JP2008259990A - Waste water treatment system and waste water treatment method - Google Patents

Waste water treatment system and waste water treatment method Download PDF

Info

Publication number
JP2008259990A
JP2008259990A JP2007106061A JP2007106061A JP2008259990A JP 2008259990 A JP2008259990 A JP 2008259990A JP 2007106061 A JP2007106061 A JP 2007106061A JP 2007106061 A JP2007106061 A JP 2007106061A JP 2008259990 A JP2008259990 A JP 2008259990A
Authority
JP
Japan
Prior art keywords
tank
wastewater
waste water
activated sludge
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007106061A
Other languages
Japanese (ja)
Inventor
Senichi Takarakura
銑一 宝蔵
Teruaki Yanai
輝明 谷内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANRITSU KAKOKI KK
Original Assignee
SANRITSU KAKOKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANRITSU KAKOKI KK filed Critical SANRITSU KAKOKI KK
Priority to JP2007106061A priority Critical patent/JP2008259990A/en
Publication of JP2008259990A publication Critical patent/JP2008259990A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a waste water treatment system and a waste water treatment method where the quantity of the excess sludge to be generated is reduced, and management is facilitated. <P>SOLUTION: Disclosed is a waste water treatment system 1 comprising: a first tank 7 holding waste water comprising organic matter in an anaerobic atmosphere; a second tank 11 holding the waste water and activated sludge passed through the first tank and performing aeration treatment; an activated sludge transferring means 22 transferring a part of the activated sludge in the second tank 11 to the first tank 7; a detecting means 35 detecting the amount of dissolved oxygen in the waste water in the second tank 11; and a blowing air amount controlling means 37 controlling the amount of blowing air in the aeration treatment in accordance with the detected result by the detecting means 35. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えば、牧場の牛乳搾乳施設から排出される廃水等を処理するための廃水処理装置及び廃水処理方法に関する。 The present invention relates to a wastewater treatment apparatus and a wastewater treatment method for treating, for example, wastewater discharged from a milking facility on a ranch.

乳牛を蓄養する牧場においては、1日に2〜3回乳牛から搾乳装置を用いて搾乳を行い、一旦タンクに貯留してから、原乳として出荷する。搾乳装置のパイプラインやタンクは、定期的に洗浄され、牧場から排出される廃水には、その洗浄水が含まれる。また、牧場から出る廃水には、乳牛が持ち込む藁屑や糞尿も混入する。さらに、疾病牛に抗生物質の投与が行われた場合や、乳牛が出産直後の場合、採乳は出荷されずに廃棄され、これも廃水に含まれる。   In the dairy farm where dairy cows are farmed, milking is performed from dairy cows using a milking device 2 to 3 times a day, once stored in a tank, and then shipped as raw milk. The pipelines and tanks of the milking device are regularly cleaned, and the waste water discharged from the ranch includes the cleaning water. The wastewater from the ranch is also mixed with swarf and manure brought by dairy cows. Furthermore, when antibiotics are administered to sick cows, or when dairy cows are just born, milk is discarded without being shipped, and this is also included in the wastewater.

このような廃水のBOD濃度は1000〜2500mg/Lと高いが、ほとんどの牧場は、排水量が、水質汚濁法で規定する特定施設の排水量の下限である50m3/日以下の規模であるため、工場廃水や浄化槽のような廃水規制の対象となっておらず、廃水処理施設の設置は義務づけられていない。 The BOD concentration of such wastewater is as high as 1000-2500 mg / L. However, in most ranches, the amount of wastewater is less than 50 m 3 / day, which is the lower limit of the amount of wastewater specified by the Water Pollution Law. It is not subject to wastewater regulations such as factory wastewater or septic tanks, and installation of wastewater treatment facilities is not obligatory.

よって、牧場から排出される廃水は、多くの場合、処理されずに排出され、周辺河川の汚濁の一因となっている。近年、廃水の周辺環境に与える影響の大きさが指摘され、廃水のBOD濃度を低下させることが要求されている。   Therefore, in many cases, the wastewater discharged from the ranch is discharged without being treated and contributes to the pollution of the surrounding river. In recent years, the magnitude of the influence on the surrounding environment of wastewater has been pointed out, and it has been required to reduce the BOD concentration of wastewater.

牧場から排出される廃水のように、有機物を含む廃水の処理方法としては、処理過程で自然に発生する細菌や原生動物等を積極的に利用する方法が最も経済的な方法であり、そのような方法としては、活性汚泥法、接触ばっ気法、担体流動ばっ気法等が知られている。そのうち、牧場から出る廃水のように、BOD濃度が1000〜2500mg/Lと高い廃水に対しては、活性汚泥法が適している(特許文献1参照)。   The most economical method for treating wastewater containing organic matter, such as wastewater discharged from ranches, is to use bacteria and protozoa that naturally occur during the treatment process. As such methods, an activated sludge method, a contact aeration method, a carrier flow aeration method and the like are known. Among them, the activated sludge method is suitable for wastewater having a high BOD concentration of 1000 to 2500 mg / L, such as wastewater from a ranch (see Patent Document 1).

活性汚泥法には、連続処理方式活性汚泥法と、回分式活性汚泥法との2種類がある。連続処理方式活性汚泥法は、廃水を好気的に処理するばっ気槽と、ばっ気処理によって発生した微生物汚泥を分離するための沈殿槽とを直列に設ける方法である。一方、回分式活性汚泥法は、単一の処理槽に廃水全量を受け入れ、空気を供給するばっ気工程と、発生した微生物汚泥を沈降分離する沈殿工程とを順次タイマーによって制御する方法である。活性汚泥法によって廃水の浄化が行われる原理は、上記いずれの方式においても同一であり、ばっ気槽内に空気を供給して、廃水中の有機成分を栄養源とする好気性微生物群を増殖させることにより、廃水の浄化を行うものである。
特開2003−53364号公報
There are two types of activated sludge methods, a continuous treatment activated sludge method and a batch activated sludge method. The continuous treatment type activated sludge method is a method in which an aeration tank for aerobically treating wastewater and a sedimentation tank for separating microbial sludge generated by the aeration treatment are provided in series. On the other hand, the batch activated sludge method is a method in which an aeration process in which the entire amount of waste water is received in a single treatment tank and air is supplied and a precipitation process in which the generated microbial sludge is settled and separated are sequentially controlled by a timer. The principle of purification of wastewater by the activated sludge method is the same in any of the above methods. Air is supplied into the aeration tank to grow aerobic microorganisms that use organic components in the wastewater as nutrient sources. By doing so, the waste water is purified.
JP 2003-53364 A

活性汚泥法を行う場合、ばっ気槽内の汚泥濃度は4000〜5000mg/Lに保つことが望ましい。しかし、廃水を活性汚泥法で処理すると、廃水に含まれる有機物に由来する余剰汚泥が発生するので、廃水の処理を続けるにつれて、ばっ気槽内の汚泥濃度が徐々に増加する。   When performing the activated sludge method, it is desirable to maintain the sludge concentration in the aeration tank at 4000 to 5000 mg / L. However, when the wastewater is treated by the activated sludge method, surplus sludge derived from organic substances contained in the wastewater is generated. Therefore, as the wastewater treatment is continued, the sludge concentration in the aeration tank gradually increases.

そこで、ばっ気槽内の汚泥濃度を適正範囲に維持するためには、余剰汚泥を定期的に槽外へ排出する必要がある。しかし、余剰汚泥を定期的に排出するには、コストと労力がかかってしまうという問題がある。また、選任の管理者がいない小規模な施設では、余剰汚泥の排出を十分に行うことができず、汚泥濃度が好適な範囲を超過してしまい、結果として、廃水の処理を十分に行えないことがある。   Therefore, in order to maintain the sludge concentration in the aeration tank within an appropriate range, it is necessary to periodically discharge excess sludge to the outside of the tank. However, there is a problem that it takes cost and labor to periodically discharge excess sludge. In addition, in a small-scale facility that does not have an administrator for appointment, excess sludge cannot be discharged sufficiently, and the sludge concentration exceeds the preferred range, and as a result, the wastewater cannot be treated sufficiently. Sometimes.

本発明は上記の点に鑑みなされたものであり、余剰汚泥の発生量が少なく、管理が容易である廃水処理装置及び廃水処理方法を提供することを目的とする。   The present invention has been made in view of the above points, and an object of the present invention is to provide a wastewater treatment apparatus and a wastewater treatment method that have a small amount of excess sludge and are easy to manage.

本発明は、
有機物を含む廃水を嫌気雰囲気にて保持する第1槽と、前記第1槽を経由した前記廃水及び活性汚泥を保持し、ばっ気処理を行う第2槽と、前記第2槽内における前記活性汚泥の一部を、前記第1槽に移送する活性汚泥移送手段と、を備える廃水処理装置を要旨とする。
The present invention
A first tank that holds waste water containing organic substances in an anaerobic atmosphere, a second tank that holds the waste water and activated sludge that has passed through the first tank and performs an aeration process, and the activity in the second tank The gist of the present invention is a wastewater treatment apparatus comprising activated sludge transfer means for transferring a part of sludge to the first tank.

本発明の廃水処理装置では、第2槽内の活性汚泥の一部を、活性汚泥移送手段により、第1槽に移送する。そして、移送された活性汚泥は、嫌気雰囲気である第1槽にて廃水中に溶解する。そのため、本発明の廃水処理装置は、長期間使用しても、その中で活性汚泥が増加しにくいので、管理が非常に容易である。   In the wastewater treatment apparatus of the present invention, a part of the activated sludge in the second tank is transferred to the first tank by the activated sludge transfer means. And the activated sludge transferred is melt | dissolved in wastewater in the 1st tank which is an anaerobic atmosphere. Therefore, even if the wastewater treatment apparatus of the present invention is used for a long period of time, the activated sludge hardly increases in the apparatus, and therefore management is very easy.

活性汚泥移送手段により移送する活性汚泥の量は、第2槽内の活性汚泥量が好適な範囲内に維持される量とすることができる。第2槽内の活性汚泥量の好適な範囲としては、例えば、第2槽にてばっ気処理をするとき、廃水における汚泥濃度が4000〜5000mg/Lとなる範囲がある。また、第2槽内の活性汚泥量の好適な範囲としては、第2槽におけるSV30の値が45〜50%となる範囲がある。なお、SV30とは、1Lのメスシリンダーに第2槽内の廃水(活性汚泥を含むもの)を入れ、30分間放置した後に沈殿した活性汚泥容積(ml)の割合(%)である。   The amount of activated sludge transferred by the activated sludge transfer means can be set to an amount that maintains the amount of activated sludge in the second tank within a suitable range. As a suitable range of the activated sludge amount in the second tank, for example, there is a range in which the sludge concentration in the wastewater is 4000 to 5000 mg / L when aeration processing is performed in the second tank. Moreover, as a suitable range of the activated sludge quantity in a 2nd tank, there exists a range from which the value of SV30 in a 2nd tank will be 45 to 50%. In addition, SV30 is the ratio (%) of the activated sludge volume (ml) which settled after putting the waste water (a thing containing activated sludge) in a 2nd tank into a 1L graduated cylinder and leaving it to stand for 30 minutes.

本発明の廃水処理装置は、さらに、前記第2槽内の前記廃水における溶存酸素量を検出する検出手段と、前記検出手段による検出結果に応じて、前記ばっ気処理における送風量を制御する送風量制御手段と、を備えることが好ましい。   The wastewater treatment apparatus of the present invention further includes a detection unit that detects the amount of dissolved oxygen in the wastewater in the second tank, and a sending unit that controls the amount of air blown in the aeration process according to a detection result by the detection unit. And an air volume control means.

第2槽内の廃水における溶存酸素量が少なすぎると、好気性微生物の生息に不適となり、ばっ気処理が十分行えなくなるし、逆に、溶存酸素量が多すぎると、微生物の解体現象が起こってしまうが、検出手段及び送風量制御手段により、廃水中の溶存酸素量を適正な範囲に維持すれば、第2槽におけるばっ気処理を一層効率的に行うことができる。第2槽内の廃水における溶存酸素量は、1.5〜2.0mg/Lの範囲が好適である。   If the amount of dissolved oxygen in the waste water in the second tank is too small, it becomes unsuitable for aerobic microorganisms, and aeration treatment cannot be performed sufficiently. Conversely, if the amount of dissolved oxygen is too large, the decomposition of microorganisms occurs. However, if the amount of dissolved oxygen in the wastewater is maintained within an appropriate range by the detection means and the air flow control means, the aeration process in the second tank can be performed more efficiently. The amount of dissolved oxygen in the wastewater in the second tank is preferably in the range of 1.5 to 2.0 mg / L.

また、本発明は、
有機物を含む廃水を、第1槽中で、嫌気雰囲気にて保持する第1工程と、前記廃水を、前記第1槽から、活性汚泥を保持する第2槽へ移送し、ばっ気処理する第2工程とを含み、前記第2槽が保持する前記活性汚泥の一部を、前記第1槽へ移送することを特徴とする廃水処理方法を要旨とする。
The present invention also provides:
A first step of holding waste water containing organic matter in an anaerobic atmosphere in the first tank, and a process of transferring the waste water from the first tank to a second tank holding activated sludge for aeration. A gist of the wastewater treatment method is characterized in that a part of the activated sludge retained in the second tank is transferred to the first tank.

本発明の廃水処理方法では、第2槽内の活性汚泥の一部を、第1槽に移送する。そして、移送された活性汚泥は、嫌気雰囲気である第1槽にて廃水中に溶解する。よって、本発明の廃水処理方法を長期間使用しても、第1槽及び第2槽の中で活性汚泥が増加しにくいので、第1槽及び第2槽の管理が非常に容易である。   In the wastewater treatment method of the present invention, a part of the activated sludge in the second tank is transferred to the first tank. And the activated sludge transferred is melt | dissolved in wastewater in the 1st tank which is an anaerobic atmosphere. Therefore, even if the wastewater treatment method of the present invention is used for a long time, the activated sludge hardly increases in the first tank and the second tank, so that the management of the first tank and the second tank is very easy.

本発明の廃水処理方法では、前記第2槽内の前記廃水における溶存酸素量を検出し、その検出結果に応じて、前記ばっ気処理における送風量を制御することが好ましい。
第2槽内の廃水における溶存酸素量が少なすぎると、好気性微生物の生息に不適となり、ばっ気処理が十分行えなくなるし、逆に、溶存酸素量が多すぎると、微生物の解体現象が起こってしまうが、ばっ気処理における送風量を制御することにより、廃水中の溶存酸素量を適正な範囲に維持すれば、第2槽におけるばっ気処理を一層効率的に行うことができる。
In the wastewater treatment method of the present invention, it is preferable that the amount of dissolved oxygen in the wastewater in the second tank is detected, and the amount of air blown in the aeration process is controlled according to the detection result.
If the amount of dissolved oxygen in the waste water in the second tank is too small, it becomes unsuitable for aerobic microorganisms, and aeration treatment cannot be performed sufficiently. Conversely, if the amount of dissolved oxygen is too large, the decomposition of microorganisms occurs. However, if the amount of dissolved oxygen in the wastewater is maintained within an appropriate range by controlling the air flow rate in the aeration process, the aeration process in the second tank can be performed more efficiently.

前記第1工程における前記廃水のpHは、4〜6の範囲内であることが好ましい。pHがこの範囲内でありことにより、第2槽から移送された活性汚泥を一層効率的に溶解させることができる。   The pH of the wastewater in the first step is preferably in the range of 4-6. When the pH is within this range, the activated sludge transferred from the second tank can be more efficiently dissolved.

前記廃水に含まれる有機物としては、例えば、家畜の乳、藁屑、糞尿等が挙げられる。
前記嫌気雰囲気とは、廃水の内部に、ブロワー等で空気を供給していない状態をいう。廃水の水面は、空気に触れていてもよい。
Examples of the organic matter contained in the wastewater include livestock milk, scum, and manure.
The anaerobic atmosphere refers to a state in which air is not supplied to the inside of wastewater by a blower or the like. The surface of the waste water may be in contact with air.

前記第2槽には、活性汚泥の担体となる、無機物から成る微粒子を添加することが好ましい。この微粒子が存在することにより、ばっ気処理を一層効率的に行うことができる。この微粒子としては、例えば、アルミナ微粒子が挙げられる。微粒子の量は、第2槽内の廃液1Lに対し1〜2mgの範囲が好ましい。   In the second tank, it is preferable to add fine particles made of an inorganic substance that serve as a carrier for activated sludge. By the presence of the fine particles, the aeration process can be performed more efficiently. Examples of the fine particles include alumina fine particles. The amount of the fine particles is preferably in the range of 1 to 2 mg with respect to 1 L of the waste liquid in the second tank.

本発明を具体的に説明する。
1.廃水処理装置の構成
廃水処理装置1の構成を図1に基づいて説明する。廃水処理装置1は、牧場の牛乳搾乳施設から排出される、廃乳を含む廃水の処理装置である。廃水処理装置1は、原水槽3、スクリーン5、嫌気濾床槽7、混合槽9、回分ばっ気槽11、原水槽3からスクリーン5に至る配管13、スクリーン5から嫌気濾床槽7に至る配管15、嫌気濾床槽7から混合槽9に至る配管17、混合槽9から回分ばっ気槽11に至る配管19、回分ばっ気槽11から廃水を外部に放流する配管21、及び回分ばっ気槽11から活性汚泥を嫌気濾床槽7及び混合槽9へ移送する活性汚泥配管22を備えている。
The present invention will be specifically described.
1. Configuration of Waste Water Treatment Device The configuration of the waste water treatment device 1 will be described with reference to FIG. The wastewater treatment apparatus 1 is a treatment apparatus for wastewater containing waste milk that is discharged from a milking facility on a ranch. The wastewater treatment apparatus 1 includes a raw water tank 3, a screen 5, an anaerobic filter bed tank 7, a mixing tank 9, a batch aeration tank 11, a pipe 13 extending from the raw water tank 3 to the screen 5, and a screen 5 extending to the anaerobic filter bed tank 7. Pipe 15, pipe 17 from the anaerobic filter bed tank 7 to the mixing tank 9, pipe 19 from the mixing tank 9 to the batch aeration tank 11, pipe 21 for discharging waste water from the batch aeration tank 11, and batch aeration An activated sludge pipe 22 for transferring activated sludge from the tank 11 to the anaerobic filter bed tank 7 and the mixing tank 9 is provided.

上記原水槽3は、搾乳場から排出される廃水を最初に受け入れる槽である。原水槽3は、フロートスイッチ23を備えており、原水槽3内の廃水の水位が所定の第1基準水位を超えると、図示しないフロートポンプをONとする。そのフロートポンプは、原水槽3内の廃水を、配管13を経て、スクリーン5に移送する。フロートスイッチ23は、原水槽3内の廃水の水位が、上記第1基準水位より低い第2基準水位よりも低くなると、上述したフロートポンプをOFFとし、廃水の移送を停止する。   The raw water tank 3 is a tank that first receives waste water discharged from the milking field. The raw water tank 3 is provided with a float switch 23, and when the level of waste water in the raw water tank 3 exceeds a predetermined first reference water level, a float pump (not shown) is turned on. The float pump transfers the waste water in the raw water tank 3 to the screen 5 through the pipe 13. When the waste water level in the raw water tank 3 is lower than the second reference water level that is lower than the first reference water level, the float switch 23 turns off the above-described float pump and stops the transfer of waste water.

上記スクリーン5は、地上の室内に設定された0.3mmエッジワイヤ式スクリーンである。スクリーン5は、廃水中に含まれる夾雑物(牛毛、藁、糞等)を除く機能を有する。スクリーン5を通過した廃水は、自然落差により、配管15を経て、嫌気濾床槽7に送られる。   The screen 5 is a 0.3 mm edge wire screen set in a room on the ground. The screen 5 has a function of removing impurities (such as cow hair, straw, feces) contained in the wastewater. The waste water that has passed through the screen 5 is sent to the anaerobic filter bed tank 7 through the pipe 15 due to a natural drop.

上記嫌気濾床槽7は、容量30m3のコンクリート製地下タンクであり、嫌気雰囲気にて、廃水に含まれる有機物(特に牛乳成分)を発酵分解するための槽である。嫌気濾床槽7は、上方のみ開口する仕切25、27により、7A〜7Cの3槽に区分されている。7A〜7Cの3槽の容量は、それぞれ、10m3である。7A〜7Cは、それぞれの底面付近に、廃水を常時攪拌する攪拌ポンプ29を備えている。また、7B、7Cは、それぞれ、図2に示す充填濾材30を備えている。充填濾材30は、市販のポリプロピレン製の線状(直径3mm)を絡み合わせて、円筒の形状としたものである。充填濾材30は7Bの容積の44%を占め、7Cの容積の28%を占める。 The anaerobic filter bed tank 7 is a concrete underground tank having a capacity of 30 m 3 and is a tank for fermenting and decomposing organic substances (particularly milk components) contained in wastewater in an anaerobic atmosphere. The anaerobic filter bed tank 7 is divided into three tanks 7A to 7C by partitions 25 and 27 that open only upward. The capacity of the three tanks 7A to 7C is 10 m 3 , respectively. 7A-7C is equipped with the stirring pump 29 which always stirs wastewater in the vicinity of each bottom face. Moreover, 7B and 7C are each provided with the filter medium 30 shown in FIG. The packed filter medium 30 is formed in a cylindrical shape by intertwining commercially available polypropylene (diameter 3 mm). The packed filter medium 30 occupies 44% of the volume of 7B and 28% of the volume of 7C.

スクリーン5から廃水を送る配管15は、7Aに接続しており、流入した廃水はまず、7Aを満たす。さらに廃水が流入すると、廃水は仕切25の上をオーバーフローして7Bに流入し、7Bも満たされると、廃水は仕切27の上をオーバーフローして7Cに流入する。7Cには、混合槽9に至る配管17が接続しており、7C内の廃水は、配管17を経て混合槽9に送られる。   The pipe 15 for sending waste water from the screen 5 is connected to 7A, and the waste water that flows in first fills 7A. When the wastewater further flows, the wastewater overflows over the partition 25 and flows into 7B. When 7B is also filled, the wastewater overflows over the partition 27 and flows into 7C. A pipe 17 leading to the mixing tank 9 is connected to 7C, and waste water in 7C is sent to the mixing tank 9 via the pipe 17.

上記混合槽9は、嫌気濾床槽7から配管17を経て送られた廃水を貯留する槽である。混合槽9は、フロートスイッチ31を備えており、そのフロートスイッチ31を用いて、嫌気濾床槽7からの廃水の流れを制御し、貯留する廃水の量を10m3に調整する。また、混合槽9から回分ばっ気槽11に至る配管19の途中には、混合槽9内の廃水を回分ばっ気槽11に移送するための混合槽ポンプ20が設けられている。 The mixing tank 9 is a tank for storing waste water sent from the anaerobic filter bed tank 7 through the pipe 17. The mixing tank 9 is provided with a float switch 31, and the flow of the waste water from the anaerobic filter bed tank 7 is controlled by using the float switch 31, and the amount of the stored waste water is adjusted to 10 m 3 . A mixing tank pump 20 for transferring waste water in the mixing tank 9 to the batch aeration tank 11 is provided in the middle of the pipe 19 from the mixing tank 9 to the batch aeration tank 11.

上記回分ばっ気槽11は、容量50m3、FRP製の横円筒型の槽であり、地下に設置されている。回分ばっ気槽11には、活性汚泥と、その担体であるアルミナ微粒子(商品名:ポスニア、日電工製)とが入れられている。また、回分ばっ気槽11は、その底面付近に、空気配管32から送られる空気を吹き出すブロワー33を備えている。よって、回分ばっ気槽11内に廃水を入れ、活性汚泥と混合した状態でブロワー33から空気を吹き出すことで、廃水のばっ気処理を行うことができる。 The batch aeration tank 11 is a horizontal cylindrical tank made of FRP having a capacity of 50 m 3 and is installed underground. The batch aeration tank 11 contains activated sludge and alumina fine particles (trade name: Posnia, manufactured by Nidec) as a carrier. In addition, the batch aeration tank 11 includes a blower 33 that blows out air sent from the air pipe 32 in the vicinity of the bottom surface thereof. Therefore, waste water can be aerated by putting waste water into the batch aeration tank 11 and blowing out air from the blower 33 in a state where it is mixed with activated sludge.

さらに、回分ばっ気槽11内には、廃水における溶存酸素濃度(DO値)を測定するセンサ35が設けられている。センサ35による測定結果に応じて、制御装置37は、ブロワー33の駆動源であるブロワーモーターの周波数、台数、回転数を表1に示すように変更し、ブロワー33の送風量を調整する。すなわち、溶存酸素量が多いと、送風量を低下させ、逆に、溶存酸素量が少ないと、送風量を増加させる。   Further, a sensor 35 for measuring the dissolved oxygen concentration (DO value) in the wastewater is provided in the batch aeration tank 11. In accordance with the measurement result by the sensor 35, the control device 37 changes the frequency, the number, and the number of rotations of the blower motor that is the drive source of the blower 33 as shown in Table 1, and adjusts the blower amount of the blower 33. That is, if the amount of dissolved oxygen is large, the amount of blown air is reduced. Conversely, if the amount of dissolved oxygen is small, the amount of blown air is increased.

Figure 2008259990
回分ばっ気槽11内の廃水は、配管21の途中に設けられた放流ポンプ39の駆動力により、配管21を経て、外部に放出される。回分ばっ気槽11は、フロートスイッチ40を備えおり、回分ばっ気槽11内の水位が高すぎるときは、混合槽9からの廃水の流入を止め、逆に、水位が低すぎるときは、廃水の外部への放出を止める。
Figure 2008259990
Waste water in the batch aeration tank 11 is discharged to the outside through the pipe 21 by the driving force of the discharge pump 39 provided in the middle of the pipe 21. The batch aeration tank 11 is provided with a float switch 40. When the water level in the batch aeration tank 11 is too high, the inflow of waste water from the mixing tank 9 is stopped, and conversely, when the water level is too low, the waste water Stops the release to the outside.

また、回分ばっ気槽11と嫌気濾床槽7とを接続する配管22の途中には、余剰汚泥移送ポンプ41が設けられており、これの駆動力により、回分ばっ気槽11内の活性汚泥(アルミナ微粒子も含む)の一部は、配管22を経て、嫌気濾床槽7に送られる。
2.廃水処理装置の使用方法
廃水処理装置1を用いて廃水を処理する方法を説明する。廃水処理装置1を用いて廃水を処理する方法の概略は、搾乳場から排出された廃水を、まず、原水槽3で貯留し、次に、廃水をスクリーン5を経て嫌気濾床槽7へ送り、そこで、嫌気雰囲気にて廃水中の有機物(特に廃乳)を発酵分解し、さらに、廃水を混合槽9を経て回分ばっ気槽11へ送り、そこでばっ気処理を行い、最後に廃水を外部に放出するというものである。また、廃水の流れとは別に、回分ばっ気槽11内の活性汚泥の一部を、定期的に嫌気濾床槽7へ送り、そこで、活性汚泥を廃水中に溶解させる。
Further, an excess sludge transfer pump 41 is provided in the middle of the pipe 22 connecting the batch aeration tank 11 and the anaerobic filter bed tank 7, and the activated sludge in the batch aeration tank 11 is driven by this driving force. A part of (including alumina fine particles) is sent to the anaerobic filter bed tank 7 through the pipe 22.
2. Method for Using Waste Water Treatment Device A method for treating waste water using the waste water treatment device 1 will be described. The outline of the method of treating wastewater using the wastewater treatment apparatus 1 is as follows. Wastewater discharged from the milking farm is first stored in the raw water tank 3 and then sent to the anaerobic filter bed tank 7 through the screen 5. Therefore, the organic matter (especially waste milk) in the wastewater is fermented and decomposed in an anaerobic atmosphere, and further, the wastewater is sent to the batch aeration tank 11 through the mixing tank 9, where the aeration treatment is performed, and finally the wastewater is externalized To be released. Moreover, apart from the flow of waste water, a part of the activated sludge in the batch aeration tank 11 is periodically sent to the anaerobic filter bed tank 7 where the activated sludge is dissolved in the waste water.

次に、図1及び図3のタイムチャートに基づいて、廃水処理装置1を用いて廃水を処理する方法を更に詳細に説明する。廃水処理装置1は、24時間連続的に運転され、1日の運転は3サイクルに区分できる。ここでは、午前5:30に始まる1サイクルを例にとって説明するが、他の2サイクルも同様である。   Next, based on the time chart of FIG.1 and FIG.3, the method to process wastewater using the wastewater treatment apparatus 1 is demonstrated in detail. The wastewater treatment apparatus 1 is continuously operated for 24 hours, and the daily operation can be divided into three cycles. Here, one cycle starting at 5:30 am will be described as an example, but the other two cycles are the same.

午前5:30〜8:30において、搾乳場において搾乳が行われ、廃棄乳を含む廃水が10トン、原水槽3に流入する。廃水は、廃棄乳を約2%含み、そのBODは約2100〜3800mg/Lである。廃水の流入により、原水槽3内の廃水の水位が、所定の第1基準水位を超えると、フロートスイッチ23がONになり、廃水を、スクリーン5を経て、嫌気濾床槽7に移送する。廃水の移送により、原水槽3内の廃水の水位が、第2基準水位よりも低くなると、フロートスイッチ23がOFFとなり、廃水の移送を停止する。   From 5:30 am to 8:30 am, milking is performed at the milking place, and 10 tons of waste water including waste milk flows into the raw water tank 3. Waste water contains about 2% of waste milk, and its BOD is about 2100-3800 mg / L. When the wastewater level in the raw water tank 3 exceeds a predetermined first reference water level due to the inflow of wastewater, the float switch 23 is turned on, and the wastewater is transferred to the anaerobic filter bed tank 7 via the screen 5. When the wastewater level in the raw water tank 3 becomes lower than the second reference water level due to the transfer of the wastewater, the float switch 23 is turned OFF and the transfer of the wastewater is stopped.

午前9:00に、回分ばっ気槽11におけるブロワー33の送風が停止する。なお、午前9:00までは、それ以前のサイクルで流入した廃水と活性汚泥との混合液にブロワー33で空気を吹き込み、ばっ気処理を行っていた。ブロワー33の送風停止は、午前10:15分まで継続する。   At 9:00 am, blowing of the blower 33 in the batch aeration tank 11 is stopped. Until 9:00 am, air was blown into the mixed solution of waste water and activated sludge that flowed in the previous cycle by the blower 33 to perform aeration. The blower stop of the blower 33 continues until 10:15 minutes.

午前9:20になると、ブロワー33の送風停止から十分時間が経過しているので、回分ばっ気槽11内で、活性汚泥は下方に沈殿し、上澄みは、活性汚泥を含まない廃水となっている。よって、この時刻からタイマーに基づいて10分間、余剰汚泥移送ポンプ41を駆動し、沈殿した活性汚泥の一部を、配管22を経て、嫌気濾床槽7に送る。送られる活性汚泥の量は約1.2m3である。この量は、回分ばっ気槽11内の活性汚泥の量が、長期的にみて、一定となるように設定された値である。 At 9:20 am, since sufficient time has passed since the blower 33 stopped blowing, the activated sludge settles downward in the batch aeration tank 11, and the supernatant becomes waste water that does not contain activated sludge. Yes. Therefore, the surplus sludge transfer pump 41 is driven for 10 minutes based on the timer from this time, and a part of the precipitated activated sludge is sent to the anaerobic filter bed tank 7 through the pipe 22. The amount of activated sludge sent is about 1.2 m 3 . This amount is a value set so that the amount of activated sludge in the batch aeration tank 11 is constant over the long term.

午前9:40になると、放流ポンプ39を駆動し、回分ばっ気槽11から、廃水を配管21を経て外部に放出する。このとき、回分ばっ気槽11内は、上述したとおり、沈殿した活性汚泥層と、上澄みの廃水とに分離しているので、放出する廃水は、上澄みから取り出したものである。廃水の放出はタイマーに基づいて10分間行い、放出量は10トンである。   At 9:40 am, the discharge pump 39 is driven, and the waste water is discharged from the batch aeration tank 11 through the pipe 21 to the outside. At this time, since the batch aeration tank 11 is separated into the precipitated activated sludge layer and the supernatant waste water as described above, the discharged waste water is taken out from the supernatant. The discharge of waste water is performed for 10 minutes based on a timer, and the discharge amount is 10 tons.

午前10:10になると、混合槽ポンプ20を駆動し、混合槽9内の廃水を、配管19を経て、回分ばっ気槽11に移送する。なお、このとき混合槽9内にあった廃水は、それ以前サイクルにおいて廃水処理装置1に流入したものである。この廃水の移送はタイマーに基づいて30分間行い、移送量は、先に回分ばっ気槽11から放出した量と同じ10トンである。よって、回分ばっ気槽11内の廃水量は、午前9:40以前の量に戻る。   At 10:10 am, the mixing tank pump 20 is driven, and the waste water in the mixing tank 9 is transferred to the batch aeration tank 11 through the pipe 19. In addition, the waste water which was in the mixing tank 9 at this time flows into the waste water treatment apparatus 1 in the cycle before that. This wastewater is transferred for 30 minutes based on a timer, and the transfer amount is 10 tons, which is the same as the amount discharged from the batch aeration tank 11 previously. Therefore, the amount of waste water in the batch aeration tank 11 returns to the amount before 9:40 am.

混合槽9から、上述したとおり、10トンの廃水が回分ばっ気槽11に移送されるが、同量の新たな廃水が、嫌気濾床槽7から、混合槽9に送られる。すなわち、混合槽9内の廃水が減少すると、混合槽9内のフロートスイッチ31がONとなり、嫌気濾床槽7からの廃水の流入を許可する。そして、フロートスイッチ31は、混合槽9内の廃水の量が所定量に達すると、嫌気濾床槽7からの廃水の流入を禁止する。   As described above, 10 tons of waste water is transferred from the mixing tank 9 to the batch aeration tank 11, but the same amount of new waste water is sent from the anaerobic filter bed tank 7 to the mixing tank 9. That is, when the waste water in the mixing tank 9 decreases, the float switch 31 in the mixing tank 9 is turned ON, and the inflow of waste water from the anaerobic filter bed tank 7 is permitted. The float switch 31 prohibits the inflow of waste water from the anaerobic filter bed tank 7 when the amount of waste water in the mixing tank 9 reaches a predetermined amount.

午前10:15分になると、ブロワー33が空気の吹き出しを再開する。よって、このときから、次のサイクルにて吹き出しを停止するとき(午後17:00)まで、回分ばっ気槽11内で廃水のばっ気処理が行われる。   At 10:15 am, the blower 33 resumes air blowing. Therefore, the aeration process of the wastewater is performed in the batch aeration tank 11 from this time until the blowout is stopped in the next cycle (17:00 pm).

なお、嫌気濾床槽7内の攪拌ポンプ29は常時運転されており、嫌気濾床槽7では、常時、嫌気雰囲気にて有機物の分解を行っている。
3.廃水処理装置1及び廃水処理方法が奏する効果
(i)廃水処理装置1を平成17年11月から、1年間以上連続的に運転した。そして、翌年の2月、6月、7月、9月、及び12月に、それぞれ、原水槽3内の廃水、嫌気濾床槽7内の廃水、及び回分ばっ気槽11からの放流水の水質を分析した。分析方法は、JIS K0102によった。その結果を表2に示す。
In addition, the stirring pump 29 in the anaerobic filter bed tank 7 is always operated, and the anaerobic filter bed tank 7 always decomposes organic substances in an anaerobic atmosphere.
3. Effects of wastewater treatment apparatus 1 and wastewater treatment method
(i) The wastewater treatment apparatus 1 has been operated continuously for more than one year since November 2005. Then, in February, June, July, September, and December of the following year, the waste water in the raw water tank 3, the waste water in the anaerobic filter bed tank 7, and the discharged water from the batch aeration tank 11, respectively. Water quality was analyzed. The analysis method was in accordance with JIS K0102. The results are shown in Table 2.

Figure 2008259990
表2から明らかに、放流水における各測定値は、処理前の廃水(原水槽3内の廃水)に比べて、大幅に減少していた。特に、6月以降の測定値は、著しく減少していた。この測定結果は、廃水処理装置1の有機物分解効果が高いことを立証している。
Figure 2008259990
Obviously from Table 2, each measured value in the discharged water was greatly reduced compared to the waste water before treatment (waste water in the raw water tank 3). In particular, the measured values after June have decreased significantly. This measurement result proves that the organic matter decomposition effect of the wastewater treatment apparatus 1 is high.

廃水処理装置1が有機物を分解する効果が高い理由の一つとして、回分ばっ気槽11に加えて、嫌気濾床槽7内でも乳蛋白を分解することが挙げられる。すなわち、嫌気濾床槽7内で化学式1示す、乳蛋白から酪酸、又は乳酸への発酵分解が進行し、有機物が低分子化して可溶となることがBODの低減に貢献していると考えられる。   One of the reasons why the wastewater treatment apparatus 1 has a high effect of decomposing organic substances is to decompose milk proteins in the anaerobic filter bed tank 7 in addition to the batch aeration tank 11. That is, in the anaerobic filter bed 7, the fermentation decomposition of milk protein to butyric acid or lactic acid progresses in Chemical Formula 1 and the organic substance becomes low-molecular and soluble, contributing to the reduction of BOD. It is done.

Figure 2008259990
嫌気濾床槽7内で、乳蛋白が発酵し、乳酸や酪酸などの有機酸に分解されることは、表3に示すように、嫌気濾床槽7、原水槽3、及び回分ばっ気槽11内における廃水のpHをそれぞれ測定したところ、原水槽3、及び回分ばっ気槽11では7以上であったのに対し、嫌気濾床槽7のみでは、4〜6という低い値であったことにより裏付けられる。
Figure 2008259990
The fact that milk protein is fermented and decomposed into organic acids such as lactic acid and butyric acid in the anaerobic filter bed tank 7, as shown in Table 3, the anaerobic filter bed tank 7, the raw water tank 3, and the batch aeration tank. When the pH of the waste water in each was measured, it was 7 or more in the raw water tank 3 and the batch aeration tank 11, whereas it was a low value of 4 to 6 only in the anaerobic filter bed tank 7. Is supported by

Figure 2008259990
また、嫌気濾床槽7内で、乳蛋白が発酵し、乳酸や酪酸などの有機酸に分解されることは、表4に示すように、嫌気濾床槽7、原水槽3、及び混合槽9内における廃水の温度をそれぞれ測定したところ、嫌気濾床槽7の温度は、他の槽に比べて顕著に高い(発酵熱によるものと考えられる)ことによっても裏付けられる。
Figure 2008259990
In addition, as shown in Table 4, anaerobic filter bed tank 7, raw water tank 3, and mixing tank indicate that milk protein is fermented and decomposed into organic acids such as lactic acid and butyric acid in anaerobic filter bed tank 7. When the temperature of the waste water in 9 is measured, it is supported also by the temperature of the anaerobic filter bed tank 7 being remarkably high compared with other tanks (it is considered to be due to fermentation heat).

Figure 2008259990
また、嫌気濾床槽7は、その内部に充填濾材30を備えることにより、乳蛋白が発酵する作用を一層促進することができる。
(ii)平成18年の1月から12月まで、1月おきに、回分ばっ気槽11内の活性汚泥沈殿率(SV30)、回分ばっ気槽11内の活性汚泥濃度(MLSS)、嫌気濾床槽7内の汚泥濃度(SS)を測定した。SV30は、1Lのメスシリンダーに回分ばっ気槽11内の廃水(活性汚泥を含むもの)を入れ、30分間放置した後に沈殿した活性汚泥容積(ml)の割合(%)である。測定結果を表5に示す。なお、表5には、それぞれの月での、処理前の廃水における平均BOD濃度も併せて示す。
Figure 2008259990
Moreover, the anaerobic filter bed tank 7 can further promote the action of fermenting milk proteins by providing the filled filter medium 30 therein.
(ii) From January to December 2006, every other month, the activated sludge sedimentation rate (SV30) in the batch aeration tank 11, the activated sludge concentration (MLSS) in the batch aeration tank 11, and anaerobic filtration The sludge concentration (SS) in the floor tank 7 was measured. SV30 is the percentage (%) of the activated sludge volume (ml) that settles after putting wastewater (including activated sludge) in the batch aeration tank 11 into a 1 L graduated cylinder and leaving it for 30 minutes. Table 5 shows the measurement results. Table 5 also shows the average BOD concentration in the wastewater before treatment in each month.

Figure 2008259990
表5から明らかに、SV30、MLSS、SSの値に増加傾向は見られない。廃水に含まれる有機物を回分ばっ気槽11内で分解すると、必ず汚泥が発生する。1日当りの廃水の量を30トン、処理前後における廃水のBODを、それぞれ、2000mg/L、120mg/Lとし、除去されたBODの30%が汚泥になるとすると、1日に発生する汚泥の量は16.9Kgとなる。汚泥が含水率98%の濃縮汚泥であるとして、体積に換算すると、一日に発生する汚泥の体積は0.845m3であり、1年では308m3である。この量は、回分ばっ気槽11の容量(50m3)、嫌気濾床槽7の容積(30m3)に比べて非常に多い量である。
Figure 2008259990
As apparent from Table 5, there is no increasing tendency in the values of SV30, MLSS, and SS. When organic substances contained in the wastewater are decomposed in the batch aeration tank 11, sludge is always generated. If the amount of wastewater per day is 30 tons, the BOD of wastewater before and after treatment is 2000 mg / L and 120 mg / L, respectively, and if 30% of the removed BOD becomes sludge, the amount of sludge generated per day Is 16.9 kg. As sludge is a water content of 98% concentrated sludge, in terms of volume, the volume of sludge generated in a day is 0.845M 3, in one year is 308m 3. This amount is much larger than the capacity of the batch aeration tank 11 (50 m 3 ) and the volume of the anaerobic filter bed tank 7 (30 m 3 ).

しかしながら、上述したとおり、回分ばっ気槽11及び嫌気濾床槽7内の活性汚泥の量は、1年を通して増加していない。これは、回分ばっ気槽11から嫌気濾床槽7へ送り出された活性汚泥が、嫌気濾床槽7にて廃水中に溶解しているためである。   However, as described above, the amount of activated sludge in the batch aeration tank 11 and the anaerobic filter bed tank 7 has not increased throughout the year. This is because the activated sludge sent out from the batch aeration tank 11 to the anaerobic filter bed tank 7 is dissolved in the wastewater in the anaerobic filter bed tank 7.

よって、廃水処理装置1を長期間使用しても、その中で活性汚泥が増加しないので、余剰の活性汚泥を抜き取る必要が無く、廃水処理装置1の管理が非常に容易である。
(iii) 廃水処理装置1は、回分ばっ気槽11内の廃水における溶存酸素量に応じて、ブロワー33の空気吹き込み量を調整するので、廃水中の溶存酸素量を適正な範囲に維持することができる。このことは、以下の実験により裏付けられている。まず、上記表1に示すとおりに、ブロワー33の空気吹き込み量を、廃水中の溶存酸素量に応じて調整するという条件下で、廃水処理装置1を運転した。そして、回分ばっ気槽11に新たな廃水10トンが流入したときから、1時間ごとに、回分ばっ気槽11内における廃水中の溶存酸素量(DO値)と、ブロワー33の風量とを測定した。また、ブロワー33の風量を一定にした条件でも、同様に、回分ばっ気槽11に新たな廃水10トンが流入したときから、1時間ごとに、廃水中の溶存酸素量と、ブロワー33の風量とを測定した。その結果を表6に示す。
Therefore, even if the wastewater treatment apparatus 1 is used for a long time, the activated sludge does not increase in the wastewater treatment apparatus 1, so that it is not necessary to extract excess activated sludge, and the management of the wastewater treatment apparatus 1 is very easy.
(iii) Since the wastewater treatment apparatus 1 adjusts the amount of air blown into the blower 33 according to the amount of dissolved oxygen in the wastewater in the batch aeration tank 11, the amount of dissolved oxygen in the wastewater must be maintained within an appropriate range. Can do. This is supported by the following experiment. First, as shown in Table 1, the wastewater treatment apparatus 1 was operated under the condition that the air blowing amount of the blower 33 was adjusted according to the dissolved oxygen amount in the wastewater. And, when 10 tons of new wastewater flows into the batch aeration tank 11, the dissolved oxygen amount (DO value) in the wastewater in the batch aeration tank 11 and the air volume of the blower 33 are measured every hour. did. Similarly, even under the condition that the air volume of the blower 33 is constant, the amount of dissolved oxygen in the waste water and the air volume of the blower 33 are changed every hour from when 10 tons of new waste water flows into the batch aeration tank 11. And measured. The results are shown in Table 6.

Figure 2008259990
表6から明らかに、ブロワー33の風量を廃水中の溶存酸素量に応じて調整すると、廃水中の溶存酸素量が高くなり過ぎず、適正な範囲に維持できることが分かる。一方、ブロワー33の風量を一定にすると、時間の経過につれて、廃水中の溶存酸素量が高くなり続けてしまう。
Figure 2008259990
From Table 6, it is clear that adjusting the air volume of the blower 33 according to the amount of dissolved oxygen in the wastewater does not increase the amount of dissolved oxygen in the wastewater, and can be maintained in an appropriate range. On the other hand, if the air volume of the blower 33 is kept constant, the amount of dissolved oxygen in the wastewater continues to increase as time passes.

溶存酸素量が少なすぎると、好気性微生物の生息に不適となり、ばっ気処理が十分行えなくなるし、逆に、溶存酸素量が多すぎると、微生物の解体減少が起こってしまうが、廃水処理装置1は、上記のとおり、廃水中の溶存酸素量を適正な範囲に維持できるので、ばっ気処理を一層安定的に行うことができる。
(iv) 廃水処理装置1は、回分ばっ気槽11に、活性汚泥の担体として作用するアルミナ微粒子を備えているため、ばっ気処理を一層効率的に行うことができる。なお、アルミナ微粒子の一部は、活性汚泥とともに、嫌気濾床槽7へ送られるが、後に、廃水とともに、回分ばっ気槽11に戻るため、回分ばっ気槽11にアルミナ微粒子11を補充しなくてもよい。
If the amount of dissolved oxygen is too small, it will be unsuitable for aerobic microorganisms and aerobic treatment will not be possible. On the other hand, if the amount of dissolved oxygen is too large, the disassembly of microorganisms will occur, but the wastewater treatment equipment Since 1 can maintain the amount of dissolved oxygen in wastewater in an appropriate range as described above, the aeration treatment can be more stably performed.
(iv) Since the wastewater treatment apparatus 1 includes alumina fine particles that act as a carrier for activated sludge in the batch aeration tank 11, the aeration treatment can be performed more efficiently. A part of the alumina fine particles is sent to the anaerobic filter bed tank 7 together with the activated sludge, but later returns to the batch aeration tank 11 together with the waste water, so that the batch aeration tank 11 is not replenished with the alumina fine particles 11. May be.

尚、本発明は前記実施の形態になんら限定されるものではなく、本発明を逸脱しない範囲において種々の態様で実施しうることはいうまでもない。
例えば、廃水処理装置1は、混合槽9を備えず、嫌気濾床槽7から、回分ばっ気槽11に廃水を移送するものであってもよい。
In addition, this invention is not limited to the said embodiment at all, and it cannot be overemphasized that it can implement with a various aspect in the range which does not deviate from this invention.
For example, the wastewater treatment apparatus 1 may not include the mixing tank 9 and may transfer the wastewater from the anaerobic filter bed tank 7 to the batch aeration tank 11.

廃水処理装置1の構成を表す説明図である。It is explanatory drawing showing the structure of the waste water treatment apparatus. 充填濾材30の構成を表す説明図であり、(a)は正面図、(b)は側面図である。It is explanatory drawing showing the structure of the filling filter medium 30, (a) is a front view, (b) is a side view. 廃水処理装置1の運転サイクルを表すタイムテーブルである。3 is a time table showing an operation cycle of the wastewater treatment apparatus 1.

符号の説明Explanation of symbols

1・・・廃水処理装置 3・・・原水槽 5・・・スクリーン
7・・・嫌気濾床槽 9・・・混合槽 11・・・回分ばっ気槽
13、15、17、19、21・・・配管 22・・・活性汚泥配管
25、27・・・仕切 29・・・攪拌ポンプ 30・・・充填濾材
31、40・・・フロートスイッチ 32・・・空気配管 33・・・ブロワー 35・・・センサ 37・・・制御装置 39・・・放流ポンプ
DESCRIPTION OF SYMBOLS 1 ... Waste water treatment apparatus 3 ... Raw water tank 5 ... Screen 7 ... Anaerobic filter bed tank 9 ... Mixing tank 11 ... Batch aeration tank 13, 15, 17, 19, 21, ..Piping 22 ... Activated sludge piping 25, 27 ... Partition 29 ... Agitation pump 30 ... Filled filter media 31, 40 ... Float switch 32 ... Air piping 33 ... Blower 35 .... Sensor 37 ... Control device 39 ... Discharge pump

Claims (7)

有機物を含む廃水を嫌気雰囲気にて保持する第1槽と、
前記第1槽を経由した前記廃水及び活性汚泥を保持し、ばっ気処理を行う第2槽と、
前記第2槽内における前記活性汚泥の一部を、前記第1槽に移送する活性汚泥移送手段と、
を備える廃水処理装置。
A first tank for holding wastewater containing organic matter in an anaerobic atmosphere;
A second tank for holding the wastewater and activated sludge that has passed through the first tank and performing an aeration process;
Activated sludge transfer means for transferring a part of the activated sludge in the second tank to the first tank;
A wastewater treatment apparatus comprising:
前記第2槽内の前記廃水における溶存酸素量を検出する検出手段と、
前記検出手段による検出結果に応じて、前記ばっ気処理における送風量を制御する送風量制御手段と、
を備えることを特徴とする請求項1記載の廃水処理装置。
Detection means for detecting the amount of dissolved oxygen in the wastewater in the second tank;
In accordance with the detection result by the detection means, the air volume control means for controlling the air volume in the aeration process,
The wastewater treatment apparatus according to claim 1, comprising:
前記有機物は、家畜の乳であることを特徴とする請求項1又は2に記載の廃水処理装置。   The wastewater treatment apparatus according to claim 1 or 2, wherein the organic matter is livestock milk. 有機物を含む廃水を、第1槽中で、嫌気雰囲気にて保持する第1工程と、
前記廃水を、前記第1槽から、活性汚泥を保持する第2槽へ移送し、ばっ気処理する第2工程とを含み、
前記第2槽が保持する前記活性汚泥の一部を、前記第1槽へ移送することを特徴とする廃水処理方法。
A first step of holding wastewater containing organic matter in an anaerobic atmosphere in the first tank;
A second step of transferring the waste water from the first tank to a second tank holding activated sludge and performing an aeration process;
A part of the activated sludge retained by the second tank is transferred to the first tank.
前記第2槽内の前記廃水における溶存酸素量を検出し、その検出結果に応じて、前記ばっ気処理における送風量を制御することを特徴とする請求項4に記載の廃水処理方法。   The wastewater treatment method according to claim 4, wherein the amount of dissolved oxygen in the wastewater in the second tank is detected, and the amount of air blown in the aeration process is controlled according to the detection result. 前記第1工程における前記廃水のpHが4〜6の範囲内であることを特徴とする請求項4又は5に記載の廃水処理方法。   The wastewater treatment method according to claim 4 or 5, wherein the pH of the wastewater in the first step is in the range of 4-6. 前記有機物は、家畜の乳であることを特徴とする請求項4〜6のいずれかに記載の廃水処理方法。   The wastewater treatment method according to any one of claims 4 to 6, wherein the organic matter is livestock milk.
JP2007106061A 2007-04-13 2007-04-13 Waste water treatment system and waste water treatment method Pending JP2008259990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007106061A JP2008259990A (en) 2007-04-13 2007-04-13 Waste water treatment system and waste water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007106061A JP2008259990A (en) 2007-04-13 2007-04-13 Waste water treatment system and waste water treatment method

Publications (1)

Publication Number Publication Date
JP2008259990A true JP2008259990A (en) 2008-10-30

Family

ID=39982886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007106061A Pending JP2008259990A (en) 2007-04-13 2007-04-13 Waste water treatment system and waste water treatment method

Country Status (1)

Country Link
JP (1) JP2008259990A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62183600U (en) * 1986-05-13 1987-11-21
JPS639299U (en) * 1986-07-07 1988-01-21
JPH03114596A (en) * 1989-09-28 1991-05-15 Meidensha Corp Apparatus for treating waste water
JPH0947781A (en) * 1995-08-11 1997-02-18 Seiriyuu Kk Treatment of organic material related to bod, nitrogen and phosphorus in waste water
JPH09150181A (en) * 1995-12-01 1997-06-10 Nishihara Environ Sanit Res Corp Sewage purifying device
JP2000117288A (en) * 1998-10-12 2000-04-25 Kubota Corp Treatment of milking parlor waste liquid and equipment used therefor
JP2000325992A (en) * 1999-05-19 2000-11-28 Nishihara Environ Sanit Res Corp Waste water treatment apparatus with sludge concentrating means
JP2003334582A (en) * 2002-05-21 2003-11-25 Meidensha Corp Air blow amount control method in activated sludge treatment, air blow amount control program and recording medium having program recorded thereon
JP2007000831A (en) * 2005-06-27 2007-01-11 Narasaki Seisakusho:Kk Organic wastewater treatment method and apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62183600U (en) * 1986-05-13 1987-11-21
JPS639299U (en) * 1986-07-07 1988-01-21
JPH03114596A (en) * 1989-09-28 1991-05-15 Meidensha Corp Apparatus for treating waste water
JPH0947781A (en) * 1995-08-11 1997-02-18 Seiriyuu Kk Treatment of organic material related to bod, nitrogen and phosphorus in waste water
JPH09150181A (en) * 1995-12-01 1997-06-10 Nishihara Environ Sanit Res Corp Sewage purifying device
JP2000117288A (en) * 1998-10-12 2000-04-25 Kubota Corp Treatment of milking parlor waste liquid and equipment used therefor
JP2000325992A (en) * 1999-05-19 2000-11-28 Nishihara Environ Sanit Res Corp Waste water treatment apparatus with sludge concentrating means
JP2003334582A (en) * 2002-05-21 2003-11-25 Meidensha Corp Air blow amount control method in activated sludge treatment, air blow amount control program and recording medium having program recorded thereon
JP2007000831A (en) * 2005-06-27 2007-01-11 Narasaki Seisakusho:Kk Organic wastewater treatment method and apparatus

Similar Documents

Publication Publication Date Title
JP5994253B2 (en) Biological treatment apparatus and method for organic wastewater
KR100921194B1 (en) Sewage and wastewater treatment plant
WO2007088860A1 (en) Method of biologically treating organic waste water
JP2004261711A (en) Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method
JP5773541B2 (en) Biological purification agent of treated water, biological purification system, and biological purification method
EP2008975A2 (en) A method for obtaining drinking water from a liquid fraction of human or animal faeces, a bioreactor unit, a storage tank, and a method for growing a bacterial culture for use in such a method
KR20090100962A (en) Stock raising onsite wastewater treatment apparatus
JPH1071396A (en) Circulating apparatus for culture pond
CN101293720A (en) Sequencing batch reactor for automatic dephosphorization and operation thereof
JP2006212612A (en) Method for decomposing and extinguishing excrement and urine of hog raising using composite fermentation method in composite microorganism dynamic system analysis of composite microorganism system
JP3268385B2 (en) Phosphorus-containing organic wastewater treatment equipment
US20190010066A1 (en) Decentralized wastewater treatment system for removing phosphorous
JP2008259990A (en) Waste water treatment system and waste water treatment method
JP5186626B2 (en) Biological purification method of sewage from livestock barn using shochu liquor wastewater
CN103803757A (en) Bean product waste water treatment method
US20070170113A1 (en) Insitu Grease/Biosolid Bioremediation Apparatus and Method
JP2004041981A (en) Organic waste water treatment method and its system
US3951788A (en) Sludge control and decant system
JP2002233888A (en) Waste water clarifying system
CN106795021A (en) Method of wastewater treatment and wastewater treatment equipment
JP4403704B2 (en) Biofilm filtration apparatus and treatment method
JP5147930B2 (en) Waste milk processing apparatus and method
JPH06496A (en) Advanced treatment of sewage
JPH07265897A (en) Method for purifying waste water and device therefor
JP2001087786A (en) Sewage treating apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110215

A131 Notification of reasons for refusal

Effective date: 20120828

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121218