JP2008261042A - Solidified product of steelmaking dust, and method for producing the same - Google Patents

Solidified product of steelmaking dust, and method for producing the same Download PDF

Info

Publication number
JP2008261042A
JP2008261042A JP2007106648A JP2007106648A JP2008261042A JP 2008261042 A JP2008261042 A JP 2008261042A JP 2007106648 A JP2007106648 A JP 2007106648A JP 2007106648 A JP2007106648 A JP 2007106648A JP 2008261042 A JP2008261042 A JP 2008261042A
Authority
JP
Japan
Prior art keywords
steelmaking dust
steelmaking
molding
dust
solidified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007106648A
Other languages
Japanese (ja)
Inventor
Shozo Goto
正三 後藤
Hiroki Mifuku
浩樹 御福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Nippon Steel Corp
Original Assignee
NTN Corp
Nippon Steel Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, Nippon Steel Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2007106648A priority Critical patent/JP2008261042A/en
Publication of JP2008261042A publication Critical patent/JP2008261042A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the solidified matter of steelmaking dust and a method for producing the same, wherein strength required for treatment is obtained without including excessive additives, and heat efficiency of the furnace when recharging to a furnace, is improved, and further cost reduction of a production facility is attained. <P>SOLUTION: The solidified product B of steelmaking dust is obtained by charging dust consisting essentially of iron and the oxide thereof produced in a steelmaking production stage of a melting furnace or the like, to a mold 1, and compacting the dust. As the raw material used for forming the solidified product B of steelmaking dust, powder mixture PO obtained by mixing steelmaking dust with powder consisting of essentially carbon is used. The carbon content in the powder mixture is controlled to ≥20 wt.% and the moisture content is controlled to 14 to 20 wt.%. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、溶鉱炉等による鉄鋼生成過程で生じる鉄およびその酸化物を主成分とするダストを製鋼原料として再利用する製鋼ダスト固形化物、およびその製造方法に関する。   The present invention relates to a steelmaking dust solidified material that recycles, as a steelmaking raw material, a dust mainly composed of iron and its oxide generated in a steel production process by a blast furnace or the like, and a method for producing the same.

鉄鋼生成過程、例えば溶解炉では、吹き上げられた微細粒子状の鉄および酸化鉄がダストとして集塵機で回収されている。このダスト(以下「製鋼ダスト」と称す)は、鉄および酸化鉄を主成分とするため、再利用することが望ましい。しかしこの製鋼ダストは微細粉体であるため、そのまま溶解炉に投入すると、飛散しながら舞い上がり、その大半は集塵機に回収されてしまい、再利用効率が著しく低い。   In a steel production process, for example, a melting furnace, fine particulate iron and iron oxide blown up are collected as dust by a dust collector. Since this dust (hereinafter referred to as “steel dust”) contains iron and iron oxide as main components, it is desirable to reuse it. However, since this steelmaking dust is a fine powder, if it is put into the melting furnace as it is, it will fly up and fly, and most of it will be collected by the dust collector, and the reuse efficiency will be extremely low.

このため、製鋼ダストの再利用について様々な方法が試みられている。例を挙げると、特許文献1には、製鋼ダストを、製鋼ダスト固形化物であるブリケットに成形するため熱可塑性プラスチックを添加する方法が、特許文献2には、研削スラッジや製鋼ダストをブリケットに成形するために固形化補助剤を添加する方法がそれぞれ例示されている。特許文献3には、製鋼ダストと炭素を主成分として造粒した混合造粒体を用いてブリケットに成形する方法が提案されている。
特開平09−316512号公報 特開2002−194449号公報 特開2006−225729号公報
For this reason, various methods are tried about reuse of steelmaking dust. For example, Patent Document 1 describes a method of adding a thermoplastic to form steelmaking dust into briquettes that are solidified steelmaking dust, and Patent Document 2 forms grinding sludge and steelmaking dust into briquettes. In order to do this, methods for adding a solidification aid are exemplified. Patent Document 3 proposes a method of forming a briquette using a mixed granulated body granulated with steelmaking dust and carbon as main components.
JP 09-316512 A JP 2002-194449 A JP 2006-225729 A

特許文献1、特許文献2の添加物を入れる方法は、いずれも強固なブリケットを製造するために有効な方法であるが、プラスチック等の固形化補助剤となる添加物を加えることからその工程は複雑となり、コストが高くなる欠点がある。また、添加物が環境負荷原因となることから好ましくない。特許文献3の混合造粒体を用いる方法は、成形強度を得るのに有効な方法であるが、コスト上や作業環境上の面からは、造粒機の使用はできるだけ控えることが望ましい。また、原材料によっては、造粒が容易でない場合がある。   The methods of adding the additives of Patent Document 1 and Patent Document 2 are both effective methods for producing a strong briquette. However, since the additive serving as a solidification aid such as plastic is added, the process is There is a drawback that it becomes complicated and expensive. Moreover, since an additive causes an environmental load, it is not preferable. The method using the mixed granulated body of Patent Document 3 is an effective method for obtaining molding strength, but it is desirable to refrain from using a granulator as much as possible from the viewpoint of cost and working environment. Depending on the raw material, granulation may not be easy.

この発明の目的は、余分な添加物を含まずに、取扱上必要な強度が得られ、また炉への再装入の際の炉の熱効率の改善が得られ、製造設備についても低コスト化を図ることができる製鋼ダスト固形化物とその製造方法を提供することである。   The object of the present invention is to obtain the strength required for handling without containing extra additives, to improve the thermal efficiency of the furnace when re-inserting into the furnace, and to reduce the cost of manufacturing equipment. It is providing the steel manufacture dust solidified material which can aim at, and its manufacturing method.

この発明の製鋼ダスト固形化物は、溶鉱炉等による鉄鋼生成過程で生じる鉄およびその酸化物を主成分とするダストである製鋼ダストを、成形型に入れて加圧成形した製鋼ダスト固形化物であって、前記製鋼ダスト固形化物の成形に使用する原料について、製鋼ダストと炭素を主成分とする粉体を混ぜ合わせた混合粉体を原料として用いたことを特徴とする。   The steelmaking dust solidified product of the present invention is a steelmaking dust solidified product obtained by putting steelmaking dust, which is dust mainly composed of iron and its oxides, produced in a steelmaking process in a blast furnace or the like into a mold and press-molding it. The raw material used for forming the steelmaking dust solidified material is characterized in that a mixed powder obtained by mixing steelmaking dust and a powder mainly composed of carbon is used as a raw material.

この発明の製鋼ダスト固形化物の製造方法は、溶鉱炉等による鉄鋼生成過程で生じる鉄およびその酸化物を主成分とするダストを、成形型に入れて加圧成形して固形化することにより、その固形化物である製鋼ダスト固形化物を製造する方法において、前記製鋼ダスト固形化物の成形に使用する原料について、製鋼ダストと炭素を主成分とする粉体を混ぜ合わせた混合粉体を原料として用いることを特徴とする。   The method for producing a steelmaking dust solidified material according to the present invention comprises solidifying a powder mainly composed of iron and its oxide generated in a steel production process in a blast furnace and the like by placing it in a mold and solidifying it by pressing. In the method for producing a solidified steelmaking dust solidified material, a mixed powder obtained by mixing steelmaking dust and a powder mainly composed of carbon is used as a raw material for the raw material used for forming the steelmaking dust solidified material. It is characterized by.

製鋼ダスト固形化物の成形においては、成形圧力を高めても、内部摩擦等により、必ずしも強度向上につながらない。固形化補助剤を使用することは、製鋼ダスト固形化物の強度を強化するうえで効果的であるが、プラスチック等の固形化補助剤を添加すると、上記のようなコスト面や環境負荷原因面から好ましくない。この発明によると、混合粉体に添加する炭素を主成分とする粉体が、固形化補助剤の代わりの作用を奏し、製鋼ダスト固形化物の強度を高めるため、クラックの発生のない、落下等に対する強度に優れた製鋼ダスト固形化物が得られる。しかも、炭素を主成分とする粉体を添加することは製鋼原料として害とならず、次のように有益となる。   In forming a steelmaking dust solidified product, increasing the forming pressure does not necessarily lead to an improvement in strength due to internal friction or the like. The use of a solidification aid is effective in strengthening the strength of the steelmaking dust solidified product. However, when a solidification aid such as plastic is added, the above-mentioned cost and environmental load causes are considered. It is not preferable. According to this invention, the carbon-based powder added to the mixed powder acts as a substitute for the solidification aid, and increases the strength of the steelmaking dust solidified product, so that there is no occurrence of cracks, dropping, etc. Steel solidified solids having excellent strength against the above can be obtained. In addition, the addition of powder containing carbon as a main component is not harmful as a steelmaking raw material, and is beneficial as follows.

すなわち、電炉等のリサイクルに使用する製鋼ダスト固形化物に炭素粉体等の炭素材料を添加することは、電炉の熱効率を向上させるために効果的である。これは添加された炭素粉体が製鋼ダストの還元を行いつつ自己燃焼して発熱するため、外部からのエネルギー投入を削減でき、炉の熱効率が大きく改善されるためである。したがって、炭素粉体を添加した製鋼ダスト固形化物は、製鋼ダストのリサイクルに有効な手段となり得る。この炭素を主成分とする粉体は、製鋼ダストと同じく鉄鋼生成過程、あるいはその周辺で容易に得られるため、添加してもコストの増大につながることがない。   That is, adding a carbon material such as carbon powder to a steelmaking dust solidified material used for recycling of an electric furnace or the like is effective for improving the thermal efficiency of the electric furnace. This is because the added carbon powder self-combusts while reducing the steelmaking dust and generates heat, so that energy input from the outside can be reduced and the thermal efficiency of the furnace is greatly improved. Therefore, the steelmaking dust solidified material added with carbon powder can be an effective means for recycling steelmaking dust. Since the powder containing carbon as a main component is easily obtained in the steel production process or in the vicinity thereof, like the steelmaking dust, the addition of the powder does not lead to an increase in cost.

この発明の製鋼ダスト固形化物およびその製造方法において、前記製鋼ダストと炭素を主成分とする粉体の混合粉体の炭素含有率が20重量%以上であっても良い。より好ましくは25重量%以上である。ここで言う炭素含有率は、原料全体に対する、前記炭素を主成分とする粉体の割合のことである。
炭素を主成分とする粉体は、上記のように固形化補助の機能するものであり、混合粉体における炭素含有率が20重量%未満であると、良好な成形強度が得難くなる。炭素含有率を20重量%以上とすることにより、製鋼ダスト固形化物の実用上十分な強度が得られる。また、炉への再装入の際の炉の熱効率の改善効果が得られる。なお、上記炭素を主成分とする粉体は、純粋な炭素に限らず、例えばグラファイトであっても良い。
In the steelmaking dust solidified material and the method for producing the same according to the present invention, the carbon content of the mixed powder of the steelmaking dust and powder mainly composed of carbon may be 20% by weight or more. More preferably, it is 25% by weight or more. The carbon content mentioned here is the ratio of the powder containing carbon as a main component to the whole raw material.
The powder containing carbon as a main component functions as a solidification aid as described above. When the carbon content in the mixed powder is less than 20% by weight, it is difficult to obtain good molding strength. By making the carbon content 20% by weight or more, a practically sufficient strength of the steelmaking dust solidified product can be obtained. Moreover, the improvement effect of the thermal efficiency of the furnace in the case of recharging to a furnace is acquired. The powder containing carbon as a main component is not limited to pure carbon, and may be graphite, for example.

この発明の製鋼ダスト固形化物およびその製造方法において、前記混合粉体の水分含有率が14〜20重量%であって良い。より好ましくは、15〜19重量%である。
水分含有率が14重量%未満の場合、加圧成形後の脱型時に、成形圧方向に垂直な方向に層状のクラックが発生し、製鋼ダスト固形化物の強度が弱くなる。逆に、水分含有率が20重量%を超えると、クラックの発生はないが、加圧成形時に非圧縮性の水の影響で十分に圧縮できないためと考えられ、製鋼ダスト固形化物の強度が低下する。
In the steelmaking dust solidified material and the method for producing the same according to the present invention, the mixed powder may have a moisture content of 14 to 20% by weight. More preferably, it is 15 to 19% by weight.
When the moisture content is less than 14% by weight, a layered crack is generated in a direction perpendicular to the molding pressure direction at the time of demolding after pressure molding, and the strength of the steelmaking dust solidified product becomes weak. On the contrary, if the moisture content exceeds 20% by weight, cracks will not occur, but it is thought that it cannot be sufficiently compressed due to the effect of incompressible water during pressure molding, and the strength of the steelmaking dust solidified material is reduced. To do.

この発明の製鋼ダスト固形化物は、溶鉱炉等による鉄鋼生成過程で生じる鉄およびその酸化物を主成分とするダストである製鋼ダストを、成形型に入れて加圧成形した製鋼ダスト固形化物であって、前記製鋼ダスト固形化物の成形に使用する原料について、製鋼ダストと炭素を主成分とする粉体を混ぜ合わせた混合粉体を原料として用いたため、余分な添加物を含まずに、取扱上必要な強度が得られ、しかも炉への再装入の際の炉の熱効率を改善することができ、また製造設備の低コスト化を図ることができる。
この発明の製鋼ダスト固形化物の製造方法は、溶鉱炉等による鉄鋼生成過程で生じる鉄およびその酸化物を主成分とするダストを、成形型に入れて加圧成形して固形化することにより、その固形化物である製鋼ダスト固形化物を製造する方法において、前記製鋼ダスト固形化物の成形に使用する原料について、製鋼ダストと炭素を主成分とする粉体を混ぜ合わせた混合粉体を原料として用いることとしたため、余分な添加物を含まずに、取扱上必要な強度が得られ、しかも炉への再装入の際の炉の熱効率を改善することができる製鋼ダスト固形化物が製造でき、また製造設備の低コスト化を図ることができる。
The steelmaking dust solidified product of the present invention is a steelmaking dust solidified product obtained by putting steelmaking dust, which is dust mainly composed of iron and its oxides, produced in a steelmaking process in a blast furnace or the like into a mold and press-molding it. Because the raw material used for forming the steelmaking dust solidified material is a mixed powder that is a mixture of steelmaking dust and carbon-based powder, it does not contain extra additives and is necessary for handling. In addition, it is possible to improve the thermal efficiency of the furnace at the time of recharging the furnace, and to reduce the cost of manufacturing equipment.
The method for producing a steelmaking dust solidified material according to the present invention comprises solidifying a powder mainly composed of iron and its oxide generated in a steel production process in a blast furnace and the like by placing it in a mold and solidifying it by pressing. In the method for producing a solidified steelmaking dust solidified material, a mixed powder obtained by mixing steelmaking dust and a powder mainly composed of carbon is used as a raw material for the raw material used for forming the steelmaking dust solidified material. Therefore, it is possible to produce a steelmaking dust solidified material that does not contain extra additives, can obtain the strength required for handling, and can improve the thermal efficiency of the furnace when re-inserted into the furnace. Cost reduction of equipment can be achieved.

この発明の第1の実施形態を図1ないし図3と共に説明する。図1は、溶解炉で生成した製鋼ダストを固形化する成形装置を示し、(A)はその破断側面図、(B)は同平面図である。この成形装置は、成形型1を形成した円形のインデックステーブル2を有し、このインデックステーブル2の回転中心回りの円周上の4箇所に、等間隔で上記成形型1がそれぞれ設けられている。成形型1は内面が円筒面とされる。インデックステーブル2の近傍に混練機3が設置されている。この混練機3は、図示しないホッパーから製鋼ダストおよび炭素を主成分とする粉体(以下、「炭素粉」と言う)が投入され、これら製鋼ダストおよび炭素粉を、水を加えて混練して混合粉体とし、成形型1に製鋼ダスト固形化物Bの原料として投入するものである。
炭素粉は、純粋な炭素の粉体に限らず、グラファイトであっても良い。前記混合粉体の炭素含有率は20重量%以上とし、水分含有率は14〜20重量%とする。ここで言う炭素含有率は、原料全体に対する前記炭素粉の割合のことである。
混練機3にはインデックステーブル2の成形型1の一つの割出停止位置である原材料投入部21おいて、混練された原材料を成形型1に投入するための投入スクリュー4が設けられている。原材料投入部21の上方には上下動可能な櫛状の材料押し込み棒5が配置されている。
A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows a molding apparatus for solidifying steelmaking dust generated in a melting furnace, in which (A) is a cutaway side view thereof and (B) is a plan view thereof. The molding apparatus has a circular index table 2 on which a molding die 1 is formed, and the molding die 1 is provided at four positions on the circumference around the rotation center of the index table 2 at equal intervals. . The inner surface of the mold 1 is a cylindrical surface. A kneader 3 is installed in the vicinity of the index table 2. This kneading machine 3 is charged with steelmaking dust and carbon-based powder (hereinafter referred to as “carbon powder”) from a hopper (not shown), and kneading these steelmaking dust and carbon powder with water. The mixed powder is used as a raw material for the steelmaking dust solidified product B in the mold 1.
The carbon powder is not limited to pure carbon powder, and may be graphite. The mixed powder has a carbon content of 20% by weight or more and a moisture content of 14 to 20% by weight. The carbon content said here is the ratio of the said carbon powder with respect to the whole raw material.
The kneading machine 3 is provided with a feeding screw 4 for feeding the kneaded raw material into the molding die 1 at a raw material feeding portion 21 which is one indexing stop position of the molding die 1 of the index table 2. A comb-shaped material push-in rod 5 that can be moved up and down is disposed above the raw material input portion 21.

インデックステーブル2は、例えば図1(B)の白抜矢印方向に回転するように構成される。インデックステーブル2における各成形型1の割出停止位置は、上記原材料投入部21から回転方向下流側に90°毎に、前成形部22、本成形部23および脱型排出部24とされる。前成形部22には前成形プランジャ6が、本成形部23には本成形プランジャ7が、脱型排出部24には脱型排出棒8(図2(F)参照)が、それぞれ配置されている。図1(A)はこの原材料投入部21、前成形部22および本成形部23における成形過程の状態を断面で示している。   The index table 2 is configured to rotate, for example, in the direction of the white arrow in FIG. The indexing stop positions of the respective molds 1 in the index table 2 are the pre-molding part 22, the main molding part 23, and the demolding discharge part 24 every 90 ° from the raw material input part 21 to the downstream side in the rotation direction. A pre-molded plunger 6 is disposed in the pre-molded portion 22, a main molded plunger 7 is disposed in the main molded portion 23, and a demold discharge rod 8 (see FIG. 2F) is disposed in the demold discharge portion 24. Yes. FIG. 1A shows the state of the molding process in the raw material charging part 21, the pre-molding part 22 and the main molding part 23 in cross section.

この構成の成形装置による製鋼ダスト固形化物の製造工程について、図1および図2と共に説明する。混練機3において製鋼ダスト、炭素粉および水を所定の比率で混練した原材料(混合粉体)P0を、投入スクリュー4を作動させて、原材料投入部21に位置する成形型1内に投入する。図2(A)に示すように成形型1に投入された原材料P0は空気溜りP0aを含む。この位置で、材料押し込み棒5を図2(B)に示すように下降させ、上下動させて空気溜りP0aを崩しながら原材料P0を成形型1内に押し込む。次いで、インデックステーブル2を回転割出して、原材料P0が充填された成形型1を前成形部22に移行させる。この前成形部22において、図2(C)に示すように、前成形プランジャ6,6により上下から原材料P0を加圧する。図2(D)で前成形プランジャ6,6による加圧を開放し、前成形品P1を得る。この前成形時および加圧開放時に、原材料P0に含まれている大部分の空気が排除される。   The manufacturing process of the steelmaking dust solidified material by the molding apparatus having this configuration will be described with reference to FIGS. A raw material (mixed powder) P0 obtained by kneading steelmaking dust, carbon powder, and water in a predetermined ratio in the kneading machine 3 is charged into the molding die 1 located in the raw material charging portion 21 by operating the charging screw 4. As shown in FIG. 2A, the raw material P0 put into the mold 1 includes an air reservoir P0a. At this position, the material pushing rod 5 is lowered as shown in FIG. 2 (B) and moved up and down to push the raw material P0 into the mold 1 while collapsing the air pocket P0a. Next, the index table 2 is rotationally indexed, and the molding die 1 filled with the raw material P0 is transferred to the pre-molding unit 22. In the pre-molded portion 22, as shown in FIG. 2C, the raw material P0 is pressurized from above and below by the pre-molded plungers 6 and 6. In FIG. 2D, the pressure applied by the pre-molded plungers 6 and 6 is released, and a pre-molded product P1 is obtained. At the time of this pre-molding and release of pressure, most of the air contained in the raw material P0 is excluded.

前成形部22で成形された前成形品P1は、インデックステーブル2のインデックスにより成形型1と共に本成形部23に移行する。この本成形部23では、図2(E)に示すように、本成形プランジャ7,7により上下から加圧されて本成形が行われる。本成形プランジャ7,7の加圧開放により本成形品P2が得られ、加圧開放後、本成形品P2はインデックステーブル2のインデックスにより成形型1と共に脱型排出部24に移行する。この脱型排出部24では、図2(F)に示すように、脱型排出棒8が下降し、本成形品P2を成形型1から押出して排出し、図3(A)のようなブリケット状の製鋼ダスト固形化物Bを得る。
製鋼ダスト固形化物Bの大きさは、例えば、直径が30〜200mm、直径に対する高さの比(高さ)/(直径)が、30〜150%とするのが好ましい。
The pre-formed product P <b> 1 molded by the pre-molding unit 22 moves to the main molding unit 23 together with the mold 1 by the index of the index table 2. In the main molding portion 23, as shown in FIG. 2 (E), the main molding plungers 7 and 7 are pressurized from above and below to perform the main molding. The main molded product P2 is obtained by releasing the pressure of the main molding plungers 7 and 7. After the pressure is released, the main molded product P2 is transferred to the mold releasing unit 24 together with the molding die 1 by the index of the index table 2. In the mold release unit 24, as shown in FIG. 2 (F), the mold release bar 8 is lowered, the molded product P2 is pushed out from the mold 1 and discharged, and the briquette as shown in FIG. 3 (A). A steelmaking dust solidified product B is obtained.
As for the size of the steelmaking dust solidified product B, for example, the diameter is preferably 30 to 200 mm, and the ratio of height to diameter (height) / (diameter) is preferably 30 to 150%.

このように製造された製鋼ダスト固形化物Bは、製鋼ダストと炭素粉を混ぜ合わせた混合粉体を原料として用いたものであるため、余分な添加物を含まずに、取扱上必要な強度が得られ、また炉への再装入の際の炉の熱効率の改善が得られる。すなわち、炭素粉が固形化補助剤の代わりの作用を奏し、製鋼ダスト固形化物Bの強度を高めるため、クラックの発生のない、落下等に対する強度に優れた製鋼ダスト固形化物が得られる。しかも、炭素粉を添加することは製鋼原料として害とならず、電炉の熱効率を向上させるために効果的である。これは添加された炭素粉体が製鋼ダストの還元を行いつつ自己燃焼して発熱するため、外部からのエネルギー投入を削減でき、炉の熱効率が大きく改善されるためである。また、造粒等の過程が不要とでき、あるいは簡素化でき、製造設備についても低コスト化できる。上記のように成形型1をインデックスしながら次の処理を順次行うようにした場合は、1箇所で全ての処理を行う場合に比べて、生産性が向上する。   Since the steelmaking dust solidified product B produced in this way is a mixed powder obtained by mixing steelmaking dust and carbon powder as a raw material, it does not contain extra additives and has the necessary strength for handling. And an improvement in the thermal efficiency of the furnace upon recharging into the furnace is obtained. That is, since the carbon powder acts as a substitute for the solidification aid and increases the strength of the steelmaking dust solidified product B, a steelmaking dust solidified product having no cracks and excellent strength against dropping or the like is obtained. Moreover, the addition of carbon powder is not harmful as a steelmaking raw material, and is effective for improving the thermal efficiency of the electric furnace. This is because the added carbon powder self-combusts while reducing the steelmaking dust and generates heat, so that energy input from the outside can be reduced and the thermal efficiency of the furnace is greatly improved. Further, a process such as granulation can be omitted or simplified, and the cost of manufacturing equipment can be reduced. When the next process is sequentially performed while indexing the mold 1 as described above, the productivity is improved as compared with the case where all the processes are performed at one place.

なお、水分量や炭素粉量が適切でない場合や、気泡の除去が不十分である場合、成形速度が適切でない場合は、図3(B)に示すようにクラックcが発生したり、落下時に容易に割れたりすることがある。しかし、この実施形態では、混合粉体の炭素含有率を20重量%以上とし、水分含有率を14〜20重量%としたため、後に試験結果と共に説明するように、製鋼ダスト固形化物Bの取扱上で必要な強度が得られる。   In addition, when the amount of moisture and the amount of carbon powder are not appropriate, when the removal of bubbles is insufficient, or when the molding speed is not appropriate, a crack c occurs as shown in FIG. It may break easily. However, in this embodiment, since the carbon content of the mixed powder is set to 20% by weight or more and the moisture content is set to 14 to 20% by weight, as will be described later along with the test results, The necessary strength can be obtained.

上記実施形態では、前成形および本成形を上下から各プランジャ6,7によって加圧することにより行う例を示したが、成形型1の一端側を塞いで他端側からのみ加圧することによって成形を行うことも可能である。しかし、原材料P0の内部摩擦や成形型1の壁面での摩擦で成形圧が一端側にまで十分に伝わらない場合があるので、成形強度の点からは両方から加圧する方が良い。また、脱型排出棒8による製鋼ダスト固形化物Bの排出は、図示のように下向きに行う場合の他、上向きに行うことも可能である。   In the above embodiment, the example in which the pre-molding and the main molding are performed by pressing with the plungers 6 and 7 from above and below has been shown, but the molding is performed by closing one end side of the mold 1 and pressing only from the other end side. It is also possible to do this. However, since the molding pressure may not be sufficiently transmitted to one end side due to the internal friction of the raw material P0 or the friction on the wall surface of the molding die 1, it is better to pressurize both from the viewpoint of molding strength. Further, the discharge of the steelmaking dust solidified substance B by the demolding discharge rod 8 can be performed upward as well as the downward direction as shown in the figure.

図4は、この発明の製鋼ダスト固形化物の製造方法の他の実施形態を示す。具体的には、上記製造工程における前成形部22の変形例を示す。この例の前成形部22では、成形型1に充填された原材料P0の上下に焼結金属等からなる多孔質体6a,6aを配した状態で前成形プランジャ6,6により上下から加圧する。成形型1と上下のプランジャ6,6で直接に加圧すると、空気の逃げ場は、成形型1とプランジャ6,6との隙間のみとなり、空気は排出され難いが、このように多孔質体6a,6aを介在させて加圧成形を行うと、多孔質体6a,6aの空孔を通じて外部に空気が排気される事から、原材料P0からの空気の排除が促進され、クラックの発生を抑え成形強度が改善される。
なお、非加圧時には逆圧をかけて多孔質体6aの目詰まりを防ぐようになすことが望ましい。目詰まりの点からは、成形圧の高い本成形部23において多孔質体6aを適用することは困難である。
FIG. 4 shows another embodiment of the method for producing a steelmaking dust solidified material of the present invention. Specifically, a modification of the pre-molded portion 22 in the manufacturing process will be shown. In the pre-molded portion 22 of this example, pressure is applied from above and below by the pre-molded plungers 6 and 6 with the porous bodies 6a and 6a made of sintered metal or the like disposed above and below the raw material P0 filled in the mold 1. When the mold 1 and the upper and lower plungers 6 and 6 are directly pressurized, the air escape field is only the gap between the mold 1 and the plungers 6 and 6, and it is difficult for the air to be discharged. , 6a is used to perform pressure forming, and air is exhausted to the outside through the pores of the porous bodies 6a, 6a, so that the removal of air from the raw material P0 is promoted and the formation of cracks is suppressed. Strength is improved.
It should be noted that it is desirable to apply a reverse pressure during non-pressurization to prevent clogging of the porous body 6a. From the viewpoint of clogging, it is difficult to apply the porous body 6a in the main molding portion 23 having a high molding pressure.

含有する空気によるクラックを抑える方法としては、上記のような多孔質体6aを介在させて前成形を行う方法以外に、成形型1に原材料P0を投入時に複数回に亘り加圧するか、または、前成形部22での加圧時にプランジャ6もしくは成形型1を振動させて成形することも有効である。   As a method of suppressing cracks due to air contained, in addition to the method of performing the pre-molding by interposing the porous body 6a as described above, the raw material P0 is pressurized a plurality of times when charged into the molding die 1, or It is also effective to vibrate the plunger 6 or the mold 1 during pressurization at the pre-molding portion 22.

次に試験例について述べる。図1における本成形部23に相当する成形型およびプランジャを準備し、製鋼ダスト固形化物のサイズをΦ70×60mmで成形し、固形化実験を行った。炭素粉には純粋な炭素を用いた。落下強度は、製鋼ダストと炭素粉の混合粉体を厚さ3cmに敷いた上に50cmの高さから、成形した製鋼ダスト固形化物を最大20回繰り返し落下させ、割れに至った落下回数を調べたものである。   Next, test examples will be described. A forming die and a plunger corresponding to the main forming portion 23 in FIG. 1 were prepared, and the size of the steelmaking dust solidified product was formed at Φ70 × 60 mm, and a solidification experiment was performed. Pure carbon was used for the carbon powder. The drop strength was measured by measuring the number of drops that resulted in cracking by repeatedly dropping the formed steelmaking dust solids up to 20 times from a height of 50 cm on a 3 cm thick mixed powder of steelmaking dust and carbon powder. It is a thing.

前成形と本成形の2回成形の場合で、成形原材料の炭素粉の割合と落下強度の関係を調べた結果を図5に示す。20回落下させて割れなかった場合も、20回のところにプロットしてある。この場合の成形条件は、前成形の成形圧を24MPa、本成型の成形圧を50MPa、成形速度を30mm/secとした。炭素粉の割合により適正水分量が変わるため水分量の調整もした。図5から、炭素粉の含有割合を20重量%より少なくするとクラックが発生し易くなり、良好な成形強度を得るには、成形原材料の炭素粉の含有割合を25重量%以上の範囲とすることが有効であることが分かった。   FIG. 5 shows the results of examining the relationship between the ratio of the carbon powder of the forming raw material and the drop strength in the case of pre-molding and twice-molding. Even when it was dropped 20 times and did not break, it was plotted at 20 times. The molding conditions in this case were a molding pressure of pre-molding of 24 MPa, a molding pressure of main molding of 50 MPa, and a molding speed of 30 mm / sec. Since the appropriate amount of water changes depending on the proportion of carbon powder, the amount of water was also adjusted. From FIG. 5, if the carbon powder content is less than 20% by weight, cracks are likely to occur, and in order to obtain good molding strength, the carbon powder content of the molding raw material should be in the range of 25% by weight or more. Was found to be effective.

2回成形の場合で、成形原材料の水分割合と落下強度の関係を調べた結果を図6に示す。この場合の成形条件は、製鋼ダスト/炭素粉;70/30重量%、前成形の成形圧を24MPa、本成型の成形圧を50MPa、成形速度を30mm/secとした。水分割合が14重量%より低くなると、脱型時に成形圧方向に垂直な方向に層状のクラックが発生し、落下強度が低下することが分かる。逆に水分割合が20重量%を超えると、クラックの発生はないが、落下強度が急激に低下していることが分かる。これは、成形時に非圧縮性の水の影響で十分に圧縮できないためと考えられる。この結果、成形原材料の水分割合は、15〜19重量%が有効であることが分かる。   FIG. 6 shows the result of examining the relationship between the moisture ratio of the molding raw material and the drop strength in the case of the two-time molding. The molding conditions in this case were steelmaking dust / carbon powder; 70/30% by weight, the molding pressure for pre-molding was 24 MPa, the molding pressure for main molding was 50 MPa, and the molding speed was 30 mm / sec. It can be seen that when the moisture content is lower than 14% by weight, layered cracks are generated in the direction perpendicular to the molding pressure direction during demolding, and the drop strength decreases. On the other hand, when the water content exceeds 20% by weight, no cracks are generated, but it can be seen that the drop strength rapidly decreases. This is considered because it cannot compress fully by the influence of non-compressible water at the time of shaping | molding. As a result, it can be seen that 15 to 19% by weight of the moisture content of the forming raw material is effective.

図5,図6の各条件において、2回成形であって、成形原料中の炭素粉の含有割合が20重量%以上(好ましくは25重量%以上)、水分割合が14〜20重量%(好ましくは15〜19重量%)である場合は、図3(A)に示すようにクラックのない製鋼ダスト固形化物Bが得られ、良好な成形強度を得ることができる。   5 and 6, the molding is performed twice, and the content ratio of the carbon powder in the forming raw material is 20% by weight or more (preferably 25% by weight or more), and the moisture ratio is 14 to 20% by weight (preferably Is 15 to 19% by weight), as shown in FIG. 3 (A), a steelmaking dust solidified product B without cracks is obtained, and good molding strength can be obtained.

(A)はこの発明の製鋼ダスト固形化物を製造するための成形装置の一例を示す破断側面図、(B)はその平面図である。(A) is a fracture | rupture side view which shows an example of the shaping | molding apparatus for manufacturing the steel-making dust solidified material of this invention, (B) is the top view. (A)〜(F)は同成形装置により製鋼ダスト固形化物を製造する方法を示す概念図である。(A)-(F) is a conceptual diagram which shows the method of manufacturing steel-making dust solidified material with the same shaping | molding apparatus. (A)は同方法によって得た製鋼ダスト固形化物の斜視図であり、(B)はクラックが発生した製鋼ダスト固形化物の斜視図である。(A) is a perspective view of the steelmaking dust solidified material obtained by the same method, and (B) is a perspective view of the steelmaking dust solidified material in which cracks are generated. この発明方法を実施する他の成形装置における前成形部での成形過程を説明する概念図である。It is a conceptual diagram explaining the shaping | molding process in the pre-molding part in the other shaping | molding apparatus which enforces this invention method. カーボン割合と落下強度の関係の実験結果を示すグラフである。It is a graph which shows the experimental result of the relationship between a carbon ratio and drop strength. 水分割合と落下強度の関係の実験結果を示すグラフである。It is a graph which shows the experimental result of the relationship between a moisture ratio and drop strength.

符号の説明Explanation of symbols

1…成形型
2…インデックステーブル
3…混練機
4…投入スクリュー
5…材料押し込み棒
6…前成形プランジャ
6a…多孔質体
7…本成形プランジャ
8…脱型排出棒
21…原材料投入部
22…前成形部
23…本成形部
24…脱型排出部
B…製鋼ダスト固形化物
P0…原材料(混合粉体)
P0a…空気溜り
DESCRIPTION OF SYMBOLS 1 ... Mold 2 ... Index table 3 ... Kneading machine 4 ... Feed screw 5 ... Material pushing rod 6 ... Pre-molding plunger 6a ... Porous body 7 ... Main molding plunger 8 ... Demolding discharge rod 21 ... Raw material feeding part 22 ... Before Molding part 23 ... Main molding part 24 ... Demolding discharge part B ... Steelmaking dust solidified material P0 ... Raw materials (mixed powder)
P0a ... Air reservoir

Claims (6)

溶鉱炉等による鉄鋼生成過程で生じる鉄およびその酸化物を主成分とするダストである製鋼ダストを、成形型に入れて加圧成形した製鋼ダスト固形化物であって、
前記製鋼ダスト固形化物の成形に使用する原料について、製鋼ダストと炭素を主成分とする粉体を混ぜ合わせた混合粉体を原料として用いたことを特徴とする製鋼ダスト固形化物。
Steelmaking dust solidified by pressing steelmaking dust, which is dust mainly composed of iron and its oxides generated in the steel production process by a blast furnace, etc. into a mold,
A steelmaking dust solidified product obtained by using, as a raw material, a mixed powder obtained by mixing steelmaking dust and a powder containing carbon as a main component as a raw material used for forming the steelmaking dust solidified product.
請求項1において、前記混合粉体の炭素含有率が20重量%以上である製鋼ダスト固形化物。   The steelmaking dust solidified product according to claim 1, wherein the mixed powder has a carbon content of 20 wt% or more. 請求項1または請求項2において、前記混合粉体の水分含有率が14〜20重量%である製鋼ダスト固形化物。   The steelmaking dust solidified product according to claim 1 or 2, wherein the mixed powder has a moisture content of 14 to 20% by weight. 溶鉱炉等による鉄鋼生成過程で生じる鉄およびその酸化物を主成分とするダストを、成形型に入れて加圧成形して固形化することにより、その固形化物である製鋼ダスト固形化物を製造する方法において、
前記製鋼ダスト固形化物の成形に使用する原料について、製鋼ダストと炭素を主成分とする粉体を混ぜ合わせた混合粉体を原料として用いることを特徴とする製鋼ダスト固形化物の製造方法。
A method of producing a solidified steelmaking dust solidified product by putting dust formed mainly of iron and its oxides generated in a steelmaking process in a blast furnace or the like into a mold and pressurizing and solidifying it. In
About the raw material used for shaping | molding of the said steelmaking dust solidified material, the mixed powder which mixed the steelmaking dust and the powder which has carbon as a main component is used as a raw material, The manufacturing method of the steelmaking dust solidified material characterized by the above-mentioned.
請求項4において、前記混合粉体の炭素含有率が20重量%以上である製鋼ダスト固形化物の製造方法。   The method for producing a solidified steelmaking dust according to claim 4, wherein the mixed powder has a carbon content of 20% by weight or more. 請求項4または請求項5において、前記混合粉体の水分含有率が14〜20%である製鋼ダスト固形化物の製造方法。   The method for producing a solidified steelmaking dust according to claim 4 or 5, wherein the mixed powder has a moisture content of 14 to 20%.
JP2007106648A 2007-04-16 2007-04-16 Solidified product of steelmaking dust, and method for producing the same Withdrawn JP2008261042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007106648A JP2008261042A (en) 2007-04-16 2007-04-16 Solidified product of steelmaking dust, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007106648A JP2008261042A (en) 2007-04-16 2007-04-16 Solidified product of steelmaking dust, and method for producing the same

Publications (1)

Publication Number Publication Date
JP2008261042A true JP2008261042A (en) 2008-10-30

Family

ID=39983736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007106648A Withdrawn JP2008261042A (en) 2007-04-16 2007-04-16 Solidified product of steelmaking dust, and method for producing the same

Country Status (1)

Country Link
JP (1) JP2008261042A (en)

Similar Documents

Publication Publication Date Title
JP5090655B2 (en) Steelmaking dust recycling method
JP2008266776A (en) Iron-based powdery mixture for powder metallurgy
KR20160094435A (en) Method and plant for producing extrusion billets
JP4707407B2 (en) Steelmaking dust solidified product and method for producing the same
KR101544668B1 (en) The volume reduction processing method of radioactive waste using the powder metallurgy technology
JP2006104528A (en) Solidified material of steelmaking dust, and manufacturing method therefor
JP2018510970A (en) Magnetite sintered ore and method for producing the same
CN105196600B (en) Die for pressing hazardous waste to be high-density module in ultrahigh-pressure hydraulic mode
JP2008261042A (en) Solidified product of steelmaking dust, and method for producing the same
JP4704061B2 (en) Solidified product of steelmaking dust and method for producing the same
JP6680167B2 (en) Method for producing coal-free uncalcined agglomerated ore for blast furnace
JP2019099833A (en) Manufacturing method of pellet, and refining method of nickel oxide ore
JP2019042731A (en) Manufacturing device and manufacturing method of filter molded body
JP4220908B2 (en) Method for producing unfired agglomerated mineral
WO2005064024A1 (en) Steel manufacturing dust solidified, process for producing the same and production apparatus therefor
JP2008261041A (en) Method for producing steelmaking dust solidified product, and production device therefor
JP2007138190A (en) Apparatus for solidifying steelmaking dust
JP6616956B2 (en) Slag forming suppression material and method for manufacturing the same
JP4641785B2 (en) Method for producing steelmaking dust solidified material
JP5223547B2 (en) Iron-based mixed powder for powder metallurgy
EP1726666A1 (en) Briquette as steelmaking raw material and process for producing the same
JP5439926B2 (en) Iron-based mixed powder for powder metallurgy
JP2019099831A (en) Manufacturing method of pellet, and refining method of nickel oxide ore
JP2010007175A (en) Iron-based powdery mixture for powder metallurgy
JP2004291462A (en) Method for manufacturing billet consisting of residual material of tetrafluoroethylene resin and recycling system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100706