 95 wt%, Zn: 5 wt%) was used as the material of the interface electrode 8. In addition, the interface electrode 8 is appropriately designed so as to be disposed in a region other than directly below the surface electrode 12 to be formed later. The arrangement of the interface electrode 8 is as follows.

図3には、本実施例のLED素子(ベアチップ)100の上面図を示す。図3に示すように、本実施例の表面電極12は、LED素子100の上面中央に位置する直径100μmのパッド電極12aと、当該パッド電極12aの4箇所(90度ずつに配置)から延伸された、長さ100μm、幅15μmの細線電極12bとから構成されている。界面電極8は断面が直径15μmの円形ドット形状であり、各界面電極8は、発光ダイオード100の上面から見て、表面電極12直下の領域と重ならない領域部分に分散して配置される
。LED素子100の第一主表面上から見て表面電極12と重なる部分に位置する界面電極は、フォトマスクの設計段階から予め除去して設計している。
界面電極8は、図3に示すように、隣接する界面電極8,8の中央間ピッチを40μmとし、六方最密充填構造状に配置されている。即ち、一辺40μmの正六角形を蜂の巣状に連続して平面上に描いたときの、各正六角形の頂点および中心に界面電極8が位置するように配置させた。
In FIG. 3, the top view of the LED element (bare chip) 100 of a present Example is shown. As shown in FIG. 3, the surface electrode 12 of this embodiment is extended from a pad electrode 12 a having a diameter of 100 μm located at the center of the upper surface of the LED element 100 and four positions (disposed at 90 degrees) of the pad electrode 12 a. Further, it is composed of a thin wire electrode 12b having a length of 100 μm and a width of 15 μm. The interface electrode 8 has a circular dot shape with a cross section of 15 μm in diameter, and each interface electrode 8 is dispersed and arranged in a region portion that does not overlap with the region immediately below the surface electrode 12 when viewed from the upper surface of the light emitting diode 100. The interface electrode located in a portion overlapping with the surface electrode 12 when viewed from the first main surface of the LED element 100 is designed by removing in advance from the photomask design stage.
As shown in FIG. 3, the interface electrode 8 is arranged in a hexagonal close-packed structure with a pitch between the centers of adjacent interface electrodes 8 and 8 being 40 μm. That is, when a regular hexagon having a side of 40 μm was continuously drawn in a honeycomb shape on a plane, the interface electrode 8 was arranged at the apex and center of each regular hexagon.

次に、上記界面電極8付きエピタキシャルウェハ(図2A(c))上に、真空蒸着法によって、金属光反射層9としてAl(アルミニウム)を400nm形成した。更に、金属光反射層9上に合金化バリア層16としてPt(白金)を50nm、金属接合層11aとしてAu(金)を500nmを順次形成した(図2A(d))。   Next, 400 nm of Al (aluminum) was formed as the metal light reflecting layer 9 on the epitaxial wafer with the interface electrode 8 (FIG. 2A (c)) by vacuum deposition. Further, 50 nm of Pt (platinum) as the alloying barrier layer 16 and 500 nm of Au (gold) as the metal bonding layer 11a were sequentially formed on the metal light reflection layer 9 (FIG. 2A (d)).

そして一方では、導電性支持基板として用意した直径3インチの導電性p型Si支持基板10の第一主表面上に、真空蒸着法によって、オーミック電極兼合金化バリア層としてTi層18を250nm形成し、更にTi層18の上に膜厚500nmのAu金属接合層11bを形成した(図2B(e))。   On the other hand, on the first main surface of the conductive p-type Si support substrate 10 having a diameter of 3 inches prepared as a conductive support substrate, a 250 nm Ti layer 18 is formed as an ohmic electrode / alloyed barrier layer by vacuum deposition. Further, an Au metal bonding layer 11b having a thickness of 500 nm was formed on the Ti layer 18 (FIG. 2B (e)).

上記の様にして作製したエピタキシャルウエハ(図2A(d))の金属接合層11aと、Si支持基板(図2B(e))の金属接合層11bとを熱圧着法によって貼合せる。貼合せは、圧力約1.33Pa(0.01Torr)の雰囲気でウェハに圧力を15Kgf/cm加えた状態で、温度350℃に加熱し、更にその状態で30分間加熱保持することによって貼合せウェハを得た(図2B(f))。 The metal bonding layer 11a of the epitaxial wafer (FIG. 2A (d)) produced as described above and the metal bonding layer 11b of the Si support substrate (FIG. 2B (e)) are bonded together by a thermocompression bonding method. Bonding is performed by heating to a temperature of 350 ° C. with a pressure of 15 kgf / cm 2 applied to the wafer in an atmosphere of about 1.33 Pa (0.01 Torr), and further heating and holding in that state for 30 minutes. A wafer was obtained (FIG. 2B (f)).

次に、支持基板10に貼合せたエピタキシャルウエハの基板材であるGaAs基板1をアンモニア水と過酸化水素水との混合エッチャントを用いてウェットエッチングにより除去し、n型(Al0.7Ga0.30.5In0.5Pエッチングストップ層2を露出させた。更に、当該エッチングストップ層2を塩酸を用いてウェットエッチングにて除去し、n型GaAsコンタクト層3を露出させた(図2B(g))。 Next, the GaAs substrate 1 which is the substrate material of the epitaxial wafer bonded to the support substrate 10 is removed by wet etching using a mixed etchant of ammonia water and hydrogen peroxide solution, and n-type (Al 0.7 Ga 0 .3 ) The 0.5 In 0.5 P etching stop layer 2 was exposed. Further, the etching stop layer 2 was removed by wet etching using hydrochloric acid to expose the n-type GaAs contact layer 3 (FIG. 2B (g)).

次に、GaAsコンタクト層3表面にフォトリソグラフィー装置・技術を応用し、前述した形状の表面電極12を真空蒸着法にて形成した。表面電極12の構造は、AuGe(金・ゲルマニウム合金)、Ni(ニッケル)、Au(金)を、それぞれ100nm、20nm、600nmの膜厚で順次形成した。表面電極12形成後、硫酸と過酸化水素水と水との混合エッチャントを用いて、先に形成した表面電極12をマスク材とし、表面電極12直下以外のn型GaAsコンタクト層3をウェットエッチングにて除去し、この選択性エッチングによってn型(Al0.7Ga0.30.5In0.5Pクラッド層4を露出させた。更に、Si支持基板10の第二主表面には、全面に裏面電極13を同じく真空蒸着法によって形成した。裏面電極13は、AuSn(金・錫合金)、Pt(白金)、Au(金)を、それぞれ250nm、50nm、500nmの膜厚で順次形成し、その後、電極の合金化処理であるアロイ工程を、上下独立ヒータを備えたアロイ装置で行った。アロイ条件は窒素ガス雰囲気中にて400℃まで加熱し、その状態で5分間熱処理する事とした。ウェハはグラファイト製のトレー上に載せ、トレーを下部ヒータの組み込まれた下部プレート上に設置した。アロイ工程の後、上記の様にして形成された貼り替え型のLED用エピタキシャルウェハを表面電極12の円形パッド部が略中央に配置される様にダイシング装置を用いて切断し、チップサイズ300μm角の貼り替え型LED素子(ベアチップ)を作製した(図2B(h))。この時のLED素子100の光取り出し面側、つまり上面側から見た外観図を図3に示す。 Next, a photolithography apparatus / technology was applied to the surface of the GaAs contact layer 3 to form the surface electrode 12 having the above-described shape by a vacuum deposition method. As for the structure of the surface electrode 12, AuGe (gold / germanium alloy), Ni (nickel), and Au (gold) were sequentially formed in thicknesses of 100 nm, 20 nm, and 600 nm, respectively. After the surface electrode 12 is formed, the n-type GaAs contact layer 3 other than directly below the surface electrode 12 is wet-etched using a mixed etchant of sulfuric acid, hydrogen peroxide water, and water, using the surface electrode 12 previously formed as a mask material. The n-type (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P cladding layer 4 was exposed by this selective etching. Further, a back electrode 13 was formed on the entire surface of the second main surface of the Si support substrate 10 by the same vacuum deposition method. The back electrode 13 is formed by sequentially forming AuSn (gold / tin alloy), Pt (platinum), and Au (gold) in thicknesses of 250 nm, 50 nm, and 500 nm, respectively, and then performing an alloying process that is an alloying process of the electrodes. This was carried out with an alloy device equipped with independent upper and lower heaters. The alloying conditions were to heat up to 400 ° C. in a nitrogen gas atmosphere and heat-treat in that state for 5 minutes. The wafer was placed on a graphite tray, and the tray was placed on a lower plate with a lower heater built therein. After the alloying process, the replaceable LED epitaxial wafer formed as described above is cut using a dicing apparatus so that the circular pad portion of the surface electrode 12 is arranged at the approximate center, and the chip size is 300 μm square. 2 was produced (FIG. 2B (h)). FIG. 3 shows an external view of the LED element 100 viewed from the light extraction surface side, that is, the upper surface side.

更に、当該LED素子(ベアチップ)をTO‐18ステム20上にダイボンディング、ワイヤボンディングを行って実装し、LED素子に通電出来る状態にまで作製した(図2
B(i))。19はAuワイヤー、21はピンである。
Further, the LED element (bare chip) was mounted on the TO-18 stem 20 by die bonding and wire bonding to produce a state where the LED element could be energized (FIG. 2).
B (i)). 19 is an Au wire, and 21 is a pin.

上記の通りに作製されたLED素子の初期特性を評価した所、20mA通電時(評価時)の特性は表1に示した通りの結果となった。図4に、表1記載のLED素子特性の評価を行ったLED素子のLEDウェハ上の評価位置を示す。

Figure 2008263015
When the initial characteristics of the LED element manufactured as described above were evaluated, the characteristics when energized with 20 mA (during evaluation) were as shown in Table 1. In FIG. 4, the evaluation position on the LED wafer of the LED element which evaluated the LED element characteristic of Table 1 is shown.
Figure 2008263015

表1に示す通り、LEDウェハ面内のいずれのLED素子も、高発光出力、低動作電圧のものが得られた。また、本実施例では、LED素子作製の工程を経ても、ウェハ外周部には合金化反応、メルト化現象が生じなかった。
これは、Ti層18がSi支持基板10とは直接合金化反応をしないということと、Au金属接合層11bとSi支持基板10との間のAu‐Si合金化反応を抑止するバリア効果に優れるということと、Ti層18が密着性良くSi支持基板10上に形成出来、尚且つSi支持基板10と良好なオーミック性接触が得られるという点が重なって実現したものである。また、Ptなどの既知のバリア材料と異なり、AlやNiなどと同様に安価に入手する事が出来る。更にはSi支持基板10側の金属層の構造を極めて簡素に構成出来る為、製造が容易であると共に真空蒸着器などの装置も蒸発源などを少なく出来る為、安価な構成に抑えることが出来る。これらのことにより、総じて貼り替え型LEDの製造コストを低く抑えられる他、高い製造歩留まりでLEDを作製することが可能となった。
As shown in Table 1, all LED elements in the LED wafer surface were obtained with a high light emission output and a low operating voltage. Further, in this example, the alloying reaction and the melt phenomenon did not occur in the outer peripheral portion of the wafer even after the LED element fabrication process.
This is excellent in that the Ti layer 18 does not directly alloy with the Si support substrate 10 and the barrier effect that suppresses the Au—Si alloying reaction between the Au metal bonding layer 11 b and the Si support substrate 10. This means that the Ti layer 18 can be formed on the Si support substrate 10 with good adhesion, and good ohmic contact with the Si support substrate 10 can be obtained. Further, unlike known barrier materials such as Pt, they can be obtained at a low price as with Al and Ni. Furthermore, since the structure of the metal layer on the Si support substrate 10 side can be configured extremely simply, the manufacturing is easy, and the apparatus such as a vacuum vaporizer can reduce the number of evaporation sources and the like, so that it can be suppressed to an inexpensive configuration. As a result, the manufacturing cost of the replaceable LED can be kept low, and the LED can be manufactured with a high manufacturing yield.

なお、上記実施例においては、発光波長630nmの赤色LED素子を作製したが、同じAlGaInP系の材料を用いて製作されるそれ以外のLED素子、例えば発光波長560nm〜660nmのLED素子においても、使用される各層の材料、キャリア濃度は同様であり、特にコンタクト層においては一切の変更点を持たない。従って、仮にLED素子の発光波長を上記実施例と異なる波長帯域としても同様の効果が得られるのは言うまでもない。   In addition, in the said Example, although the red LED element of 630 nm of light emission wavelength was produced, it is used also in other LED elements manufactured using the same AlGaInP type material, for example, LED elements of light emission wavelength of 560 nm to 660 nm. The material and carrier concentration of each layer to be used are the same, and in particular, the contact layer has no change. Therefore, it goes without saying that the same effect can be obtained even if the emission wavelength of the LED element is set to a wavelength band different from that of the above embodiment.

また、上記実施例においては、化合物半導体にて構成されるエピタキシャル層の構造を、AlGaInPエッチングストップ層2、GaAsコンタクト層3、AlGaInPクラッド層4,6、AlGaInP活性層5、GaPコンタクト層7で構成したが、特にこれらのみの構造に限定されるものではなく、これら以外に中間的な組成を有するいわゆる中間層が挿入されたり、別の材料によってコンタクト層が構成された構造に置き換わったり、DBR層(分布ブラッグ反射層)が挿入されていたりしても、特に本発明の特徴となる支持基板10、Ti層18、金属接合層11の関係に大きな相違が無い場合においては、同様な効果が得られると言える。   In the above embodiment, the structure of the epitaxial layer composed of the compound semiconductor is composed of the AlGaInP etching stop layer 2, the GaAs contact layer 3, the AlGaInP cladding layers 4 and 6, the AlGaInP active layer 5, and the GaP contact layer 7. However, the structure is not particularly limited to these structures. In addition to these structures, a so-called intermediate layer having an intermediate composition is inserted, or a structure in which the contact layer is formed of another material is replaced. Even when the (distributed Bragg reflection layer) is inserted, the same effect can be obtained particularly when there is no significant difference in the relationship between the support substrate 10, the Ti layer 18, and the metal bonding layer 11 that is a feature of the present invention. It can be said that.

また、上記実施例においては、Si支持基板10の第一主表面上にTi層18を、その上にAu金属接合層11を形成した構造としたが、例えばTi層18とAu金属接合層11との間にPtなどのAuと合金化反応し難い材料をある程度の厚さで挿入した構造としてもよい。   In the above embodiment, the Ti layer 18 is formed on the first main surface of the Si support substrate 10 and the Au metal bonding layer 11 is formed thereon. For example, the Ti layer 18 and the Au metal bonding layer 11 are formed. It is also possible to adopt a structure in which a material that is difficult to alloy with Au, such as Pt, is inserted in a certain thickness.

(比較例1)
比較例1として、上記実施例と同様な構造の発光波長630nm付近の赤色LED素子を作製した。エピタキシャル成長の方法、エピタキシャル層膜厚、エピタキシャル層構造、界面電極、金属光反射層、Si支持基板への貼り替え方法、エッチング方法等のプロセス工程やLED素子製作方法は、基本的に上記実施例と同じとしたが、この比較例1では、Si支持基板10の第一主表面上に形成する金属膜の構造を次の様に構成した。
(Comparative Example 1)
As Comparative Example 1, a red LED element having an emission wavelength near 630 nm and having the same structure as that of the above example was manufactured. Process steps such as epitaxial growth method, epitaxial layer thickness, epitaxial layer structure, interface electrode, metal light reflecting layer, Si substrate support, method of etching, LED device manufacturing method, etc. Although the same, in Comparative Example 1, the structure of the metal film formed on the first main surface of the Si support substrate 10 was configured as follows.

Si支持基板10の第一主表面上に、AuSn(金・錫合金)、Pt(白金)、Au(金)を、それぞれ250nm、50nm、500nmの膜厚で順次形成した。AuSn層がオーミックコンタクト金属層、Pt層が拡散防止バリア層、Au層が金属接合層となる。   On the first main surface of the Si support substrate 10, AuSn (gold / tin alloy), Pt (platinum), and Au (gold) were sequentially formed with film thicknesses of 250 nm, 50 nm, and 500 nm, respectively. The AuSn layer is an ohmic contact metal layer, the Pt layer is a diffusion barrier layer, and the Au layer is a metal bonding layer.

上記の様な構造として作製されたLED素子の初期特性を上記実施例と同様に評価した所、表2に示した通りの結果となった。

Figure 2008263015
When the initial characteristics of the LED device fabricated as the above structure were evaluated in the same manner as in the above example, the results shown in Table 2 were obtained.
Figure 2008263015

上記のLED素子作製の工程を経た所、直径3インチの貼り替え型LED用エピタキシャルウェハの大部分の領域において、金属接合層のAu若しくはオーミック電極として用いたAuSn層に含まれるAuと、Si支持基板のSiとの合金化反応、メルト化現象に起因するエピタキシャル層の浮き上がり現象が生じてしまった。この浮き上がり現象が生じた領域は、激しく合金化しているためにLED特性が大幅に悪化しており、更に、表面の観察状態が無合金化反応の領域とは大きく異なる為、画像認識機能を応用したウェハプローバなどの検査装置にて認識することが出来ない。即ち、上記浮き上がり現象が生じた領域はLED素子として工業的に不十分な特性を有する部分であり、この領域の面積分(直径3インテウェハのおよそ50〜80%程度のばらつきを有している)の歩留まりゼロであり、そのままロスとなった。   After passing through the above LED element manufacturing steps, Au contained in the AuSn layer used as Au of the metal bonding layer or ohmic electrode in a large area of the epitaxial wafer for repositionable LED having a diameter of 3 inches, and Si support The phenomenon of floating of the epitaxial layer due to the alloying reaction with the Si of the substrate and the melting phenomenon has occurred. The area where this lift phenomenon occurs is severely alloyed and the LED characteristics are greatly deteriorated. Furthermore, since the surface observation state is significantly different from the area of the non-alloying reaction, the image recognition function is applied. It cannot be recognized by an inspection device such as a wafer prober. That is, the region where the above-described lifting phenomenon occurs is a portion having industrially insufficient characteristics as an LED element, and has an area equivalent to this region (having a variation of about 50 to 80% of a 3-inch wafer having a diameter). The yield was zero, and it was a loss.

(比較例2)
比較例2として、上記実施例と同様な構造の発光波長630nm付近の赤色LED素子を作製した。エピタキシャル成長の方法、エピタキシャル層膜厚、エピタキシャル層構造、界面電極、金属光反射層、Si支持基板への貼り替え方法、エッチング方法等のプロセス工程やLED素子製作方法は、基本的に上記実施例と同じとしたが、この比較例2では、Si支持基板10の第一主表面上に形成する金属膜の構造を次の様に構成した。
(Comparative Example 2)
As Comparative Example 2, a red LED element having an emission wavelength near 630 nm and having the same structure as that of the above example was manufactured. Process steps such as epitaxial growth method, epitaxial layer thickness, epitaxial layer structure, interface electrode, metal light reflecting layer, Si substrate support, method of etching, LED device manufacturing method, etc. Although the same, in Comparative Example 2, the structure of the metal film formed on the first main surface of the Si support substrate 10 was configured as follows.

Si支持基板10の第一主表面上に、Al(アルミニウム)、Pt(白金)、Au(金)を、それぞれ250nm、50nm、500nmの膜厚で順次形成した。ここで、Al層はSi支持基板10に対してオーミック電極の役割を果たしている。またPt層はSi支持基板10を構成するSiと金属接合層11であるAuとの合金化反応を抑止する効果も持つが、AlとAuとは非常に合金化し易い材料である為、Al‐Auの合金化反応を抑止する目的の方が強い。   On the first main surface of the Si support substrate 10, Al (aluminum), Pt (platinum), and Au (gold) were sequentially formed with thicknesses of 250 nm, 50 nm, and 500 nm, respectively. Here, the Al layer serves as an ohmic electrode with respect to the Si support substrate 10. The Pt layer also has an effect of suppressing the alloying reaction between Si constituting the Si support substrate 10 and Au as the metal bonding layer 11, but Al and Au are materials that are very easily alloyed. The purpose of suppressing the alloying reaction of Au is stronger.

上記の様な構造として作製されたLED素子の初期特性を上記実施例と同様に評価した所、表2に示した通りの結果となった。

Figure 2008263015
When the initial characteristics of the LED device fabricated as the above structure were evaluated in the same manner as in the above example, the results shown in Table 2 were obtained.
Figure 2008263015

この比較例2の場合、上記比較例1とは異なり、LED素子作製の工程を経た時の合金化反応、メルト化現象はウェハの外周部のみに抑えられ、その領域はウェハ外周(エッジ部)からおよそ6mm程度に抑えられた。この領域はLED素子として工業的に不十分な特性を有する部分であり、この領域の面積分(直径3インチウェハのおよそ30%に相当)の歩留まりはゼロで、そのままロスとなった。ロスエリアの面積が上記比較例1よりも抑えられた理由としては、Si支持基板の第一主表面の直上に形成されたAl層がSiとメルト化反応を直接は起こさないことが大きな要因になっている。
しかしながら、それでもメルト化現象を起こし、エピタキシャル層の浮き上がりが生じてしまう理由は、Al層とAu金属接合層とが合金化反応を起こし、AuがAl層側、つまりSi支持基板側に近く拡散して来てしまった為に、AuとSiとの合金化反応が生じたものである。つまり、Pt合金化バリア層(膜厚50nm)はAl層とAu金属接合層との合金化反応を抑止するのに不十分であった。
In the case of the comparative example 2, unlike the comparative example 1, the alloying reaction and the melting phenomenon when the LED element manufacturing process is performed are suppressed only at the outer peripheral portion of the wafer, and the region is the outer periphery (edge portion) of the wafer. To about 6 mm. This area is a part having industrially insufficient characteristics as an LED element, and the yield of the area of this area (corresponding to about 30% of a 3-inch diameter wafer) is zero, which is a loss. The reason why the area of the loss area was suppressed as compared with Comparative Example 1 was that the Al layer formed immediately above the first main surface of the Si support substrate did not directly cause Si and melt reaction. It has become.
However, the reason why the melting phenomenon still occurs and the lift of the epitaxial layer occurs is that the Al layer and the Au metal bonding layer cause an alloying reaction, and Au diffuses close to the Al layer side, that is, the Si support substrate side. As a result, an alloying reaction between Au and Si occurred. That is, the Pt alloying barrier layer (thickness 50 nm) was insufficient to suppress the alloying reaction between the Al layer and the Au metal bonding layer.

また、上記比較例2に記載した貼り替え型LED素子の場合、Si支持基板の第一主表面側のAu金属接合層とAl層とが、エピタキシャルウェハとの貼合せ工程時の加熱温度によって合金化反応を起こしてしまう。AuとAlとのAu‐Al合金が生じると、Auの金属原子の拡散反応がスムーズに行われなくなり、Au同士の熱圧着金属接合に対して接合不良の悪影響を及ぼす。この為、本比較例2の貼り替え型LED用エピタキシャルウェハの場合、ウェハ外周部以外の領域においても、無秩序的に貼り合わせ不良の部分が発生した。貼合せ不良の部分は出発基板であるGaAsのウェットエッチングによる除去工程後に、支持基板側に転写されたエピタキシャル層が剥離し、浮き上がってボイドが生じた状態になっていた。このボイド部(貼合せ不良の部分)は、LED素子として取得する
事が出来ない為にLED素子製造の歩留まりを低下させている。
Further, in the case of the replaceable LED element described in Comparative Example 2, the Au metal bonding layer and the Al layer on the first main surface side of the Si support substrate are alloyed depending on the heating temperature during the bonding process with the epitaxial wafer. It will cause chemical reaction. When an Au—Al alloy of Au and Al is generated, the diffusion reaction of Au metal atoms is not smoothly performed, and adversely affects the bonding failure to the thermocompression bonding of Au to each other. For this reason, in the case of the replaceable LED epitaxial wafer of Comparative Example 2, a defectively bonded portion was generated in a region other than the outer peripheral portion of the wafer. The defective bonding portion was in a state where the epitaxial layer transferred to the supporting substrate side was peeled off after the removal process by wet etching of GaAs, which was the starting substrate, and floated to cause voids. Since this void part (part of poor bonding) cannot be obtained as an LED element, the yield of LED element manufacturing is reduced.

(比較例3)
比較例3として、上記実施例と同様な構造の発光波長630nm付近の赤色LED素子を作製した。エピタキシャル成長の方法、エピタキシャル層膜厚、エピタキシャル層構造、界面電極、金属光反射層、Si支持基板への貼り替え方法、エッチング方法等のプロセス工程やLED素子製作方法は、基本的に上記実施例と同じとしたが、この比較例3では、Si支持基板10の第一主表面上に形成する金属膜の構造を次の様に構成した。
(Comparative Example 3)
As Comparative Example 3, a red LED element having an emission wavelength near 630 nm and having the same structure as that of the above example was fabricated. Process steps such as epitaxial growth method, epitaxial layer thickness, epitaxial layer structure, interface electrode, metal light reflecting layer, Si substrate support, method of etching, LED device manufacturing method, etc. Although the same, in Comparative Example 3, the structure of the metal film formed on the first main surface of the Si support substrate 10 was configured as follows.

Si支持基板10の第一主表面上に、Ni(ニッケル)、Au(金)を、それぞれ250nm、500nmの膜厚で順次形成した。ここで、Ni層はSi支持基板10に対してオーミック電極の役割を果たしているが、Ni層は合金化バリア層としての効果も有することは既知の通りである。また、その他方で一般的なバリア層であるPtとは原材料費の面で大きく異なり、Alなどと同じ様に安価に入手出来る材料でもある。即ち、Ni層はSi支持基板10の第一主表面上に形成され、Siとのオーミック性接触を得ると同時にAu金属接合層とSi支持基板との合金化反応を抑止する為に設けられたものである。   On the first main surface of the Si support substrate 10, Ni (nickel) and Au (gold) were sequentially formed with film thicknesses of 250 nm and 500 nm, respectively. Here, the Ni layer plays the role of an ohmic electrode with respect to the Si support substrate 10, but it is known that the Ni layer also has an effect as an alloying barrier layer. In addition, Pt, which is a general barrier layer on the other side, is greatly different in terms of raw material costs, and is a material that can be obtained at a low price as in the case of Al. That is, the Ni layer is formed on the first main surface of the Si support substrate 10 and is provided to obtain ohmic contact with Si and at the same time suppress the alloying reaction between the Au metal bonding layer and the Si support substrate. Is.

上記の様な構造として作製されたLED素子の初期特性を上記実施例と同様に評価した所、表4に示した通りの結果となった。

Figure 2008263015
When the initial characteristics of the LED device fabricated as the above structure were evaluated in the same manner as in the above example, the results shown in Table 4 were obtained.
Figure 2008263015

この比較例3の場合、上記比較例1の場合よりも状態が悪く、LED素子作製の工程を経た時の合金化反応、メルト化現象はウェハのほぼ全面に生じてしまった。この領域はLED素子として工業的に不十分な特性を有し、この領域の面積分(直径3インチウェハのおよそ90%〜100%に相当)の歩留まりはゼロであり、そのままロスとなった。ロスエリアの面積が上記比較例1よりも大きくなった理由として、Si支持基板の第一主表面の直上に形成されたNiは、Siと激しく合金化する材料であり、その合金化した部分の
拡散力は非常に強く、Ni‐Siの合金化領域が一挙に金属光反射層の部分にまで到達してしまう。金属光反射層にまで合金化領域が侵食すると、金属光反射層の反射率が著しく低下し、ひいてはLED素子の発光出力が大幅に低下してしまうのである。
In the case of this comparative example 3, the state is worse than that in the case of the above comparative example 1, and the alloying reaction and the melting phenomenon have occurred on almost the entire surface of the wafer after the LED element fabrication process. This region had industrially insufficient characteristics as an LED element, and the yield of the area of this region (corresponding to about 90% to 100% of a 3-inch diameter wafer) was zero, resulting in a loss. The reason why the area of the loss area is larger than that of the first comparative example is that Ni formed immediately above the first main surface of the Si support substrate is a material that is vigorously alloyed with Si. The diffusion force is very strong, and the alloyed region of Ni—Si reaches the part of the metal light reflection layer all at once. When the alloyed region erodes to the metal light reflection layer, the reflectance of the metal light reflection layer is remarkably lowered, and as a result, the light emission output of the LED element is greatly reduced.

本発明の実施形態に係るLED素子の構造を示す断面図である。It is sectional drawing which shows the structure of the LED element which concerns on embodiment of this invention. 本発明の実施例のLED素子の製造工程の一部を示す工程図である。It is process drawing which shows a part of manufacturing process of the LED element of the Example of this invention. 本発明の実施例のLED素子の製造工程の一部を示す工程図である。It is process drawing which shows a part of manufacturing process of the LED element of the Example of this invention. 本発明の実施例のLED素子の上面図である。It is a top view of the LED element of the Example of this invention. 本発明の実施例及び従来例のLED素子に対して、その特性を評価したLEDウェハ上のLED素子の取得位置を示した図である。It is the figure which showed the acquisition position of the LED element on the LED wafer which evaluated the characteristic with respect to the LED element of the Example of this invention, and a prior art example. 金属光反射層に適用可能な種々の金属における光反射率の測定値を示す図である。It is a figure which shows the measured value of the light reflectivity in the various metal applicable to a metal light reflection layer. 本発明の実施形態のLED素子における界面電極の占有面積率と、発光出力及び動作電圧との関係を測定した結果を示す図である。It is a figure which shows the result of having measured the relationship between the occupation area rate of the interface electrode in the LED element of embodiment of this invention, light emission output, and an operating voltage.

符号の説明Explanation of symbols

1 n型GaAs基板(成長用基板)
2 n型AlGaInPエッチングストップ層
3 n型GaAsコンタクト層
4 n型AlGaInPクラッド層
5 AlGaInP活性層
6 p型AlGaInPクラッド層
7 p型GaPコンタクト層
8 界面電極
9 金属光反射層
10 Si支持基板(導電性支持基板)
11 Auからなる金属接合層
11a 成長用基板側の金属接合層
11b 支持基板側の金属接合層
12 表面電極
13 裏面電極
14 化合物半導体層
15 SiO膜(誘電体層)
16 合金化バリア層
18 Ti層
19 Auワイヤー
20 TO‐18ステム
100 LED素子
1 n-type GaAs substrate (growth substrate)
2 n-type AlGaInP etching stop layer 3 n-type GaAs contact layer 4 n-type AlGaInP cladding layer 5 AlGaInP active layer 6 p-type AlGaInP cladding layer 7 p-type GaP contact layer 8 interface electrode 9 metal light reflection layer 10 Si support substrate (conductive Support substrate)
11 Au metal bonding layer 11a Growth substrate side metal bonding layer 11b Support substrate side metal bonding layer 12 Front electrode 13 Back electrode 14 Compound semiconductor layer 15 SiO 2 film (dielectric layer)
16 Alloying barrier layer 18 Ti layer 19 Au wire 20 TO-18 stem 100 LED element

Claims (8)

発光層部を有する化合物半導体層と、
前記化合物半導体層を支持する導電性支持基板と、
前記化合物半導体層と前記導電性支持基板との間に設けられ、前記発光層部からの光を反射する金属光反射層と、
前記化合物半導体層と前記金属光反射層との接合界面の一部に形成された界面電極と、
前記導電性支持基板の前記金属光反射層側の主表面に接して形成されたTi層と、
前記Ti層の前記金属光反射層側の主表面に接して形成されたAuからなる金属接合層と、
前記化合物半導体層の光取出し面となる第一主表面側に形成された表面電極と、
前記導電性支持基板の前記Ti層とは反対側の主表面側に形成された裏面電極と、
を備えたことを特徴とする半導体発光素子。
A compound semiconductor layer having a light emitting layer portion;
A conductive support substrate for supporting the compound semiconductor layer;
A metal light reflection layer provided between the compound semiconductor layer and the conductive support substrate and reflecting light from the light emitting layer portion;
An interface electrode formed on a part of the bonding interface between the compound semiconductor layer and the metal light reflection layer;
A Ti layer formed in contact with the main surface of the conductive support substrate on the metal light reflection layer side;
A metal bonding layer made of Au formed in contact with the main surface of the Ti layer on the metal light reflection layer side;
A surface electrode formed on the first main surface side to be a light extraction surface of the compound semiconductor layer;
A back electrode formed on the main surface side opposite to the Ti layer of the conductive support substrate;
A semiconductor light emitting device comprising:
請求項1に記載の半導体発光素子において、前記導電性支持基板がSi基板であり、且つ当該Si基板の抵抗率が0.1Ω・cm以下であることを特徴とする半導体発光素子。   2. The semiconductor light emitting device according to claim 1, wherein the conductive support substrate is a Si substrate, and the resistivity of the Si substrate is 0.1 [Omega] .cm or less. 請求項1または2に記載の半導体発光素子において、前記Ti層の厚さが50nm以上2μm以下であることを特徴とする半導体発光素子。   3. The semiconductor light emitting device according to claim 1, wherein the thickness of the Ti layer is 50 nm or more and 2 [mu] m or less. 請求項1乃至3のいずれかに記載の半導体発光素子において、前記金属接合層の厚みが0.5μm以上3μm以下であることを特徴とする半導体発光素子。   4. The semiconductor light emitting device according to claim 1, wherein a thickness of the metal bonding layer is not less than 0.5 μm and not more than 3 μm. 請求項1乃至4のいずれかに記載の半導体発光素子において、前記界面電極が、前記化合物半導体層と前記金属光反射層との間に形成された誘電体層の開口部に、前記化合物半導体層の第二主表面と前記金属光反射層とを接続して形成された金属層であることを特徴とする半導体発光素子。   5. The semiconductor light-emitting device according to claim 1, wherein the interface electrode is formed in an opening of a dielectric layer formed between the compound semiconductor layer and the metal light reflection layer. A semiconductor light emitting device, characterized in that the semiconductor light emitting element is a metal layer formed by connecting the second main surface of the metal light reflecting layer and the metal light reflecting layer. 請求項1乃至5のいずれかに記載の半導体発光素子において、前記化合物半導体層の第二主表面の表面積に対する、前記界面電極が前記化合物半導体層の第二主表面に接する面の表面積の割合が、30%以下であることを特徴とする半導体発光素子。   6. The semiconductor light emitting device according to claim 1, wherein a ratio of a surface area of a surface where the interface electrode is in contact with a second main surface of the compound semiconductor layer to a surface area of the second main surface of the compound semiconductor layer is 6. 30% or less of a semiconductor light emitting device. 請求項1乃至6のいずれかに記載の半導体発光素子において、前記界面電極が、前記表面電極の直下の領域外に分散して形成されていることを特徴とする半導体発光素子。   7. The semiconductor light emitting device according to claim 1, wherein the interface electrode is formed in a dispersed manner outside a region immediately below the surface electrode. 請求項5乃至7のいずれかに記載の半導体発光素子において、前記誘電体層の主成分がSiOであることを特徴とする半導体発光素子。 The semiconductor light emitting device according to any one of claims 5 to 7, the semiconductor light-emitting device main component of the dielectric layer is characterized by a SiO 2.
JP2007103710A 2007-04-11 2007-04-11 Semiconductor light emitting device Active JP4985067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007103710A JP4985067B2 (en) 2007-04-11 2007-04-11 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007103710A JP4985067B2 (en) 2007-04-11 2007-04-11 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2008263015A true JP2008263015A (en) 2008-10-30
JP4985067B2 JP4985067B2 (en) 2012-07-25

Family

ID=39985283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007103710A Active JP4985067B2 (en) 2007-04-11 2007-04-11 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP4985067B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100974784B1 (en) 2009-03-10 2010-08-06 엘지이노텍 주식회사 Light emitting device and method for fabricating the same
WO2010092783A1 (en) * 2009-02-10 2010-08-19 Dowaエレクトロニクス株式会社 Semiconductor light emitting diode and method of producing same
WO2010092781A1 (en) * 2009-02-10 2010-08-19 Dowaエレクトロニクス株式会社 Semiconductor light emitting diode and method of producing same
JP2010219502A (en) * 2009-02-18 2010-09-30 Hitachi Cable Ltd Light emitting device
JP2010226013A (en) * 2009-03-25 2010-10-07 Toshiba Corp Light emitting element and method of manufacturing the same
KR100996446B1 (en) 2010-05-24 2010-11-25 엘지이노텍 주식회사 Light emitting device, method for fabricating the light emitting device and light emitting device package
US8138516B2 (en) 2010-03-24 2012-03-20 Hitachi Cable, Ltd. Light emitting diode
JP2012253388A (en) * 2012-09-14 2012-12-20 Toshiba Corp Semiconductor light-emitting element
CN110690313A (en) * 2019-10-25 2020-01-14 华南理工大学 Si substrate MoS2Near-infrared light detector and preparation method thereof
JP2020102629A (en) * 2018-12-24 2020-07-02 晶元光電股▲ふん▼有限公司Epistar Corporation Semiconductor element
CN112951964A (en) * 2021-02-23 2021-06-11 厦门乾照光电股份有限公司 LED chip and manufacturing method thereof
JP2022508781A (en) * 2018-12-24 2022-01-19 泉州三安半導体科技有限公司 Light emitting diode and its manufacturing method
JP2022536292A (en) * 2019-06-06 2022-08-15 エイエムエス-オスラム インターナショナル ゲーエムベーハー Semiconductor component with beam conversion element and method for manufacturing beam conversion element

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100999726B1 (en) 2009-05-04 2010-12-08 엘지이노텍 주식회사 Light emitting device and method for fabricating the same
KR101125025B1 (en) 2010-07-23 2012-03-27 엘지이노텍 주식회사 Light emitting device and method for manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005079264A (en) * 2003-08-29 2005-03-24 Shin Etsu Handotai Co Ltd Light emitting element
JP2006012986A (en) * 2004-06-23 2006-01-12 Canon Inc Manufacturing methods of semiconductor layer and of substrate
WO2006043796A1 (en) * 2004-10-22 2006-04-27 Seoul Opto-Device Co., Ltd. Gan compound semiconductor light emitting element and method of manufacturing the same
JP2006135026A (en) * 2004-11-04 2006-05-25 Sharp Corp Group iii-v compound semiconductor light emitting element and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005079264A (en) * 2003-08-29 2005-03-24 Shin Etsu Handotai Co Ltd Light emitting element
JP2006012986A (en) * 2004-06-23 2006-01-12 Canon Inc Manufacturing methods of semiconductor layer and of substrate
WO2006043796A1 (en) * 2004-10-22 2006-04-27 Seoul Opto-Device Co., Ltd. Gan compound semiconductor light emitting element and method of manufacturing the same
JP2006135026A (en) * 2004-11-04 2006-05-25 Sharp Corp Group iii-v compound semiconductor light emitting element and its manufacturing method

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010092783A1 (en) * 2009-02-10 2010-08-19 Dowaエレクトロニクス株式会社 Semiconductor light emitting diode and method of producing same
WO2010092781A1 (en) * 2009-02-10 2010-08-19 Dowaエレクトロニクス株式会社 Semiconductor light emitting diode and method of producing same
JP2010186802A (en) * 2009-02-10 2010-08-26 Dowa Electronics Materials Co Ltd Semiconductor light-emitting element, and method of producing the same
JP2010186798A (en) * 2009-02-10 2010-08-26 Dowa Electronics Materials Co Ltd Semiconductor light emitting element and method of manufacturing the same
JP4583487B2 (en) * 2009-02-10 2010-11-17 Dowaエレクトロニクス株式会社 Semiconductor light emitting device and manufacturing method thereof
US9287458B2 (en) 2009-02-10 2016-03-15 Dowa Electronics Materials Co., Ltd. Semiconductor light emitting diode and method of producing the same
TWI502774B (en) * 2009-02-10 2015-10-01 同和電子科技股份有限公司 Semiconductor light emitting element and manufacturing method thereof
JP2010219502A (en) * 2009-02-18 2010-09-30 Hitachi Cable Ltd Light emitting device
KR100974784B1 (en) 2009-03-10 2010-08-06 엘지이노텍 주식회사 Light emitting device and method for fabricating the same
US8049241B2 (en) 2009-03-10 2011-11-01 Lg Innotek Co., Ltd. Light emitting device fabrication method thereof, and light emitting apparatus
JP2010226013A (en) * 2009-03-25 2010-10-07 Toshiba Corp Light emitting element and method of manufacturing the same
US8138516B2 (en) 2010-03-24 2012-03-20 Hitachi Cable, Ltd. Light emitting diode
US8362498B2 (en) 2010-05-24 2013-01-29 Lg Innotek Co., Ltd. Light emitting device array, method for fabricating light emitting device array and light emitting device
KR100996446B1 (en) 2010-05-24 2010-11-25 엘지이노텍 주식회사 Light emitting device, method for fabricating the light emitting device and light emitting device package
JP2012253388A (en) * 2012-09-14 2012-12-20 Toshiba Corp Semiconductor light-emitting element
JP2020102629A (en) * 2018-12-24 2020-07-02 晶元光電股▲ふん▼有限公司Epistar Corporation Semiconductor element
JP2022508781A (en) * 2018-12-24 2022-01-19 泉州三安半導体科技有限公司 Light emitting diode and its manufacturing method
JP7154429B2 (en) 2018-12-24 2022-10-17 泉州三安半導体科技有限公司 Light emitting diode and manufacturing method thereof
JP7516040B2 (en) 2018-12-24 2024-07-16 晶元光電股▲ふん▼有限公司 Semiconductor Device
JP2022536292A (en) * 2019-06-06 2022-08-15 エイエムエス-オスラム インターナショナル ゲーエムベーハー Semiconductor component with beam conversion element and method for manufacturing beam conversion element
JP7311639B2 (en) 2019-06-06 2023-07-19 エイエムエス-オスラム インターナショナル ゲーエムベーハー Semiconductor component with beam conversion element and method for manufacturing beam conversion element
CN110690313A (en) * 2019-10-25 2020-01-14 华南理工大学 Si substrate MoS2Near-infrared light detector and preparation method thereof
CN112951964A (en) * 2021-02-23 2021-06-11 厦门乾照光电股份有限公司 LED chip and manufacturing method thereof
CN112951964B (en) * 2021-02-23 2022-07-15 厦门乾照光电股份有限公司 LED chip and manufacturing method thereof

Also Published As

Publication number Publication date
JP4985067B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
JP4985067B2 (en) Semiconductor light emitting device
JP4835377B2 (en) Semiconductor light emitting device
US7564071B2 (en) Semiconductor light emitting device
US7692203B2 (en) Semiconductor light emitting device
JP5169012B2 (en) Semiconductor light emitting device
JP2008283096A (en) Semiconductor light-emitting element
JP4894411B2 (en) Semiconductor light emitting device
JP2008103534A (en) Semiconductor light emitting element
US8610151B2 (en) Semiconductor light-emitting element and method for manufacturing semiconductor light-emitting element
JP2009206265A (en) Semiconductor light-emitting device and method of manufacturing semiconductor light-emitting device
JP2010278112A (en) Semiconductor light emitting element
JP2013026451A (en) Semiconductor light-emitting device
JP5427585B2 (en) Flip chip type light emitting diode and method for manufacturing the same
JP4831107B2 (en) Semiconductor light emitting device
TWI426626B (en) Light-emitting diode, light-emitting-lamp and lighting device
JP4835376B2 (en) Semiconductor light emitting device
US20100065869A1 (en) Light emitting device and method for fabricating the same
JP2012129357A (en) Semiconductor light-emitting element
JP2011142231A (en) Semiconductor light emitting element, led lamp, and method of manufacturing the semiconductor light emitting element
JP2021097148A (en) Semiconductor light-emitting element
WO2014167773A1 (en) Semiconductor light emitting element and method for manufacturing same
JP5245529B2 (en) Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
JP5298927B2 (en) Light emitting element
JP2012129298A (en) Semiconductor light-emitting element and method for manufacturing the same
TWI446580B (en) Light-emitting diode, light-emitting diode lamp and lighting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111007

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

R150 Certificate of patent or registration of utility model

Ref document number: 4985067

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250