JP2008260985A - Composite material and manufacturing method therefor - Google Patents

Composite material and manufacturing method therefor Download PDF

Info

Publication number
JP2008260985A
JP2008260985A JP2007103124A JP2007103124A JP2008260985A JP 2008260985 A JP2008260985 A JP 2008260985A JP 2007103124 A JP2007103124 A JP 2007103124A JP 2007103124 A JP2007103124 A JP 2007103124A JP 2008260985 A JP2008260985 A JP 2008260985A
Authority
JP
Japan
Prior art keywords
chemical conversion
composite material
phosphorus
nickel
metal element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007103124A
Other languages
Japanese (ja)
Other versions
JP2008260985A5 (en
JP5159148B2 (en
Inventor
Masaya Miyazaki
雅矢 宮崎
Kazuhiko Mori
和彦 森
Yukinori Saiki
幸則 齋木
Takashi Kojima
隆司 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Kanigen Co Ltd
Nihon Parkerizing Co Ltd
Original Assignee
Japan Kanigen Co Ltd
Nihon Parkerizing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Kanigen Co Ltd, Nihon Parkerizing Co Ltd filed Critical Japan Kanigen Co Ltd
Priority to JP2007103124A priority Critical patent/JP5159148B2/en
Priority to CN2008100921684A priority patent/CN101285184B/en
Publication of JP2008260985A publication Critical patent/JP2008260985A/en
Publication of JP2008260985A5 publication Critical patent/JP2008260985A5/ja
Application granted granted Critical
Publication of JP5159148B2 publication Critical patent/JP5159148B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/46Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing oxalates
    • C23C22/47Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing oxalates containing also phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/361Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing titanium, zirconium or hafnium compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/10Use of solutions containing trivalent chromium but free of hexavalent chromium

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite material which is obtained by chemical-conversion-treating a solid material having a plated film of a Ni-P alloy thereon, does not show coloring or shows little coloring due to the chemical conversion treatment, and has superior corrosion resistance and decoloration resistance. <P>SOLUTION: This method for manufacturing the composite material comprises the steps of: chemical-conversion-treating the plated layer of the Ni-P alloy formed on a substrate, by using chemical conversion treatment liquid including main metallic elements comprising Zr and/or Ti and a halogen element and having a pH controlled to 2.0 to 6.0; and cleaning the substrate with water. Thus formed chemical conversion coating layer contains the main metallic elements of 1 to 30 mg/m<SP>2</SP>and the phosphor element and oxygen element of 1 to 100 mg/m<SP>2</SP>respectively. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、複合材料及びその製造方法に関するものであり、更に詳しく述べるならば、ニッケル−リン合金めっきされた金属、プラスチックス及びセラミックス材料からなる基材と、無着色高耐食性化成被膜とを有し、着色がなく、高耐食性及び高耐変色性を有する複合材料及びその製造方法に関するものである。   The present invention relates to a composite material and a method for producing the same. More specifically, the present invention has a base material made of nickel-phosphorus alloy-plated metal, plastics and ceramic material, and a non-colored high corrosion resistance chemical conversion coating. In addition, the present invention relates to a composite material having no coloration and having high corrosion resistance and high discoloration resistance and a method for producing the same.

金属材料などの表面に施されたニッケル−リンめっき被膜、特に無電解ニッケル−リン合金めっき被膜に対し、その腐食及び変色の防止を目的とする化成処理として、クロメート処理を施すことが知られている。このクロメート処理浴、及びそれによって形成された被膜中に6価クロムが含まれる。6価クロムは、人体に有害であり、その使用が、制約乃至禁止されている。このため、クロメート処理に代る化成処理方法の開発が望まれている。   It is known that chromate treatment is applied as a chemical conversion treatment for the purpose of preventing corrosion and discoloration of nickel-phosphorus plating film, especially electroless nickel-phosphorus alloy plating film applied to the surface of metal materials. Yes. Hexavalent chromium is contained in this chromate treatment bath and the film formed thereby. Hexavalent chromium is harmful to the human body and its use is restricted or prohibited. For this reason, development of a chemical conversion treatment method to replace chromate treatment is desired.

ニッケル−リン合金めっきが施された金属などの材料に対する6価クロム非含有化成処理については、下記の文献が知られている。
特開平11−152588号公報 特開2003−213447号公報 特開2006−9089号公報 特開2005−146411号公報 特開2005−194603号公報 特開2005−336550号公報 WO2005/103080 A2 WO03/074761 A1 特開2006−328501号公報
Regarding the hexavalent chromium-free chemical conversion treatment for materials such as metals subjected to nickel-phosphorus alloy plating, the following documents are known.
JP-A-11-152588 JP 2003-213447 A JP 2006-9089 A JP 2005-146411 A JP 2005-194603 A JP 2005-336550 A WO2005 / 103080 A2 WO03 / 074761 A1 JP 2006-328501 A

6価クロム非含有化成処理剤のうち、3価クロムを含むものとしては、特許文献1に、3価クロム、リン酸イオン及び硝酸イオンを含む処理液が開示されており、特許文献2には、3価クロムと無機酸イオン、例えば硝酸とを含有する処理液が開示されており、特許文献3には、3価クロムと、リンの酸素酸イオン、例えばリン酸イオンとを含有する処理液が開示されている。   Among the hexavalent chromium-free chemical conversion treatment agents, those containing trivalent chromium are disclosed in Patent Document 1 as a treatment liquid containing trivalent chromium, phosphate ions and nitrate ions. A treatment liquid containing trivalent chromium and inorganic acid ions such as nitric acid is disclosed. Patent Document 3 discloses a treatment liquid containing trivalent chromium and phosphorus oxyacid ions such as phosphate ions. Is disclosed.

クロムを含有しない処理液としては、特許文献4にモリブデン酸化合物、タングステン酸化合物、リン酸化合物、硫酸化合物及び珪酸化合物を含む処理剤が開示されており、この処理剤を用いると、例えば無電解ニッケル皮膜上に、酸素、ケイ素、ニッケル、及びリンを含有する保護膜を形成することができること及びさらにモリブデン及び/又はタングステンを含有させてもよいことが開示されている。特許文献5には、タングステン酸及び/又はその塩、リン酸及び/又はその塩を含む表面処理液が開示されており、それによって、ニッケル皮膜又はニッケル合金皮膜上にタングステン酸ニッケル及びリン酸ニッケルを含む不溶性皮膜を形成することが開示されている。特許文献6には、アルミニウム、マグネシウム、コバルト、亜鉛、ニッケル、鉄などの金属を含有する表面に、ビニルアミン、アリルアミン、アリルアミン塩、ジアリルアミン、ジアリルアミン塩及びジアリルアンモニウム塩からなる群から選ばれた1種以上のモノマーを、構成モノマーとして含む重合体を含有する金属用表面処理剤を接触させ、必要により水洗又は湯洗を施し、乾燥して、耐食性、耐変色性重合体被膜を形成することが記載されている。しかしながら、上記、3価クロム含有処理剤及びクロム非含有処理剤により形成される保護皮膜は、クロメート皮膜に対比すると、耐食性及び耐変色性において、不満足なものであった。   As a treatment liquid not containing chromium, Patent Document 4 discloses a treatment agent containing a molybdic acid compound, a tungstic acid compound, a phosphoric acid compound, a sulfuric acid compound, and a silicic acid compound. It is disclosed that a protective film containing oxygen, silicon, nickel, and phosphorus can be formed on the nickel film, and that molybdenum and / or tungsten may be further contained. Patent Document 5 discloses a surface treatment solution containing tungstic acid and / or a salt thereof, phosphoric acid and / or a salt thereof, whereby nickel tungstate and nickel phosphate are formed on the nickel film or nickel alloy film. It is disclosed to form an insoluble film containing. Patent Document 6 discloses that one surface selected from the group consisting of vinylamine, allylamine, allylamine salt, diallylamine, diallylamine salt and diallylammonium salt on a surface containing a metal such as aluminum, magnesium, cobalt, zinc, nickel, and iron. It is described that a metal surface treatment agent containing a polymer containing the above monomer as a constituent monomer is brought into contact, washed with water or hot water as necessary, and dried to form a corrosion-resistant, discoloration-resistant polymer film. Has been. However, the protective film formed with the trivalent chromium-containing treatment agent and the non-chromium-containing treatment agent is unsatisfactory in terms of corrosion resistance and discoloration resistance as compared with the chromate film.

鉄鋼材料、亜鉛めっき金属材料、及びアルミニウム又はアルミニウム合金材料に対して用いられるクロム非含有化成処理剤として、ジルコニウム系化成処理剤及びチタン系化成処理剤が知られている。特許文献7には、チタン、ジルコニウム、ハフニウム及びシリコンから選ばれた1種以上の元素を含む化合物、HFの供給源となるフッ素含有化合物を含有する、鉄又は亜鉛含有金属材料用表面処理剤が開示されている。
特許文献8には、アルミニウム、アルミニウム合金、マグネシウム又は、マグネシウム合金用表面処理剤として、ハフニウム、チタン、ジルコニウム及びシリコンから選ばれた1種以上の元素を含む化合物と、フッ素含有化合物と、アルカリ土類金属群から選ばれた1種以上の金属イオンと、硝酸イオンとを含有する処理液が開示されている。しかしながら、これらの処理液も、それを、ニッケル−リン合金めっき金属材料に用いたとき、耐食性及び耐変色性向上効果において、未だ十分に満足できるものではない。
Zirconium-based chemical conversion treatment agents and titanium-based chemical conversion treatment agents are known as chromium-free chemical conversion treatment agents used for steel materials, galvanized metal materials, and aluminum or aluminum alloy materials. Patent Document 7 discloses a surface treatment agent for a metal material containing iron or zinc containing a compound containing one or more elements selected from titanium, zirconium, hafnium and silicon, and a fluorine-containing compound serving as a supply source of HF. It is disclosed.
Patent Document 8 discloses a compound containing one or more elements selected from hafnium, titanium, zirconium, and silicon as a surface treatment agent for aluminum, aluminum alloy, magnesium, or magnesium alloy, a fluorine-containing compound, and alkaline earth. A treatment liquid containing at least one metal ion selected from the group of similar metals and nitrate ion is disclosed. However, these treatment solutions are still not fully satisfactory in the effect of improving corrosion resistance and discoloration resistance when they are used for nickel-phosphorus alloy plated metal materials.

前記ジルコニウム系処理液又はチタン系処理液にさらに3価クロムを含有させ、それによって、耐食性を更に向上させる試みも知られている。特許文献9には、水溶性3価クロム化合物成分、水溶性チタン又はジルコニウム化合物成分、水溶性硝酸化合物成分、水溶性アルミニウム化合物成分及びフッ素化合物成分と、必要により酸化剤成分とを含む水性酸性化成処理液が開示されており、この化成処理液からアルミニウム又はアルミニウム合金材料上に形成された化成被膜には、3価クロム、チタン及び/又はジルコニウムが含有され、耐食性、塗料密着性及びスラッジ防止性において良好であることが報告されている。   There has also been known an attempt to further add trivalent chromium to the zirconium-based treatment liquid or the titanium-based treatment liquid, thereby further improving the corrosion resistance. Patent Document 9 discloses an aqueous acidification composition containing a water-soluble trivalent chromium compound component, a water-soluble titanium or zirconium compound component, a water-soluble nitric acid compound component, a water-soluble aluminum compound component and a fluorine compound component, and, if necessary, an oxidizing agent component. A treatment liquid is disclosed, and the chemical conversion film formed on the aluminum or aluminum alloy material from the chemical treatment liquid contains trivalent chromium, titanium and / or zirconium, and has corrosion resistance, paint adhesion, and sludge prevention. Have been reported to be good.

しかしながら、前記ジルコニウム系処理液、チタン系処理液及びジルコニウム及び/又はチタン−3価クロム混合化成処理液を、ニッケル−リン合金めっき金属材料、特に無電解ニッケル−リン合金めっき金属材料に適用すると、それによってその金属材料表面に着色を生ずるという問題が、本発明者らによって見出されている。またこのように着色した化成保護皮膜を有するニッケル−リン合金めっき材料については、その用途、特に電子電気機器における用途を獲得し、拡大することは、困難である。   However, when the zirconium-based treatment liquid, the titanium-based treatment liquid and the zirconium and / or titanium-trivalent chromium mixed chemical conversion treatment liquid are applied to a nickel-phosphorus alloy plating metal material, particularly an electroless nickel-phosphorus alloy plating metal material, A problem has been found by the inventors that it causes coloration on the surface of the metal material. In addition, it is difficult to acquire and expand the use of the nickel-phosphorus alloy plating material having the colored protective coating as described above, particularly in electronic and electrical equipment.

本発明はニッケル−リン合金めっき層を有する固体材料からなる基材と、その上に形成され、かつそれに、高い耐食性及び耐変色性を付与し、かつ化成処理皮膜とを含み、化成処理による着色がなく又は少なく、高い耐食性及び高耐変色性を有する複合材料及びその製造方法を提供しようとするものである。   The present invention includes a base material made of a solid material having a nickel-phosphorus alloy plating layer, a high-corrosion resistance and a discoloration resistance formed thereon, and a chemical conversion treatment film, and is colored by chemical conversion treatment. Therefore, an object of the present invention is to provide a composite material having high corrosion resistance and high discoloration resistance and a method for producing the same.

本発明の複合材料は、金属材料、プラスチックス材料又はセラミックス材料からなる基体及び前記基体の少なくとも1面に形成されたニッケル−リン合金めっき層を含む基材と、前記基材のニッケル−リン合金めっき層上に化成処理を施して形成された化成被膜層とを含み、前記化成被膜層が1〜30mg/m2のジルコニウム及びチタンから選ばれた少なくとも1種の主金属元素と、1〜100mg/m2のリン元素と、及び1〜100mg/m2の酸素元素とを含み、化成処理による着色がなく又は少なく、高耐食性及び高耐変色性を有することを特徴とするものである。
本発明の複合材料において、前記基体用材料が金属材料、プラスチックス材料、及びセラミックス材料から選ばれることが好ましい。
本発明の複合材料において、前記基体上に形成されたニッケル−リン合金めっき層が、リンを、0.05〜20g/m2の含有量で含むことが好ましい。
本発明の複合材料において、前記化成被膜中に含まれるリン(P)量の、リン及び酸素の合計量(P+O)に対する原子比率P/(P+O)が、0.01〜0.25の範囲内にあることが好ましい。
本発明の複合材料において、前記化成被膜中に含まれるリンが、リン酸塩及び亜リン酸塩から選ばれた少なくとも1種の化合物として存在することが好ましい。
本発明の複合材料において、前記化成被膜が3価クロムからなる1〜30mg/m2の第1追加金属元素をさらに含んでいることが好ましい。
本発明の複合材料において、前記化成被膜が、タングステン、モリブデン、バナジウム及びセリウムから選ばれた少なくとも1種からなる1〜30mg/m2の第2追加金属元素をさらに含んでいることが好ましい。
本発明の複合材料の製造方法は、金属材料、プラスチックス材料又はセラミックス材料からなる基体及び、その少なくとも1面上に形成されたニッケル−リン合金めっき層とを含む基材の前記ニッケル−リン合金めっき層の表面の少なくとも一部分に、ジルコニウム及びチタンから選ばれた少なくとも1種からなり、濃度が1〜5000ppmの主金属元素、及びフッ素、塩素、臭素及びヨウ素から選ばれた少なくとも1種からなり、濃度が1〜10000ppmのハロゲン元素を含み、かつ2.0〜6.0のpHを有する化成処理液を接触させ、それによって1〜30mg/m2のジルコニウム及びチタンから選ばれた少なくとも1種の主金属元素と、1〜100mg/m2のリン元素と、1〜100mg/m2の酸素元素とを含み、化成処理による着色がなく又は少なく、高い耐食性及び耐変色性を有する化成被膜層を形成し、得られた化成被膜層を水により洗浄することを特徴とするものである。
本発明の複合材料の製造方法において、前記化成処理液の調製に、前記主金属元素が、その水和酸化物、或いはフッ化物、塩化物、オキシ塩化物、臭化物、ヨウ化物、又はフッ素含有酸の塩の形態で用いられることが好ましい。
本発明の複合材料の製造方法において、前記化成処理液の調製に、前記ハロゲン元素が、塩酸、フッ化水素酸、ヨウ化水素酸、臭化水素酸、或いは前記主金属元素の塩化物、フッ化物、臭化物又はヨウ化物の或はフッ素含有酸の塩の形態で用いられることが好ましい。
本発明の複合材料の製造方法において、前記化成処理液が、3価クロム元素を第1追加金属元素としてさらに含有することが好ましい。
本発明の複合材料の製造方法において、前記化成処理液中の3価クロム元素の濃度が、1〜5000ppmであることが好ましい。
本発明の複合材料の製造方法において、前記化成処理液の調製に、前記3価クロム元素が、その水和酸化物、フッ化物、塩化物、臭化物、ヨウ化物、又はフッ素含有酸の塩の形態で用いられることが好ましい。
本発明の複合材料の製造方法において、前記化成処理液が、タングステン、モリブデン、バナジウム及びセリウムから選ばれた少なくとも1種の元素からなる第2追加金属元素を含有することが好ましい。
本発明の複合材料の製造方法において、前記化成処理液中の第2追加金属元素の濃度が、1〜5000ppmであることが好ましい。
本発明の複合材料の製造方法において、前記化成処理液の調製に、前記第2追加金属元素が、その水和酸化物、フッ化物、塩化物、臭化物、ヨウ化物、又はフッ素含有酸の塩の形態で用いられることが好ましい。
本発明の複合材料の製造方法において、前記基体が、アルミニウム含有金属材料である場合には、この基体に前記ニッケル−リン合金めっき処理及び水洗浄を施した後、かつ前記化成処理を施す前に、前記ニッケル−リン合金めっき基材に温度50℃以上の温水を接触させるか、或いは前記化成処理及び水洗浄を施して得られた複合材料に、温度50℃以上の温水を接触させることを更に含むことが好ましい。
A composite material according to the present invention includes a base material including a base made of a metal material, a plastics material, or a ceramic material, and a nickel-phosphorus alloy plating layer formed on at least one surface of the base, and a nickel-phosphorus alloy of the base A conversion coating layer formed by subjecting the plating layer to a conversion treatment, wherein the conversion coating layer is at least one main metal element selected from 1 to 30 mg / m 2 of zirconium and titanium, and 1 to 100 mg. / M 2 phosphorus element, and 1 to 100 mg / m 2 oxygen element, having no or little coloration due to chemical conversion treatment, and having high corrosion resistance and high discoloration resistance.
In the composite material of the present invention, the base material is preferably selected from a metal material, a plastics material, and a ceramic material.
In the composite material of the present invention, it is preferable that the nickel-phosphorus alloy plating layer formed on the base contains phosphorus in a content of 0.05 to 20 g / m 2 .
In the composite material of the present invention, the atomic ratio P / (P + O) of the amount of phosphorus (P) contained in the chemical conversion film to the total amount of phosphorus and oxygen (P + O) is in the range of 0.01 to 0.25. It is preferable that it exists in.
In the composite material of the present invention, it is preferable that phosphorus contained in the chemical conversion film exists as at least one compound selected from phosphate and phosphite.
In the composite material of the present invention, it is preferable that the chemical conversion film further contains 1 to 30 mg / m 2 of a first additional metal element made of trivalent chromium.
In the composite material of the present invention, it is preferable that the chemical conversion film further contains 1 to 30 mg / m 2 of a second additional metal element made of at least one selected from tungsten, molybdenum, vanadium and cerium.
The method for producing a composite material according to the present invention is the above-mentioned nickel-phosphorus alloy of a base material including a base made of a metal material, a plastics material or a ceramic material, and a nickel-phosphorus alloy plating layer formed on at least one surface thereof At least a part of the surface of the plating layer is made of at least one selected from zirconium and titanium, the main metal element having a concentration of 1 to 5000 ppm, and at least one selected from fluorine, chlorine, bromine and iodine, A chemical conversion treatment solution containing a halogen element having a concentration of 1 to 10,000 ppm and having a pH of 2.0 to 6.0 is contacted, whereby at least one selected from 1 to 30 mg / m 2 of zirconium and titanium. a main metal element, comprising: a phosphorus element of 1 to 100 mg / m 2, and the oxygen element of 1 to 100 mg / m 2, no coloring by chemical conversion treatment Less, to form a conversion coating layer having a high corrosion resistance and tarnish resistance, is the resulting conversion coating layer characterized in that the washing with water.
In the method for producing a composite material of the present invention, in the preparation of the chemical conversion treatment liquid, the main metal element is a hydrated oxide thereof, or a fluoride, chloride, oxychloride, bromide, iodide, or fluorine-containing acid. It is preferably used in the form of a salt.
In the method for producing a composite material of the present invention, in the preparation of the chemical conversion treatment solution, the halogen element is hydrochloric acid, hydrofluoric acid, hydroiodic acid, hydrobromic acid, or a chloride or fluoride of the main metal element. It is preferably used in the form of a fluoride, bromide or iodide or a salt of a fluorine-containing acid.
In the method for producing a composite material of the present invention, it is preferable that the chemical conversion treatment liquid further contains a trivalent chromium element as a first additional metal element.
In the manufacturing method of the composite material of this invention, it is preferable that the density | concentration of the trivalent chromium element in the said chemical conversion liquid is 1-5000 ppm.
In the method for producing a composite material of the present invention, in the preparation of the chemical conversion treatment liquid, the trivalent chromium element is in the form of a hydrated oxide, fluoride, chloride, bromide, iodide, or a salt of a fluorine-containing acid. Is preferably used.
In the method for producing a composite material of the present invention, the chemical conversion treatment liquid preferably contains a second additional metal element composed of at least one element selected from tungsten, molybdenum, vanadium and cerium.
In the method for producing a composite material of the present invention, the concentration of the second additional metal element in the chemical conversion treatment liquid is preferably 1 to 5000 ppm.
In the method for producing a composite material of the present invention, in the preparation of the chemical conversion treatment solution, the second additional metal element is a hydrated oxide, fluoride, chloride, bromide, iodide, or a salt of a fluorine-containing acid. It is preferably used in the form.
In the method for producing a composite material according to the present invention, when the substrate is an aluminum-containing metal material, the substrate is subjected to the nickel-phosphorus alloy plating treatment and water washing, and before the chemical conversion treatment. Further, contacting the nickel-phosphorus alloy plating substrate with hot water having a temperature of 50 ° C. or higher, or contacting the hot water having a temperature of 50 ° C. or higher with the composite material obtained by the chemical conversion treatment and the water washing. It is preferable to include.

本発明の複合材料は、ニッケル−リン合金めっき層を有する金属材料、プラスチックス材料又はセラミックス材料を基材として含むものであるが、その上に化成処理によって形成された化成被膜は、得られる複合材料を着色することなく又は少なく、それに高い耐食性と耐変色性を付与することができ、また、本発明方法は、上記複合材料を、容易に、かつ効率よく製造することを可能にするものである。   The composite material of the present invention includes a metal material, a plastics material, or a ceramic material having a nickel-phosphorus alloy plating layer as a base material. The chemical conversion film formed thereon by chemical conversion treatment is obtained by combining the obtained composite material. It can impart high corrosion resistance and discoloration resistance to it with little or no coloring, and the method of the present invention makes it possible to easily and efficiently produce the composite material.

本発明の複合材料の基体として用いられる固体材料は、電導性固体材料及び非電導性固体材料のいずれであってもよく、またその形状・寸法などに制限はない。一般に基体用材料は鉄、銅、及びアルミニウム並びにこれらの合金などの金属材料、プラスチックス材料(例えば、ポリエチレン、ポリプロピレン、ポリアセタール、ポリアミド、ポリカーボネート、ポリスルホン、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、PET樹脂、ABS樹脂など)及びセラミックス材料(ガラス材料を含み、例えば、ケイ酸塩ガラス、アルミナ、窒化ケイ素、炭化ケイ素など)などから選択することができる。   The solid material used as the substrate of the composite material of the present invention may be either a conductive solid material or a non-conductive solid material, and there is no limitation on the shape and size thereof. In general, base materials are metal materials such as iron, copper, and aluminum, and alloys thereof, plastics materials (eg, polyethylene, polypropylene, polyacetal, polyamide, polycarbonate, polysulfone, polyphenylene sulfide, polyether ether ketone, PET resin, ABS) Resin, etc.) and ceramic materials (including glass materials, for example, silicate glass, alumina, silicon nitride, silicon carbide, etc.) can be selected.

本発明の複合材料において、基体上に形成されるニッケル−リン合金めっき層は、無電解めっき法、又は電解めっき法のいずれかにより形成する事ができる。ニッケル−リン合金めっき浴としては、ニッケル供給源として、例えば、硫酸ニッケル、塩化ニッケル、炭酸ニッケル、次亜リン酸ニッケルなどの1種類以上と、リン供給源として、例えば、次亜リン酸塩、亜リン酸塩等の1種類以上を含む水性処理液を用いることができる。めっき層の厚さは、所望に応じて適宜設定することができるが、一般に0.5〜20μm程度であることが好ましく、このリンの含有量は0.05〜20g/m2であることが好ましい。めっき層中のリン含有量が0.05g/m2未満であると均一なめっき層を得ることができないという不都合を生ずることがあり、またそれが20g/m2を超えるめっき層は実用的に生産することが困難になることがある。 In the composite material of the present invention, the nickel-phosphorus alloy plating layer formed on the substrate can be formed by either an electroless plating method or an electrolytic plating method. As a nickel-phosphorus alloy plating bath, as a nickel supply source, for example, one or more kinds of nickel sulfate, nickel chloride, nickel carbonate, nickel hypophosphite, and the like, as a phosphorus supply source, for example, hypophosphite, An aqueous treatment liquid containing one or more types such as phosphite can be used. The thickness of the plating layer can be appropriately set as desired, but generally it is preferably about 0.5 to 20 μm, and the phosphorus content is 0.05 to 20 g / m 2. preferable. May occur such a disadvantage that the phosphorus content in the coating layer can not be obtained a uniform plating layer is less than 0.05 g / m 2, also plated layer it more than 20 g / m 2 is practically It can be difficult to produce.

本発明の複合材料は、固体材料からなる基体と、その少なくとも1面に形成されたニッケル−リン合金めっき層を有する基材、及びこの基材のニッケル−リン合金めっき層上に化成処理を施して形成された化成被膜を含むものであって、前記化成被膜層は、1〜30mg/m2の、好ましくは1〜20mg/m2の、ジルコニウム及びチタンから選ばれた少なくとも1種の主金属元素と、1〜100mg/m2の、好ましくは1〜50mg/m2のリン元素と、及び1〜100mg/m2の、好ましくは1〜50mg/m2の酸素とを含み、化成処理による着色がなく又は少なく、高耐食性及び高耐変色性を有するものである。 The composite material of the present invention is obtained by subjecting a substrate made of a solid material, a substrate having a nickel-phosphorus alloy plating layer formed on at least one surface thereof, and a chemical conversion treatment on the nickel-phosphorus alloy plating layer of the substrate. The conversion coating layer is formed of 1 to 30 mg / m 2 , preferably 1 to 20 mg / m 2 of at least one main metal selected from zirconium and titanium. Elemental, 1 to 100 mg / m 2 , preferably 1 to 50 mg / m 2 phosphorus element, and 1 to 100 mg / m 2 , preferably 1 to 50 mg / m 2 oxygen, by chemical conversion treatment It has no or little coloration and has high corrosion resistance and high discoloration resistance.

前記化成被膜層中の主金属元素(Zr及び/又はTi)の含有量が1mg/m2未満であると、得られる化成被膜の量が不十分になり、その耐食性及び耐変色性が不十分になる。またそれが30mg/m2をこえると、得られる化成被膜量が過大になり光の干渉により、着色が生じ、コストが高く、経済的に不利になる。また、リンの含有量が1mg/m2未満であると、得られる化成被膜の量が不十分になり、その耐食性および耐変色性が不十分になる。またそれが100mg/m2を超えると着色を生じてしまうという不都合を生ずる。さらに酸素の含有量が1mg/m2未満であると、得られる化成被膜の量が不十分になり、その耐食性及び耐変色性が不十分になり、またそれが100mg/m2を超えると着色を生じてしまうという不都合を生ずる。 When the content of the main metal element (Zr and / or Ti) in the chemical conversion coating layer is less than 1 mg / m 2 , the amount of chemical conversion coating obtained is insufficient, and the corrosion resistance and discoloration resistance are insufficient. become. On the other hand, if it exceeds 30 mg / m 2 , the amount of chemical conversion film to be obtained becomes excessive, and coloring occurs due to light interference, resulting in high cost and economical disadvantage. On the other hand, if the phosphorus content is less than 1 mg / m 2 , the amount of the resulting chemical conversion film is insufficient, and the corrosion resistance and discoloration resistance are insufficient. Moreover, when it exceeds 100 mg / m < 2 >, there will be a disadvantage that coloring occurs. Further, when the oxygen content is less than 1 mg / m 2 , the amount of the resulting chemical conversion film becomes insufficient, and the corrosion resistance and discoloration resistance become insufficient, and when it exceeds 100 mg / m 2 , coloring occurs. This causes the inconvenience.

本発明の複合材料において、前記化成被膜中に含まれるリン(P)量の、リン及び酸素の合計量(P+O)に対する原子比率P/(P+O)が、0.01〜0.25の範囲内にあることが好ましく、0.02〜0.2の範囲内にあることがより好ましい。原子比率P/(P+O)が、0.01未満であると、つまり、リンの酸素に対する相対的量が過少になると、得られる複合材料の耐食性及び耐変色性が不十分になることがある。原子比率P/(P+O)が0.25のとき、リン及び酸素は亜リン酸塩の形態をとることになるから、P/(P+O)の値が、0.25を超えることはない。   In the composite material of the present invention, the atomic ratio P / (P + O) of the amount of phosphorus (P) contained in the chemical conversion film to the total amount of phosphorus and oxygen (P + O) is in the range of 0.01 to 0.25. Preferably, it exists in the range of 0.02-0.2. If the atomic ratio P / (P + O) is less than 0.01, that is, if the relative amount of phosphorus to oxygen is too small, the resulting composite material may have insufficient corrosion resistance and discoloration resistance. When the atomic ratio P / (P + O) is 0.25, phosphorus and oxygen take the form of phosphite, so the value of P / (P + O) does not exceed 0.25.

本発明の複合材料は、本発明方法により製造することができる。
本発明方法において、固体材料からなる基体の1面上にニッケル−リン合金めっき層を形成したものを基材として用い、この基材のニッケル−リン合金めっき層の表面の少なくとも一部分に、化成処理液を接触させて、これに化成処理が施される。前記化成処理液はジルコニウム及びチタンから選ばれた少なくとも1種からなる主金属元素を、1〜5000ppmの濃度で、好ましくは5〜1000ppmの濃度で含みまた、フッ素、塩素、臭素及びヨウ素から選ばれた少なくとも1種からなるハロゲン元素を、1〜10000ppmの濃度で好ましくは5〜5000ppmの濃度で含み、かつ、2.0〜6.0のpH、好ましくは2.5〜5.5のpHを有するものである。化成処理液の溶媒は水であることが好ましいか水と相溶性のある極性溶媒、または、水と極性溶媒との混合物であってもよい。
極性溶媒としては、アルコール系、グリコールエーテル系、アミド系溶媒などが用いられ、具体的には、エタノール、メタノール、2−プロパノール、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、ホルムアミド、ジメチルホルムアミド、モノエタノールアミン、トリエタノールアミン、N−メチルピロリドン、テトラヒドロフラン、ジオキサンなどを例示することができる。
前記化成処理液と、基材のニッケル−リン合金めっき層との接触は、好ましくは20〜80℃、より好ましくは30〜70℃の温度において、好ましくは1〜1800秒間、より好ましくは5〜600秒間の接触時間をもって行われる。
The composite material of the present invention can be produced by the method of the present invention.
In the method of the present invention, a substrate in which a nickel-phosphorus alloy plating layer is formed on one surface of a substrate made of a solid material is used as a substrate, and chemical conversion treatment is performed on at least a part of the surface of the nickel-phosphorus alloy plating layer of the substrate. The liquid is brought into contact and subjected to chemical conversion treatment. The chemical conversion treatment liquid contains at least one main metal element selected from zirconium and titanium at a concentration of 1 to 5000 ppm, preferably 5 to 1000 ppm, and is selected from fluorine, chlorine, bromine and iodine. At least one halogen element at a concentration of 1 to 10000 ppm, preferably at a concentration of 5 to 5000 ppm, and a pH of 2.0 to 6.0, preferably 2.5 to 5.5. It is what you have. The solvent of the chemical conversion treatment solution is preferably water, or may be a polar solvent compatible with water, or a mixture of water and a polar solvent.
As the polar solvent, alcohol-based, glycol ether-based, amide-based solvents and the like are used. Specifically, ethanol, methanol, 2-propanol, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, ethylene glycol monobutyl ether, formamide , Dimethylformamide, monoethanolamine, triethanolamine, N-methylpyrrolidone, tetrahydrofuran, dioxane and the like.
The contact between the chemical conversion treatment liquid and the nickel-phosphorus alloy plating layer of the substrate is preferably 20 to 80 ° C., more preferably 30 to 70 ° C., preferably 1 to 1800 seconds, more preferably 5 to 5 ° C. It is performed with a contact time of 600 seconds.

上記の化成処理液との接触により、ニッケル−リン合金めっき層上に化成被膜層が形成され、この化成被膜層には1〜30mg/m2の主金属元素(Zr及び/又はTi)と、1〜100mg/m2のリン元素と、1〜100mg/m2の酸素元素とが含まれる。
前記化成処理液の温度が、20℃未満であると、エッチング速度が低く、上記組成を有する化成被膜の形成速度が遅く、実用上の処理時間内に十分な化成被膜が形成されないことがあり、それが、80℃をこえると、処理液中の金属元素が加水分解により析出し、スラッジを生成しやすくなり、またエネルギーコストが高く経済的に不利になることがある。また、処理時間が1秒未満では、化成反応が十分に行われず、化成被膜の形成も不十分になることがあり、また、それが1800秒を超えると、化成反応効果が飽和し、実用的生産性が低下する。
By contact with the chemical conversion treatment liquid, a chemical conversion coating layer is formed on the nickel-phosphorus alloy plating layer, and in this chemical conversion coating layer, 1 to 30 mg / m 2 of the main metal element (Zr and / or Ti), 1-100 mg / m 2 of phosphorus element and 1-100 mg / m 2 of oxygen element are contained.
When the temperature of the chemical conversion treatment liquid is less than 20 ° C., the etching rate is low, the formation rate of the chemical conversion film having the above composition is slow, and a sufficient chemical conversion film may not be formed within a practical processing time. If it exceeds 80 ° C., the metal element in the treatment liquid is precipitated by hydrolysis, and it becomes easy to generate sludge, and the energy cost may be high, which may be economically disadvantageous. Further, if the treatment time is less than 1 second, the chemical conversion reaction is not sufficiently performed, and the formation of the chemical conversion film may be insufficient. If it exceeds 1800 seconds, the chemical reaction effect is saturated and practical. Productivity decreases.

本発明方法において、化成処理により形成された化成被膜層の厚さは1〜100nmであることが好ましい。化成被膜層の厚さが1nm未満であると、その耐食性及び耐変色性向上効果が不満足になることがあり、それが100nmを超えると、その耐食性、耐変化性向上効果が飽和し、コストの上昇による経済的不利を生ずることがあり、また光の干渉による着色を生ずることがある。   In the method of the present invention, the thickness of the chemical conversion coating layer formed by chemical conversion treatment is preferably 1 to 100 nm. If the thickness of the chemical conversion coating layer is less than 1 nm, the corrosion resistance and discoloration improvement effect may be unsatisfactory. If it exceeds 100 nm, the corrosion resistance and change resistance improvement effect is saturated, and the cost is reduced. There may be economic disadvantages due to the rise, and coloration may occur due to light interference.

上記化成処理液接触が完了した後に、得られた化成皮膜層を、水洗浄して、付着している化成処理液を除去する。この水洗浄において、5〜80℃の水による洗浄を1〜2回施し、その後に5〜80℃の脱イオン水により1〜2回の洗浄を施すことが好ましい。   After the chemical conversion liquid contact is completed, the obtained chemical conversion film layer is washed with water to remove the attached chemical conversion liquid. In this water washing, washing with water at 5 to 80 ° C. is preferably performed once or twice, followed by washing with deionized water at 5 to 80 ° C. once or twice.

本願発明方法に用いられる化成処理液には、主金属元素及びハロゲン元素が含まれる。化成処理液用主金属元素はジルコニウム(Zr)及びチタン(Ti)から選ばれた少なくとも1種であり、得られる複合材料の耐食性及び耐変色性を向上させることができる。化成処理液の調製において、前記主金属元素は、その水溶性化合物、例えば水和酸化物、塩化物、フッ化物、ヨウ化物、臭化物、及びフッ素含有酸の塩(例えばフルオロジルコニウム(IV)錯塩、フルオロチタン(III)又は(IV)酸錯塩)の形態で用いることが好ましく、化成処理液中の主金属元素(Zr及び/又はTi)の含有量は、1〜5000ppmであることが好ましく、それが1ppm未満であると、得られる化成皮膜が耐食性及び/又は耐変色性において不十分になる。またそれが5000ppmを超えると、得られる化成皮膜の性能が飽和してしまうが、コストが高くなり経済的に不利になる。   The chemical conversion treatment solution used in the method of the present invention contains a main metal element and a halogen element. The main metal element for the chemical conversion treatment liquid is at least one selected from zirconium (Zr) and titanium (Ti), and can improve the corrosion resistance and discoloration resistance of the resulting composite material. In the preparation of the chemical conversion treatment liquid, the main metal element is a water-soluble compound such as a hydrated oxide, chloride, fluoride, iodide, bromide, and a salt of a fluorine-containing acid (for example, a fluorozirconium (IV) complex salt, It is preferably used in the form of fluorotitanium (III) or (IV) acid complex salt), and the content of the main metal element (Zr and / or Ti) in the chemical conversion solution is preferably 1 to 5000 ppm, Is less than 1 ppm, the resulting chemical conversion film is insufficient in corrosion resistance and / or discoloration resistance. Moreover, when it exceeds 5000 ppm, although the performance of the chemical conversion film obtained will be saturated, cost will become high and it will become economically disadvantageous.

化成処理液には、フッ素、塩素、臭素及びヨウ素から選ばれた少なくとも1種からなるハロゲン元素が含まれ、このハロゲン元素は、化成処理液のニッケル−リン合金のめっき層及び基体に対するエッチング効果を左右し、従って、化成反応をコントロールするために重要な成分である。しかもハロゲン元素によるエッチング効果は得られる複合材料に着色を生ずることがない。化成処理により、得られる複合材料に着色を生ずる原因としては、化成処理により生成する化成被膜層による干渉色の発生があり、また、化成処理時に、ニッケル−リン合金めっき層に、エッチングによる表面凹凸が形成し、それが着色の原因になることがある。化成処理液中に、硝酸、硫酸及びリン酸などの無機酸のイオン、並びに、酢酸、蟻酸、酒石酸、クエン酸などの有機酸のイオンの存在が得られる化成処理物に着色を生ずる傾向があり、特に硝酸イオンは、ニッケル−リン合金めっき層表面に、著しい凹凸を形成し、着色を生じさせることが本発明者らによって見出されている。上記の着色を発生する酸類は、本発明方法には不要であり、これらを化成処理液に初めから含ませることはない。化成処理液中の前記ハロゲン元素は、フッ化水素酸、塩化水素酸、臭化水素酸、ヨウ化水素酸、並びに前記主金属元素(Zr及び/又はTi)のフッ化物、塩化物、臭化物、ヨウ化物及びフッ素含有酸の塩の形態で存在することが好ましい。
本発明方法に用いられる化成処理液中の前記ハロゲン元素の含有量は1〜10000ppmである。その含有量が1ppm未満であると、ニッケル−リン合金めっき層などの基材表面に対するエッチング効果が不十分になり、従って、化成効果が不十分になる。また、ハロゲン元素の含有量が10000ppmを超えると、エッチング効果が過剰になり、かつ、コストが高くなり経済的に不利となる。
The chemical conversion treatment liquid contains at least one halogen element selected from fluorine, chlorine, bromine and iodine, and this halogen element has an etching effect on the nickel-phosphorus alloy plating layer and substrate of the chemical conversion treatment liquid. Therefore, it is an important component for controlling the chemical reaction. Moreover, the etching effect by the halogen element does not cause coloring in the obtained composite material. The cause of coloration of the resulting composite material by chemical conversion treatment is the generation of interference colors due to the chemical conversion coating layer produced by chemical conversion treatment. Also, during the chemical conversion treatment, the nickel-phosphorus alloy plating layer has surface irregularities caused by etching. May form, which may cause coloration. In the chemical conversion solution, there is a tendency to color the chemical conversion treatment product obtained by the presence of ions of inorganic acids such as nitric acid, sulfuric acid and phosphoric acid and ions of organic acids such as acetic acid, formic acid, tartaric acid and citric acid. In particular, it has been found by the present inventors that nitrate ions form significant irregularities on the surface of the nickel-phosphorus alloy plating layer and cause coloring. The acids that generate the above color are not necessary for the method of the present invention, and they are not included in the chemical conversion solution from the beginning. The halogen element in the chemical conversion treatment liquid includes hydrofluoric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, and fluoride, chloride, bromide, and the main metal element (Zr and / or Ti), It is preferably present in the form of iodide and a salt of a fluorine-containing acid.
Content of the said halogen element in the chemical conversion liquid used for the method of this invention is 1-10000 ppm. If the content is less than 1 ppm, the etching effect on the surface of the substrate such as the nickel-phosphorus alloy plating layer becomes insufficient, and therefore the chemical conversion effect becomes insufficient. On the other hand, if the content of the halogen element exceeds 10,000 ppm, the etching effect becomes excessive and the cost becomes high, which is economically disadvantageous.

本発明方法において、化成処理液に、第1追加金属元素として3価のクロム(Cr(III))元素がさらに含まれていることが好ましい。3価クロムの添加により得られる化成被膜形成において、金属含有成分の析出量を抑制し、過剰の析出による干渉色による着色を防止することができる。化成処理液に3価クロムを含有させるためには、3価クロムの水和酸化物、フッ化物、塩化物、臭化物、ヨウ化物、フッ素含有フルオロクロム(III)酸塩、及びフルオロ金属酸(例えばフルオロジルコニウム酸クロム(III)など)の3価クロム塩を用いることが好ましい。化成処理液中の3価クロム元素の含有量は1〜5000ppmであることが好ましく、5〜1000ppmであることがより好ましい。その含有量が1ppm未満では、3価クロム添加の効果が不十分になることがあり、また、それが5000ppmをこえると、その作用効果に対するコスト上昇率が過大になり経済的に不利になることがある。   In the method of the present invention, it is preferable that the chemical conversion solution further contains a trivalent chromium (Cr (III)) element as the first additional metal element. In the formation of a conversion coating obtained by adding trivalent chromium, the amount of metal-containing component deposited can be suppressed, and coloring due to interference colors due to excessive deposition can be prevented. In order to contain the trivalent chromium in the chemical conversion treatment liquid, a hydrated oxide of trivalent chromium, fluoride, chloride, bromide, iodide, fluorine-containing fluorochrome (III) salt, and fluorometal acid (for example, It is preferable to use a trivalent chromium salt of chromium (III) fluorozirconate. The content of the trivalent chromium element in the chemical conversion treatment liquid is preferably 1 to 5000 ppm, and more preferably 5 to 1000 ppm. If the content is less than 1 ppm, the effect of adding trivalent chromium may be insufficient, and if it exceeds 5000 ppm, the rate of cost increase for the action and effect will be excessive, which will be economically disadvantageous. There is.

本発明方法において、化成処理液中には、必要によりタングステン、モリブデン、バナジウム及びセリウムから選ばれた1種以上からなる第2追加金属元素を含んでいてもよく、それによって、得られる複合材料の耐食性及び耐変色性を、さらに向上させることができる。化成処理液中の第2追加金属元素の含有量は、1〜5000ppmであることが好ましく、5〜1000ppmであることがより好ましい。化成処理液の調製に、前記第2追加金属元素は、各金属元素の水和酸化物、フッ化物、塩化物、臭化物、ヨウ化物及びフッ素含有酸の塩(例えば、フルオロタングステン(V)酸錯塩、フルオロモリブデン(III),(IV),(V)又は(VI)酸錯塩、フルオロバナジウム(III),(IV)又は(V)酸錯塩など)の形態で用いられることが好ましい。化成処理液中の第2追加金属元素の含有量が1ppm未満の場合には、得られる複合材料における第2追加金属元素の添加による耐食性及び耐変色性の向上効果が不十分になることがあり、また、それが5000ppmを超えると、得られる作用効果に対するコスト上昇率が高くなりすぎ、経済的に不利になることがある。   In the method of the present invention, the chemical conversion treatment liquid may contain a second additional metal element composed of one or more selected from tungsten, molybdenum, vanadium, and cerium, if necessary. Corrosion resistance and discoloration resistance can be further improved. The content of the second additional metal element in the chemical conversion solution is preferably 1 to 5000 ppm, more preferably 5 to 1000 ppm. In the preparation of the chemical conversion treatment solution, the second additional metal element is a hydrated oxide, fluoride, chloride, bromide, iodide, or fluorine-containing acid salt of each metal element (for example, a fluorotungsten (V) acid complex salt). , Fluoromolybdenum (III), (IV), (V) or (VI) acid complex salt, fluorovanadium (III), (IV) or (V) acid complex salt, etc.). If the content of the second additional metal element in the chemical conversion solution is less than 1 ppm, the effect of improving the corrosion resistance and discoloration resistance due to the addition of the second additional metal element in the resulting composite material may be insufficient. In addition, if it exceeds 5000 ppm, the cost increase rate for the obtained effect is too high, which may be economically disadvantageous.

本発明方法において、化成処理液のpHは、2.0〜6.0の範囲内に好ましくは2.5〜5.5の範囲内に調整される。このpH調整のためには慣用のpH調整剤を用いてもよいが、本発明の化成被膜に有害なアニオンの混入を避けるために、例えば、フッ化水素酸、水酸化ナトリウム及びアンモニア水などを用いることが好ましい。化成処理液のpHが2.0未満であると、ニッケル−リン合金めっき層に対する化成処理液のエッチング力が過度に強くなり、所望の化成被膜の析出形成効果が低下し、また、ニッケル及びリンの溶出量が過多になり、化成処理のランニング性が不良になり、めっき層表面の凹凸形成の程度が過大になる。また、pH値が6.0を超えると、化成処理によるスラッジの発生量が多くなり、化成処理液の安定性が不良になる。   In the method of the present invention, the pH of the chemical conversion solution is adjusted within the range of 2.0 to 6.0, preferably within the range of 2.5 to 5.5. For this pH adjustment, a conventional pH adjuster may be used. However, in order to avoid contamination with harmful anions in the chemical conversion film of the present invention, for example, hydrofluoric acid, sodium hydroxide and aqueous ammonia are added. It is preferable to use it. When the pH of the chemical conversion solution is less than 2.0, the etching power of the chemical conversion solution on the nickel-phosphorus alloy plating layer becomes excessively strong, and the effect of forming a desired chemical conversion film is reduced. As a result, the amount of leaching is excessive, the running performance of the chemical conversion treatment becomes poor, and the degree of unevenness formation on the surface of the plating layer becomes excessive. On the other hand, if the pH value exceeds 6.0, the amount of sludge generated by the chemical conversion treatment increases, and the stability of the chemical conversion liquid becomes poor.

上記化成処理における化成皮膜の生成機構は、下記のとおりである。
本発明方法において、ハロゲン元素含有水性酸性化成処理液がニッケル−リン合金めっき層に接触すると、化成処理液に接触しためっき層中のニッケル及びリン成分(及び場合により、めっき層の欠陥部において、化成処理液に接触した基体中の鉄及びアルミニウムなどの金属成分)がエッチングされて水素発生反応を生じ、それに伴って、めっき層近辺において、水素イオンの濃度が低下し、pH値の上昇が発生する。一方、化成処理液中において、主金属元素(Zr及び/又はTi)は、化成処理液に含まれるハロゲン元素含有物質から生成されるハロゲン含有イオンと錯体を形成しているが前記pHの上昇に伴い、前記ハロゲン含有イオンの錯体の安定性が低下する。
また、化成処理液と接触しためっき層から、めっき層中のリンが酸化溶出して、リン酸イオン及び/又は亜リン酸イオンを生成する。前記不安定化したハロゲン含有イオン錯体中のZr及び/又はTiは、めっき層近辺に生成しているOHイオン、前記リン酸イオン、亜リン酸イオンなどと反応して、水不溶性の水酸化物、酸化物、リン酸塩及び/又は亜リン酸塩を形成し、めっき層の表面に析出し、付着する。
上記主金属元素、リン元素及び酸素元素を含有する被覆物質の生成及び析出は、主として、ニッケル−リン合金めっき層の表面附近で発生するが、基体が金属材料(例えばアルミニウム、鉄など)である場合には、この金属材料基体の露出面においても発生進行し、基材の全面が化成被膜層により被覆される。従って、基材表面に形成される化成被膜は、主金属(Zr及び/又はTi)元素の水酸化物、酸化物、リン酸塩及び、亜リン酸塩などが複合して形成され、バリヤー性の高い物質からなるものである。
The formation mechanism of the chemical conversion film in the chemical conversion treatment is as follows.
In the method of the present invention, when the halogen-containing aqueous acidic chemical conversion treatment solution comes into contact with the nickel-phosphorus alloy plating layer, the nickel and phosphorus components in the plating layer in contact with the chemical conversion treatment solution (and in some cases, in the defective portion of the plating layer, Etching the substrate (metal components such as iron and aluminum in the substrate in contact with the chemical conversion treatment solution) to cause a hydrogen generation reaction, resulting in a decrease in hydrogen ion concentration and an increase in pH value in the vicinity of the plating layer. To do. On the other hand, in the chemical conversion treatment liquid, the main metal element (Zr and / or Ti) forms a complex with a halogen-containing ion generated from the halogen element-containing substance contained in the chemical conversion treatment liquid, but this increases the pH. As a result, the stability of the halogen-containing ion complex decreases.
Further, phosphorus in the plating layer is oxidized and eluted from the plating layer in contact with the chemical conversion treatment solution to generate phosphate ions and / or phosphite ions. Zr and / or Ti in the destabilized halogen-containing ion complex reacts with OH ions, phosphate ions, phosphite ions, and the like generated in the vicinity of the plating layer to form water-insoluble hydroxides. , Oxides, phosphates and / or phosphites are deposited and deposited on the surface of the plating layer.
The generation and precipitation of the coating material containing the main metal element, phosphorus element and oxygen element occurs mainly near the surface of the nickel-phosphorus alloy plating layer, but the base is a metal material (for example, aluminum, iron, etc.). In some cases, the generation proceeds on the exposed surface of the metal material substrate, and the entire surface of the base material is covered with the chemical conversion coating layer. Therefore, the chemical conversion film formed on the substrate surface is formed by a composite of the main metal (Zr and / or Ti) element hydroxide, oxide, phosphate, phosphite, etc., and has barrier properties. It is made of a high substance.

化成処理液が第1追加金属元素(Cr(III))及び/又は第2追加金属(W,Mo,V及び/又はCe)元素を含む場合はこれらの第2追加金属も、主金属元素(Zr及び/又はTi)と同様に、水酸化物、酸化物、リン酸塩及び/又は亜リン酸塩などの形態で析出し化成被膜内に含有され、化成被膜層のバリヤー性を補強し、耐食性、耐変色性をさらに向上させるが、着色させることはない。この場合、得られる化成被膜中のこれら第1及び第2追加金属元素の含有量は、それぞれ、1〜30mg/m2であることが好ましく、1〜20mg/m2であることがより好ましい。
得られる化成被膜中の第1及び第2追加金属元素の含有量が、それぞれ1mg/m2未満であると、それぞれの添加による耐食性及び耐変色性向上効果が不十分になることがあり、また、それが30mg/m2を超えると、得られる化成被膜の厚さが過大になり光の干渉による着色を生ずることがあり、また製造コストが高くなり、経済的に不利になることがある。
When the chemical conversion treatment liquid contains the first additional metal element (Cr (III)) and / or the second additional metal (W, Mo, V and / or Ce) element, the second additional metal is also a main metal element ( Like Zr and / or Ti), it precipitates in the form of hydroxide, oxide, phosphate and / or phosphite and is contained in the conversion coating to reinforce the barrier properties of the conversion coating layer, Corrosion resistance and discoloration resistance are further improved, but they are not colored. In this case, the content of the first and second additional metal element in the chemical conversion coating film obtained, respectively, is preferably 1 to 30 mg / m 2, more preferably 1 to 20 mg / m 2.
If the contents of the first and second additional metal elements in the resulting chemical conversion coating are each less than 1 mg / m 2 , the corrosion resistance and discoloration resistance improving effect due to each addition may be insufficient. If it exceeds 30 mg / m 2 , the thickness of the resulting chemical conversion film may be excessive, resulting in coloring due to light interference, and the production cost may be increased, which may be economically disadvantageous.

本発明方法において、前記基体がアルミニウム含有金属である場合、この基体に、前記ニッケル−リン合金めっき処理及び水洗浄を施した後、かつ前記化成処理を施す前に、前記ニッケル−リン合金メッキ基材に温度50℃以上の温水を接触させるか、或いは前記化成処理及び水洗浄を施して得られた複合材料に、温度50℃以上の温水を接触させることを更に含んでいることが好ましい。このようにすると、アルミニウム含有金属材料を基体とする金属複合材料の耐食性を一層向上させることができる。
このときの温水処理温度は50℃以上であり、100℃に近い程好ましく、また使用する水の純度が高い程好ましい。また温水処理時間は1〜1800秒間であることが好ましく、5〜600秒間であることがより好ましい。温水温度が50℃未満であるとき、また処理時間が1秒未満であるときは、それによる耐食性向上効果が不十分である。また温水処理時間が、1800秒を超えると、作用効果が飽和し、実用上の生産性が低下する。
上記温水処理効果発生の機構としては、アルミニウム含有金属基体の露出表面に酸化アルミニウム(ベーマイト)皮膜が形成され、それが封孔効果を生じ、それによって腐食に対して、バリヤー効果を示すものと考えられる。
In the method of the present invention, when the substrate is an aluminum-containing metal, the nickel-phosphorus alloy plating base is applied to the substrate after the nickel-phosphorus alloy plating treatment and water washing and before the chemical conversion treatment. It is preferable to further include bringing hot water having a temperature of 50 ° C. or higher into contact with the composite material obtained by bringing the material into contact with hot water having a temperature of 50 ° C. or higher, or performing the chemical conversion treatment and washing with water. If it does in this way, the corrosion resistance of the metal composite material which uses an aluminum containing metal material as a base | substrate can be improved further.
The hot water treatment temperature at this time is 50 ° C. or higher, and is preferably closer to 100 ° C., and the purity of the water used is preferably higher. The hot water treatment time is preferably 1 to 1800 seconds, and more preferably 5 to 600 seconds. When the hot water temperature is less than 50 ° C. and when the treatment time is less than 1 second, the effect of improving the corrosion resistance is insufficient. On the other hand, when the hot water treatment time exceeds 1800 seconds, the effect is saturated and practical productivity is lowered.
As the mechanism of the above hot water treatment effect generation, an aluminum oxide (boehmite) film is formed on the exposed surface of the aluminum-containing metal substrate, which causes a sealing effect, thereby showing a barrier effect against corrosion. It is done.

本発明の複合材料及びその製造方法を、下記実施例により説明する。
(1)下記実施例及び比較例において使用された基体は下記のとおりである。
アルミニウム板:A5052材、厚さ:0.5mm
冷延鋼板:SPCC材、厚さ:0.5mm
プラスチックス材料:ポリプロピレン板、厚さ:0.5mm
セラミックス材料:アルミナ板、厚さ:0.5mm
(2)ニッケル−リン合金めっき
前記基体の表裏両面に、ニッケル−リン合金めっき剤(商標:SEK−670、日本カニゼン(株)製)を用いて、無電解めっきを施して、基材として用いるニッケル−リン合金めっき金属材料を作製した。
ニッケル−リン合金めっき層の付着量は、基体の片面当り40g/m2であり、ニッケル及びリンの量は、それぞれ片面当り38g/m2及び2g/m2であった。
The composite material of the present invention and the production method thereof will be described by the following examples.
(1) Substrates used in the following examples and comparative examples are as follows.
Aluminum plate: A5052 material, thickness: 0.5mm
Cold rolled steel sheet: SPCC material, thickness: 0.5mm
Plastics material: polypropylene plate, thickness: 0.5mm
Ceramic material: Alumina plate, thickness: 0.5mm
(2) Nickel-phosphorus alloy plating The nickel-phosphorus alloy plating agent (trademark: SEK-670, manufactured by Nihon Kanisen Co., Ltd.) is used on both the front and back surfaces of the substrate to perform electroless plating and used as a substrate. A nickel-phosphorus alloy plating metal material was produced.
Nickel - deposition of phosphorus alloy plating layer is a single-sided per 40 g / m 2 of substrate, the amount of nickel and phosphorus was per side 38 g / m 2 and 2 g / m 2, respectively.

また、実施例及び比較例において、下記の測定及び評価を行った。
1.化成被膜の蛍光X線分析
化成被膜中の主金属元素(Zr,Ti)、第一追加金属元素(Cr(III))、第2追加金属元素(W,Mo,V,Ce)の定量分析を蛍光X線分析(XPF分析)装置を用い、検量線法により行った。
また、リン及び酸素については、試料にイオンスパッタリングを施し表面から深さ方向にXPS分析を行い、各層における、耐食金属元素(Zr,Ti)、リン(P)、酸素(O)に由来するピーク(Zr:Zrd,Ti:Ti2p,O:Os,P:Ppのうち、酸化状態に由来する132−134eV)の面積強度の各層における積算値を用い、XPS分析装置中に搭載されている解析ソフトを用いて、Zr,Ti,P,Oの原子割合を算出した。得られた原子割合及びZr,Tiの付着量に基いて、P及びOの付着量、及びP及びOの合計量に対するPの原子比率(P/(O+P))を算出した。使用した装置及び測定条件は下記のとおりであった。
(1)XRF分析装置:モデルXRF−1800(島津製作所(株)製)
管球:Rh、管電圧:40kV、管電流:70mA
分光結晶:LiF(Ti〜U,K,Ca,Sn〜Cs),Ge(Cl,S,P),P ET(Si,Al),TAP(Mg,F),SX−58N(C),SX−76(N) ,SX−14(O)
PRガス流量:7mL/min

(2)XPS分析装置:モデルESCA−850M(島津製作所(株)製)
励起X線:Mg−Kα、出力:8kV−30mA、検出角度:90°
Moreover, the following measurement and evaluation were performed in the Example and the comparative example.
1. X-ray fluorescence analysis of chemical conversion film Quantitative analysis of main metal elements (Zr, Ti), first additional metal element (Cr (III)), and second additional metal element (W, Mo, V, Ce) in chemical conversion film It was carried out by a calibration curve method using a fluorescent X-ray analysis (XPF analysis) apparatus.
As for phosphorus and oxygen, the sample is subjected to ion sputtering and subjected to XPS analysis in the depth direction from the surface, and peaks derived from corrosion-resistant metal elements (Zr, Ti), phosphorus (P), and oxygen (O) in each layer. Analysis software installed in the XPS analyzer using integrated values in each layer of area intensity of (Zr: Zrd, Ti: Ti2p, O: Os, P: Pp, 132-134 eV derived from the oxidation state) Was used to calculate the atomic ratio of Zr, Ti, P, O. Based on the obtained atomic ratio and the adhesion amount of Zr and Ti, the adhesion amount of P and O, and the atomic ratio of P to the total amount of P and O (P / (O + P)) were calculated. The equipment and measurement conditions used were as follows.
(1) XRF analyzer: Model XRF-1800 (manufactured by Shimadzu Corporation)
Tube: Rh, tube voltage: 40 kV, tube current: 70 mA
Spectroscopic crystals: LiF (Ti to U, K, Ca, Sn to Cs), Ge (Cl, S, P), PET (Si, Al), TAP (Mg, F), SX-58N (C), SX -76 (N), SX-14 (O)
PR gas flow rate: 7mL / min

(2) XPS analyzer: Model ESCA-850M (manufactured by Shimadzu Corporation)
Excitation X-ray: Mg-Kα, output: 8 kV-30 mA, detection angle: 90 °

2.無着色性の評価
得られた複合材料の表面処理皮膜の色を、肉眼観察し、それを表面処理前の色と比較して、下記3段階に評価し表示した。
3 変化なし
2 わずかに着色した
1 明瞭に着色した
2. Evaluation of Colorlessness The color of the surface treatment film of the obtained composite material was visually observed, compared with the color before the surface treatment, and evaluated and displayed in the following three stages.
3 No change 2 Slightly colored 1 Clearly colored

3.耐食性の評価
得られた複合材料の表面処理皮膜を、JIS H 8502(1999)の中性塩水噴霧試験に供し、24時間試験を行った。得られた結果を、下記7段階に評価し表示した。
レイティングナンバー 腐食面積率(%)
RN10 0
RN 9 0〜0.1未満
RN 8 0.1〜0.25未満
RN 7 0.25〜0.5未満
RN 6 0.5〜1.0未満
RN 5 1.0〜2.5未満
RN 4 2.5〜5未満
3. Evaluation of corrosion resistance The surface treatment film of the obtained composite material was subjected to a neutral salt spray test of JIS H 8502 (1999), and the test was performed for 24 hours. The obtained results were evaluated and displayed in the following 7 levels.
Rating number corrosion area rate (%)
RN10 0
RN 90 Less than 0.1-0.1 RN 8 Less than 0.1-0.25 RN 7 Less than 0.25-0.5 RN 6 Less than 0.5-1.0 RN 5 Less than 1.0-2.5 RN 4 2.5 to less than 5

4.耐変色性の評価
得られた複合材料の表面処理皮膜に、アクリロニトリルゴム製Oリングを接触させ、190℃の温度において1時間加熱した。それによって生ずる複合金属材料表面の色の変化を、標準試料(前記基材に、クロメート処理法を施したもの)の色の変化に対比して、下記3段階に評価し、表示した。
3:標準試料とほぼ同じ
2:色の変化が標準試料よりやゝ大
1:色の変化が標準試料より明らかに大
4). Evaluation of discoloration resistance The surface treatment film of the obtained composite material was brought into contact with an O-ring made of acrylonitrile rubber and heated at a temperature of 190 ° C. for 1 hour. The resulting color change on the surface of the composite metal material was evaluated and displayed in the following three stages in comparison with the color change of the standard sample (the substrate subjected to the chromate treatment method).
3: Almost the same as the standard sample 2: Color change is slightly larger than the standard sample 1: Color change is clearly larger than the standard sample

実施例1
前記ニッケル−リン合金めっきA5052材(厚さ:0.5mm)を基材として用いた。主金属元素成分としてフルオロジルコン酸、ハロゲン元素含有成分としてフッ化水素酸及び第1追加元素含有成分としてフッ化クロム(III)を含み、硝酸イオンを含まず、pHを4に、温度を40℃に調整され、表1に示す成分組成を有する化成処理液を調製した。
前記化成処理液中に、前記基材を10分間浸漬し、その後に得られた化成処理ずみ複合金属材料を引き上げ水洗し、脱イオン水により洗浄し、120℃の温度において10分間乾燥した。温水処理は施さなかった。分析・評価結果を表2に示す。
Example 1
The nickel-phosphorus alloy plating A5052 material (thickness: 0.5 mm) was used as a base material. Fluorozirconic acid as the main metal element component, hydrofluoric acid as the halogen element-containing component and chromium (III) fluoride as the first additional element-containing component, no nitrate ion, pH of 4 and temperature of 40 ° C A chemical conversion treatment liquid having the component composition shown in Table 1 was prepared.
The base material was immersed in the chemical conversion solution for 10 minutes, and then the chemical conversion-treated composite metal material obtained was pulled up and washed with water, washed with deionized water, and dried at a temperature of 120 ° C. for 10 minutes. No hot water treatment was applied. The analysis and evaluation results are shown in Table 2.

実施例2
実施例1と同様にして、複合材料を製造し、その分析・評価を行った。但し、化成処理液及び処理条件を表1のように変更した。
すなわち化成処理液に主金属元素含有成分として、フルオロチタン酸を用い、そのTi濃度が150ppmになるように変更し、フッ化水素酸の使用量をF濃度が300ppmになるように変更し、フッ化クロム(III)の使用量を、Cr(III)濃度が100ppmになるように変更し、化成処理液のpHを3に変更し、処理温度を60℃に変更し、処理時間を5分間に変更した。
分析・評価結果を表2に示す。
Example 2
In the same manner as in Example 1, a composite material was produced and analyzed and evaluated. However, the chemical conversion treatment liquid and the treatment conditions were changed as shown in Table 1.
That is, fluorotitanic acid is used as the main metal element-containing component in the chemical conversion treatment liquid, the Ti concentration is changed to 150 ppm, the amount of hydrofluoric acid used is changed to 300 ppm, and the fluorine concentration is changed to 300 ppm. The amount of chromium (III) chloride used was changed so that the Cr (III) concentration was 100 ppm, the pH of the chemical conversion solution was changed to 3, the processing temperature was changed to 60 ° C, and the processing time was changed to 5 minutes. changed.
The analysis and evaluation results are shown in Table 2.

実施例3
実施例1と同様にして複合材料を製造し、その分析・評価を行った。但し、化成処理液の組成及び処理条件を表1に記載のように変更した。
すなわち、主金属元素含有成分として、フルオロジルコン酸を用い、その使用量をZr濃度が100ppmになるように変更し、かつ、フルオロチタン酸を追加し、その使用量を、Ti濃度が100ppmになるように調節し、ハロゲン元素含有成分としてフッ化水素酸を用い、その使用量をF濃度が500ppmになるように変更し、第1追加元素含有成分としてフッ化クロム(III)を用い、その使用量を、Cr(III)濃度が100ppmになるように変更し、表面処理液のpHを4.5に変更し、処理温度を50℃に変更し、処理時間を5分間に変更した。
分析・評価結果を表2に示す。
Example 3
A composite material was produced in the same manner as in Example 1, and analyzed and evaluated. However, the composition of the chemical conversion treatment liquid and the treatment conditions were changed as shown in Table 1.
That is, fluorozirconic acid is used as the main metal element-containing component, the amount used is changed so that the Zr concentration becomes 100 ppm, and fluorotitanic acid is added, and the amount used becomes the Ti concentration of 100 ppm. And using hydrofluoric acid as the halogen element-containing component, changing the amount used so that the F concentration is 500 ppm, using chromium fluoride (III) as the first additional element-containing component, and using it The amount was changed so that the Cr (III) concentration was 100 ppm, the pH of the surface treatment solution was changed to 4.5, the treatment temperature was changed to 50 ° C., and the treatment time was changed to 5 minutes.
The analysis and evaluation results are shown in Table 2.

実施例4
実施例1と同様にして複合金属材料を製造し、その分析・評価を行った。但し、化成処理液の組成及び処理条件を表1に記載のように変更した。
すなわち、フッ化水素酸の使用量を、F濃度が300ppmになるように変更し、フッ化クロム(III)Cを使用せず、化成処理液のpHを3.5に変更し、処理時間を1分間に変更した。
分析・評価結果を表2に示す。
Example 4
A composite metal material was produced in the same manner as in Example 1 and analyzed and evaluated. However, the composition of the chemical conversion treatment liquid and the treatment conditions were changed as shown in Table 1.
In other words, the amount of hydrofluoric acid used was changed so that the F concentration was 300 ppm, chromium fluoride (III) C was not used, the pH of the chemical conversion solution was changed to 3.5, and the treatment time was Changed to 1 minute.
The analysis and evaluation results are shown in Table 2.

実施例5
実施例1と同様にして複合材料を製造し、その分析・評価を行った。但し、金属基体として、冷延鋼板(SPCC)(厚さ:0.5mm)を用いた。
分析・評価結果を表2に示す。
Example 5
A composite material was produced in the same manner as in Example 1, and analyzed and evaluated. However, a cold-rolled steel plate (SPCC) (thickness: 0.5 mm) was used as the metal substrate.
The analysis and evaluation results are shown in Table 2.

実施例6
実施例1と同様にして複合材料を製造し、その分析・評価を行った。但し、化成処理液の組成及び処理条件を表1に記載のように変更した。
すなわち、主金属元素含有成分として、フルオロチタン酸を用い、その使用量をTi濃度が250ppmになるように変更し、第2追加金属元素含有成分として、水酸化セリウム(IV)を添加しその使用量を、Ce濃度が100ppmになるように調整した。
分析・評価結果を表2に示す。
Example 6
A composite material was produced in the same manner as in Example 1, and analyzed and evaluated. However, the composition of the chemical conversion treatment liquid and the treatment conditions were changed as shown in Table 1.
That is, fluorotitanic acid is used as the main metal element-containing component, the amount used is changed so that the Ti concentration is 250 ppm, and cerium (IV) hydroxide is added as the second additional metal element-containing component. The amount was adjusted so that the Ce concentration was 100 ppm.
The analysis and evaluation results are shown in Table 2.

実施例7
実施例1と同様にして複合材料を製造し、その分析・評価を行った。但し、化成処理液の組成及び処理条件を表1に記載のように変更した。
すなわち、主金属元素含有成分として、フルオロジルコン酸を用い、その使用量をZr濃度が150ppmになるように変更し、フッ化水素酸の使用量を、F濃度が400ppmになるように変更し、第2追加金属元素含有成分として、タングステン酸ナトリウム(IV)を用い、その使用量を、W濃度が50ppmとなる量で追加し、化成処理液のpHを4.5に変更し、処理温度を50℃に変更した。
分析・評価結果を表2に示す。
Example 7
A composite material was produced in the same manner as in Example 1, and analyzed and evaluated. However, the composition of the chemical conversion treatment liquid and the treatment conditions were changed as shown in Table 1.
That is, as the main metal element-containing component, fluorozirconic acid was used, the amount used was changed so that the Zr concentration was 150 ppm, the amount used of hydrofluoric acid was changed so that the F concentration was 400 ppm, Sodium tungstate (IV) is used as the second additional metal element-containing component, and the amount used is added in such an amount that the W concentration becomes 50 ppm, the pH of the chemical conversion treatment solution is changed to 4.5, and the treatment temperature is changed. Changed to 50 ° C.
The analysis and evaluation results are shown in Table 2.

実施例8
実施例1と同様にして複合材料を製造し、その分析・評価を行った。但し、化成処理液の組成及び処理条件を表1に記載のように変更した。
すなわち、主金属元素含有成分として、フルオロチタン酸を用い、その使用量をTi濃度が100ppmになるように変更し、フッ化水素酸の使用量を、F濃度が300ppmになるように変更し、フッ化クロム(III)の使用量を、Cr(III)濃度が200ppmになるように変更し、第2追加金属元素含有成分として、バナジン酸ナトリウム(V)を用い、その使用量をV濃度が200ppmになるように調整した。また、化成処理液のpHを3.5に変更し、処理温度を60℃に変更し、処理時間を5分間に変更した。
分析・評価結果を表2に示す。
Example 8
A composite material was produced in the same manner as in Example 1, and analyzed and evaluated. However, the composition of the chemical conversion treatment liquid and the treatment conditions were changed as shown in Table 1.
That is, as the main metal element-containing component, fluorotitanic acid is used, the amount used is changed so that the Ti concentration is 100 ppm, the amount used hydrofluoric acid is changed so that the F concentration is 300 ppm, The amount of chromium (III) fluoride used was changed so that the Cr (III) concentration was 200 ppm, sodium vanadate (V) was used as the second additional metal element-containing component, and the amount of V It adjusted so that it might become 200 ppm. Further, the pH of the chemical conversion treatment solution was changed to 3.5, the treatment temperature was changed to 60 ° C., and the treatment time was changed to 5 minutes.
The analysis and evaluation results are shown in Table 2.

実施例9
実施例1と同様にして複合材料を製造し、その分析・評価を行った。但し、化成処理液の組成及び処理条件を表1に記載のように変更した。
すなわち、主金属元素含有成分として、フルオロジルコンフッ酸を用い、その使用量をZr濃度が200ppmになるように変更し、フッ化水素酸の使用量をF濃度が500ppmになるように変更し、フッ化クロム(III)の使用量を、Cr(III)濃度が300ppmになるように変更し、第2追加金属元素含有成分として、モリブデン酸ナトリウム(VI)を用い、その使用量を、Mo濃度が、100ppmになる量に調整し、化成処理液の処理温度を50℃に変更した。
分析・評価結果を表2に示す。
Example 9
A composite material was produced in the same manner as in Example 1, and analyzed and evaluated. However, the composition of the chemical conversion treatment liquid and the treatment conditions were changed as shown in Table 1.
That is, as the main metal element-containing component, fluorozirconic hydrofluoric acid is used, the amount used is changed so that the Zr concentration becomes 200 ppm, and the amount used of hydrofluoric acid is changed so that the F concentration becomes 500 ppm, The amount of chromium (III) fluoride used was changed so that the Cr (III) concentration was 300 ppm, sodium molybdate (VI) was used as the second additional metal element-containing component, and the amount used was changed to the Mo concentration. However, it adjusted to the quantity used as 100 ppm, and changed the process temperature of the chemical conversion liquid to 50 degreeC.
The analysis and evaluation results are shown in Table 2.

実施例10
実施例1と同様にして複合材料を製造し、その分析・評価を行った。但し、表面処理液の組成及び処理条件を表1に記載のように変更した。
すなわち、主金属成分として、フルオロチタン酸の使用量をTi濃度が150ppmになるように変更し、フッ化水素酸の使用量をF濃度が300ppmになるように変更し、かつ塩化水素酸を、Cl濃度が500ppmになる量で追加し、フッ化クロム(III)Cの使用量を、Cr(III)濃度が200ppmになるように変更し、表面処理液のpHを4.5に変更し、処理温度を50℃に変更した。
分析・評価結果を表2に示す。
Example 10
A composite material was produced in the same manner as in Example 1, and analyzed and evaluated. However, the composition of the surface treatment liquid and the treatment conditions were changed as shown in Table 1.
That is, as the main metal component, the amount of fluorotitanic acid used is changed so that the Ti concentration is 150 ppm, the amount of hydrofluoric acid used is changed so that the F concentration is 300 ppm, and hydrochloric acid is used. Add the amount of Cl concentration to 500ppm, change the amount of chromium (III) C used so that the Cr (III) concentration becomes 200ppm, change the pH of the surface treatment solution to 4.5, The processing temperature was changed to 50 ° C.
The analysis and evaluation results are shown in Table 2.

実施例11
実施例1と同様にして複合材料を製造し、その分析・評価を行った。但し、表面処理液の組成及び処理条件を表1に記載のように変更した。
すなわち、主金属成分として、フルオロチタン酸をTi濃度が200ppmになる量で使用し、フッ化水素酸の使用量をF濃度が400ppmになるように変更し、臭化水素酸を、Br濃度が300ppmになる量で追加しフッ化クロム(III)Cの使用量が、Cr(III)濃度が500ppmになるように変更し、表面処理液の濃度を4.5に変更した。
分析・評価結果を表2に示す。
Example 11
A composite material was produced in the same manner as in Example 1, and analyzed and evaluated. However, the composition of the surface treatment liquid and the treatment conditions were changed as shown in Table 1.
That is, as the main metal component, fluorotitanic acid is used in an amount such that the Ti concentration is 200 ppm, the amount of hydrofluoric acid used is changed so that the F concentration is 400 ppm, and hydrobromic acid is used with a Br concentration of The amount of chromium fluoride (III) C used was changed to an amount of 300 ppm, and the Cr (III) concentration was changed to 500 ppm, and the concentration of the surface treatment solution was changed to 4.5.
The analysis and evaluation results are shown in Table 2.

実施例12
実施例1と同様にして複合材料を製造し、その分析・評価を行った。但し、化成処理液の組成及び処理条件を表1に記載のように変更した。
すなわち、主金属元素含有成分として、フルオロジルコン酸を用い、その使用量をZr濃度が250ppmになるように変更し、フッ化水素酸の使用量をF濃度が500ppmになるように変更し、さらに、ヨウ化水素酸を、I濃度が600ppmになる量で追加し、フッ化クロム(III)の使用量を、Cr(III)濃度が300ppmになるように変更し、化成処理液のpHを3.5に変更し、処理温度を60℃に変更し、処理時間を5分間に変更した。
分析・評価結果を表2に示す。
Example 12
A composite material was produced in the same manner as in Example 1, and analyzed and evaluated. However, the composition of the chemical conversion treatment liquid and the treatment conditions were changed as shown in Table 1.
That is, as the main metal element-containing component, fluorozirconic acid is used, the amount used is changed so that the Zr concentration is 250 ppm, the amount used of hydrofluoric acid is changed so that the F concentration is 500 ppm, Then, hydroiodic acid was added in such an amount that the I concentration was 600 ppm, the amount of chromium (III) fluoride was changed so that the Cr (III) concentration was 300 ppm, and the pH of the chemical conversion treatment solution was changed to 3 .5, the processing temperature was changed to 60 ° C., and the processing time was changed to 5 minutes.
The analysis and evaluation results are shown in Table 2.

実施例13
実施例1と同様にして複合材料を製造し、その分析・評価を行った。但し、化成処理皮膜の形成、水洗、脱イオン水洗浄の後、80℃に加熱した脱イオン水中に5分間浸漬して温水処理を施し、引き上げて、120℃の温度で10分間乾燥した。
分析・評価結果を表2に示す。
Example 13
A composite material was produced in the same manner as in Example 1, and analyzed and evaluated. However, after forming the chemical conversion film, washing with water, and washing with deionized water, the film was immersed in deionized water heated to 80 ° C. for 5 minutes to perform warm water treatment, pulled up, and dried at a temperature of 120 ° C. for 10 minutes.
The analysis and evaluation results are shown in Table 2.

比較例1
実施例1と同様にして複合材料を製造し、その分析・評価を行った。但し、化成処理液中に硝酸をNO3 -イオン濃度が500ppmになる量で追加した。
分析・評価結果を表2に示す。
Comparative Example 1
A composite material was produced in the same manner as in Example 1, and analyzed and evaluated. However, chemical conversion treatment solution of nitric acid NO 3 - ion concentration was added in an amount to be 500 ppm.
The analysis and evaluation results are shown in Table 2.

比較例2
実施例1と同様にして複合材料を製造し、その分析・評価を行った。但し、化成処理液の組成及び処理条件を表1に記載のように変更した。
すなわち、フッ化水素酸の使用量をF濃度が300ppmになるように変更し、フッ化クロム(III)Cを使用せず、表面処理液のpHを3.5に変更した。このためジルコニウムの付着量が50mg/m2になった。
分析・評価結果を表2に示す。
Comparative Example 2
A composite material was produced in the same manner as in Example 1, and analyzed and evaluated. However, the composition of the chemical conversion treatment liquid and the treatment conditions were changed as shown in Table 1.
That is, the amount of hydrofluoric acid used was changed so that the F concentration was 300 ppm, chromium (III) C was not used, and the pH of the surface treatment solution was changed to 3.5. For this reason, the adhesion amount of zirconium became 50 mg / m 2 .
The analysis and evaluation results are shown in Table 2.

比較例3
実施例1と同様にして複合金属材料を製造し、その分析・評価を行った。但し、化成処理液の組成及び処理条件を表1に記載のように変更した。
すなわち、主金属元素含有成分を用いず、フッ化水素酸の使用量をF濃度が300ppmになるように変更し、フッ化クロム(III)Cの使用量を、Cr(III)濃度が100ppmになるように変更し、表面処理時間を5分間に変更した。
分析・評価結果を表2に示す。
Comparative Example 3
A composite metal material was produced in the same manner as in Example 1 and analyzed and evaluated. However, the composition of the chemical conversion treatment liquid and the treatment conditions were changed as shown in Table 1.
That is, without using the main metal element-containing component, the amount of hydrofluoric acid used was changed so that the F concentration was 300 ppm, and the amount of chromium (III) fluoride used was changed to a Cr (III) concentration of 100 ppm. The surface treatment time was changed to 5 minutes.
The analysis and evaluation results are shown in Table 2.

比較例4
実施例1と同様にしてアルミニウム板(A5052)にニッケル−リン合金めっきを施して基材を作製し、これを、30℃に加熱された3%ニクロム酸カリウム(K2Cr(VI)27)水溶液中に5分間浸漬して化成皮膜を形成し、得られた複合金属材料を引き上げ、水洗、脱イオン水洗浄を施し、これを、120℃の温度で十分間乾燥した。
得られたクロメート化成処理複合金属材料を、実施例1と同様の分析及び評価に供した。結果を表2に示す。
Comparative Example 4
In the same manner as in Example 1, a nickel-phosphorus alloy plating was applied to an aluminum plate (A5052) to prepare a base material, which was then heated to 30 ° C. with 3% potassium dichromate (K 2 Cr (VI) 2 O 7 ) A chemical conversion film was formed by immersing in an aqueous solution for 5 minutes, and the resulting composite metal material was pulled up, washed with water and deionized water, and dried at a temperature of 120 ° C. for a sufficient period of time.
The obtained chromate chemical conversion treatment composite metal material was subjected to the same analysis and evaluation as in Example 1. The results are shown in Table 2.

比較例5
実施例1と同様にして作成されたニッケル−リン合金めっきA5052材を実施例1と同様の評価に供した。結果を表2に示す。
Comparative Example 5
The nickel-phosphorus alloy plating A5052 material prepared in the same manner as in Example 1 was subjected to the same evaluation as in Example 1. The results are shown in Table 2.

実施例14
実施例1と同様にして複合材料を製造した。但し、基材材料として、アルミニウム板の代りにプラスチック材料としてポリプロピレン板(厚さ:0.5mm)を用いた。
ニッケル−リン合金めっき層の付着量は基体の片面当り10g/m2でありニッケル及びリンの量は、片面当りそれぞれ9.5g/m2及び0.5g/m2であった。
分析・評価結果を表2に示す。
Example 14
A composite material was produced in the same manner as in Example 1. However, as a base material, a polypropylene plate (thickness: 0.5 mm) was used as a plastic material instead of an aluminum plate.
Nickel - deposition of phosphorus alloy plating layer in an amount of nickel and phosphorus is per side 10 g / m 2 of the substrate, respectively per one side was 9.5 g / m 2 and 0.5 g / m 2.
The analysis and evaluation results are shown in Table 2.

実施例15
実施例1と同様にして複合材料を製造した。但し、基体材料としてアルミニウム板の代りに、セラミックス材料としてアルミナ板(厚さ:0.5mm)を用いた。
ニッケル−リン合金めっき層の付着量は基体の片面当り16g/m2でありニッケル及びリンの量は片面当りそれぞれ15g/m2及び1g/m2であった。
分析・評価結果を表2に示す。
Example 15
A composite material was produced in the same manner as in Example 1. However, an alumina plate (thickness: 0.5 mm) was used as the ceramic material instead of the aluminum plate as the base material.
Nickel - deposition of phosphorus alloy plating layer in an amount of nickel and phosphorus is per side 16g / m 2 of substrate were respectively per side 15 g / m 2 and 1 g / m 2.
The analysis and evaluation results are shown in Table 2.

Figure 2008260985
Figure 2008260985

Figure 2008260985
Figure 2008260985

表1及び表2に示されているように、比較例1において、ジルコニウム、3価クロム、フッ化物イオンに加え、硝酸イオンを含有した処理液を用いられており、この場合、耐変色性は6価クロム使用の比較例4のクロム酸クロメートと同等の性能を有していたが、化成処理により着色を生じてしまう事が確認された。
比較例2においては酸性表面処理液中に3価クロムを含有せず、ジルコニウム、フッ化水素酸を含有した処理液を用いて、かつジルコニウムの付着量を50mg/m2という過剰量にしたため、得られた化成被膜には、光の干渉により着色を生ずることが確認された。
比較例3においてはジルコニウムを含有せず、3価クロム、フッ化物イオンを含有した処理液を用いたため、着色を生じなかったが、しかし、得られた化成被膜は、耐食性、耐変色性においてクロム酸クロメート処理に劣ることが確認された。
上記比較例1〜3に対比して、実施例4においては、硝酸イオンを含まないジルコニウム、フッ化物イオンを含有した処理液を用い、処理時間を短くしたので、得られた化成被膜において、ジルコニウムの付着量は、適量の10mg/m2であり、従って、光の干渉による着色が生ずることはなく、かつ、クロム酸クロメートと同等の耐食性、耐変色性を有する事が確認された。
実施例1〜3,5,10〜12,14及び15においては、3価クロムを含有し、硝酸イオンを含まず、かつジルコニウムまたはチタン、ハロゲン化物イオンを含有する処理液が用いられ、このため、得られた化成被膜は、めっき基材の種類に拘らず、10minの長時間処理によっても着色を生ずることがなく、クロム酸クロメート被膜にくらべて耐食性、耐変色性において、優れていることが確認された。
実施例6〜9においては処理液中にタングステン、モリブデン、バナジウム、セリウムの少なくとも1種を含有させたため、得られた化成被膜の耐食性は、一層向上していることが確認された。
さらに実施例13においては、ジルコニウム、3価クロム、フッ化水素酸を含有した処理液への浸漬処理と温水処理とが組み合わされたため、得られた化成被膜には、クロム酸クロメート処理に比べて、耐食性の顕著な向上が認められた。
As shown in Tables 1 and 2, in Comparative Example 1, a treatment liquid containing nitrate ions in addition to zirconium, trivalent chromium and fluoride ions is used. In this case, the discoloration resistance is Although it had the same performance as the chromate chromate of Comparative Example 4 using hexavalent chromium, it was confirmed that coloring was caused by the chemical conversion treatment.
In Comparative Example 2, the acidic surface treatment liquid did not contain trivalent chromium, but a treatment liquid containing zirconium and hydrofluoric acid was used, and the amount of zirconium deposited was an excess amount of 50 mg / m 2 . It was confirmed that the obtained chemical conversion film was colored by light interference.
In Comparative Example 3, since the treatment liquid containing no zirconium and trivalent chromium and fluoride ions was used, coloring did not occur. However, the obtained chemical conversion film was chromium in corrosion resistance and discoloration resistance. It was confirmed that the acid chromate treatment was inferior.
In contrast to Comparative Examples 1 to 3, in Example 4, the treatment liquid containing zirconium and fluoride ions containing no nitrate ions was used and the treatment time was shortened. the amount of deposition is an appropriate amount of 10 mg / m 2, therefore, not to be colored due to interference of light occurs, and chromic acid chromate equivalent corrosion resistance, to have a discoloration resistance was confirmed.
In Examples 1 to 3, 5, 10 to 12, 14, and 15, treatment liquids containing trivalent chromium, no nitrate ions, and containing zirconium, titanium, or halide ions are used. The obtained chemical conversion coating does not cause coloration even when treated for a long time of 10 minutes regardless of the type of the plating substrate, and is superior in corrosion resistance and discoloration resistance compared to the chromate chromate coating. confirmed.
In Examples 6-9, since at least 1 sort (s) of tungsten, molybdenum, vanadium, and cerium was contained in the process liquid, it was confirmed that the corrosion resistance of the obtained chemical conversion film has improved further.
Furthermore, in Example 13, since the immersion treatment in the treatment liquid containing zirconium, trivalent chromium, and hydrofluoric acid was combined with the hot water treatment, the obtained chemical conversion coating had a chromic acid chromate treatment. A significant improvement in corrosion resistance was observed.

本発明の無着色高耐食性複合材料及びその製造方法は、ニッケル−リン合金めっき層を有する基材に対し、化成処理による着色がなく又は少なく、高い耐食性及び耐変色性を付与するものであって、ニッケル−リン合金めっき材料の用途を一層拡張増大することを可能にするものである。   The non-colored high corrosion resistance composite material of the present invention and the production method thereof impart high corrosion resistance and discoloration resistance to a substrate having a nickel-phosphorus alloy plating layer with little or no coloration due to chemical conversion treatment. Further, the application of the nickel-phosphorus alloy plating material can be further expanded and increased.

Claims (17)

金属材料、プラスチックス材料又はセラミックス材料からなる基体及び前記基体の少なくとも1面に形成されたニッケル−リン合金めっき層を含む基材と、前記基材のニッケル−リン合金めっき層上に化成処理を施して形成された化成被膜層とを含み、前記化成被膜層が1〜30mg/m2のジルコニウム及びチタンから選ばれた少なくとも1種の主金属元素と、1〜100mg/m2のリン元素と、及び1〜100mg/m2の酸素元素とを含み、化成処理による着色がなく、又は少なく高耐食性及び高耐変色性を有することを特徴とする複合材料。 A base material including a base made of a metal material, a plastics material or a ceramic material, and a nickel-phosphorus alloy plating layer formed on at least one surface of the base, and a chemical conversion treatment on the nickel-phosphorus alloy plating layer of the base And at least one main metal element selected from 1 to 30 mg / m 2 of zirconium and titanium, and 1 to 100 mg / m 2 of phosphorus element, , And 1 to 100 mg / m 2 of oxygen element, having no or little coloration due to chemical conversion treatment, and having high corrosion resistance and high discoloration resistance. 前記基体用金属材料がアルミニウム材、アルミニウム合金材、鉄鋼材及び銅合金材から選ばれる、請求項2に記載の複合材料。   The composite material according to claim 2, wherein the base metal material is selected from an aluminum material, an aluminum alloy material, a steel material, and a copper alloy material. 前記基体上に形成されたニッケル−リン合金めっき層が、リンを、0.05〜20g/m2の含有量で含む請求項1又は2に記載の複合材料。 The composite material according to claim 1, wherein the nickel-phosphorus alloy plating layer formed on the substrate contains phosphorus in a content of 0.05 to 20 g / m 2 . 前記化成被膜中に含まれるリン(P)量の、リン及び酸素の合計量(P+O)に対する原子比率P/(P+O)が、0.01〜0.25の範囲内にある、請求項1〜3のいずれか1項に記載の複合めっき材料。   The atomic ratio P / (P + O) of the amount of phosphorus (P) contained in the chemical conversion film to the total amount of phosphorus and oxygen (P + O) is in the range of 0.01 to 0.25. 4. The composite plating material according to any one of 3 above. 前記化成被膜中に含まれるリンが、リン酸塩及び亜リン酸塩から選ばれた少なくとも1種の化合物として存在する、請求項1〜4のいずれか1項に記載の複合材料。   The composite material according to any one of claims 1 to 4, wherein phosphorus contained in the chemical conversion coating is present as at least one compound selected from a phosphate and a phosphite. 前記化成被膜が3価クロムからなる1〜30mg/m2の第1追加金属元素をさらに含む、請求項1〜5のいずれか1項に記載の複合材料。 The composite material according to any one of claims 1 to 5, wherein the chemical conversion film further includes 1 to 30 mg / m 2 of a first additional metal element made of trivalent chromium. 前記化成被膜が、タングステン、モリブデン、バナジウム及びセリウムから選ばれた少なくとも1種からなる1〜30mg/m2の第2追加金属元素をさらに含む、請求項1〜6のいずれか1項に記載の複合材料。 The said chemical conversion film further contains 1-30 mg / m < 2 > 2nd additional metal element which consists of at least 1 sort (s) chosen from tungsten, molybdenum, vanadium, and cerium. Composite material. 金属材料、プラスチックス材料又はセラミックス材料からなる基体及び、その少なくとも1面上に形成されたニッケル−リン合金めっき層とを含む基材の前記ニッケル−リン合金めっき層の表面の少なくとも一部分に、ジルコニウム及びチタンから選ばれた少なくとも1種からなり、濃度が1〜5000ppmの主金属元素、及びフッ素、塩素、臭素及びヨウ素から選ばれた少なくとも1種からなり、濃度が1〜10000ppmのハロゲン元素を含み、かつ2.0〜6.0のpHを有する化成処理液を接触させ、それによって1〜30mg/m2のジルコニウム及びチタンから選ばれた少なくとも1種の主金属元素と、1〜100mg/m2のリン元素と、1〜100mg/m2の酸素元素とを含み、化成処理による着色がなく、又は少なく、高い耐食性及び耐変色性を有する化成被膜層を形成し、得られた化成被膜層を水により洗浄することを特徴とする複合材料の製造方法。 At least a part of the surface of the nickel-phosphorus alloy plating layer of the base material including a base material made of a metal material, a plastics material, or a ceramic material and a nickel-phosphorus alloy plating layer formed on at least one surface thereof, zirconium And a main metal element having a concentration of 1 to 5000 ppm, and at least one selected from fluorine, chlorine, bromine and iodine, and containing a halogen element having a concentration of 1 to 10000 ppm And at least one main metal element selected from 1 to 30 mg / m 2 of zirconium and titanium, and 1 to 100 mg / m 2 by contact with a chemical conversion treatment solution having a pH of 2.0 to 6.0. and 2 of the phosphorus element, and a oxygen element of 1 to 100 mg / m 2, no coloring by chemical treatment, or less, high corrosion resistance and The method of producing a composite material to form a conversion coating layer having a color property, and the resulting chemical conversion film layer, characterized in that washing with water. 前記化成処理液の調製に、前記主金属元素が、その水和酸化物、或いはフッ化物、塩化物、オキシ塩化物、臭化物、ヨウ化物、又はフッ素含有酸の塩の形態で用いられる、請求項8に記載の複合材料の製造方法。   The main metal element is used in the preparation of the chemical conversion treatment liquid in the form of a hydrated oxide thereof or a salt of fluoride, chloride, oxychloride, bromide, iodide, or fluorine-containing acid. 9. A method for producing a composite material according to 8. 前記化成処理液の調製に、前記ハロゲン元素が、塩酸、フッ化水素酸、ヨウ化水素酸、臭化水素酸、前記主金属元素の塩化物、フッ化物、臭化物又はヨウ化物、或いはフッ素含有酸の塩の形態で用いられる、請求項8又は9に記載の複合材料の製造方法。   In the preparation of the chemical conversion treatment liquid, the halogen element is hydrochloric acid, hydrofluoric acid, hydroiodic acid, hydrobromic acid, chloride, fluoride, bromide or iodide of the main metal element, or fluorine-containing acid. The method for producing a composite material according to claim 8, wherein the composite material is used in the form of a salt. 前記化成処理液が、3価クロム元素を第1追加金属元素としてさらに含有する、請求項8〜10のいずれか1項に記載の複合材料の製造方法。   The manufacturing method of the composite material of any one of Claims 8-10 in which the said chemical conversion liquid further contains a trivalent chromium element as a 1st additional metal element. 前記化成処理液中の3価クロム元素の濃度が、1〜5000ppmである、請求項11に記載の複合材料の製造方法。   The manufacturing method of the composite material of Claim 11 whose density | concentration of the trivalent chromium element in the said chemical conversion liquid is 1-5000 ppm. 前記化成処理液の調製に、前記3価クロム元素が、その水和酸化物、フッ化物、塩化物、臭化物、ヨウ化物、又はフッ素含有酸の塩の形態で用いられる、請求項12に記載の複合材料の製造方法。   The said trivalent chromium element is used for preparation of the said chemical conversion liquid in the form of the hydrated oxide, a fluoride, a chloride, a bromide, an iodide, or the salt of a fluorine-containing acid. A method for producing a composite material. 前記化成処理液が、タングステン、モリブデン、バナジウム及びセリウムから選ばれた少なくとも1種の元素からなる第2追加金属元素を含有する、請求項8〜13のいずれか1項に記載の複合材料の製造方法。   The manufacturing method of the composite material of any one of Claims 8-13 in which the said chemical conversion liquid contains the 2nd additional metal element which consists of at least 1 sort (s) of element chosen from tungsten, molybdenum, vanadium, and cerium. Method. 前記化成処理液中の第2追加金属元素の濃度が、1〜5000ppmである、請求項14に記載の複合材料の製造方法。   The manufacturing method of the composite material of Claim 14 whose density | concentration of the 2nd additional metal element in the said chemical conversion liquid is 1-5000 ppm. 前記化成処理液の調製に、第2追加金属元素が、その水和酸化物、フッ化物、塩化物、臭化物、ヨウ化物、又はフッ素含有酸の塩の形態で用いられる、請求項14又は15に記載の複合材料の製造方法。   In the preparation of the chemical conversion treatment liquid, the second additional metal element is used in the form of a hydrated oxide, fluoride, chloride, bromide, iodide, or a salt of a fluorine-containing acid. The manufacturing method of the composite material of description. 前記基体が、アルミニウム材料又はアルミニウム合金材料であるとき、この基体に前記ニッケル−リン合金めっき処理及び水洗浄を施した後、かつ前記化成処理を施す前に、前記ニッケル−リン合金めっき基材に温度50℃以上の温水を接触させるか、或いは前記化成処理及び水洗浄を施して得られた複合材料に、温度50℃以上の温水を接触させることを更に含む、請求項8〜16のいずれか1項に記載の複合材料の製造方法。   When the substrate is an aluminum material or an aluminum alloy material, the nickel-phosphorus alloy plating base material is applied to the substrate after the nickel-phosphorus alloy plating treatment and the water washing and before the chemical conversion treatment. The method according to any one of claims 8 to 16, further comprising contacting hot water having a temperature of 50 ° C or higher, or contacting hot water having a temperature of 50 ° C or higher with the composite material obtained by performing the chemical conversion treatment and water washing. 2. A method for producing a composite material according to item 1.
JP2007103124A 2007-04-10 2007-04-10 Composite material and manufacturing method thereof Active JP5159148B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007103124A JP5159148B2 (en) 2007-04-10 2007-04-10 Composite material and manufacturing method thereof
CN2008100921684A CN101285184B (en) 2007-04-10 2008-04-10 Composite material and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007103124A JP5159148B2 (en) 2007-04-10 2007-04-10 Composite material and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2008260985A true JP2008260985A (en) 2008-10-30
JP2008260985A5 JP2008260985A5 (en) 2010-03-04
JP5159148B2 JP5159148B2 (en) 2013-03-06

Family

ID=39983681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007103124A Active JP5159148B2 (en) 2007-04-10 2007-04-10 Composite material and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP5159148B2 (en)
CN (1) CN101285184B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014101585A (en) * 2014-03-10 2014-06-05 Nippon Parkerizing Co Ltd Chromium-free chemical conversion treatment liquid, chemical conversion treatment method and chemical conversion treated article

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10400337B2 (en) 2012-08-29 2019-09-03 Ppg Industries Ohio, Inc. Zirconium pretreatment compositions containing lithium, associated methods for treating metal substrates, and related coated metal substrates
UA112024C2 (en) 2012-08-29 2016-07-11 Ппг Індастріз Огайо, Інк. ZIRCONIUM PRE-PROCESSING COMPOSITIONS CONTAINING MOLYBDEN, APPROPRIATE METHODS OF METAL SUBSTRATE PROCESSING AND APPROPRIATE METALS
US10435806B2 (en) 2015-10-12 2019-10-08 Prc-Desoto International, Inc. Methods for electrolytically depositing pretreatment compositions
MX2019001874A (en) 2016-08-24 2019-06-06 Ppg Ind Ohio Inc Alkaline composition for treating metal substartes.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003213447A (en) * 2002-01-18 2003-07-30 Kowa Industry Co Ltd Treatment solution for nickel plated layer and method for improving adhesion
JP2005109306A (en) * 2003-10-01 2005-04-21 Matsushita Electric Ind Co Ltd Electronic component package and its manufacturing method
JP2005146411A (en) * 2003-10-20 2005-06-09 Nippon Kanizen Kk Surface treatment agent for electroless nickel plating film, protective film, product having the protective film, and their production method
JP2006009089A (en) * 2004-06-25 2006-01-12 Dipsol Chem Co Ltd Treatment liquid for substrate surface containing nickel, copper or silver, preparation method for the liquid, and surface treatment method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY130189A (en) * 1994-03-24 2007-06-29 Nihon Parkerizing Aqueous composition and solution and process for metallic surface-treating an aluminum-containing metal material
ES2448829T3 (en) * 2002-12-24 2014-03-17 Chemetall Gmbh Chemical conversion coating agent and surface treated metal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003213447A (en) * 2002-01-18 2003-07-30 Kowa Industry Co Ltd Treatment solution for nickel plated layer and method for improving adhesion
JP2005109306A (en) * 2003-10-01 2005-04-21 Matsushita Electric Ind Co Ltd Electronic component package and its manufacturing method
JP2005146411A (en) * 2003-10-20 2005-06-09 Nippon Kanizen Kk Surface treatment agent for electroless nickel plating film, protective film, product having the protective film, and their production method
JP2006009089A (en) * 2004-06-25 2006-01-12 Dipsol Chem Co Ltd Treatment liquid for substrate surface containing nickel, copper or silver, preparation method for the liquid, and surface treatment method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014101585A (en) * 2014-03-10 2014-06-05 Nippon Parkerizing Co Ltd Chromium-free chemical conversion treatment liquid, chemical conversion treatment method and chemical conversion treated article

Also Published As

Publication number Publication date
CN101285184B (en) 2012-05-16
JP5159148B2 (en) 2013-03-06
CN101285184A (en) 2008-10-15

Similar Documents

Publication Publication Date Title
JP3784400B1 (en) Chemical conversion solution for metal and processing method
TWI677600B (en) A method for electrolytically passivating an outermost chromium or outermost chromium alloy layer to increase corrosion resistance thereof
TWI268965B (en) Treating solution for surface treatment of metal and surface treatment method
TWI447264B (en) Surface-treating agent for metallic material
WO2010050131A1 (en) Treatment solution for chemical conversion of metal material and method for treatment
JP5159148B2 (en) Composite material and manufacturing method thereof
JP5157487B2 (en) Steel plate for containers and manufacturing method thereof
JP3078015B2 (en) Method of treating metal surface of article and treatment solution used in this method
JP5733980B2 (en) Method for forming black chemical conversion film and method for forming black rust preventive film on metal member having zinc or zinc alloy surface
CN109563628A (en) Sealing compositions
JP6910543B2 (en) A surface treatment agent, an aluminum or aluminum alloy material having a surface treatment film, and a method for manufacturing the same.
EP4108805B1 (en) Chemical conversion treatment liquid, and method for manufacturing member in which chemical conversion film is provided on surface
JP2004360056A (en) BLACKENED HOT DIP Zn-Al-Mg BASED ALLOY PLATED STEEL SHEET, AND ITS PRODUCTION METHOD
EP1340839B1 (en) Whiskerless galvanized product having multi-layer rust prevention film and manufacturing method of whiskerless galvanized product having multi-layer rust prevention film
JP2008214744A (en) Black rust prevention treatment liquid on galvanized or galvannealed metal surface, and black rust prevention film treatment method
KR100872479B1 (en) Trivalent chromate solution, trivalent chromate-treated metal body and preparation method thereof
JP2008121101A (en) Rust-preventing liquid for metal surface plated with zinc or zinc alloy, and method for forming rust-preventing film on the metal surface
JP5130496B2 (en) Zinc-based plated steel sheet and manufacturing method thereof
JP6501280B2 (en) Chromium plating solution, electroplating method and manufacturing method of chromium plating solution
JP2021507114A (en) How to improve the corrosion resistance of the base material containing the outermost chromium alloy layer
KR101277940B1 (en) Blackened steel stheet with high adhesion property of blackened layer and surface appearance, and method for manufacturing the same
JP2005146411A (en) Surface treatment agent for electroless nickel plating film, protective film, product having the protective film, and their production method
JP2011026629A (en) Method for manufacturing chemical-conversion-treated steel sheet
Anicai et al. Surface Modification of Aluminum and Its Alloys Using Conversion Coatings
WO2024122357A1 (en) Aluminum material or aluminum alloy material provided with coating film, method for producing same, and aqueous surface treatment agent

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121211

R150 Certificate of patent or registration of utility model

Ref document number: 5159148

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250