JP2008260208A - Sorting method of recycled plastic material - Google Patents

Sorting method of recycled plastic material Download PDF

Info

Publication number
JP2008260208A
JP2008260208A JP2007104565A JP2007104565A JP2008260208A JP 2008260208 A JP2008260208 A JP 2008260208A JP 2007104565 A JP2007104565 A JP 2007104565A JP 2007104565 A JP2007104565 A JP 2007104565A JP 2008260208 A JP2008260208 A JP 2008260208A
Authority
JP
Japan
Prior art keywords
plastic
sorting
recycled
recovered
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007104565A
Other languages
Japanese (ja)
Other versions
JP4870014B2 (en
Inventor
Noriko Hirano
則子 平野
Jiro Naka
慈朗 中
Junji Tanimura
純二 谷村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007104565A priority Critical patent/JP4870014B2/en
Publication of JP2008260208A publication Critical patent/JP2008260208A/en
Application granted granted Critical
Publication of JP4870014B2 publication Critical patent/JP4870014B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0203Separating plastics from plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0213Specific separating techniques
    • B29B2017/0217Mechanical separating techniques; devices therefor
    • B29B2017/0237Mechanical separating techniques; devices therefor using density difference
    • B29B2017/0244Mechanical separating techniques; devices therefor using density difference in liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0213Specific separating techniques
    • B29B2017/0279Optical identification, e.g. cameras or spectroscopy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • B29K2105/0026Flame proofing or flame retarding agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/52Mechanical processing of waste for the recovery of materials, e.g. crushing, shredding, separation or disassembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sorting method of a recycled plastic material with high speed and high recycling efficiency by detecting and removing plastic containing bromine (Br) having concentration exceeding a predetermined concentration from recovered plastic 8. <P>SOLUTION: The sorting method of the recycled plastic material for sorting the material used for manufacturing the recycled plastic from plastic waste materials 1 is equipped with (a) the step of sorting the material except plastic from the plastic waste materials 1 and obtains desired recovered plastic 8, and (b) the step of detecting and removes the plastic containing bromine having the predetermined concentration or more from the recovered plastic 8 obtained by the step (a). The sorting method is characterized in that it sorts the recycled plastic material with high speed and high recycling efficiency. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、廃家電品の回収プラスチック廃材から、再利用可能な再生プラスチック材料を選別する方法に関し、特に一定濃度以上の臭素を含有するプラスチックを検出して除去する再生プラスチック材料選別方法に関する。   The present invention relates to a method for selecting a recycled plastic material that can be reused from recovered plastic waste material of waste home appliances, and more particularly to a method for selecting a recycled plastic material that detects and removes plastic containing bromine at a certain concentration or higher.

近年、わが国の一般家庭では、エアコン、テレビ、冷蔵庫、洗濯機などの家電製品が高い普及率で備えられるようになり、普及が進むにつれてこれらの家電製品の廃棄量も年々増加する傾向にある。家電製品の構成部材はプラスチック部材の占める割合が多く、家電リサイクル法などの地球環境保護に関する法的な規制や資材の有効活用の観点から、プラスチック部材のリサイクル推進が重要な課題となっている。   In recent years, household appliances such as air conditioners, televisions, refrigerators, and washing machines have been provided at a high penetration rate in ordinary households in Japan, and the amount of disposal of these household appliances tends to increase year by year as the spread of the household appliances progresses. Constituent members of home appliances account for a large proportion of plastic members. From the viewpoints of legal regulations concerning the protection of the global environment such as the Home Appliance Recycling Law and effective use of materials, the promotion of recycling of plastic members has become an important issue.

プラスチックのリサイクルは、マテリアルリサイクル、ケミカルリサイクル、サーマルリサイクルの3つに分類できる。このうちのマテリアルリサイクルは再び同様のプラスチックに戻すリサイクル方法であり、環境への負荷が最も小さくて優れたリサイクル方法である。マテリアルリサイクルを行なうためには、高品質のプラスチックを再生する必要があり、様々な種類の材料が混合されたプラスチック部材を材質ごとに分離した上で再度加工しなければならない。そして、再生プラスチックとして利用するためには、再生プラスチック中にRoHS指令(Restriction of the use of certain Hazardous Substances in electrical and electronic equipment)等で規制されている有害物質が閾値を超えて含有されていないことを保証する必要がある。   Plastic recycling can be classified into three categories: material recycling, chemical recycling, and thermal recycling. Among these, material recycling is a recycling method for returning to the same plastic again, and it is an excellent recycling method with the least burden on the environment. In order to carry out material recycling, it is necessary to recycle high-quality plastics, and plastic members in which various types of materials are mixed must be separated for each material and then processed again. In order to use as recycled plastics, the recycled plastics do not contain a hazardous substance regulated by the RoHS Directive (Restriction of the use of ceramics, industrial and electrical equipment), etc. exceeding the threshold. Need to guarantee.

RoHS指令で対象となる有害物質は、カドミウム、鉛、六価クロム、水銀、2種類の臭素(Br)系難燃剤(ポリ臭素化ビフェニル(Polybrominated biphenyls:PBBs)、ポリ臭素化ジフェニルエーテル(Polybrominated diphenyl ethers:PBDEs))である。それぞれの物質で規制されている含有量の閾値は、カドミウムが100ppm、鉛、六価クロム、水銀が1000ppmである。また、臭素系難燃剤であるPBBsおよびPBDEsは閾値が1000ppmであり、これらに含有されているBrの濃度が300ppm未満であればPBBsおよびPBDEsが1000ppmを超えることはない。しかしながら、1wt%を超える濃度のBrを含有したプラスチックがわずかでも混入すると、これらを原料として再生した再生プラスチックのBr濃度は300ppmを超えてしまい、PBBsやPBDEsの含有量を確認するための詳細な分析が必要になるため、再生プラスチックの原材料となる廃材プラスチック中に1wt%を超える濃度のBrを含有したプラスチックが混入しないようにすることが望ましい。   Hazardous substances targeted by the RoHS Directive are cadmium, lead, hexavalent chromium, mercury, two types of bromine (Br) flame retardants (polybrominated biphenyls (PBBs), polybrominated diphenyl ethers). : PBDEs)). The threshold values of the contents regulated for each substance are 100 ppm for cadmium, 1000 ppm for lead, hexavalent chromium and mercury. Further, PBBs and PBDEs, which are brominated flame retardants, have a threshold of 1000 ppm. If the concentration of Br contained in these is less than 300 ppm, PBBs and PBDEs do not exceed 1000 ppm. However, if even a small amount of plastic containing Br having a concentration exceeding 1 wt% is mixed, the Br concentration of recycled plastics recycled using these as raw materials will exceed 300 ppm, which is a detailed information for confirming the content of PBBs and PBDEs. Since analysis is required, it is desirable that plastic containing Br having a concentration of more than 1 wt% is not mixed in waste plastic that is a raw material of recycled plastic.

従来における廃家電品の回収プラスチック廃材から再生プラスチックを生産する方法は、純度の高いプラスチック材質の選別を行なうために、乾式選別手段と湿式選別手段とから構成される比重差による選別を行なっている(例えば、特許文献1参照)。また、難燃剤を含有しているプラスチックの分別装置において、難燃材料を含有しているプラスチックを分別するために、X線または電子線をプラスチックに照射することによってプラスチックから発生する特性X線の波長やエネルギーを基に難燃剤の種類と存否を判別し、プラスチックを分別している(例えば、特許文献2参照)。   In the conventional method of producing recycled plastic from waste plastic waste recovered from household electrical appliances, in order to sort out high-purity plastic materials, sorting is performed based on the difference in specific gravity composed of dry sorting means and wet sorting means. (For example, refer to Patent Document 1). Further, in a plastic sorting apparatus containing a flame retardant, in order to sort plastic containing a flame retardant material, X-rays or characteristic X-rays generated from the plastic are irradiated by irradiating the plastic with an electron beam. The type and presence / absence of the flame retardant are determined based on the wavelength and energy, and the plastic is sorted (for example, see Patent Document 2).

特開2006−159052号公報JP 2006-159052 A 特開2004−219366号公報JP 2004-219366 A

特許文献1では、プラスチックの選別を比重によってのみ行なっている。材質選別後のプラスチック、例えばポリプロピレン(Polypropylene:PP)については純度99%を超える材質の選別ができているのに対して、RoHS指令などで規制されている有害物質に関する考慮がないため混入を防ぐことができず、なかでもBrに関しては、1wt%を超えるBrを含有するプラスチックが1000個につき数個程度混入してしまい、BrがPBBsあるいはPBDEs由来であれば、RoHS指令で規制された閾値を超えてしまうという問題がある。   In Patent Document 1, plastics are selected only by specific gravity. For plastics after material selection, such as polypropylene (PP), materials with a purity exceeding 99% can be selected, but there is no consideration of hazardous substances regulated by the RoHS directive etc., thus preventing contamination. In particular, with regard to Br, several plastics containing more than 1 wt% of Br are mixed in every 1000 pieces. If Br is derived from PBBs or PBDEs, the threshold regulated by the RoHS directive is set. There is a problem of exceeding.

また、特許文献2では、難燃剤特有元素の存否判定の測定に数十秒から数分かかるため、大量のプラスチックを選別することができないという問題がある。また、難燃剤特有元素の存否のみで選別を行なうため、たとえ含有量がRoHS指令などに規制されている閾値の1/10未満と問題の無いレベルであっても分別するため、リサイクル効率が悪くなるという問題もある。   Moreover, in patent document 2, since it takes tens of seconds to several minutes to measure the presence / absence determination of a flame retardant-specific element, there is a problem that a large amount of plastic cannot be selected. In addition, since sorting is performed only by the presence or absence of flame retardant-specific elements, even if the content is less than 1/10 of the threshold regulated by the RoHS directive, etc., it is sorted out, so the recycling efficiency is poor. There is also a problem of becoming.

本発明は、これらの問題を解決するためになされたもので、回収プラスチック廃材から1wt%を超える濃度のBrを含有するプラスチックを検出して除去することによって、高速かつリサイクル効率の高い再生プラスチック材料選別方法を提供することを目的とする。   The present invention has been made in order to solve these problems, and by detecting and removing a plastic containing Br having a concentration of more than 1 wt% from the recovered plastic waste material, the recycled plastic material has a high speed and a high recycling efficiency. The object is to provide a sorting method.

上記の課題を解決するために、本発明による再生プラスチック材料選別方法は、プラスチック廃材から再生プラスチックの製造に用いる材料を選別する再生プラスチック材料選別方法であって、(a)プラスチック廃材からプラスチック以外の材料を選別し、所望の回収プラスチックを得る工程と、(b)工程(a)によって得られた回収プラスチックから所定の濃度以上のBrを含有するプラスチックを検出して除去する工程とを備えることを特徴とする。   In order to solve the above-mentioned problems, a recycled plastic material sorting method according to the present invention is a recycled plastic material sorting method for sorting materials used for the production of recycled plastics from plastic waste materials, and (a) from plastic waste materials other than plastics Selecting a material and obtaining a desired recovered plastic; and (b) detecting and removing a plastic containing Br of a predetermined concentration or more from the recovered plastic obtained in step (a). Features.

本発明は、請求項1に記載のように、所望の回収プラスチックを得るために、プラスチック廃材からプラスチック以外の材料を選別し、次に選別することによって得られた回収プラスチックから所定の濃度以上、すなわち1wt%を超える濃度のBrを含有するプラスチックを検出して除去することによって、高速かつリサイクル効率の高い再生プラスチック材料選別方法を提供することができる。   The present invention, as described in claim 1, in order to obtain a desired recovered plastic, the material other than the plastic is selected from the plastic waste material, and then the recovered plastic obtained by the selection is more than a predetermined concentration, That is, by detecting and removing a plastic containing Br having a concentration exceeding 1 wt%, it is possible to provide a method for selecting a recycled plastic material with high speed and high recycling efficiency.

本発明の実施形態について、図面に基づいて以下に説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の実施形態における再生プラスチックの選別工程を示す図である。プラスチック廃材1は、従来の廃家電品の処理方法を経て得られたものである。従来の廃家電品の処理方法とは、回収された使用済みの冷蔵庫、洗濯機、エアコンなどを解体して、圧縮機、熱交換器、モータなどの大型金属部品、冷蔵庫内のケース、洗濯機の水槽などの大型プラスチック成型部品、制御基板、コード類を取り外した残りの部材をそれぞれ破砕装置によって数cmから数十cm角に粗破砕する。そして、磁力選別機によって鉄などの磁性金属を取り除き、渦電流選別機によってアルミ、銅、ステンレスなどの弱磁性金属を取り除き、風力選別によって比重の小さいウレタンなどの発泡体や比重の大きい金属片や金属線を取り除くと、最後に残ったものがプラスチック廃材1となる。プラスチック廃材1は、ポリプロピレン(Polypropylene:PP)、ポリスチレン(Polystyrene:PS)、アクリロニトリル・ブタジエン・スチレン(Acrylonitrile butadience styrene:ABS)などのプラスチック類を主成分としているが、従来の廃家電品の処理方法によって十分に取り除けなかった型式表示などに使用されるシールなどのフィルム物質、発泡体、金属片、金属線などの異物が混入している。   FIG. 1 is a diagram showing a recycled plastic sorting step in an embodiment of the present invention. The plastic waste material 1 is obtained through a conventional waste home appliance processing method. The conventional disposal method of waste home appliances is to disassemble collected used refrigerators, washing machines, air conditioners, etc., and to disassemble large metal parts such as compressors, heat exchangers, motors, cases in refrigerators, washing machines The large plastic molded parts such as a water tank, the control board, and the remaining members from which the cords are removed are roughly crushed into a few centimeters to several tens of centimeters by a crusher. The magnetic separator removes magnetic metals such as iron, the eddy current separator removes weak magnetic metals such as aluminum, copper, and stainless steel. When the metal wire is removed, the last remaining one becomes the plastic waste material 1. The plastic waste 1 is mainly composed of plastics such as polypropylene (Polypropylene: PP), polystyrene (Polystyrene: PS), acrylonitrile-butadiene-styrene (Acrylonitrile butadiene styrene: ABS). Foreign substances such as film materials such as seals, foams, metal pieces, metal wires, etc. used for type indications that could not be removed sufficiently due to the above.

微破砕工程101では、プラスチック廃材1を破砕装置を用いることによって微破砕する。破砕物の大きさは、5mm角以上20mm角以下であることが好ましい。   In the fine crushing step 101, the plastic waste material 1 is finely crushed by using a crushing device. The size of the crushed material is preferably 5 mm square or more and 20 mm square or less.

微破砕工程101において、破砕物を5mm角以上にすることによって破砕にかかる時間を短縮することができるため、プラスチックの溶融や熱劣化を防止することができる。また、後の工程の高濃度Br検出工程106において、X線照射領域(1mmφ)に対して対象となるプラスチックが十分に大きいため、X線を確実に対象となるプラスチックに照射することができて高濃度Br含有プラスチックを確実に検出することが可能となる。また、破砕物を20mm以下にすることによって、金属類、フィルム状物質4、発泡体5などとプラスチック部材とを十分に分離することができるため、次の工程以降における選別精度が向上する。   In the fine crushing step 101, since the time taken for crushing can be shortened by making the crushed material 5 mm square or more, melting and thermal deterioration of the plastic can be prevented. Further, in the subsequent high concentration Br detection step 106, the target plastic is sufficiently large with respect to the X-ray irradiation region (1 mmφ), so that the target plastic can be reliably irradiated. It becomes possible to reliably detect a plastic containing high concentration Br. In addition, by making the crushed material 20 mm or less, the metal, the film-like substance 4, the foam 5 and the like can be sufficiently separated from the plastic member, so that the sorting accuracy in the next and subsequent steps is improved.

磁力選別工程102では鉄などの磁性金属2を選別して除去し、渦電流選別工程103ではアルミ、銅、ステンレスなどの弱磁性金属3を選別して除去する。   In the magnetic sorting process 102, the magnetic metal 2 such as iron is sorted and removed, and in the eddy current sorting process 103, the weak magnetic metal 3 such as aluminum, copper, and stainless steel is sorted and removed.

風力選別工程104ではフィルム状物質4、発泡体5などの軽量異物を選別して除去する。また、磁力選別工程102および渦電流選別工程103において除去できなかった金属片・金属線6などの重量異物を分離する。   In the wind sorting step 104, lightweight foreign matters such as the film-like substance 4 and the foam 5 are sorted and removed. Further, heavy foreign matters such as metal pieces and metal wires 6 that could not be removed in the magnetic force sorting step 102 and the eddy current sorting step 103 are separated.

上記の磁力選別工程102、渦電流選別工程103、風力選別工程104を行なうことによって、破砕工程101を経たプラスチック廃材1から金属類の異物を選別して除去することができ、これらの金属類は有価物として回収して再利用することが可能である。また、後の工程である湿式比重選別工程105において、気泡の付着や水流の影響を受けることで除去が困難となるフィルム状物質4、発泡体5、金属片・金属線6などの部材を除去することができるため、湿式比重選別工程105での選別精度が向上する。   By performing the magnetic force sorting step 102, the eddy current sorting step 103, and the wind force sorting step 104, it is possible to sort and remove foreign objects of metals from the plastic waste material 1 that has undergone the crushing step 101. It can be recovered and reused as a valuable resource. Further, in the wet specific gravity sorting step 105 as a subsequent step, members such as the film-like substance 4, the foam 5, the metal piece / the metal wire 6, which are difficult to be removed due to the adhesion of bubbles and the influence of water flow are removed. Therefore, the sorting accuracy in the wet specific gravity sorting step 105 is improved.

湿式比重選別工程105では、上記の工程を経て得られたプラスチックを材質ごとに分別する。例えばPPを選別回収する場合には、PPよりも比重が大きく、PSやABSよりも比重が小さい液体を用いて選別を行なう。PPの比重は0.9〜0.91、PSの比重は1.04〜1.06、ABSの比重は1.05〜1.1であるため、PPをPSおよびABSから選別回収するためには、比重が1である水を用いることが好ましい。PPを選別回収した残りの部材に含まれるPSおよびABSを選別回収する場合には、PSおよびABSよりも比重の大きなポリ塩化ビニル(Polyvinyl chloride:PVC)やその他のプラスチック、異物などとの分離が可能な液体を用いればよく、例えば比重を1.1〜1.2に調節した食塩水が好ましい。回収にはプラスチック廃材1が通過しない程度の大きさのメッシュを用い、回収後に乾燥させる。   In the wet specific gravity sorting step 105, the plastic obtained through the above steps is sorted for each material. For example, when sorting and collecting PP, sorting is performed using a liquid having a specific gravity greater than PP and smaller than PS or ABS. Since the specific gravity of PP is 0.9 to 0.91, the specific gravity of PS is 1.04 to 1.06, and the specific gravity of ABS is 1.05 to 1.1, it is necessary to select and collect PP from PS and ABS. It is preferable to use water having a specific gravity of 1. When PS and ABS contained in the remaining PP that have been separated and collected are separated and collected, they can be separated from polyvinyl chloride (PVC), other plastics, and foreign matter, which have a higher specific gravity than PS and ABS. A possible liquid may be used. For example, a saline solution having a specific gravity adjusted to 1.1 to 1.2 is preferable. For the collection, a mesh having a size that does not allow the plastic waste material 1 to pass through is used and dried after the collection.

こうすることによって、選別回収に用いた液体の比重に対して、比重の小さなプラスチックと比重の大きなプラスチックを選別し、さらにその他の異物を分離することができるため、純度の高いプラスチックの材質選別が可能となる。湿式比重選別工程105によって得られた回収プラスチック8の材質の純度は、PPについては99%以上と高純度であった。   By doing this, it is possible to sort plastics with a small specific gravity and plastics with a large specific gravity against the specific gravity of the liquid used for sorting and collection, and to separate other foreign substances, so that it is possible to sort plastic materials with high purity. It becomes possible. The purity of the material of the recovered plastic 8 obtained by the wet specific gravity sorting step 105 was as high as 99% or more for PP.

なお、湿式比重選別の方法としては、液体サイクロン選別と浮沈選別とを組み合わせた方法が好ましい。この組み合わせは、プラスチックの重なりや気泡、水流の影響による比重の大きなプラスチックの混入を防ぐことができ、選別精度を向上させることが可能となる。   In addition, as a wet specific gravity sorting method, a method combining liquid cyclone sorting and flotation / sink sorting is preferable. This combination can prevent plastics having a large specific gravity from being mixed due to the overlap of plastics, air bubbles, and water flow, and can improve the sorting accuracy.

図2は、本発明の実施形態における材質選別後に得られた回収PPのBr含有量を示す図である。回収したPPに含有される有害物質を調べると、カドミウム、クロム、水銀は検出されなかった。また、鉛は一部のプラスチックから検出されたが、濃度は100ppm以下とRoHS指令の閾値の1/10未満であり問題ないレベルであった。しかし、Brはほとんどのプラスチックについては不検出または検出されたとしても濃度が100ppm未満であったが、1000個につき3〜5個の割合で1wt%を超える濃度のBrを検出した。このように、ごくわずかではあるがBrの濃度が1wt%を超えるプラスチックが混入してしまうと、これらを原料として再生した再生プラスチックにおけるBrの濃度が300ppmを超えてしまい、このBrがPBBsあるいはPBDEs由来であるとRoHS指令で定められた閾値を超えRoHS不適合になる。以下に、Brの濃度が1wt%を超えるプラスチックが存在する理由について説明する。   FIG. 2 is a diagram showing the Br content of recovered PP obtained after material selection in the embodiment of the present invention. When the harmful substances contained in the recovered PP were examined, cadmium, chromium and mercury were not detected. Moreover, although lead was detected from some plastics, the concentration was 100 ppm or less, which was less than 1/10 of the threshold value of the RoHS directive, and was a satisfactory level. However, although the concentration of Br was less than 100 ppm even though it was not detected or detected for most plastics, Br having a concentration exceeding 1 wt% was detected at a ratio of 3 to 5 per 1000 pieces. As described above, if plastics with a very small Br concentration exceeding 1 wt% are mixed, the Br concentration in recycled plastics recycled from these materials exceeds 300 ppm, and this Br becomes PBBs or PBDEs. When it comes from, it exceeds the threshold defined by the RoHS directive and becomes non-compliant with RoHS. The reason why there is a plastic having a Br concentration exceeding 1 wt% will be described below.

プラスチックに添加される臭素系化合物には、難燃性を付加するための臭素系難燃剤がある。臭素系難燃剤は難燃効率が高いため一般的に広く使用されており、通常はプラスチックに10〜15wt%添加されている。一般的な臭素系難燃剤は比重が1.8以上であるため、プラスチックへの添加量が10wt%を超えるとPPの比重が1を超えるので、湿式比重選別を水で行なうと10wt%を超える難燃剤を添加したPPは沈み、臭素系難燃剤を含まないPPと選別することが可能である。しかし、臭素系難燃剤の添加量が10wt%に満たない場合には、臭素系難燃剤を添加したPPの比重が1を超えないことがあり、湿式比重選別を水で行なうと臭素系難燃剤を含まないPPと選別することができない可能性がある。たとえ臭素系難燃剤の添加量が5wt%であっても再生プラスチックに含有されているBrの濃度は1wt%を確実に超えてしまうため、湿式比重選別によるプラスチックの選別のみではRoHS指令で規制される閾値を満たすことが難しい。   Bromine-based compounds added to plastics include brominated flame retardants for adding flame retardancy. Brominated flame retardants are generally widely used because of their high flame retardant efficiency, and usually 10 to 15 wt% is added to plastics. Since a specific bromine flame retardant has a specific gravity of 1.8 or more, the specific gravity of PP exceeds 1 when the amount added to the plastic exceeds 10 wt%. Therefore, when wet specific gravity sorting is performed with water, it exceeds 10 wt%. PP added with a flame retardant sinks and can be selected from PP containing no brominated flame retardant. However, when the amount of brominated flame retardant added is less than 10 wt%, the specific gravity of PP added with brominated flame retardant may not exceed 1, and when wet specific gravity sorting is performed with water, brominated flame retardant May not be sorted out from PP that does not contain. Even if the amount of brominated flame retardant added is 5 wt%, the concentration of Br contained in recycled plastic will surely exceed 1 wt%. Therefore, only plastic sorting by wet specific gravity sorting is regulated by the RoHS directive. It is difficult to meet the threshold.

したがって、従来の方法により得られた再生プラスチックは、PBBsおよびPBDEsの含有量を調べるために、溶媒抽出−ガスクロ質量分析法など時間、コスト、熟練度を要する検査が必要となってしまう。また、PBBsあるいはPBDEsが検出された場合には、ロットごと廃棄処分することになるためリサイクル効率が格段に悪くなる。一方、回収プラスチックの中から1wt%を超える濃度のBrを含有したプラスチックを除去すると、再生プラスチックに含有されるBr濃度は100ppmを超えることがなくRoHS指令の基準を満たす。   Therefore, in order to examine the content of PBBs and PBDEs, the recycled plastic obtained by the conventional method requires time-consuming, cost, and skillful inspections such as solvent extraction-gas chromatography mass spectrometry. In addition, when PBBs or PBDEs are detected, the entire lot is discarded and the recycling efficiency is significantly deteriorated. On the other hand, when the plastic containing Br having a concentration exceeding 1 wt% is removed from the recovered plastic, the concentration of Br contained in the recycled plastic does not exceed 100 ppm and satisfies the RoHS directive standard.

以上のことから、プラスチック廃材1を材質ごとに選別する工程において、1wt%を超える濃度のBrを含有するプラスチック部材を検出して除去する工程をさらに付加すれば、RoHS指令の基準を満たす高純度のプラスチックを効率よく安定して得ることが可能となる。   From the above, in the process of selecting the plastic waste material 1 for each material, if a process of detecting and removing a plastic member containing Br at a concentration of more than 1 wt% is added, high purity that satisfies the standard of the RoHS directive It is possible to obtain a stable and efficient plastic.

高濃度Br検出工程106では、回収プラスチック8に1wt%を超える高濃度のBrが含有されている場合に検出し、その高濃度Br含有プラスチック9を除去するようにする。検出方法としては、回収プラスチック8にX線を照射し、回収プラスチック8から発生した蛍光X線のうち11.91keVのBrKα線、13.29keVのBrKβ線、X線管ターゲット物質のコンプトン散乱線である19.39keVのRhKαC線の各々の強度エネルギーを半導体検出器によって検出する、エネルギー分散型蛍光X線分析法で行なうことが好ましい。回収プラスチック8に含有されるBr濃度が1wt%を超えるかどうかの判定方法について以下に説明する。   In the high concentration Br detection step 106, when the recovered plastic 8 contains a high concentration Br exceeding 1 wt%, it is detected, and the high concentration Br-containing plastic 9 is removed. As a detection method, the recovered plastic 8 is irradiated with X-rays, and among the fluorescent X-rays generated from the recovered plastic 8, 11.91 keV BrKα rays, 13.29 keV BrKβ rays, and Compton scattered rays of the X-ray tube target material are used. It is preferable to use an energy dispersive X-ray fluorescence analysis method in which the intensity energy of each 19.39 keV RhKαC ray is detected by a semiconductor detector. A method for determining whether the concentration of Br contained in the recovered plastic 8 exceeds 1 wt% will be described below.

まず、Brを1wt%含有する標準試料を作製する。例えば、不純物を含まないPPにBr含有物質であるデカブロモジフェニルエーテル(Decabromodiphenyl ether:DeBDE)を、Br濃度が1wt%となるように添加して混練・成型する。次に、標準試料について所定の条件下で蛍光X線測定を行い、検出された11.91keVのBrKα線、13.29keVのBrKβ線、X線管ターゲット物質のコンプトン散乱線である19.39keVのRhKαC線の強度を測定した。測定結果から、「BrKα線とRhKαC線との強度の比」および「BrKβ線とRhKαC線との強度の比」を算出し、各々の値を標準値としてデータ処理部のメモリに保存する。このように、BrKα線およびBrKβ線の強度とRhKαC線の強度との比を用いることによって、RoHS指令対応の蛍光X線分析において一般的に用いられているように測定試料の形状や厚みの補正を行なうことができる。また、BrKα線およびBrKβ線の2つのスペクトルを測定することによって、共存元素の蛍光X線の重なりによる誤判定を回避することが可能である。   First, a standard sample containing 1 wt% Br is prepared. For example, decabromodiphenyl ether (DeBDE), which is a Br-containing material, is added to PP containing no impurities so as to have a Br concentration of 1 wt%, followed by kneading and molding. Next, fluorescent X-ray measurement was performed on the standard sample under predetermined conditions, and the detected 11.91 keV BrKα ray, 13.29 keV BrKβ ray, and the Compton scattered ray of the X-ray tube target material of 19.39 keV. The intensity of the RhKαC line was measured. From the measurement results, “the intensity ratio of BrKα line and RhKαC line” and “the intensity ratio of BrKβ line and RhKαC line” are calculated, and each value is stored as a standard value in the memory of the data processing unit. Thus, by using the ratio of the intensity of BrKα ray and BrKβ ray to the intensity of RhKαC ray, correction of the shape and thickness of the measurement sample as generally used in the X-ray fluorescence analysis corresponding to the RoHS directive Can be performed. In addition, by measuring two spectra of BrKα ray and BrKβ ray, it is possible to avoid erroneous determination due to the overlap of fluorescent X-rays of coexisting elements.

評価の対象物である回収プラスチック8に対して標準試料と同一条件下でBrKα線、BrKβ線、RhKαC線の強度を各々測定し、「BrKα線とRhKαC線との強度の比」および「BrKβ線とRhKαC線との強度の比」を算出した値を予めメモリに保存しておいた標準試料の値と比較し、どちらの値も標準試料の値を超えた場合に「1wt%を超えるBr濃度が含有されたプラスチック」であると判定した。   The strength of BrKα ray, BrKβ ray, and RhKαC ray was measured for the recovered plastic 8 that is the object of evaluation under the same conditions as the standard sample, and the “ratio of intensity between BrKα ray and RhKαC ray” and “BrKβ ray” The ratio of the intensity ratio between the RhKαC line and the value of the standard sample stored in the memory in advance is compared. When both values exceed the standard sample value, the Br concentration exceeds 1 wt%. Was determined to be a “plastic containing”.

高濃度Br検出工程106において、Brの検出時間が短いほど測定可能な対象物の個数は多くなる反面、検出感度が悪くなって検出可能な濃度が制限される。そこで、1wt%のBrが含有されたPPのみが検出されるように検出時間の調節が必要である。図3および図4は本発明の実施形態におけるBr含有プラスチックのX線スペクトルを示す図である。図3は検出時間を0.1秒間としたときの1wt%のBrが含有されたPPであり、図4は検出時間を0.1秒間としたときの100ppmのBrが含有されたPPである。両図より、検出時間を0.1秒間としたエネルギー分散型蛍光X線分析法を用いることによって、1wt%のBrが含有されたPPのみスペクトルを確認することができる。なお、本発明の実施形態におけるBrの検出時間は0.1秒間としたが、1wt%を超えるBrが含有されたPPのみを検出可能な時間であればよい。   In the high-concentration Br detection step 106, the shorter the Br detection time, the larger the number of objects that can be measured, but the detection sensitivity becomes worse and the detectable concentration is limited. Therefore, it is necessary to adjust the detection time so that only PP containing 1 wt% Br is detected. 3 and 4 are diagrams showing an X-ray spectrum of a Br-containing plastic in an embodiment of the present invention. FIG. 3 is a PP containing 1 wt% Br when the detection time is 0.1 seconds, and FIG. 4 is a PP containing 100 ppm Br when the detection time is 0.1 seconds. . From both figures, the spectrum can be confirmed only for PP containing 1 wt% Br by using energy dispersive X-ray fluorescence analysis with a detection time of 0.1 seconds. In addition, although the detection time of Br in the embodiment of the present invention is 0.1 seconds, it may be a time in which only PP containing Br exceeding 1 wt% can be detected.

図5および図6は、本発明の実施形態におけるBr含有プラスチックを選別するシステムの構成図である。両図において、ベルトコンベアなどの搬送装置301によって回収プラスチック8が搬送方向302の方向へ搬送されている。搬送装置301には、搬送方向302に対して垂直方向に一次X線304を照射するX線発生装置303と、X線発生装置303と相対する位置に蛍光X線305を検出する検出装置306とが備えられている。検出装置306の検出結果は、通信手段307を介してデータ処理部308に送信される。データ処理部308が高濃度Br含有プラスチック9を検出したと判定した場合には、高濃度Br含有プラスチック9をエアガン309の高圧エア312によって吹き飛ばして除去する。吹き飛ばされた高濃度Br含有プラスチック9はエアガン309に相対する位置に配置されている回収容器310に回収され、それ以外の回収プラスチック8はRoHS指令に適合したプラスチックとして回収容器311に回収される。   5 and 6 are configuration diagrams of a system for sorting out the Br-containing plastic in the embodiment of the present invention. In both figures, the collected plastic 8 is conveyed in the conveyance direction 302 by a conveyance device 301 such as a belt conveyor. The transport device 301 includes an X-ray generation device 303 that irradiates primary X-rays 304 in a direction perpendicular to the transport direction 302, and a detection device 306 that detects fluorescent X-rays 305 at a position facing the X-ray generation device 303. Is provided. The detection result of the detection device 306 is transmitted to the data processing unit 308 via the communication unit 307. If the data processing unit 308 determines that the high-concentration Br-containing plastic 9 has been detected, the high-concentration Br-containing plastic 9 is blown off by the high-pressure air 312 of the air gun 309 and removed. The high-concentration Br-containing plastic 9 blown off is collected in a collection container 310 disposed at a position opposite to the air gun 309, and the other collection plastic 8 is collected in a collection container 311 as plastic that complies with the RoHS directive.

搬送装置301は、20〜25mm間隔で並べた5〜20mm角の回収プラスチック8を50mm/secの速度で搬送するのが好ましい。なぜなら、50mm/secの速度で搬送することによって材質の選別工程を経て得られた回収プラスチック8のサイズが最も小さい5mm角であっても、X線発生装置303から一次X線304を0.1秒間照射することができるので、搬送装置301を停止させることなく一定速度で搬送中にBrの検出が確実に行なえるため、搬送と選別が同時に行なえて効率が良いからである。また、X線発生装置303から照射される一次X線304を回収プラスチック8の搬送方向に対して垂直方向の斜め上方から照射することによって、回収プラスチック8の表面に照射された一次X線304が隣接する回収プラスチック8に照射されることはない。したがって、隣接する回収プラスチック8から蛍光X線305が発生することはなく、高濃度Brを含有していないプラスチックを誤って除去することを防止する。   It is preferable that the conveying device 301 conveys the collected plastics 8 of 5 to 20 mm square arranged at intervals of 20 to 25 mm at a speed of 50 mm / sec. This is because even if the size of the recovered plastic 8 obtained through the material selection step by carrying it at a speed of 50 mm / sec is the smallest 5 mm square, the primary X-ray 304 is 0.1% from the X-ray generator 303. This is because, since irradiation can be performed for seconds, Br can be reliably detected during conveyance at a constant speed without stopping the conveyance device 301, so that conveyance and sorting can be performed simultaneously and efficiency is high. Further, by irradiating the primary X-rays 304 irradiated from the X-ray generator 303 from obliquely above in the direction perpendicular to the conveying direction of the recovered plastic 8, the primary X-rays 304 irradiated on the surface of the recovered plastic 8 are obtained. The adjacent recovered plastic 8 is not irradiated. Therefore, the fluorescent X-ray 305 is not generated from the adjacent recovered plastic 8, and the plastic that does not contain the high concentration Br is prevented from being erroneously removed.

上記の工程から得られた高純度RoHS適合プラスチック10を原材料として射出成形機を使用して再生プラスチックを製造し、再生プラスチックの有害物質評価を蛍光X線分析法によって実施すると、カドミウム、クロム、水銀は不検出であった。また、鉛、Brは検出されたが、いずれも100ppm未満と閾値より十分に小さく、RoHS指令に適合していることが確認された。   When the recycled plastic is manufactured using an injection molding machine using the high-purity RoHS-compliant plastic 10 obtained from the above process as a raw material, and the harmful substances of the recycled plastic are evaluated by fluorescent X-ray analysis, cadmium, chromium, mercury Was not detected. Moreover, although lead and Br were detected, both were less than 100 ppm and sufficiently smaller than the threshold value, and it was confirmed that the product complies with the RoHS directive.

なお、本発明の実施形態における再生プラスチックの選別方法は、少なくとも微破砕工程101、風力選別工程104、湿式比重選別工程105、高濃度Br検出工程106、高濃度Br含有プラスチック除去工程107を備えていることが好ましい。また、例えば、静電選別工程などを付加してもよい。   The method for sorting recycled plastic according to the embodiment of the present invention includes at least a fine crushing step 101, a wind sorting step 104, a wet specific gravity sorting step 105, a high concentration Br detection step 106, and a high concentration Br-containing plastic removal step 107. Preferably it is. Further, for example, an electrostatic sorting step or the like may be added.

以上のことから、回収プラスチック8から1wt%を超える高濃度のBrを含有するプラスチックを検出して除去する工程を備えることによって、RoHS指令で規制されている閾値を超えるPBBsおよびPBDEsの混入を防止することができ、RoHS指令に適合する再生プラスチック10を得ることが可能となる。また、1wt%を超えるBrを含有するプラスチックのみを検出すればよいため、検出時間を従来の1/1000以下にすることができ、検出時間の高速化とともに大量のプラスチックを選別することが可能となる。   From the above, it is possible to prevent contamination of PBBs and PBDEs exceeding the threshold regulated by the RoHS Directive by providing a process for detecting and removing plastic containing high concentration Br exceeding 1 wt% from the recovered plastic 8. This makes it possible to obtain a recycled plastic 10 that complies with the RoHS directive. In addition, since only the plastic containing Br exceeding 1 wt% needs to be detected, the detection time can be reduced to 1/1000 or less of the conventional one, and it is possible to sort a large amount of plastics together with speeding up the detection time. Become.

本発明の実施形態における再生プラスチックの選別工程を示す図である。It is a figure which shows the selection process of the recycled plastic in embodiment of this invention. 本発明の実施形態における材質選別後に得られた回収PPの臭素含有量を示す図である。It is a figure which shows the bromine content of collection | recovery PP obtained after the material selection in embodiment of this invention. 本発明の実施形態における臭素含有プラスチックのX線スペクトルを示す図である。It is a figure which shows the X-ray spectrum of the bromine containing plastic in embodiment of this invention. 本発明の実施形態における臭素含有プラスチックのX線スペクトルを示す図である。It is a figure which shows the X-ray spectrum of the bromine containing plastic in embodiment of this invention. 本発明の実施形態における臭素含有プラスチックを選別するシステムの構成図である。It is a lineblock diagram of a system which sorts out bromine content plastics in an embodiment of the present invention. 本発明の実施形態における臭素含有プラスチックを選別するシステムの構成図である。It is a lineblock diagram of a system which sorts out bromine content plastics in an embodiment of the present invention.

符号の説明Explanation of symbols

1 プラスチック廃材、2 磁性金属、3 弱磁性金属、4 フィルム状物質、5 発泡体、6 金属片・金属線、7 重比重プラスチック、8 回収プラスチック、9 高濃度Br含有プラスチック、10 高純度RoHS適合プラスチック、101 微粉砕工程、102 磁力選別工程、103 渦電流選別工程、104 風力選別工程、105 湿式比重選別工程、106 高濃度Br検出工程、107 高濃度Br含有プラスチック除去工程、301 搬送装置、302 搬送方向、303 X線発生装置、304 一次X線、305 蛍光X線、306 検出器、307 通信手段、308 データ処理部、309 エアガン、310 高濃度Br含有プラスチック回収容器、311 高純度RoHS適合プラスチック回収容器、312 高圧エア。   1 Plastic waste, 2 Magnetic metal, 3 Weak magnetic metal, 4 Film-like material, 5 Foam, 6 Metal piece / metal wire, 7 Heavy density plastic, 8 Recovered plastic, 9 High concentration Br-containing plastic, 10 High purity RoHS compatible Plastic, 101 Fine grinding process, 102 Magnetic sorting process, 103 Eddy current sorting process, 104 Wind power sorting process, 105 Wet specific gravity sorting process, 106 High density Br detection process, 107 High density Br containing plastic removal process, 301 Conveying device, 302 Transport direction, 303 X-ray generator, 304 primary X-ray, 305 fluorescent X-ray, 306 detector, 307 communication means, 308 data processing unit, 309 air gun, 310 high-concentration Br-containing plastic recovery container, 311 high-purity RoHS compatible plastic Recovery container, 312 high pressure air.

Claims (5)

プラスチック廃材から再生プラスチックの製造に用いる材料を選別する再生プラスチック材料選別方法であって、
(a)前記プラスチック廃材からプラスチック以外の材料を選別し、所望の回収プラスチックを得る工程と、
(b)前記工程(a)によって得られた前記回収プラスチックから所定の濃度以上の臭素を含有するプラスチックを検出して除去する工程と、
を備えることを特徴とする、再生プラスチック材料選別方法。
A recycled plastic material sorting method for sorting materials used in the production of recycled plastic from plastic waste,
(A) selecting a material other than plastic from the plastic waste material to obtain a desired recovered plastic;
(B) detecting and removing plastic containing bromine at a predetermined concentration or more from the recovered plastic obtained by the step (a);
A method for sorting recycled plastic material, comprising:
前記工程(a)は、
(c)磁性金属と前記磁性金属以外とを磁力によって選別し、前記磁性金属を除去する工程と、
(d)前記工程(c)を経て残った弱磁性金属と前記弱磁性金属以外とを渦電流によって選別し、前記弱磁性金属を除去する工程と、
(e)前記工程(d)を経て残ったプラスチックとプラスチック以外の物質とを風力によって選別し、前記プラスチック以外の物質を除去する工程と、
を備えることを特徴とする、請求項1に記載の再生プラスチック材料選別方法。
The step (a)
(C) selecting the magnetic metal and other than the magnetic metal by magnetic force, and removing the magnetic metal;
(D) selecting the weak magnetic metal remaining after the step (c) and other than the weak magnetic metal by eddy current, and removing the weak magnetic metal;
(E) The step of selecting the plastic remaining after the step (d) and the non-plastic material by wind power, and removing the non-plastic material;
The recycled plastic material sorting method according to claim 1, comprising:
前記工程(a)は、
(f)前記工程(e)を経て残った前記プラスチックの比重を利用し、液体によって所定の比重以上のプラスチックを選別し除去することにより前記回収プラスチックを得る工程
をさらに備えることを特徴とする、請求項2に記載の再生プラスチック材料選別方法。
The step (a)
(F) using the specific gravity of the plastic remaining after the step (e), further comprising the step of obtaining the recovered plastic by selecting and removing the plastic having a predetermined specific gravity or more with a liquid, The recycled plastic material selection method according to claim 2.
前記工程(b)は、
(g)前記所定の濃度の臭素を含有する試料を用いて比較用の標準値を予め得る工程と、
(h)前記標準値を用いて前記所定の濃度以上の臭素を含有するプラスチックを検出する工程と、
を備えることを特徴とする、請求項1に記載の再生プラスチック材料選別方法。
The step (b)
(G) obtaining a standard value for comparison in advance using a sample containing bromine at the predetermined concentration;
(H) detecting a plastic containing bromine having a predetermined concentration or more using the standard value;
The recycled plastic material sorting method according to claim 1, comprising:
前記所定の濃度は1wt%であることを特徴とする、請求項1に記載の再生プラスチック材料選別方法。   The recycled plastic material sorting method according to claim 1, wherein the predetermined concentration is 1 wt%.
JP2007104565A 2007-04-12 2007-04-12 Recycled plastic material sorting method Active JP4870014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007104565A JP4870014B2 (en) 2007-04-12 2007-04-12 Recycled plastic material sorting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007104565A JP4870014B2 (en) 2007-04-12 2007-04-12 Recycled plastic material sorting method

Publications (2)

Publication Number Publication Date
JP2008260208A true JP2008260208A (en) 2008-10-30
JP4870014B2 JP4870014B2 (en) 2012-02-08

Family

ID=39983065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007104565A Active JP4870014B2 (en) 2007-04-12 2007-04-12 Recycled plastic material sorting method

Country Status (1)

Country Link
JP (1) JP4870014B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009198387A (en) * 2008-02-22 2009-09-03 Mitsubishi Electric Corp Sorter of bromine-based flame retardant-containing plastic
WO2010092645A1 (en) * 2009-02-13 2010-08-19 三菱電機株式会社 Method and apparatus for separating plastics
JP2010208085A (en) * 2009-03-09 2010-09-24 Sharp Corp Method of recycling plastic waste material, plastic raw material, plastic member, and manufacturing methods therefor
JP2010207772A (en) * 2009-03-12 2010-09-24 Mitsubishi Electric Corp Resin sorting method and resin sorting device
WO2011047280A1 (en) * 2009-10-16 2011-04-21 Mba Polymers, Inc. Reducing the content of heavy metals in recovered plastics
JP6192084B1 (en) * 2017-04-25 2017-09-06 日本シーム株式会社 Sorting equipment for waste plastics containing metals

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0560705A (en) * 1991-09-03 1993-03-12 Meidensha Corp Quantitative analysis method of bromic flame-retardant agent within resin
JP2003001632A (en) * 2001-06-26 2003-01-08 Mitsubishi Electric Corp Method and apparatus for producing reusable plastic material
JP2004122661A (en) * 2002-10-04 2004-04-22 Matsushita Electric Ind Co Ltd Plastic recycling system
JP2004219366A (en) * 2003-01-17 2004-08-05 Canon Inc Classifier and classifying method for plastics containing flame retardant
WO2004080680A1 (en) * 2003-03-11 2004-09-23 Fujitsu Limited Method for producing recycled resin, and resin material containing recycled resin produced by that method
JP2006322817A (en) * 2005-05-19 2006-11-30 Horiba Ltd Qualitative/quantitative analyzing method of bromine-based fire retardant in resin
JP2007044931A (en) * 2005-08-09 2007-02-22 Sharp Corp Recycling method of thermoplastic resin composition waste material, manufacturing method of plastic composition raw material, plastic composition raw material, manufacturing method of plastic member and plastic member

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0560705A (en) * 1991-09-03 1993-03-12 Meidensha Corp Quantitative analysis method of bromic flame-retardant agent within resin
JP2003001632A (en) * 2001-06-26 2003-01-08 Mitsubishi Electric Corp Method and apparatus for producing reusable plastic material
JP2004122661A (en) * 2002-10-04 2004-04-22 Matsushita Electric Ind Co Ltd Plastic recycling system
JP2004219366A (en) * 2003-01-17 2004-08-05 Canon Inc Classifier and classifying method for plastics containing flame retardant
WO2004080680A1 (en) * 2003-03-11 2004-09-23 Fujitsu Limited Method for producing recycled resin, and resin material containing recycled resin produced by that method
JP2006322817A (en) * 2005-05-19 2006-11-30 Horiba Ltd Qualitative/quantitative analyzing method of bromine-based fire retardant in resin
JP2007044931A (en) * 2005-08-09 2007-02-22 Sharp Corp Recycling method of thermoplastic resin composition waste material, manufacturing method of plastic composition raw material, plastic composition raw material, manufacturing method of plastic member and plastic member

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009198387A (en) * 2008-02-22 2009-09-03 Mitsubishi Electric Corp Sorter of bromine-based flame retardant-containing plastic
JP5498400B2 (en) * 2009-02-13 2014-05-21 三菱電機株式会社 Plastic sorting method and sorting apparatus
WO2010092645A1 (en) * 2009-02-13 2010-08-19 三菱電機株式会社 Method and apparatus for separating plastics
DE112009004345B4 (en) * 2009-02-13 2015-12-03 Mitsubishi Electric Corp. Separation process and separation device for plastics
CN102307713A (en) * 2009-02-13 2012-01-04 三菱电机株式会社 Method and apparatus for separating plastics
KR101427548B1 (en) * 2009-02-13 2014-08-07 미쓰비시덴키 가부시키가이샤 Method and apparatus for separating plastics
CN102307713B (en) * 2009-02-13 2014-06-04 三菱电机株式会社 Method and apparatus for separating plastics
KR101327623B1 (en) * 2009-02-13 2013-11-12 미쓰비시덴키 가부시키가이샤 Method and apparatus for separating plastics
JP2010208085A (en) * 2009-03-09 2010-09-24 Sharp Corp Method of recycling plastic waste material, plastic raw material, plastic member, and manufacturing methods therefor
JP2010207772A (en) * 2009-03-12 2010-09-24 Mitsubishi Electric Corp Resin sorting method and resin sorting device
US8302777B2 (en) 2009-10-16 2012-11-06 Mba Polymers, Inc. Reducing the content of heavy metals in recovered plastics
CN102574306B (en) * 2009-10-16 2014-06-18 Mba聚合物公司 Reducing the content of heavy metals in recovered plastics
CN102574306A (en) * 2009-10-16 2012-07-11 Mba聚合物公司 Reducing the content of heavy metals in recovered plastics
WO2011047280A1 (en) * 2009-10-16 2011-04-21 Mba Polymers, Inc. Reducing the content of heavy metals in recovered plastics
JP6192084B1 (en) * 2017-04-25 2017-09-06 日本シーム株式会社 Sorting equipment for waste plastics containing metals

Also Published As

Publication number Publication date
JP4870014B2 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
JP4870014B2 (en) Recycled plastic material sorting method
Maris et al. Characterizing plastics originating from WEEE: A case study in France
JP5463909B2 (en) Method for detecting Br in resin, resin sorting apparatus, and method for producing recycled resin product
Leslie et al. Propelling plastics into the circular economy—weeding out the toxics first
Menad et al. New characterisation method of electrical and electronic equipment wastes (WEEE)
JP5498400B2 (en) Plastic sorting method and sorting apparatus
DK2716774T3 (en) Process for mechanical machining of aluminum scrap
WO2011159269A1 (en) Sorting pieces of material based on optical and x - ray photon emissions
US8220729B2 (en) Recycling method for electronics scrap in order to obtain reusable materials while avoiding the release of harmful substances
Lahtela et al. Mechanical Sorting Processing of Waste Material Before Composite Manufacturing-A Review.
JP5211359B2 (en) Sorting device and sorting method for brominated flame retardant-containing resin
JP5110011B2 (en) Resin sorting method and resin sorting apparatus
JP5207391B2 (en) Manufacturing method of plastic member
Küppers et al. Influences and consequences of mechanical delabelling on PET recycling
JP2018008380A (en) Method for collecting recycling material
Chaine et al. Optimized industrial sorting of WEEE plastics: Development of fast and robust h-XRF technique for hazardous components
Bonifazi et al. An efficient strategy based on hyperspectral imaging for brominated plastic waste sorting in a circular economy perspective
JP2011235203A (en) Apparatus for sorting plastic piece
JP2007112017A (en) Recycling method of plastic waste and management system for regenerated plastic
JP5077308B2 (en) Bromine concentration measuring apparatus and measuring method thereof
JP6114917B2 (en) Recycled thermoplastic resin material and method for separating and recovering thermoplastic recycled material
JP2004219366A (en) Classifier and classifying method for plastics containing flame retardant
Weiss XRF—New Applications in Sensor-Based-Sorting Using X-ray Fluorescence
JP5050268B2 (en) Sorting device and sorting method
Leslie Dependence of Toxicity Test Results on Sample Removal Methods of PV Modules

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110603

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111003

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111116

R150 Certificate of patent or registration of utility model

Ref document number: 4870014

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250