JP2008259595A - Fluorescence observation apparatus - Google Patents

Fluorescence observation apparatus Download PDF

Info

Publication number
JP2008259595A
JP2008259595A JP2007103328A JP2007103328A JP2008259595A JP 2008259595 A JP2008259595 A JP 2008259595A JP 2007103328 A JP2007103328 A JP 2007103328A JP 2007103328 A JP2007103328 A JP 2007103328A JP 2008259595 A JP2008259595 A JP 2008259595A
Authority
JP
Japan
Prior art keywords
light
image
fluorescence
illumination light
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007103328A
Other languages
Japanese (ja)
Inventor
Mitsuharu Miwa
光春 三輪
Takahiro Shikayama
貴弘 鹿山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2007103328A priority Critical patent/JP2008259595A/en
Publication of JP2008259595A publication Critical patent/JP2008259595A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To make a reflected image from a background portion of a specimen and a fluorescence image from a region to be observed to be simultaneously observed at an appropriate image level. <P>SOLUTION: The endoscope apparatus 1 is a fluorescence observation apparatus to acquire an image by fluorescence and reflected light from a region S to be observed of a specimen including a fluorescence reagent having a fluorescence wavelength in an infrared area, a light casting portion 31 simultaneously casting an excitation light component of a prescribed wavelength region exciting a fluorescent pigment and an illumination component including the fluorescence wavelength of the fluorescent pigment, a driving circuit 33 adjusting the intensity of the illumination light component cast by the light casting portion 31, an imaging instrument 22 to image a fluorescence image L3 of a region to be observed S generated in accordance with the excitation light component and a reflected image L4 of the region S to be observed by lighting light, and an intensity control portion 45 controlling the intensity of the illumination light component on the basis of the brightness value of observation image data captured by the imaging instrument 22. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、被検体からの蛍光及び反射光による画像を取得する蛍光観察装置に関するものである。   The present invention relates to a fluorescence observation apparatus that acquires an image by fluorescence and reflected light from a subject.

近年、蛍光色素等の蛍光試薬が投与された観察部位から発せられる蛍光像に基づき、生体についての様々な情報を取得する技術が検討されている。このような技術の例として、下記特許文献1には、ランプ及びフィルタを用いて励起光を被検体に照射し、励起光のうちのわずかな光量を透過させ、且つ蛍光の波長域を透過させる観察用フィルタを通じて、撮像素子によってその蛍光像を撮像する装置が開示されている。このような装置は、蛍光の波長域とは異なる励起光の波長域の微弱な光強度の部分を透過させて背景用照明光として利用しようとするものである。また、下記特許文献2には、被検体に励起光を出射する光源と照明光を出射する光源とを有し、それぞれの光源の照射に応じて得られる蛍光観察画像及び通常観察画像を撮像する検出装置が提案されている。
特開2006−20727号公報 特開2006−14868号公報
In recent years, a technique for acquiring various information about a living body based on a fluorescence image emitted from an observation site to which a fluorescent reagent such as a fluorescent dye is administered has been studied. As an example of such a technique, the following Patent Document 1 irradiates a subject with excitation light using a lamp and a filter, transmits a slight amount of the excitation light, and transmits the fluorescence wavelength region. An apparatus that captures a fluorescent image by an image sensor through an observation filter is disclosed. Such an apparatus is intended to transmit a portion having a weak light intensity in a wavelength range of excitation light different from the wavelength range of fluorescence to be used as background illumination light. Patent Document 2 listed below includes a light source that emits excitation light and a light source that emits illumination light to a subject, and captures a fluorescence observation image and a normal observation image obtained in accordance with the irradiation of each light source. A detection device has been proposed.
JP 2006-20727 A JP 2006-14868 A

蛍光観察において蛍光及び反射光を観察する場合、観察対象、観察目的等によって適切な照明光の光量が異なる。また、観察部位に存在する蛍光試薬の量などによって蛍光の光量は変化するので、照明光の最適な光量も変化する。しかしながら、上記特許文献1記載の装置では、蛍光試薬からの蛍光と観察部位からの反射光との相対的な像レベルの調整ができず、被検体全体における蛍光箇所の位置が把握しにくい傾向にある。一方、上記特許文献2記載の検出装置では、蛍光観察画像と通常観察画像とを撮像するタイミングが異なるため、2つの像において時間的なズレが生じてしまい、被検体における観察部を適切に観察することが困難である。   When observing fluorescence and reflected light in fluorescence observation, the appropriate amount of illumination light varies depending on the observation target, observation purpose, and the like. In addition, since the amount of fluorescent light changes depending on the amount of fluorescent reagent present at the observation site, the optimal amount of illumination light also changes. However, in the apparatus described in Patent Document 1, the relative image level between the fluorescence from the fluorescent reagent and the reflected light from the observation site cannot be adjusted, and the position of the fluorescence site in the entire subject tends to be difficult to grasp. is there. On the other hand, in the detection apparatus described in Patent Document 2, the timing for capturing the fluorescence observation image and the normal observation image is different, so that a time shift occurs between the two images, and the observation part in the subject is appropriately observed. Difficult to do.

そこで、本発明は、かかる課題に鑑みて為されたものであり、被検体の背景部からの反射像と観察部位からの蛍光像とを適切な像レベルで同時に観察させることを可能にする蛍光観察装置を提供することを目的とする。   Therefore, the present invention has been made in view of such problems, and fluorescence that enables a reflected image from a background portion of a subject and a fluorescent image from an observation site to be simultaneously observed at an appropriate image level. An object is to provide an observation apparatus.

上記課題を解決するため、本発明の蛍光観察装置は、赤外領域に蛍光波長を有する蛍光試薬を含む被検体からの蛍光及び反射光による画像を取得する蛍光観察装置であって、蛍光試薬を励起する所定波長域の励起光と蛍光試薬の蛍光波長を含む照明光とを同時に照射する光照射部と、光照射部によって照射される照明光の強度を調整する調整機構と、励起光に応じて生成される被検体の蛍光像と照明光による被検体の反射像とを撮像する撮像装置と、撮像装置によって撮像された画像データの輝度値に基づいて、照明光の強度を制御する制御部と、を備える。   In order to solve the above problems, a fluorescence observation apparatus of the present invention is a fluorescence observation apparatus that acquires an image by fluorescence and reflected light from a subject including a fluorescence reagent having a fluorescence wavelength in the infrared region, Depending on the excitation light, a light irradiation unit that simultaneously irradiates excitation light in a predetermined wavelength range to be excited and illumination light including the fluorescence wavelength of the fluorescent reagent, an adjustment mechanism that adjusts the intensity of the illumination light irradiated by the light irradiation unit An imaging device that captures a fluorescent image of the subject generated in this manner and a reflected image of the subject by illumination light, and a control unit that controls the intensity of illumination light based on the luminance value of the image data captured by the imaging device And comprising.

このような蛍光観察装置によれば、所定波長域の励起光と蛍光波長を含む照明光とが光照射部によって同時に照射され、制御部により、被検体の蛍光像及び反射像による画像データの輝度値に応じて、励起光に対する照明光の相対的な強度が制御される。これにより、被検体から発せられる蛍光による像とその蛍光と同じ波長域の反射光による背景像とが同時に観察可能にされるとともに、両者の相対的な像レベルが自動制御されることにより、被検体における蛍光試薬を投与された観察部位の位置を簡易且つ適切に把握することができる。   According to such a fluorescence observation apparatus, excitation light in a predetermined wavelength region and illumination light including a fluorescence wavelength are simultaneously irradiated by the light irradiation unit, and the brightness of the image data based on the fluorescence image and the reflection image of the subject is controlled by the control unit. Depending on the value, the relative intensity of the illumination light with respect to the excitation light is controlled. As a result, an image of fluorescence emitted from the subject and a background image of reflected light in the same wavelength region as that of the fluorescence can be observed simultaneously, and the relative image level of both is automatically controlled, thereby It is possible to easily and appropriately grasp the position of the observation site where the fluorescent reagent is administered in the specimen.

制御部は、照明光を遮断するように調整機構を制御した際に得られる画像データの輝度値と現在の画像データの輝度値との関係が所定の関係になるように、照明光の強度を制御することが好ましい。この場合、被検体の蛍光像に対する反射像の像レベルを所望の関係となるように制御することができ、画像データにおける蛍光像と反射像とのバランスを確実に調整することが可能になる。   The control unit adjusts the intensity of the illumination light so that the relationship between the luminance value of the image data obtained when the adjustment mechanism is controlled to block the illumination light and the luminance value of the current image data is a predetermined relationship. It is preferable to control. In this case, the image level of the reflected image with respect to the fluorescent image of the subject can be controlled to have a desired relationship, and the balance between the fluorescent image and the reflected image in the image data can be reliably adjusted.

また、光照射部は、励起光を照射する励起光源と、照明光を照射する照明光源と、励起光源及び照明光源の光軸上に配置され、励起光と照明光とを合成するダイクロイックミラーとを有し、調整機構は、照明光源における照明光の照射強度を調整可能に構成されている、ことも好ましい。かかる構成を備えれば、ダイクロイックミラーにより励起光と照明光とが合成され、照明光源から照射される照明光の強度は制御部及び調整機構によって調整されるので、光照射部から出射される照明光の強度を励起光の強度に対して制御することができる。この場合、照明光の強度の調整が光源側で直接調整されるため、再現性の高い高精度な像レベルの制御が可能になる。   The light irradiation unit includes an excitation light source that irradiates excitation light, an illumination light source that irradiates illumination light, a dichroic mirror that is disposed on the optical axis of the excitation light source and the illumination light source, and combines the excitation light and the illumination light. It is also preferable that the adjustment mechanism is configured to be able to adjust the irradiation intensity of the illumination light in the illumination light source. With such a configuration, the excitation light and the illumination light are synthesized by the dichroic mirror, and the intensity of the illumination light emitted from the illumination light source is adjusted by the control unit and the adjustment mechanism, so that the illumination emitted from the light illumination unit The intensity of light can be controlled with respect to the intensity of excitation light. In this case, since the adjustment of the intensity of the illumination light is directly adjusted on the light source side, it is possible to control the image level with high reproducibility and high accuracy.

さらに、調整機構は、所定波長域の光を透過し、且つ蛍光波長の光を遮断する光学フィルタと、光学フィルタの位置を光照射部の光軸に対して交わる方向に移動させる位置調整部とを有し、制御部は、光学フィルタの移動量を制御する、ことも好ましい。こうすれば、光学フィルタの位置を制御部及び位置調整部によって制御することにより、光照射部から光学フィルタを透過して出射される照明光の強度を、励起光の強度に対して自動調整することができる。この場合、光学フィルタを移動させる機構を追加するだけで済むため、設計が容易でコストダウンが可能になる。   Further, the adjustment mechanism includes an optical filter that transmits light in a predetermined wavelength range and blocks light having a fluorescence wavelength, and a position adjustment unit that moves the position of the optical filter in a direction intersecting the optical axis of the light irradiation unit. It is also preferable that the control unit controls the movement amount of the optical filter. In this way, the position of the optical filter is controlled by the control unit and the position adjustment unit, so that the intensity of the illumination light emitted from the light irradiation unit through the optical filter is automatically adjusted with respect to the intensity of the excitation light. be able to. In this case, since it is only necessary to add a mechanism for moving the optical filter, the design is easy and the cost can be reduced.

本発明によれば、被検体の背景部からの反射像と観察部位からの蛍光像とを適切な像レベルで同時に観察させることができる。   According to the present invention, it is possible to simultaneously observe the reflected image from the background portion of the subject and the fluorescent image from the observation site at an appropriate image level.

以下、図面を参照しつつ本発明に係る蛍光観察装置の好適な実施形態について詳細に説明する。なお、図面の説明においては同一又は相当部分には同一符号を付し、重複する説明を省略する。   Hereinafter, preferred embodiments of a fluorescence observation apparatus according to the present invention will be described in detail with reference to the drawings. In the description of the drawings, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted.

[第1実施形態]
図1は、本発明の第1実施形態に係る蛍光観察装置である内視鏡装置1の概略構成図である。同図に示す内視鏡装置1は、人体等の被検体におけるリンパ節等を含む観察部位に対して所定波長の励起光を照射して、その観察部位から発せられる蛍光による像を観察するための撮像システムである。
[First Embodiment]
FIG. 1 is a schematic configuration diagram of an endoscope apparatus 1 which is a fluorescence observation apparatus according to the first embodiment of the present invention. The endoscope apparatus 1 shown in the figure irradiates an observation site including a lymph node in a subject such as a human body with an excitation light having a predetermined wavelength and observes an image due to fluorescence emitted from the observation site. This is an imaging system.

以下の実施形態における内視鏡装置1を用いた被検体の観察部位の検出に際しては、被検体の観察部位内に蛍光色素(蛍光試薬)を予め注入する。そして、観察部位内に蓄積された蛍光色素からの蛍光を観察して観察部位におけるリンパ節等を検出する。蛍光色素は内視鏡装置1の具体的な構成などを考慮して適宜に選択されるが、例えば、波長域750nm〜800nmの励起光で励起され、蛍光の中心波長が約845nmであるICG(インドシアニングリーン)等の赤外蛍光試薬が好適に使用される。この場合、励起波長及び蛍光波長は赤外波長域となるため、生体組織による吸収散乱の影響は少ない。そのため、光源より生体外から照射された励起光は生体表面を透過して観察部位に照射され、観察部位に注入された蛍光色素を励起し、蛍光を発生させる。また、生体内部の観察部位で発生した蛍光は、生体表面を透過し、生体外部に備えられた撮像装置で撮像される。したがって、赤外蛍光試薬を使用することにより、生体内部の蛍光観察が可能となる。   In detecting the observation site of the subject using the endoscope apparatus 1 in the following embodiment, a fluorescent dye (fluorescent reagent) is injected in advance into the observation site of the subject. Then, the fluorescence from the fluorescent dye accumulated in the observation site is observed to detect lymph nodes and the like in the observation site. The fluorescent dye is appropriately selected in consideration of the specific configuration of the endoscope apparatus 1 and the like. For example, ICG (excited with excitation light having a wavelength range of 750 nm to 800 nm and having a central wavelength of fluorescence of about 845 nm) An infrared fluorescent reagent such as indocyanine green) is preferably used. In this case, since the excitation wavelength and the fluorescence wavelength are in the infrared wavelength range, the influence of absorption and scattering by the living tissue is small. Therefore, the excitation light irradiated from outside the living body from the light source passes through the surface of the living body and is irradiated to the observation site, and excites the fluorescent dye injected into the observation site to generate fluorescence. Further, the fluorescence generated at the observation site inside the living body passes through the surface of the living body and is imaged by an imaging device provided outside the living body. Therefore, fluorescence observation inside the living body can be performed by using the infrared fluorescent reagent.

図1に示すように、内視鏡装置1は、光源装置10と、内視鏡ユニット11と、撮像装置ユニット12と、データ処理装置(制御部)13と、画像表示装置14とを備えている。内視鏡ユニット11の硬性鏡16には、光源装置10の導光ファイバ34が挿入され、光源装置10から照射される励起光成分L1及び照明光成分L2を含む光が、導光ファイバ34により被検体の観察部位Sに導かれる。   As shown in FIG. 1, the endoscope apparatus 1 includes a light source device 10, an endoscope unit 11, an imaging device unit 12, a data processing device (control unit) 13, and an image display device 14. Yes. The light guide fiber 34 of the light source device 10 is inserted into the rigid mirror 16 of the endoscope unit 11, and light including the excitation light component L 1 and the illumination light component L 2 emitted from the light source device 10 is transmitted by the light guide fiber 34. It is guided to the observation site S of the subject.

図2は、光源装置10の構成を詳細に示す図である。同図に示すように、光源装置10は、光源(励起光源)31a、発光素子(照明光源)31b、及びダイクロイックミラー32から構成される光照射部31と、調整機構としての駆動回路33と、導光ファイバ34とを備えている。   FIG. 2 is a diagram illustrating the configuration of the light source device 10 in detail. As shown in the figure, the light source device 10 includes a light irradiation unit 31 including a light source (excitation light source) 31a, a light emitting element (illumination light source) 31b, and a dichroic mirror 32, a drive circuit 33 as an adjustment mechanism, And a light guide fiber 34.

光源31aは、励起波長を含む発光波長域を有するキセノンランプやハロゲンランプ等の白色光源である。ただし、光源31aにより照射された光は、図示しない光学フィルタ又はダイクロイックミラー32によって、励起光の波長域の光成分が透過され、蛍光の波長域の光成分は遮断されている。発光素子31bは、光源31aの光軸LAと交差する光軸LAを有するように配置された発光ダイオード(LED)、レーザダイオード(LD)等の半導体発光素子であり、蛍光波長を含む照明光成分を照射する。具体的には、蛍光色素としてICGを用いる場合は、光源31aとして、波長域750nm〜800nmの励起光成分を照射可能なものが、発光素子31bとしてと、励起光より長波長である蛍光波長845nmを含む照明光成分を照射可能なものが使用される。ただし、光源31aの発光波長には、可視光が含まれていても良い。さらに、発光素子31bには、発光素子31bに供給する駆動電流を調整するための駆動回路33が接続されている。この駆動回路33は、データ処理装置13からの制御信号によって、発光素子31bに供給する駆動電流を調整する。つまり、駆動回路33が、光照射部31から導光ファイバ34に入射する蛍光波長を含む照明光成分の照射強度を、励起光成分に対して調整する機能を持つことを意味する。 The light source 31a is a white light source such as a xenon lamp or a halogen lamp having an emission wavelength range including an excitation wavelength. However, the light emitted from the light source 31a is transmitted by the optical component or the dichroic mirror 32 (not shown), and the light component in the wavelength region of the fluorescence is blocked. Emitting element 31b, the light source 31a of the optical axis LA 1 and intersecting the optical axis LA 2 arranged so as to have a luminescence diode (LED), a is a semiconductor light emitting element such as a laser diode (LD), a lighting including fluorescence wavelength Irradiate light component. Specifically, when ICG is used as the fluorescent dye, the light source 31a that can irradiate the excitation light component in the wavelength region of 750 nm to 800 nm is the light emitting element 31b and has a fluorescence wavelength of 845 nm that is longer than the excitation light. What can irradiate the illumination light component containing is used. However, visible light may be included in the emission wavelength of the light source 31a. Further, a drive circuit 33 for adjusting a drive current supplied to the light emitting element 31b is connected to the light emitting element 31b. The drive circuit 33 adjusts the drive current supplied to the light emitting element 31b according to a control signal from the data processing device 13. That is, it means that the drive circuit 33 has a function of adjusting the irradiation intensity of the illumination light component including the fluorescence wavelength incident on the light guide fiber 34 from the light irradiation unit 31 with respect to the excitation light component.

なお、ここでいう励起光成分とは、被検体に照射されて観察部位における蛍光を励起して蛍光像を生じさせるための光成分であり、照明光成分とは、被検体に照射されて観察部位の表面における反射像を生じさせるための光成分である。   The excitation light component here is a light component that is emitted to the subject to excite fluorescence at the observation site to generate a fluorescence image, and the illumination light component is irradiated to the subject for observation. This is a light component for generating a reflection image on the surface of the part.

光源31aの光軸LAと発光素子31bの光軸LAとが交差する位置には、ダイクロイックミラー32が配設されている。このダイクロイックミラー32は、その面が光軸LA及び光軸LAに対して斜めになるように設けられ、光源31aから入射する励起光成分を光軸LAに沿った方向に透過させ、発光素子31bから入射する蛍光波長を含む照明光成分を光軸LAに沿った方向に反射させる。このようなダイクロイックミラー32は、光源31aから出射された励起光成分と、発光素子31bから出射された照明光成分とを、共通の光軸LAに沿って進行する光として合成して、導光ファイバ34内へと導く。 The position where the optical axis LA 1 of the light source 31a and the optical axis LA 2 of the light emitting element 31b intersect, the dichroic mirror 32 is arranged. The dichroic mirror 32 is provided such that its surface is inclined with respect to the optical axis LA 1 and the optical axis LA 2 , and transmits the excitation light component incident from the light source 31 a in the direction along the optical axis LA 3 . It reflects the illumination light component comprising fluorescence wavelength incident from the light emitting element 31b in a direction along the optical axis LA 3. Such dichroic mirror 32, an excitation light component emitted from the light source 31a, and the emitted illumination light component from the light emitting element 31b, combined with the light traveling along the common optical axis LA 3, guide Guide into the optical fiber 34.

光照射部31の光軸LA上には、光照射部31からの光を被検体に導光するための光ファイバである導光ファイバ34が設けられている。この導光ファイバ34は、光照射部31から光軸LAに沿って進行した光が入射可能な位置に配置される。ここで、光照射部31から導光ファイバ34に入射する光は励起光成分と照明光成分が2次元的に異なる分布となっているが、その励起光成分と照明光成分とが導光ファイバ34を通過することにより導光ファイバ34内で合成される。その結果、導光ファイバ34内を通過して被検体に照射された光においては、励起光成分及び照明光成分の分布が2次元的に均一化される。 On the optical axis LA 3 of the light irradiation section 31, the light guide fiber 34 is provided an optical fiber for guiding light from the light irradiation unit 31 to the subject. The light guide fiber 34, the light that has traveled along the light irradiation unit 31 in the optical axis LA 3 is disposed possible incident position. Here, the light incident on the light guide fiber 34 from the light irradiation unit 31 has a two-dimensionally different distribution of the excitation light component and the illumination light component. By passing through 34, the light is synthesized in the light guide fiber 34. As a result, the distribution of the excitation light component and the illumination light component is two-dimensionally uniform in the light that passes through the light guide fiber 34 and is irradiated on the subject.

図1に戻って、内視鏡ユニット11の硬性鏡16内には、観察部位Sから発せられる蛍光像L3及び観察部位Sからの反射光により結ばれる反射像L4を撮像装置ユニット12に導く像伝送手段であるリレーレンズ17が設けられている。リレーレンズ17の硬性鏡16の先端側には対物レンズ18が、リレーレンズ17の硬性鏡16の基端側には接眼レンズ19が設けられている。リレーレンズ17は、対物レンズ18によって結像された蛍光像及び反射像を接眼レンズ19に伝送する。   Returning to FIG. 1, in the rigid endoscope 16 of the endoscope unit 11, an image for guiding the fluorescence image L3 emitted from the observation site S and the reflection image L4 formed by the reflected light from the observation site S to the imaging device unit 12. A relay lens 17 serving as a transmission means is provided. An objective lens 18 is provided on the distal end side of the rigid mirror 16 of the relay lens 17, and an eyepiece lens 19 is provided on the proximal end side of the rigid mirror 16 of the relay lens 17. The relay lens 17 transmits the fluorescent image and the reflected image formed by the objective lens 18 to the eyepiece lens 19.

硬性鏡16の基端部には、結像レンズ21が内蔵された結合器20を介して撮像装置ユニット12が取り付けられている。結像レンズ21は、リレーレンズ17及び接眼レンズ19によって伝送された蛍光像及び反射像を撮像装置ユニット12内のCCDカメラである撮像装置22上に結像する。撮像装置ユニット12内における結像レンズ21と撮像装置22との間には、光学フィルタ23が配置されている。光学フィルタ23は、撮像装置22上に蛍光像及び反射像を透過させ、光源装置10からの励起光成分によって発生した反射光を含むノイズ成分を遮断するために、蛍光波長近傍の光成分のみ透過させるバンドパスフィルタである。撮像装置22は、蛍光像L3及び反射像L4が同時に重畳された画像である観察画像をデータ処理装置13に出力する。   The imaging device unit 12 is attached to the proximal end portion of the rigid endoscope 16 via a coupler 20 in which an imaging lens 21 is built. The imaging lens 21 forms the fluorescent image and the reflected image transmitted by the relay lens 17 and the eyepiece lens 19 on an imaging device 22 that is a CCD camera in the imaging device unit 12. An optical filter 23 is disposed between the imaging lens 21 and the imaging device 22 in the imaging device unit 12. The optical filter 23 transmits a fluorescent image and a reflected image on the imaging device 22 and transmits only a light component in the vicinity of the fluorescence wavelength in order to block noise components including reflected light generated by the excitation light component from the light source device 10. It is a band pass filter to be made. The imaging device 22 outputs an observation image, which is an image in which the fluorescent image L3 and the reflected image L4 are simultaneously superimposed, to the data processing device 13.

データ処理装置13は、撮像装置用電源41と、画像処理部42と、A/Dコンバータ43と、画像記憶装置44と、強度制御部45とを有する情報処理装置である。撮像装置用電源41は、撮像装置22に接続されて撮像装置22に対して電力を供給する。画像処理部42は、撮像装置22から出力される観察画像をA/Dコンバータ43によってアナログ−デジタル変換された観察画像データとして受け取り、その観察画像データに対して輝度やコントラスト調整等の各種画像処理を実行する。そして、画像処理部42において画像処理が施された観察画像データは、情報記憶部である画像記憶装置44に記憶されるとともに、データ処理装置13に接続された画像表示装置14にて観察画像Imとして表示される。   The data processing device 13 is an information processing device having an imaging device power supply 41, an image processing unit 42, an A / D converter 43, an image storage device 44, and an intensity control unit 45. The power supply 41 for the imaging device is connected to the imaging device 22 and supplies power to the imaging device 22. The image processing unit 42 receives the observation image output from the imaging device 22 as observation image data analog-digital converted by the A / D converter 43, and performs various image processing such as brightness and contrast adjustment on the observation image data. Execute. The observation image data subjected to the image processing in the image processing unit 42 is stored in the image storage device 44 that is an information storage unit, and the observation image Im is connected to the image display device 14 connected to the data processing device 13. Is displayed.

データ処理装置13の強度制御部45は、光源装置10によって照射される励起光成分L1に応じて生成される蛍光像L3と、照明光成分L2に応じて生成される反射像L4とをもとに得られる観察画像データに基づいて、照明光成分L2の強度を制御する。すなわち、強度制御部45は、発光素子31bの駆動回路33を制御することにより、発光素子31bからの照明光成分L2を遮断させた際に得られる観察画像データを、蛍光画像データとして画像記憶装置44に記憶させる。そして、強度制御部45は、その蛍光画像データを画像記憶装置44から読み取って、その蛍光画像データの輝度値に基づいて、現在の観察画像データにおける蛍光像を除く反射像の輝度値と、蛍光画像データの輝度値とが所定の関係になるように駆動回路33の駆動電流の大きさを制御する。   The intensity control unit 45 of the data processing device 13 is based on the fluorescence image L3 generated according to the excitation light component L1 irradiated by the light source device 10 and the reflection image L4 generated according to the illumination light component L2. The intensity of the illumination light component L2 is controlled on the basis of the observation image data obtained in the above. In other words, the intensity control unit 45 controls the drive circuit 33 of the light emitting element 31b, whereby the observation image data obtained when the illumination light component L2 from the light emitting element 31b is blocked is stored as fluorescence image data in the image storage device. 44. Then, the intensity controller 45 reads the fluorescence image data from the image storage device 44, and based on the brightness value of the fluorescence image data, the brightness value of the reflected image excluding the fluorescence image in the current observation image data, and the fluorescence The magnitude of the drive current of the drive circuit 33 is controlled so that the luminance value of the image data has a predetermined relationship.

例えば、強度制御部45は、反射像における輝度値のピークが蛍光画像データの輝度値のピークの30%になるように発光素子31bの駆動電流を制御する。また、強度制御部45は、反射像の輝度値の平均が蛍光画像データにおける蛍光像の輝度値の平均と所定の関係を満たすように駆動電流を制御するように動作してもよい。このとき、強度制御部45は、反射像の輝度値を画像記憶装置44に記憶されている観察画像データから読み取りながら、駆動回路33に対して駆動電流を調整するための制御信号を送信することによって、照明光成分L2の強度を帰還制御する。   For example, the intensity control unit 45 controls the drive current of the light emitting element 31b so that the peak of the luminance value in the reflected image is 30% of the peak of the luminance value of the fluorescent image data. Further, the intensity control unit 45 may operate so as to control the drive current so that the average luminance value of the reflected image satisfies a predetermined relationship with the average luminance value of the fluorescent image in the fluorescent image data. At this time, the intensity control unit 45 transmits a control signal for adjusting the drive current to the drive circuit 33 while reading the luminance value of the reflected image from the observation image data stored in the image storage device 44. Thus, the intensity of the illumination light component L2 is feedback-controlled.

次に、図3を参照しながら、内視鏡装置1における照明光成分の照射強度の自動制御方法について説明する。   Next, an automatic control method of the irradiation intensity of the illumination light component in the endoscope apparatus 1 will be described with reference to FIG.

まず、強度制御部45は、光源装置10の光源31aの点灯を開始するように制御するとともに、光源装置10の発光素子31bを消灯させるように制御する(ステップS01)。そして、撮像装置22によって蛍光像L3が撮像される(ステップS02)。これに対して、蛍光像L3が撮像されることによって取得された蛍光画像データが、データ処理装置13に出力されて画像記憶装置44に記憶される(ステップS03)。   First, the intensity control unit 45 performs control so that the light source 31a of the light source device 10 starts to be turned on, and controls the light emitting element 31b of the light source device 10 to be turned off (step S01). Then, the fluorescent image L3 is captured by the imaging device 22 (step S02). On the other hand, the fluorescence image data acquired by capturing the fluorescence image L3 is output to the data processing device 13 and stored in the image storage device 44 (step S03).

次に、強度制御部45は、画像記憶装置44から蛍光画像データを読み取り、その蛍光画像の輝度値の最大値を検出する(ステップS04)。この蛍光画像データからの蛍光像の領域の設定は、画像の輝度値を二値化することにより行われる。さらに、強度制御部45は、検出した最大値の30%の値を、反射像の最適な輝度値である目標輝度値として算出する(ステップS05)。   Next, the intensity controller 45 reads the fluorescence image data from the image storage device 44 and detects the maximum value of the luminance value of the fluorescence image (step S04). The setting of the fluorescent image area from the fluorescent image data is performed by binarizing the luminance value of the image. Further, the intensity control unit 45 calculates a value of 30% of the detected maximum value as a target luminance value that is an optimal luminance value of the reflected image (step S05).

その後、強度制御部45は、駆動回路33に制御信号を送出することにより、光源装置10の発光素子31bの発光強度の制御を開始する(ステップS06)。具体的には、強度制御部45は、光源31a及び発光素子31bの両方の点灯を開始するように制御する(ステップS07)。これに対して、撮像装置22により、観察部位Sの蛍光像L3及び反射像L4が同時に重畳された観察画像が撮像される(ステップS08)。そして、撮像装置22からA/Dコンバータ43及び画像処理部42を経由して、その時点での観察画像データが画像記憶装置44に記憶される(ステップS09)。   Thereafter, the intensity control unit 45 starts control of the light emission intensity of the light emitting element 31b of the light source device 10 by sending a control signal to the drive circuit 33 (step S06). Specifically, the intensity control unit 45 performs control to start lighting of both the light source 31a and the light emitting element 31b (step S07). On the other hand, the imaging device 22 captures an observation image in which the fluorescence image L3 and the reflection image L4 of the observation site S are simultaneously superimposed (step S08). Then, the observation image data at that time is stored in the image storage device 44 via the A / D converter 43 and the image processing unit 42 from the imaging device 22 (step S09).

さらに、強度制御部45は、画像記憶装置44から最新の観察画像データを読み出して、その観察画像データからステップS04で設定された蛍光像の領域を除いた部分の反射像領域の輝度値の最大値を検索する(ステップS10)。そして、強度制御部45が、検索した輝度値の最大値が、ステップS05で算出した目標輝度値に所定の誤差範囲内で一致するか否かを判定する(ステップS11)。判定の結果、反射像の輝度値の最大値が目標輝度値に一致しない場合は(ステップS11;NO)、処理をステップS06に戻し、発光素子31bに供給する駆動電流を調整して再度発光素子31bの発光強度の制御処理(ステップS06〜S11)を繰り返す。   Further, the intensity controller 45 reads the latest observation image data from the image storage device 44, and maximizes the luminance value of the reflected image area of the portion excluding the fluorescent image area set in step S04 from the observation image data. A value is searched (step S10). Then, the intensity control unit 45 determines whether or not the searched maximum luminance value matches the target luminance value calculated in step S05 within a predetermined error range (step S11). As a result of the determination, if the maximum value of the luminance value of the reflected image does not match the target luminance value (step S11; NO), the process returns to step S06, the drive current supplied to the light emitting element 31b is adjusted, and the light emitting element is again formed. The emission intensity control process 31b (steps S06 to S11) is repeated.

一方、判定の結果、反射像の輝度値の最大値が目標輝度値に一致している場合は(ステップS11;YES)、画像記憶装置44に記憶された最新の観察画像データがディスプレイ等の画像表示装置14に観察画像Imとして表示される。   On the other hand, as a result of the determination, when the maximum value of the luminance value of the reflected image matches the target luminance value (step S11; YES), the latest observation image data stored in the image storage device 44 is an image such as a display. It is displayed on the display device 14 as an observation image Im.

以上説明した内視鏡装置1によれば、所定波長域の励起光成分と蛍光波長を含む照明光成分とが光照射部31によって同時に照射され、強度制御部45により、被検体の蛍光像及び反射像による観察画像データの輝度値に応じて、励起光成分に対する照明光成分の相対的な強度が制御される。これにより、被検体の観察部位Sから発せられる蛍光による像とその蛍光と同じ波長域の反射光による反射像とが同時に観察可能にされるとともに、両者の相対的な像レベルが自動制御されることにより、観察部位Sの背景部分においてどの位置で蛍光を発しているかが面倒な操作なしに画像上で容易に観察できる。その結果、観察部位Sにおける蛍光試薬を投与された位置を簡易且つ適切に把握することができる。ここでいう像レベルとは、蛍光像及び反射像の輝度値、または、蛍光像と反射像とのコントラストである。   According to the endoscope apparatus 1 described above, the excitation light component in the predetermined wavelength region and the illumination light component including the fluorescence wavelength are simultaneously irradiated by the light irradiation unit 31, and the intensity control unit 45 causes the fluorescence image of the subject and The relative intensity of the illumination light component with respect to the excitation light component is controlled according to the luminance value of the observation image data by the reflected image. As a result, it is possible to simultaneously observe an image by fluorescence emitted from the observation site S of the subject and a reflected image by reflected light in the same wavelength region as the fluorescence, and the relative image level of both is automatically controlled. Thus, the position where the fluorescence is emitted in the background portion of the observation site S can be easily observed on the image without a troublesome operation. As a result, the position where the fluorescent reagent is administered in the observation site S can be easily and appropriately grasped. The image level here is the luminance value of the fluorescent image and the reflected image, or the contrast between the fluorescent image and the reflected image.

また、現在の反射像の最大輝度値が照明光成分を遮断した際の蛍光像の最大輝度値の所定割合になるように、照明光の強度が制御されるので、被検体の蛍光像に対する反射像の像レベルを所望の関係となるように制御することができ、観察画像データにおける蛍光像と反射像とのバランスを確実に調整することが可能になる。   In addition, since the intensity of the illumination light is controlled so that the current maximum luminance value of the reflected image becomes a predetermined ratio of the maximum luminance value of the fluorescent image when the illumination light component is blocked, the reflection of the subject on the fluorescent image is reflected. The image level of the image can be controlled to have a desired relationship, and the balance between the fluorescent image and the reflected image in the observation image data can be adjusted with certainty.

また、ダイクロイックミラー32により励起光成分と照明光成分とが合成され、発光素子31bから照射される照明光成分の強度は強度制御部45及び駆動回路33によって調整されるので、光照射部31から出射される照明光成分の強度を励起光成分の強度に対して制御することができる。この場合、照明光成分の強度の調整が光源側で直接調整されるため、再現性の高い高精度な像レベルの制御が可能になる。   Further, the excitation light component and the illumination light component are synthesized by the dichroic mirror 32, and the intensity of the illumination light component irradiated from the light emitting element 31b is adjusted by the intensity control unit 45 and the drive circuit 33. The intensity of the emitted illumination light component can be controlled with respect to the intensity of the excitation light component. In this case, since the adjustment of the intensity of the illumination light component is directly adjusted on the light source side, it is possible to control the image level with high reproducibility and high accuracy.

[第2実施形態]
次に、本発明の第2実施形態について説明する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described.

図4は、本発明の第2実施形態である内視鏡装置101の概略構成図である。内視鏡装置101は、光源装置110の構成が、第1実施形態にかかる内視鏡装置1と相違する。   FIG. 4 is a schematic configuration diagram of an endoscope apparatus 101 according to the second embodiment of the present invention. The endoscope apparatus 101 is different from the endoscope apparatus 1 according to the first embodiment in the configuration of the light source device 110.

詳細には、図5に示すように、光源装置110は、光源(光照射部)131と、調整機構としての光学フィルタ132、スライド機構(位置調整部)133、モータ(位置調整部)M、及びモータ駆動回路(位置調整部)135と、導光ファイバ34とを備えている。光源131は、被検体に投与される蛍光色素の励起波長と、その蛍光色素から発せられる蛍光の波長とを、発光波長域として含む光を照射する。具体的には、蛍光色素としてICGを用いる場合は、光源131として、波長域750nm〜800nmの励起光成分と、励起光より長波長である蛍光波長845nmを含む照明光成分とを同時に照射可能なものが使用される。このような光源131としては、可視光から赤外光までの発光波長特性を有するキセノンランプやハロゲンランプ等の白色光源が好適に用いられる。   Specifically, as illustrated in FIG. 5, the light source device 110 includes a light source (light irradiation unit) 131, an optical filter 132 as an adjustment mechanism, a slide mechanism (position adjustment unit) 133, a motor (position adjustment unit) M, And a motor drive circuit (position adjustment unit) 135 and a light guide fiber 34. The light source 131 irradiates light including an excitation wavelength of a fluorescent dye to be administered to a subject and a wavelength of fluorescence emitted from the fluorescent dye as an emission wavelength range. Specifically, when ICG is used as a fluorescent dye, the light source 131 can simultaneously irradiate an excitation light component having a wavelength range of 750 nm to 800 nm and an illumination light component having a fluorescence wavelength of 845 nm that is longer than the excitation light. Things are used. As such a light source 131, a white light source such as a xenon lamp or a halogen lamp having an emission wavelength characteristic from visible light to infrared light is preferably used.

光源131の前方における光源131の光軸LA上には、光学フィルタ132が設けられている。この光学フィルタ132は、励起光の波長域の光を透過し、蛍光の波長域の光を遮断する。例えば、蛍光色素がICGの場合は、光学フィルタ132としては、810nm以上の波長域の光を遮断する光学フィルタ素子が用いられる。図6は、光源131から光学フィルタ132を透過して照射される光の波長特性を示すグラフである。同図に示すように、光源131から直接照射される白色光は、励起光の波長域750nm〜800nm及び蛍光波長845nmを含み、可視光領域から赤外領域までにわたる発光波長特性を有している。これに対して、光源131の前方に光学フィルタ132を設けた場合に光学フィルタ132を透過して照射される光は、蛍光波長845nmを含む長波長領域が遮断されている一方、約800nmより短波長の領域では、直接照射される白色光の特性とほぼ同じ特性を有していることがわかる。 An optical filter 132 is provided on the optical axis LA 1 of the light source 131 in front of the light source 131. The optical filter 132 transmits light in the wavelength region of excitation light and blocks light in the wavelength region of fluorescence. For example, when the fluorescent dye is ICG, an optical filter element that blocks light in the wavelength region of 810 nm or more is used as the optical filter 132. FIG. 6 is a graph showing the wavelength characteristics of light irradiated from the light source 131 through the optical filter 132. As shown in the figure, the white light directly emitted from the light source 131 includes the excitation light wavelength range of 750 nm to 800 nm and the fluorescence wavelength of 845 nm, and has emission wavelength characteristics ranging from the visible light region to the infrared region. . On the other hand, when the optical filter 132 is provided in front of the light source 131, the light irradiated through the optical filter 132 is cut off from a long wavelength region including the fluorescence wavelength of 845 nm, but shorter than about 800 nm. It can be seen that in the wavelength region, it has almost the same characteristic as that of the white light directly irradiated.

図5に戻って、上記の光学フィルタ132は、スライド機構133によって光軸LAに対して垂直な面に沿ってスライド可能に支持されている。このスライド機構133は、光源131からの光の一部を導光ファイバ34に直接入射させるためのものである。スライド機構133の構造については光学フィルタ132の形状に応じて適宜選択されるが、光学フィルタ132の端部が挿入される枠状構造体が光学フィルタ132と一体でスライド可能に構成されたもの等が挙げられる。さらに、このスライド機構133は、モータMによりギア等の動力伝達機構を介してスライド駆動され、モータMはモータ駆動回路135から駆動信号が供給される。スライド機構133は、データ処理装置13の強度制御部145からモータ駆動回路135に与えられる制御信号により、その光軸LAに対して垂直な面に沿った移動量が制御される。 Returning to FIG. 5, the above-mentioned optical filter 132 is slidably supported along a plane perpendicular to the optical axis LA 1 by the slide mechanism 133. The slide mechanism 133 is for causing a part of light from the light source 131 to directly enter the light guide fiber 34. The structure of the slide mechanism 133 is appropriately selected according to the shape of the optical filter 132, but the frame-like structure into which the end of the optical filter 132 is inserted is configured to be slidable integrally with the optical filter 132. Is mentioned. Further, the slide mechanism 133 is slide-driven by a motor M via a power transmission mechanism such as a gear, and the motor M is supplied with a drive signal from a motor drive circuit 135. The slide mechanism 133 is controlled in the amount of movement along a plane perpendicular to the optical axis LA 1 by a control signal supplied from the intensity control unit 145 of the data processing device 13 to the motor drive circuit 135.

このようなスライド機構133は、光源131から導光ファイバ34に導かれる光束Bの一部が光学フィルタ132を透過し、光束Bの外縁側の他の一部が光学フィルタ132の端部より外側を通過するように光学フィルタ132をスライド可能にする。これにより、光束Bのうちの光学フィルタ132の外側を通過する部分の割合が調整される。光束Bのうちの光学フィルタ132の外側を通過する光は810nm以上の波長域を有している。このことから、スライド機構133、及びモータMが、光源131から導光ファイバ34に入射する蛍光波長を含む照明光成分の強度を、励起光成分に対して調整する機能を持つことを意味する。   In such a slide mechanism 133, a part of the light beam B guided from the light source 131 to the light guide fiber 34 passes through the optical filter 132, and another part of the outer edge side of the light beam B is outside the end of the optical filter 132. The optical filter 132 is made slidable so as to pass through. Thereby, the ratio of the part which passes the outer side of the optical filter 132 among the light beams B is adjusted. The light that passes outside the optical filter 132 in the light beam B has a wavelength region of 810 nm or more. This means that the slide mechanism 133 and the motor M have a function of adjusting the intensity of the illumination light component including the fluorescence wavelength incident on the light guide fiber 34 from the light source 131 with respect to the excitation light component.

図7は、内視鏡装置101における照明光成分の照射強度の自動制御処理を示すフローチャートである。同図に示すステップS22〜S25、及びステップS27〜S31の処理は、図3におけるステップS02〜S05、及びステップS08〜S12の処理と同様であるので、その詳細な説明を省略する。   FIG. 7 is a flowchart showing an automatic control process of the irradiation intensity of the illumination light component in the endoscope apparatus 101. Since the processes of steps S22 to S25 and steps S27 to S31 shown in the figure are the same as the processes of steps S02 to S05 and steps S08 to S12 in FIG. 3, detailed description thereof will be omitted.

まず、強度制御部145は、スライド機構133の移動量えお制御して、光学フィルタ132が光束Bを完全に覆うような位置にくるように調整するとともに、光源装置110の光源131の点灯を開始するように制御する(ステップS21)。その後、ステップS22〜S25の処理により、強度制御部145が、反射像の最適な輝度値である目標輝度値を算出する。   First, the intensity control unit 145 controls the amount of movement of the slide mechanism 133 to adjust the optical filter 132 to a position that completely covers the light beam B, and turns on the light source 131 of the light source device 110. Control is performed to start (step S21). Thereafter, the intensity control unit 145 calculates a target luminance value, which is an optimum luminance value of the reflected image, by the processes of steps S22 to S25.

次に、強度制御部145は、モータ駆動回路135に制御信号を送出することにより、光学フィルタ132を徐々に光束Bの外側に向けて移動させるように制御する(ステップS26)。この光学フィルタ132の位置調整は、観察画像データから得られた反射像領域の輝度値の最大値が目標輝度値に一致するまで繰り返される(ステップS26〜ステップS30)。   Next, the intensity control unit 145 sends a control signal to the motor drive circuit 135 to control the optical filter 132 to gradually move toward the outside of the light beam B (step S26). This position adjustment of the optical filter 132 is repeated until the maximum value of the luminance value of the reflected image region obtained from the observation image data matches the target luminance value (steps S26 to S30).

以上説明した内視鏡装置101によれば、スライド機構133、モータM、及びモータ駆動回路135によって光学フィルタ132の位置を制御することにより、光源131から光学フィルタ132を透過して出射される照明光成分の強度を、励起光成分の強度に対して増減させることができる。この場合、光学フィルタ132をスライドさせる機構を追加するだけで済むため、設計が容易でコストダウンが可能になる。   According to the endoscope apparatus 101 described above, the illumination emitted from the light source 131 through the optical filter 132 by controlling the position of the optical filter 132 by the slide mechanism 133, the motor M, and the motor drive circuit 135. The intensity of the light component can be increased or decreased relative to the intensity of the excitation light component. In this case, it is only necessary to add a mechanism for sliding the optical filter 132, so that the design is easy and the cost can be reduced.

図8は、蛍光色素を含む蛍光体が埋め込まれた半円型の試料を対象にして、内視鏡装置101を用いて取得された観察画像を示す図であり、(a)は、光学フィルタ132の位置制御により光源装置110から照射される照明光成分の強度を最適に調整した際の観察画像、(b)は、励起光成分に対して照明光成分の強度を上げた場合の観察画像、(c)は、照明光成分を完全にカットした場合の観察画像である。これらの図に示すように、照明光成分が強すぎたり弱すぎたりすると試料における蛍光像の位置の識別が困難である一方(図8(b)及び図8(c))、内視鏡装置101を用いて照明光成分の強度を適切に制御することによって、被検体の観察部位においてどの部分から蛍光が発せられているのかを容易に識別することができる(図8(a))。   FIG. 8 is a diagram showing an observation image acquired using the endoscope apparatus 101 for a semicircular sample in which a phosphor containing a fluorescent dye is embedded. FIG. 8A shows an optical filter. An observation image when the intensity of the illumination light component irradiated from the light source device 110 is optimally adjusted by the position control 132, and (b) is an observation image when the intensity of the illumination light component is increased with respect to the excitation light component. , (C) are observation images when the illumination light component is completely cut. As shown in these drawings, if the illumination light component is too strong or too weak, it is difficult to identify the position of the fluorescent image in the sample (FIG. 8B and FIG. 8C), while the endoscope apparatus. By appropriately controlling the intensity of the illumination light component using 101, it is possible to easily identify from which part the fluorescence is emitted at the observation site of the subject (FIG. 8A).

なお、本発明は、前述した実施形態に限定されるものではない。例えば、照明光成分の強度制御の際には、観察画像データの蛍光像における平均輝度値に対する反射像の平均輝度値が所定の関係を満たすように制御してもよい。また、観測者が予め励起光成分と照明光成分とを調整するとともに、観察画像データにおける蛍光像及び反射像の位置をROI(Region of Interest)として予め設定し、それらの位置における蛍光像及び反射像の輝度値の関係が常に一定になるように制御してもよい。   In addition, this invention is not limited to embodiment mentioned above. For example, when controlling the intensity of the illumination light component, the average luminance value of the reflected image with respect to the average luminance value in the fluorescent image of the observation image data may be controlled to satisfy a predetermined relationship. In addition, the observer adjusts the excitation light component and the illumination light component in advance, and the positions of the fluorescence image and the reflection image in the observation image data are set in advance as ROI (Region of Interest), and the fluorescence image and the reflection at these positions are set. You may control so that the relationship of the luminance value of an image becomes always constant.

また、本発明の蛍光観察装置は内視鏡装置に限定されず、外科的に曝露された組織を観察する際に使用されてもよい。この場合においても、照明光の強度を励起光の強度に対して増減させることで、蛍光と反射光との光量バランスを最適化することができる。また、このような構成によれば、手術中などで曝露された組織に対する蛍光観察が可能となる。励起光及び照明光が観察対象部位に均一に照射されるように光源を配置すれば、光源装置は導光ファイバを必ずしも備えていなくてもよい。   The fluorescence observation apparatus of the present invention is not limited to an endoscope apparatus, and may be used when observing a surgically exposed tissue. Also in this case, the light intensity balance between the fluorescence and the reflected light can be optimized by increasing or decreasing the intensity of the illumination light with respect to the intensity of the excitation light. Further, according to such a configuration, fluorescence observation can be performed on a tissue exposed during surgery or the like. If the light source is arranged so that the excitation light and the illumination light are evenly applied to the observation target site, the light source device does not necessarily include the light guide fiber.

また、本発明の蛍光観察装置の用途はリンパ節の観察のみに限定されず、赤外蛍光イメージング装置として広く用いることができる。例えば、本発明の蛍光観察装置は血管中の血流を観察することも可能であり、冠状動脈バイパスグラフト(CABG)外科手術などで使用することもできる。   Moreover, the use of the fluorescence observation apparatus of the present invention is not limited to observation of lymph nodes, but can be widely used as an infrared fluorescence imaging apparatus. For example, the fluorescence observation apparatus of the present invention can also observe blood flow in blood vessels and can be used in coronary artery bypass graft (CABG) surgery or the like.

本発明の第1実施形態に係る蛍光観察装置である内視鏡装置の概略構成図である。1 is a schematic configuration diagram of an endoscope apparatus that is a fluorescence observation apparatus according to a first embodiment of the present invention. 図1の光源装置の構成を詳細に示す図である。It is a figure which shows the structure of the light source device of FIG. 1 in detail. 図1の内視鏡装置の照明光成分の強度制御処理を示すフローチャートである。It is a flowchart which shows the intensity control process of the illumination light component of the endoscope apparatus of FIG. 本発明の第2実施形態に係る蛍光観察装置である内視鏡装置の概略構成図である。It is a schematic block diagram of the endoscope apparatus which is a fluorescence observation apparatus which concerns on 2nd Embodiment of this invention. 図4の光源装置の構成を詳細に示す図である。It is a figure which shows the structure of the light source device of FIG. 4 in detail. 図5の光源から光学フィルタを透過して照射される光の波長特性を示すグラフである。6 is a graph showing wavelength characteristics of light irradiated from the light source of FIG. 5 through an optical filter. 図4の内視鏡装置の照明光成分の強度制御処理を示すフローチャートである。It is a flowchart which shows the intensity | strength control process of the illumination light component of the endoscope apparatus of FIG. 図4の内視鏡装置を用いて取得された観察画像を示す図である。It is a figure which shows the observation image acquired using the endoscope apparatus of FIG.

符号の説明Explanation of symbols

1,101…内視鏡装置、S…観察部位(被検体)、L1…励起光成分、L2…照明光成分、31…光照射部、33…駆動回路(調整機構)、45,145…強度制御部、31a…光源(励起光源)、31b…発光素子(照明光源)、32…ダイクロイックミラー、132…光学フィルタ(調整機構)、133…スライド機構(調整機構、位置調整部)、M…モータ(調整機構、位置調整部)、135…モータ駆動回路(調整機構、位置調整部)。
DESCRIPTION OF SYMBOLS 1,101 ... Endoscope apparatus, S ... Observation part (subject), L1 ... Excitation light component, L2 ... Illumination light component, 31 ... Light irradiation part, 33 ... Drive circuit (adjustment mechanism), 45, 145 ... Intensity Control part, 31a ... Light source (excitation light source), 31b ... Light emitting element (illumination light source), 32 ... Dichroic mirror, 132 ... Optical filter (adjustment mechanism), 133 ... Slide mechanism (adjustment mechanism, position adjustment part), M ... Motor (Adjustment mechanism, position adjustment unit), 135... Motor drive circuit (adjustment mechanism, position adjustment unit).

Claims (4)

赤外領域に蛍光波長を有する蛍光試薬を含む被検体からの蛍光及び反射光による画像を取得する蛍光観察装置であって、
前記蛍光試薬を励起する所定波長域の励起光と前記蛍光試薬の蛍光波長を含む照明光とを同時に照射する光照射部と、
前記光照射部によって照射される前記照明光の強度を調整する調整機構と、
前記励起光に応じて生成される前記被検体の蛍光像と前記照明光による前記被検体の反射像とを撮像する撮像装置と、
前記撮像装置によって撮像された画像データの輝度値に基づいて、前記照明光の強度を制御する制御部と、
を備えることを特徴とする蛍光観察装置。
A fluorescence observation apparatus for acquiring an image by fluorescence and reflected light from a subject including a fluorescent reagent having a fluorescence wavelength in an infrared region,
A light irradiation unit that simultaneously irradiates excitation light in a predetermined wavelength range for exciting the fluorescent reagent and illumination light including a fluorescent wavelength of the fluorescent reagent;
An adjustment mechanism for adjusting the intensity of the illumination light irradiated by the light irradiation unit;
An imaging device that captures a fluorescent image of the subject generated in response to the excitation light and a reflected image of the subject by the illumination light;
A control unit that controls the intensity of the illumination light based on a luminance value of image data captured by the imaging device;
A fluorescence observation apparatus comprising:
前記制御部は、前記照明光を遮断するように前記調整機構を制御した際に得られる前記画像データの輝度値と現在の前記画像データの輝度値との関係が所定の関係になるように、前記照明光の強度を制御することを特徴とする請求項1記載の蛍光観察装置。   The control unit is configured so that a relationship between a luminance value of the image data obtained when the adjustment mechanism is controlled to block the illumination light and a luminance value of the current image data is a predetermined relationship. The fluorescence observation apparatus according to claim 1, wherein the intensity of the illumination light is controlled. 前記光照射部は、前記励起光を照射する励起光源と、前記照明光を照射する照明光源と、前記励起光源及び前記照明光源の光軸上に配置され、前記励起光と前記照明光とを合成するダイクロイックミラーとを有し、
前記調整機構は、前記照明光源における前記照明光の照射強度を調整可能に構成されている、
ことを特徴とする請求項1又は2記載の蛍光観察装置。
The light irradiation unit is disposed on an optical axis of the excitation light source that irradiates the excitation light, an illumination light source that irradiates the illumination light, the excitation light source and the illumination light source, and the excitation light and the illumination light. A dichroic mirror to be combined,
The adjustment mechanism is configured to be capable of adjusting the illumination intensity of the illumination light in the illumination light source.
The fluorescence observation apparatus according to claim 1 or 2.
前記調整機構は、
前記所定波長域の光を透過し、且つ前記蛍光波長の光を遮断する光学フィルタと、
前記光学フィルタの位置を前記光照射部の光軸に対して交わる方向に移動させる位置調整部とを有し、
前記制御部は、前記光学フィルタの移動量を制御する、
ことを特徴とする請求項1又は2記載の蛍光観察装置。
The adjustment mechanism is
An optical filter that transmits light of the predetermined wavelength range and blocks light of the fluorescence wavelength;
A position adjusting unit that moves the position of the optical filter in a direction intersecting the optical axis of the light irradiation unit;
The control unit controls a movement amount of the optical filter;
The fluorescence observation apparatus according to claim 1 or 2.
JP2007103328A 2007-04-10 2007-04-10 Fluorescence observation apparatus Pending JP2008259595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007103328A JP2008259595A (en) 2007-04-10 2007-04-10 Fluorescence observation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007103328A JP2008259595A (en) 2007-04-10 2007-04-10 Fluorescence observation apparatus

Publications (1)

Publication Number Publication Date
JP2008259595A true JP2008259595A (en) 2008-10-30

Family

ID=39982566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007103328A Pending JP2008259595A (en) 2007-04-10 2007-04-10 Fluorescence observation apparatus

Country Status (1)

Country Link
JP (1) JP2008259595A (en)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090179159A1 (en) * 2008-01-16 2009-07-16 Konica Minolta Sensing, Inc. Fluorescence detecting apparatus, and fluorescence detecting method
WO2012169270A1 (en) 2011-06-07 2012-12-13 オリンパスメディカルシステムズ株式会社 Endoscope apparatus and light quantity control method for fluorescent light observation
CN110337259A (en) * 2017-02-24 2019-10-15 富士胶片株式会社 The working method of endoscopic system, processor device and endoscopic system
EP3731724A4 (en) * 2017-12-27 2021-10-13 Ethicon LLC Fluorescence imaging in a light deficient environment
US11266304B2 (en) 2019-06-20 2022-03-08 Cilag Gmbh International Minimizing image sensor input/output in a pulsed hyperspectral imaging system
US11276148B2 (en) 2019-06-20 2022-03-15 Cilag Gmbh International Super resolution and color motion artifact correction in a pulsed fluorescence imaging system
US11284784B2 (en) 2019-06-20 2022-03-29 Cilag Gmbh International Controlling integral energy of a laser pulse in a fluorescence imaging system
US11360028B2 (en) 2019-06-20 2022-06-14 Cilag Gmbh International Super resolution and color motion artifact correction in a pulsed hyperspectral, fluorescence, and laser mapping imaging system
US11389066B2 (en) 2019-06-20 2022-07-19 Cilag Gmbh International Noise aware edge enhancement in a pulsed hyperspectral, fluorescence, and laser mapping imaging system
US11398011B2 (en) 2019-06-20 2022-07-26 Cilag Gmbh International Super resolution and color motion artifact correction in a pulsed laser mapping imaging system
US11399717B2 (en) 2019-06-20 2022-08-02 Cilag Gmbh International Hyperspectral and fluorescence imaging and topology laser mapping with minimal area monolithic image sensor
US11412152B2 (en) 2019-06-20 2022-08-09 Cilag Gmbh International Speckle removal in a pulsed hyperspectral imaging system
US11412920B2 (en) 2019-06-20 2022-08-16 Cilag Gmbh International Speckle removal in a pulsed fluorescence imaging system
US11432706B2 (en) 2019-06-20 2022-09-06 Cilag Gmbh International Hyperspectral imaging with minimal area monolithic image sensor
US11471055B2 (en) 2019-06-20 2022-10-18 Cilag Gmbh International Noise aware edge enhancement in a pulsed fluorescence imaging system
US11477390B2 (en) 2019-06-20 2022-10-18 Cilag Gmbh International Fluorescence imaging with minimal area monolithic image sensor
US11516387B2 (en) 2019-06-20 2022-11-29 Cilag Gmbh International Image synchronization without input clock and data transmission clock in a pulsed hyperspectral, fluorescence, and laser mapping imaging system
US11516388B2 (en) 2019-06-20 2022-11-29 Cilag Gmbh International Pulsed illumination in a fluorescence imaging system
US11533417B2 (en) 2019-06-20 2022-12-20 Cilag Gmbh International Laser scanning and tool tracking imaging in a light deficient environment
US11531112B2 (en) 2019-06-20 2022-12-20 Cilag Gmbh International Offset illumination of a scene using multiple emitters in a hyperspectral, fluorescence, and laser mapping imaging system
US11540696B2 (en) 2019-06-20 2023-01-03 Cilag Gmbh International Noise aware edge enhancement in a pulsed fluorescence imaging system
US11550057B2 (en) 2019-06-20 2023-01-10 Cilag Gmbh International Offset illumination of a scene using multiple emitters in a fluorescence imaging system
US11612309B2 (en) 2019-06-20 2023-03-28 Cilag Gmbh International Hyperspectral videostroboscopy of vocal cords
US11622094B2 (en) 2019-06-20 2023-04-04 Cilag Gmbh International Wide dynamic range using a monochrome image sensor for fluorescence imaging
US11617541B2 (en) 2019-06-20 2023-04-04 Cilag Gmbh International Optical fiber waveguide in an endoscopic system for fluorescence imaging
US11624830B2 (en) 2019-06-20 2023-04-11 Cilag Gmbh International Wide dynamic range using a monochrome image sensor for laser mapping imaging
US11633089B2 (en) 2019-06-20 2023-04-25 Cilag Gmbh International Fluorescence imaging with minimal area monolithic image sensor
US11668920B2 (en) 2019-06-20 2023-06-06 Cilag Gmbh International Driving light emissions according to a jitter specification in a fluorescence imaging system
US11671691B2 (en) 2019-06-20 2023-06-06 Cilag Gmbh International Image rotation in an endoscopic laser mapping imaging system
US11674848B2 (en) 2019-06-20 2023-06-13 Cilag Gmbh International Wide dynamic range using a monochrome image sensor for hyperspectral imaging
US11700995B2 (en) 2019-06-20 2023-07-18 Cilag Gmbh International Speckle removal in a pulsed fluorescence imaging system
US11716543B2 (en) 2019-06-20 2023-08-01 Cilag Gmbh International Wide dynamic range using a monochrome image sensor for fluorescence imaging
US11716533B2 (en) 2019-06-20 2023-08-01 Cilag Gmbh International Image synchronization without input clock and data transmission clock in a pulsed fluorescence imaging system
US11758256B2 (en) 2019-06-20 2023-09-12 Cilag Gmbh International Fluorescence imaging in a light deficient environment
US11793399B2 (en) 2019-06-20 2023-10-24 Cilag Gmbh International Super resolution and color motion artifact correction in a pulsed hyperspectral imaging system
US11821989B2 (en) 2019-06-20 2023-11-21 Cllag GmbH International Hyperspectral, fluorescence, and laser mapping imaging with fixed pattern noise cancellation
US11854175B2 (en) 2019-06-20 2023-12-26 Cilag Gmbh International Fluorescence imaging with fixed pattern noise cancellation
US11877065B2 (en) 2019-06-20 2024-01-16 Cilag Gmbh International Image rotation in an endoscopic hyperspectral imaging system
US11892403B2 (en) 2019-06-20 2024-02-06 Cilag Gmbh International Image synchronization without input clock and data transmission clock in a pulsed fluorescence imaging system
US11898909B2 (en) 2019-06-20 2024-02-13 Cilag Gmbh International Noise aware edge enhancement in a pulsed fluorescence imaging system
US11903563B2 (en) 2019-06-20 2024-02-20 Cilag Gmbh International Offset illumination of a scene using multiple emitters in a fluorescence imaging system
US11925328B2 (en) 2019-06-20 2024-03-12 Cilag Gmbh International Noise aware edge enhancement in a pulsed hyperspectral imaging system
US11931009B2 (en) 2019-06-20 2024-03-19 Cilag Gmbh International Offset illumination of a scene using multiple emitters in a hyperspectral imaging system
US11937784B2 (en) 2019-06-20 2024-03-26 Cilag Gmbh International Fluorescence imaging in a light deficient environment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08224209A (en) * 1995-02-23 1996-09-03 Olympus Optical Co Ltd Fluorescence observing device
JP2005312551A (en) * 2004-04-27 2005-11-10 Olympus Corp Endoscope apparatus
JP2006014868A (en) * 2004-06-30 2006-01-19 Hamamatsu Photonics Kk Lymph node detecting apparatus
JP2006020727A (en) * 2004-07-06 2006-01-26 Olympus Corp Light source device
JP2006075240A (en) * 2004-09-07 2006-03-23 Olympus Corp Light source device for endoscope
JP2006122335A (en) * 2004-10-28 2006-05-18 Morita Mfg Co Ltd Camera device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08224209A (en) * 1995-02-23 1996-09-03 Olympus Optical Co Ltd Fluorescence observing device
JP2005312551A (en) * 2004-04-27 2005-11-10 Olympus Corp Endoscope apparatus
JP2006014868A (en) * 2004-06-30 2006-01-19 Hamamatsu Photonics Kk Lymph node detecting apparatus
JP2006020727A (en) * 2004-07-06 2006-01-26 Olympus Corp Light source device
JP2006075240A (en) * 2004-09-07 2006-03-23 Olympus Corp Light source device for endoscope
JP2006122335A (en) * 2004-10-28 2006-05-18 Morita Mfg Co Ltd Camera device

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8436320B2 (en) * 2008-01-16 2013-05-07 Konica Minolta Sensing, Inc. Fluorescence detecting apparatus, and fluorescence detecting method
US20090179159A1 (en) * 2008-01-16 2009-07-16 Konica Minolta Sensing, Inc. Fluorescence detecting apparatus, and fluorescence detecting method
WO2012169270A1 (en) 2011-06-07 2012-12-13 オリンパスメディカルシステムズ株式会社 Endoscope apparatus and light quantity control method for fluorescent light observation
US8721532B2 (en) 2011-06-07 2014-05-13 Olympus Medical Systems Corp. Endoscope apparatus and method for controlling fluorescence imaging apparatus
CN110337259A (en) * 2017-02-24 2019-10-15 富士胶片株式会社 The working method of endoscopic system, processor device and endoscopic system
US11574412B2 (en) 2017-12-27 2023-02-07 Cilag GmbH Intenational Hyperspectral imaging with tool tracking in a light deficient environment
EP3731724A4 (en) * 2017-12-27 2021-10-13 Ethicon LLC Fluorescence imaging in a light deficient environment
US11900623B2 (en) 2017-12-27 2024-02-13 Cilag Gmbh International Hyperspectral imaging with tool tracking in a light deficient environment
US11823403B2 (en) 2017-12-27 2023-11-21 Cilag Gmbh International Fluorescence imaging in a light deficient environment
US11633089B2 (en) 2019-06-20 2023-04-25 Cilag Gmbh International Fluorescence imaging with minimal area monolithic image sensor
US11671691B2 (en) 2019-06-20 2023-06-06 Cilag Gmbh International Image rotation in an endoscopic laser mapping imaging system
US11311183B2 (en) 2019-06-20 2022-04-26 Cilag Gmbh International Controlling integral energy of a laser pulse in a fluorescence imaging system
US11337596B2 (en) 2019-06-20 2022-05-24 Cilag Gmbh International Controlling integral energy of a laser pulse in a fluorescence imaging system
US11360028B2 (en) 2019-06-20 2022-06-14 Cilag Gmbh International Super resolution and color motion artifact correction in a pulsed hyperspectral, fluorescence, and laser mapping imaging system
US11389066B2 (en) 2019-06-20 2022-07-19 Cilag Gmbh International Noise aware edge enhancement in a pulsed hyperspectral, fluorescence, and laser mapping imaging system
US11398011B2 (en) 2019-06-20 2022-07-26 Cilag Gmbh International Super resolution and color motion artifact correction in a pulsed laser mapping imaging system
US11399717B2 (en) 2019-06-20 2022-08-02 Cilag Gmbh International Hyperspectral and fluorescence imaging and topology laser mapping with minimal area monolithic image sensor
US11412152B2 (en) 2019-06-20 2022-08-09 Cilag Gmbh International Speckle removal in a pulsed hyperspectral imaging system
US11412920B2 (en) 2019-06-20 2022-08-16 Cilag Gmbh International Speckle removal in a pulsed fluorescence imaging system
US11432706B2 (en) 2019-06-20 2022-09-06 Cilag Gmbh International Hyperspectral imaging with minimal area monolithic image sensor
US11471055B2 (en) 2019-06-20 2022-10-18 Cilag Gmbh International Noise aware edge enhancement in a pulsed fluorescence imaging system
US11477390B2 (en) 2019-06-20 2022-10-18 Cilag Gmbh International Fluorescence imaging with minimal area monolithic image sensor
US11516387B2 (en) 2019-06-20 2022-11-29 Cilag Gmbh International Image synchronization without input clock and data transmission clock in a pulsed hyperspectral, fluorescence, and laser mapping imaging system
US11516388B2 (en) 2019-06-20 2022-11-29 Cilag Gmbh International Pulsed illumination in a fluorescence imaging system
US11533417B2 (en) 2019-06-20 2022-12-20 Cilag Gmbh International Laser scanning and tool tracking imaging in a light deficient environment
US11531112B2 (en) 2019-06-20 2022-12-20 Cilag Gmbh International Offset illumination of a scene using multiple emitters in a hyperspectral, fluorescence, and laser mapping imaging system
US11540696B2 (en) 2019-06-20 2023-01-03 Cilag Gmbh International Noise aware edge enhancement in a pulsed fluorescence imaging system
US11550057B2 (en) 2019-06-20 2023-01-10 Cilag Gmbh International Offset illumination of a scene using multiple emitters in a fluorescence imaging system
US11284783B2 (en) 2019-06-20 2022-03-29 Cilag Gmbh International Controlling integral energy of a laser pulse in a hyperspectral imaging system
US11589819B2 (en) 2019-06-20 2023-02-28 Cilag Gmbh International Offset illumination of a scene using multiple emitters in a laser mapping imaging system
US11612309B2 (en) 2019-06-20 2023-03-28 Cilag Gmbh International Hyperspectral videostroboscopy of vocal cords
US11622094B2 (en) 2019-06-20 2023-04-04 Cilag Gmbh International Wide dynamic range using a monochrome image sensor for fluorescence imaging
US11617541B2 (en) 2019-06-20 2023-04-04 Cilag Gmbh International Optical fiber waveguide in an endoscopic system for fluorescence imaging
US11624830B2 (en) 2019-06-20 2023-04-11 Cilag Gmbh International Wide dynamic range using a monochrome image sensor for laser mapping imaging
US11284784B2 (en) 2019-06-20 2022-03-29 Cilag Gmbh International Controlling integral energy of a laser pulse in a fluorescence imaging system
US11668920B2 (en) 2019-06-20 2023-06-06 Cilag Gmbh International Driving light emissions according to a jitter specification in a fluorescence imaging system
US11668921B2 (en) 2019-06-20 2023-06-06 Cilag Gmbh International Driving light emissions according to a jitter specification in a hyperspectral, fluorescence, and laser mapping imaging system
US11668919B2 (en) 2019-06-20 2023-06-06 Cilag Gmbh International Driving light emissions according to a jitter specification in a laser mapping imaging system
US11284785B2 (en) 2019-06-20 2022-03-29 Cilag Gmbh International Controlling integral energy of a laser pulse in a hyperspectral, fluorescence, and laser mapping imaging system
US11674848B2 (en) 2019-06-20 2023-06-13 Cilag Gmbh International Wide dynamic range using a monochrome image sensor for hyperspectral imaging
US11686847B2 (en) 2019-06-20 2023-06-27 Cilag Gmbh International Pulsed illumination in a fluorescence imaging system
US11700995B2 (en) 2019-06-20 2023-07-18 Cilag Gmbh International Speckle removal in a pulsed fluorescence imaging system
US11716543B2 (en) 2019-06-20 2023-08-01 Cilag Gmbh International Wide dynamic range using a monochrome image sensor for fluorescence imaging
US11712155B2 (en) 2019-06-20 2023-08-01 Cilag GmbH Intenational Fluorescence videostroboscopy of vocal cords
US11716533B2 (en) 2019-06-20 2023-08-01 Cilag Gmbh International Image synchronization without input clock and data transmission clock in a pulsed fluorescence imaging system
US11727542B2 (en) 2019-06-20 2023-08-15 Cilag Gmbh International Super resolution and color motion artifact correction in a pulsed hyperspectral, fluorescence, and laser mapping imaging system
US11740448B2 (en) 2019-06-20 2023-08-29 Cilag Gmbh International Driving light emissions according to a jitter specification in a fluorescence imaging system
US11747479B2 (en) 2019-06-20 2023-09-05 Cilag Gmbh International Pulsed illumination in a hyperspectral, fluorescence and laser mapping imaging system
US11754500B2 (en) 2019-06-20 2023-09-12 Cilag Gmbh International Minimizing image sensor input/output in a pulsed fluorescence imaging system
US11758256B2 (en) 2019-06-20 2023-09-12 Cilag Gmbh International Fluorescence imaging in a light deficient environment
US11788963B2 (en) 2019-06-20 2023-10-17 Cilag Gmbh International Minimizing image sensor input/output in a pulsed fluorescence imaging system
US11793399B2 (en) 2019-06-20 2023-10-24 Cilag Gmbh International Super resolution and color motion artifact correction in a pulsed hyperspectral imaging system
US11276148B2 (en) 2019-06-20 2022-03-15 Cilag Gmbh International Super resolution and color motion artifact correction in a pulsed fluorescence imaging system
US11821989B2 (en) 2019-06-20 2023-11-21 Cllag GmbH International Hyperspectral, fluorescence, and laser mapping imaging with fixed pattern noise cancellation
US11854175B2 (en) 2019-06-20 2023-12-26 Cilag Gmbh International Fluorescence imaging with fixed pattern noise cancellation
US11877065B2 (en) 2019-06-20 2024-01-16 Cilag Gmbh International Image rotation in an endoscopic hyperspectral imaging system
US11882352B2 (en) 2019-06-20 2024-01-23 Cllag GmbH International Controlling integral energy of a laser pulse in a hyperspectral,fluorescence, and laser mapping imaging system
US11892403B2 (en) 2019-06-20 2024-02-06 Cilag Gmbh International Image synchronization without input clock and data transmission clock in a pulsed fluorescence imaging system
US11895397B2 (en) 2019-06-20 2024-02-06 Cilag Gmbh International Image synchronization without input clock and data transmission clock in a pulsed fluorescence imaging system
US11898909B2 (en) 2019-06-20 2024-02-13 Cilag Gmbh International Noise aware edge enhancement in a pulsed fluorescence imaging system
US11266304B2 (en) 2019-06-20 2022-03-08 Cilag Gmbh International Minimizing image sensor input/output in a pulsed hyperspectral imaging system
US11903563B2 (en) 2019-06-20 2024-02-20 Cilag Gmbh International Offset illumination of a scene using multiple emitters in a fluorescence imaging system
US11924535B2 (en) 2019-06-20 2024-03-05 Cila GmbH International Controlling integral energy of a laser pulse in a laser mapping imaging system
US11925328B2 (en) 2019-06-20 2024-03-12 Cilag Gmbh International Noise aware edge enhancement in a pulsed hyperspectral imaging system
US11931009B2 (en) 2019-06-20 2024-03-19 Cilag Gmbh International Offset illumination of a scene using multiple emitters in a hyperspectral imaging system
US11937784B2 (en) 2019-06-20 2024-03-26 Cilag Gmbh International Fluorescence imaging in a light deficient environment
US11940615B2 (en) 2019-06-20 2024-03-26 Cilag Gmbh International Driving light emissions according to a jitter specification in a multispectral, fluorescence, and laser mapping imaging system
US11949974B2 (en) 2019-06-20 2024-04-02 Cilag Gmbh International Controlling integral energy of a laser pulse in a fluorescence imaging system

Similar Documents

Publication Publication Date Title
JP2008259595A (en) Fluorescence observation apparatus
US8049184B2 (en) Fluoroscopic device and fluoroscopic method
US7798955B2 (en) Image generating device for generating a fluorescence image
EP2335551B1 (en) Endoscope apparatus and control method therefor
JP2009034224A (en) Medical treatment apparatus
JP2009201940A (en) Endoscopic light source system, endoscopic light source equipment, endoscopic processor, and endoscopic unit
JPH09308604A (en) Fluorescence detector
JP2011036361A (en) Endoscopic device
JP2007143624A (en) Fluorescence observation apparatus
JP5147538B2 (en) Fluorescence image acquisition device and method of operating fluorescence image acquisition device
JP6203452B1 (en) Imaging system
EP3469978B1 (en) Fluorescent imaging device with a distance sensor and with means for determining a limited gain based on a distance and an associated computer program product
JP2008259591A (en) Light source device for fluorescence observation and fluorescence observation instrument using the same
JP2012170488A (en) Endoscope apparatus
JP5142564B2 (en) Fluorescence endoscope device
US11684238B2 (en) Control device and medical observation system
JP5191327B2 (en) Image acquisition device and method of operating image acquisition device
JP5570352B2 (en) Imaging device
JP2011147595A (en) Light irradiation apparatus for endoscope
JP2014014716A (en) Endoscopic apparatus
JP5922209B2 (en) Endoscope device
JP2002078670A (en) Fluorescent imaging system
JP2004194821A (en) Excitation light source device
JP5592700B2 (en) Fluorescence observation apparatus, fluorescence observation system, and operation method of fluorescence observation apparatus
JP2013042855A (en) Endoscopic apparatus and light source control method for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120515