JPH08224209A - Fluorescence observing device - Google Patents

Fluorescence observing device

Info

Publication number
JPH08224209A
JPH08224209A JP7035444A JP3544495A JPH08224209A JP H08224209 A JPH08224209 A JP H08224209A JP 7035444 A JP7035444 A JP 7035444A JP 3544495 A JP3544495 A JP 3544495A JP H08224209 A JPH08224209 A JP H08224209A
Authority
JP
Japan
Prior art keywords
image
light
fluorescence
wavelength
observation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7035444A
Other languages
Japanese (ja)
Other versions
JP3560671B2 (en
Inventor
Mamoru Kaneko
Hitoshi Ueno
仁士 上野
守 金子
Original Assignee
Olympus Optical Co Ltd
オリンパス光学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd, オリンパス光学工業株式会社 filed Critical Olympus Optical Co Ltd
Priority to JP03544495A priority Critical patent/JP3560671B2/en
Publication of JPH08224209A publication Critical patent/JPH08224209A/en
Application granted granted Critical
Publication of JP3560671B2 publication Critical patent/JP3560671B2/en
Anticipated expiration legal-status Critical
Application status is Expired - Fee Related legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/043Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for fluorescence imaging

Abstract

PURPOSE: To display both an ordinary observing image and a fluorescence observing image simultaneously without switching a light source or an image pickup means. CONSTITUTION: A light source device 1 is provided with a laser 6 for excitation which generates excitation light for fluorescence observation, and an R/G/B laser 7 which generates R/G/B light for ordinary observation, and the excitation light and the R/G/B light form one optical axis, and it irradiates a part to be observed via an endoscope 2. The fluorescent image and the ordinary image of the part to be observed are made incident on a camera 3 via the endoscope 2, and divided into three optical paths, and they transmit band-pass filters 13, 14 and a laser cut filter 15, and the fluorescent image and the ordinary image of wavelength bands λ1, λ2 are image-picked up, and the fluorescece observing image and the ordinary observing image are generated by an image processing part 4. In such a case, the wavelength bands of the excitation light and R/G/B color light and the wavelength bands λ1, λ2 of detected fluorescence are set so as not to provide the wavelength band in which they are superimposed mutually.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は、励起光を生体組織の観察対象部位へ照射して励起光による蛍光像を得る蛍光観察装置に関する。 The present invention relates to a fluorescence observation apparatus for obtaining a fluorescent image by the excitation light by the excitation light to the observation target site of the living tissue.

【0002】 [0002]

【従来の技術】近年、生体組織の観察対象部位へ励起光を照射し、この励起光によって生体組織から直接発生する自家蛍光や生体へ注入しておいた薬物の蛍光を2次元画像として検出し、その蛍光像から生体組織の変性や癌等の疾患状態(例えば、疾患の種類や浸潤範囲)を診断する技術が用いられつつあり、この蛍光観察を行うための蛍光観察装置が開発されている。 In recent years, to the examination site of the living tissue is irradiated with excitation light, and detecting the fluorescence of a drug that has been injected directly generated autofluorescence and biological from the living tissue by the excitation light as a two-dimensional image , disease state of degeneration and cancer, etc. of the living tissue from the fluorescent image (e.g., the type and invasion range of disease) are becoming diagnostic technique is used, the fluorescence observation device for performing the fluorescence observation has been developed .

【0003】自家蛍光においては、生体組織に励起光を照射すると、その励起光より長い波長の蛍光が発生する。 [0003] In the auto-fluorescence when irradiated with excitation light to living tissue, the fluorescence having a wavelength longer than the excitation light is generated. 生体における蛍光物質としては、例えばNADH As the fluorescent substance in the living body, for example, NADH
(ニコチンアミドアデニンヌクレオチド),FMN(フラビンモノヌクレオチド),ピリジンヌクレオチド等がある。 (Nicotinamide adenine nucleotides), FMN (flavin mononucleotide), there are pyridine nucleotides and the like. 最近では、このような蛍光を発生する生体内因物質と疾患との相互関係が明確になりつつあり、これらの蛍光により癌等の診断が可能である。 Recently, becoming clear correlation between biological endogenous substance and diseases which generates such a fluorescent, it is possible to diagnose cancer, etc. These fluorescent.

【0004】また、薬物の蛍光においては、生体内へ注入する蛍光物質としては、HpD(ヘマトポルフィリン),Photofrin ,ALA(δ−amino levulinic aci [0004] In the fluorescence of the drug, as the fluorescent substance to be injected into a living body, HpD (hematoporphyrin), Photofrin, ALA (δ-amino levulinic aci
d)等が用いられる。 d) or the like is used. これらの薬物は癌などへの集積性があり、これを生体内に注入して蛍光を観察することで疾患部位を診断できる。 These drugs have accumulation property to such as cancer, which can be diagnosed disease site by observing the fluorescence is injected into the body. また、モノクローナル抗体に蛍光物質を付加させ、抗原抗体反応により病変部に蛍光物質を集積させる方法もある。 Further, there is added a fluorescent substance to monoclonal antibodies, a method for integrating the fluorescent substance to the lesion by an antigen-antibody reaction.

【0005】励起光としては例えばレーザ光が用いられ、励起光を生体組織へ照射することによって観察対象部位の蛍光像を得る。 [0005] As the excitation light such as a laser beam is used to obtain a fluorescence image of the observation target site by irradiating the excitation light to living tissue. この励起光による生体組織における微弱な蛍光を検出して2次元の蛍光画像を生成し、観察、診断を行う。 This detects the weak fluorescence in biological tissue by the excitation light to generate a two-dimensional fluorescence image observation, diagnosis performed.

【0006】このような蛍光観察装置においては、一般に通常画像と蛍光画像とを対比させて診断を行う。 [0006] In such a fluorescence observation apparatus, a diagnosis performed generally by comparing the normal image and fluorescent image. このために、通常観察用の光源装置及び撮像手段と蛍光観察用の光源装置及び撮像手段とを交換して使用している。 For this, are used to replace the light source device and image pickup means for normal light source device and image pickup means and the fluorescence observation for observation.
従来の装置では、例えば特開昭63−122421号公報に開示されているように、通常照明光と励起光とを照射光切換え手段を用いて交互に照射し、得られた通常画像と蛍光画像とを照射光切換え手段に同期させて交互に取り込んでメモリに蓄え、通常画像と蛍光画像を同時表示するような構成となっていた。 In a conventional apparatus, as disclosed in JP Sho 63-122421, it irradiated alternately with normal illumination light and the excitation light with the irradiation light switching means, resulting normal image and fluorescent image stored in memory fetches preparative alternately in synchronization with the irradiation light switching means, it has been a configuration in which simultaneously displays the normal image and fluorescent image.

【0007】 [0007]

【発明が解決しようとする課題】しかしながら、従来の構成では、得られる通常画像と蛍光画像は、交互に撮像されるため、リアルタイム表示ではなく、両画像の撮影時間のズレから表示画像にズレが生じ、観察部位がずれてしまうおそれがあった。 [SUMMARY OF THE INVENTION However, in the conventional structure, the normal image and the fluorescence image obtained is to be imaged alternately, not in real time, shift the display image from the deviation of the shooting time of the two images resulting, there is a possibility that the observed region is shifted. また、通常画像と蛍光画像を高速で切換えて撮像するようにした場合は、各画像が時分割されてしまうため表示の際に画面数を多く取ることができず、表示画像が暗くなってしまう問題点を有していた。 Also, if you choose to imaging by switching the normal image and a fluorescence image at a high speed, can not take a lot of number of screens in the display for result is divided at each image, the display image becomes dark the problem had.

【0008】本発明は、これらの事情に鑑みてなされたもので、通常観察画像と蛍光観察画像を、光源や撮像手段を切換えることなく、両方同時にリアルタイム表示することができ、両画像にズレがなくかつ明るい画像を得ることのできる蛍光観察装置を提供することを目的としている。 [0008] The present invention has been made in view of these circumstances, the normal observation image and a fluorescence observation image, without switching the light source and the imaging means, both can be displayed in real time at the same time, displaced in both images and its object is to provide a fluorescence observation apparatus capable of obtaining without and bright image.

【0009】 [0009]

【課題を解決するための手段】本発明による蛍光観察装置は、体腔内組織を照明する照明光を発生する光源と、 Fluorescence observation apparatus according to the present invention SUMMARY OF THE INVENTION comprises a light source for generating illumination light for illuminating the body cavity tissue,
前記組織からの前記照明光の反射により得られる通常画像と前記組織を前記照明光により励起して得られる蛍光像とをそれぞれ撮像する撮像手段と、を有する装置において、前記光源は、前記蛍光像の属する波長領域と前記通常画像を構成する波長領域とが互いに分離するような波長の照明光を発生してなるものである。 In the apparatus having the imaging means each for imaging a fluorescent image obtained by exciting the ordinary image obtained by the reflection of the illumination light the tissue by the illumination light from the tissue, wherein the light source is the fluorescent image wherein a belongs wavelength region in which the wavelength region usually constituting the image is generated an illumination light having a wavelength such as to separate from each other.

【0010】 [0010]

【作用】光源より蛍光像の属する波長領域と通常画像を構成する波長領域とが互いに分離するような波長の照明光を発生して体腔内組織を照明することにより、蛍光像と通常画像とを同時に得ることが可能となる。 By illuminating the body cavity tissue illumination light of a wavelength, such as [action] and the wavelength region constituting the wavelength region and the normal image belongs fluorescent image from the light source is separated from one another by generating, a fluorescent image and the normal image it is possible to obtain at the same time.

【0011】 [0011]

【実施例】以下、図面を参照して本発明の実施例を説明する。 EXAMPLES Hereinafter, an embodiment of the present invention with reference to the drawings. 図1及び図2は本発明の第1実施例に係り、図1 1 and 2 relates to the first embodiment of the present invention, FIG. 1
は蛍光観察装置の概略構成を示す構成説明図、図2は観察部位へ照射する各照明光及び生体組織から検出される蛍光の波長帯域と各フィルタの透過波長特性との関係を示す特性図である。 Is an explanatory diagram showing a schematic configuration of a fluorescence observation apparatus, FIG. 2 is a characteristic diagram showing the relationship between the transmission wavelength characteristics of the wavelength band and each filter of the fluorescence detected from the illumination light and the biological tissue is irradiated to the observation region is there.

【0012】図1に示すように、本実施例の蛍光観察装置は、励起光とRGBの3原色の照明光(以下RGB光と称する)とを発生する光源装置1と、光源装置1からの励起光とRGB光とを生体内の観察部位に照射して、 [0012] As shown in FIG. 1, the fluorescence observation apparatus of the present embodiment, the light source device 1 for generating an excitation light and the three primary colors RGB illumination light (hereinafter referred to as RGB light) from the light source device 1 an excitation light and RGB light is irradiated to the observation site in the body,
励起光による蛍光像とRGB光による通常像とを検出し生体外に伝達する内視鏡2と、内視鏡2で得られた蛍光像と通常像とを撮影し電気信号に変換するカメラ3と、 An endoscope 2 that transmits the normal image and the detected vitro the by fluorescence image and RGB light by the excitation light, the camera 3 is converted into an electric signal by photographing a fluorescence image obtained by the endoscope 2 and a normal image When,
カメラ3からの画像信号を処理し、蛍光画像と通常画像とを生成する画像処理部4と、画像処理部4により生成された蛍光画像と通常画像とを同時にまたはそれぞれ別に表示するCRTモニタ等からなる表示部5とを備えて主要部が構成されている。 Processing the image signal from the camera 3, an image processing unit 4 for generating a fluorescence image and a normal image, a CRT monitor or the like at the same time or separately displayed respectively a fluorescence image and a normal image generated by the image processing unit 4 main unit and a display unit 5 made is configured.

【0013】光源装置1は、蛍光を励起するための励起光を発生する励起用レーザ6と、通常像を得るためのR [0013] The light source device 1, R for obtaining the excitation laser 6, a normal image for generating excitation light for exciting fluorescence
GB光を発生するRGBレーザ7と、励起用レーザ6, And RGB laser 7 for generating the GB light, the excitation laser 6,
RGBレーザ7の光軸を1つに合成するミラー8及びダイクロイックミラー9とを備えて構成される。 Constructed and a mirror 8 and the dichroic mirror 9 for combining the optical axis of the RGB laser 7 into one.

【0014】内視鏡2は、生体内へ挿入する細長の挿入部を有し、光源装置1からの励起光及びRGB光を挿入部先端まで伝達するライトガイド21を含む照明光学系と、観察部位の蛍光像及び通常像を手元側の接眼部まで伝達するイメージガイド22を含む観察光学系とを備えて構成される。 [0014] endoscope 2 has an elongated insertion portion inserted into a living body, an illumination optical system including a light guide 21 for transmitting the excitation light and RGB light from the light source device 1 to the insertion tip, observed constructed and an observation optical system including an image guide 22 for transmitting to the eyepiece of the proximal fluorescence image and a normal image of the site.

【0015】カメラ3は、内視鏡2の接眼部に接続され、内視鏡2より入射する蛍光像及び通常像を3つの光路に分割するダイクロイックミラー10,ダイクロイックミラー11,ミラー12と、蛍光を検出する波長帯域λ1 を透過するバンドパスフィルタ13と、蛍光を検出する波長帯域λ2 を透過するバンドパスフィルタ14 [0015] The camera 3 is connected to the eyepiece section of the endoscope 2, a dichroic mirror 10 for dividing the fluorescent image and the normal image incident from the endoscope 2 3 in the optical path, the dichroic mirror 11, a mirror 12, a band pass filter 13 that transmits the wavelength band λ1 for detecting fluorescence, a bandpass filter 14 that transmits the wavelength band λ2 for detecting fluorescence
と、励起用レーザ6からの励起光の波長帯域のみを遮断するレーザカットフィルタ15と、バンドパスフィルタ13を透過した蛍光像を増幅するイメージインテンシファイア(図中ではIIと略記する)16と、バンドパスフィルタ14を透過した蛍光像を増幅するイメージインテンシファイア17と、イメージインテンシファイア1 When a laser cut filter 15 for cutting off only the wavelength band of the excitation light from the excitation laser 6, (abbreviated as II in the figure) image intensifier for amplifying the fluorescence image transmitted through a band-pass filter 13 16 , an image intensifier 17 which amplifies the fluorescence image transmitted through the band-pass filter 14, an image intensifier 1
6の出力像を撮像するCCD18と、イメージインテンシファイア17の出力像を撮像するCCD19と、レーザカットフィルタ15を透過した蛍光像を含む通常像を撮像するCCD20とを備えて構成される。 And CCD18 imaging the 6 output image, the CCD19 imaging the output image of the image intensifier 17, constituted by a CCD20 for capturing a normal image containing a fluorescent image transmitted through the laser cut filter 15.

【0016】光源装置1において、励起用レーザ6により励起光λ0 を発生する。 [0016] In the light source apparatus 1, it generates a pumping light λ0 by the excitation laser 6. また、RGBレーザ7により赤色光λR ,緑色光λG ,青色光λB の3色を同時に発振することで生成される白色光を発生する。 Also generates red light λR by RGB laser 7, green light .lambda.G, white light is generated by simultaneously oscillating the three colors of blue light .lambda.B. そして、これらの光をミラー8及びダイクロイックミラー9により反射及び透過して1つの光軸上に合成して配置し、内視鏡2のライトガイド21に導光する。 The reflected and transmitted by combining on one optical axis by disposing these light by the mirror 8 and the dichroic mirror 9 is guided to the light guide 21 of the endoscope 2. ライトガイド21 Light guide 21
に導光された4色のレーザ光は、内視鏡2内部を通って挿入部先端部まで伝達され、生体内の観察部位に照射される。 Laser light of four colors is guided is transmitted through the interior endoscope 2 to the insertion portion distal end, and is irradiated on the observation site in the living body.

【0017】そして、観察部位からの励起光による蛍光像とRGB光による通常像は、内視鏡2のイメージガイド22を通じて手元側の接眼部まで伝達され、カメラ3 [0017] Then, the normal image by the fluorescent image and RGB light by the excitation light from the observed region is transmitted through the endoscope 2 of the image guide 22 to the eyepiece section of the proximal side, the camera 3
に入射される。 It is incident on. カメラ3に入射された蛍光像と通常像は、ダイクロイックミラー10,ダイクロイックミラー11,ミラー12により透過及び反射して3つの光路に分割される。 Fluorescence image and a normal image that is incident on the camera 3, the dichroic mirror 10, is divided dichroic mirror 11, into three optical paths is transmitted through and reflected by the mirror 12. 分割された3つの光は、それぞれバンドパスフィルタ13,バンドパスフィルタ14,レーザカットフィルタ15を透過する。 Divided three light were each bandpass filter 13, bandpass filter 14, it passes through the laser cut filter 15.

【0018】図2は励起用レーザ,RGBレーザより発生される各照明光及び生体組織から検出される蛍光の波長帯域と、各フィルタの透過波長特性との関係を示したものである。 [0018] Figure 2 illustrates the excitation laser, the wavelength band of the fluorescence detected from the illumination light and the biological tissue is generated from RGB laser, the relationship between the transmission wavelength characteristics of the filters.

【0019】図2の(a)に示すように、励起光λ0 , As shown in FIG. 2 (a), the excitation light .lambda.0,
赤色光λR ,緑色光λG ,青色光λB の各波長帯域と、 Red light .lambda.R, green light .lambda.G, each wavelength band of blue light .lambda.B,
蛍光を検出する波長帯域λ1 及びλ2 とは、それぞれ重なり合う波長帯域を持たないように各帯域が設定されている。 The wavelength band λ1 and λ2 detecting fluorescence, each band to have no wavelength bands overlapping each is set. そして、図2の(b)及び(c)に示すように、 Then, as shown in FIG. 2 (b) and (c),
バンドパスフィルタ13の透過波長帯域はλ1 、バンドパスフィルタ14の透過波長帯域はλ2 となっている。 Transmission wavelength band of the band-pass filter 13 is .lambda.1, transmission wavelength band of the band-pass filter 14 has a .lambda.2.
すなわち、バンドパスフィルタ13を透過した光は、λ That is, the light transmitted through the band-pass filter 13, lambda
1 の波長帯域の成分しか持たない光であり、観察部位より出た蛍光のうち、検出するλ1 の波長帯域よりなる蛍光像である。 A light having only components one wavelength band, among the fluorescence emitted from the observation site is a fluorescent image composed of the wavelength band of λ1 to detect. また、バンドパスフィルタ14を透過した光は、λ2 の波長帯域の成分しか持たない光であり、観察部位より出た蛍光のうち、検出するλ2 の波長帯域よりなる蛍光像である。 Further, the light transmitted through the band-pass filter 14, a light having only the wavelength band of components .lambda.2, among fluorescence emitted from the observation site is a fluorescent image composed of the wavelength band of .lambda.2 detecting. また、レーザカットフィルタ15 In addition, the laser cut filter 15
は、励起光λ0 の波長帯域をカットするフィルタであり、レーザカットフィルタ15を透過した光は励起光λ Is a filter that cuts a wavelength band of the excitation light .lambda.0, light transmitted through the laser cut filter 15 is excitation light λ
0 の波長帯域を持たない光であり、R,G,Bの各色光よりなる通常像である。 0 is the light that does not have a wavelength band of, R, G, usually image consisting of the color light of the B.

【0020】バンドパスフィルタ13を透過した蛍光像は、イメージインテンシファイア16で増幅された後にCCD18で撮像されてビデオ信号に変換される。 [0020] Fluorescence image transmitted through the bandpass filter 13 is imaged by the CCD18 after being amplified by the image intensifier 16 is converted into a video signal. また同様に、バンドパスフィルタ14を透過した蛍光像は、 Similarly, the fluorescence image transmitted through the band-pass filter 14,
イメージインテンシファイア17で増幅された後にCC CC after being amplified by the image intensifier 17
D19で撮像されてビデオ信号に変換される。 It is captured and converted into a video signal at D19. レーザカットフィルタ15を透過した通常像は、そのままCCD Normal image transmitted through the laser cut filter 15 is directly CCD
20で撮像されてビデオ信号に変換される。 Imaged at 20 is converted into a video signal.

【0021】CCD18及びCCD19で得られた蛍光像のビデオ信号は画像処理部4に入力される。 [0021] CCD18 and video signals of the fluorescence image obtained by the CCD19 is input to the image processing unit 4. 画像処理部4では、2つの波長帯域の蛍光像のビデオ信号を演算処理して蛍光観察画像を生成する。 In the image processing unit 4, a video signal of the fluorescence image of the two wavelength bands and processing to produce a fluorescent observation image.

【0022】励起光による観察部位における可視領域の蛍光は、励起光λ0 より長い波長の帯域の強度分布となり、正常部位では特にλ1 付近で強く、病変部では弱くなる。 [0022] Fluorescence in the visible region in the observation region by the excitation light becomes a strength distribution of the band of the longer wavelength than the excitation light .lambda.0, strong particularly in the vicinity of λ1 in normal sites, it weakens the lesion. よって、特にλ1 付近の蛍光強度から正常部位と病変部との判別が可能であり、このような蛍光画像によって癌等の病変部の診断ができる。 Thus, in particular it is possible to distinguish between normal region and the lesion from the fluorescence intensity around .lambda.1, can diagnose a lesion such as cancer by such fluorescence images. 従って、画像処理部4においては、例えばλ1 とλ2 の蛍光像の画像信号よりλ1 とλ2 における蛍光強度の比率または差分を求める演算を行い、生体組織の性状を判別可能な蛍光観察画像を生成する。 Accordingly, in the image processing unit 4, for example, performs a calculation for obtaining the ratio or difference of the fluorescence intensity at λ1 and λ1 from the image signal of the fluorescent image of .lambda.2 .lambda.2, to produce a fluorescent observation image capable determine the nature of the biological tissue .

【0023】また、CCD20で得られた通常像のビデオ信号は通常観察画像として画像処理部4に入力される。 Further, ordinary image video signal obtained by the CCD20 is input as a normal observation image to the image processing unit 4. 画像処理部4は、蛍光観察画像信号と通常観察画像信号とを合成して同時に出力したり、または蛍光観察画像信号と通常観察画像信号をそれぞれ別々に出力し、これらの画像信号を表示部5に送る。 The image processing unit 4, and outputs simultaneously combines the fluorescence observation image signal and the normal observation image signal, or a fluorescent observation image signal and the normal observation image signal respectively outputted separately, the display unit 5 of these image signals send to. そして、表示部5において蛍光観察画像及び通常観察画像が同時にまたは別々に表示される。 The fluorescence observation image and the normal observation image are simultaneously or separately displayed on the display unit 5.

【0024】このように本実施例の蛍光観察装置では、 [0024] In this way, the fluorescence observation apparatus of this embodiment,
通常観察用の光源としてRGBレーザを利用し、RGB Using RGB laser as a normal light source for observation, RGB
レーザの各色光の波長帯域と、励起用レーザの励起光の波長帯域と、診断用の蛍光画像を生成するために検出する蛍光の複数の波長帯域とのそれぞれが重なり合わないように配置するようにしている。 And the wavelength band of each color light of the laser, and the wavelength band of the excitation light of the excitation laser, to place so as not to overlap each of the plurality of wavelength bands of fluorescence detected to produce a fluorescent image for diagnosis I have to. 従って本実施例によれば、通常観察用と蛍光観察用とで光源や撮像手段を切り換える必要がなく、通常観察用と蛍光観察用の照明光を同時に照射して通常像と蛍光像とを同時に撮像することが可能となり、蛍光観察画像と通常観察画像をリアルタイムで両方同時に表示し観察することができる。 Therefore, according to the present embodiment, normally there is no need to switch the light source and the imaging means and for observation and fluorescence observation, at the same time the normal image and the fluorescent image by irradiating a normal illumination light for observation and fluorescence observation simultaneously it is possible to image, can be displayed both at the same time observing the fluorescence observation image and the normal observation image in real time.

【0025】このため、蛍光観察画像と通常観察画像との間で時間的なズレが生じることなく、常に同一の観察部位を見ることができる。 [0025] Therefore, without occurs time lag between the fluorescence observation image and the normal observation image you can always see the same examination site. また、両画像を表示する際に画像の画面数を多くとることができるため、明るい画像を得ることができる。 Further, it is possible to take a lot of number of screens of the image when displaying the images, it is possible to obtain a bright image. よって、蛍光観察による診断能を向上させることができる。 Therefore, it is possible to improve the diagnostic performance by fluorescence observation.

【0026】また、励起光とRGB光との切換え手段、 [0026] In addition, the switching means of the excitation light and RGB light,
及び蛍光像と通常像との切換え手段が不要なため、装置を小型化することができる。 And for switching means between the fluorescence image and the normal image is not required, it is possible to miniaturize the apparatus.

【0027】なお、第1実施例の変形例として、励起用レーザ6の波長帯域を変更することも可能である。 [0027] As a modification of the first embodiment, it is also possible to change the wavelength band of the excitation laser 6. 励起用レーザ6の出射光の波長がRGBレーザ7の発する3 3 to emit the wavelength of the emitted light of the excitation laser 6 is a RGB laser 7
色の光の波長のうちの1つと同じ波長を持つような場合は、励起用レーザ6をRGBレーザ7で兼ねることができるため、励起用レーザ6,ミラー8,ダイクロイックミラー9,レーザカットフィルタ15が不要となる。 If like having the same as one wavelength of the wavelengths of colors of light, because it can serve as the excitation laser 6 in RGB laser 7, the excitation laser 6, the mirror 8, a dichroic mirror 9, the laser cut filter 15 is not required. このため、装置の小型化を図ることができる。 Therefore, it is possible to reduce the size of the apparatus.

【0028】また、励起用レーザ6の波長が可視光領域以外にあるような場合は、レーザカットフィルタ15は不要となる。 Further, when the wavelength of the pumping laser 6 is such that in addition to the visible light region, the laser cut filter 15 is not required.

【0029】次に、蛍光観察装置の他の構成例を示す。 [0029] Next, another configuration example of a fluorescence observation apparatus.
蛍光観察装置において、生体内臓器の癌等の疾患の状態を蛍光観察により診断する場合、診断に適した励起光の波長及び検出する蛍光の波長は臓器特有のものであるため、従来の装置では観察対象の臓器が異なる毎に励起波長及び検出波長を変えるような構成となっていた。 In the fluorescence observation apparatus, if the state of diseases such as cancer in vivo organ diagnosed by fluorescence observation, since the wavelength of fluorescence wavelength and detection of the excitation light suitable for diagnosis are those organs specific, in the conventional apparatus organ to be observed has been a configuration change the excitation wavelength and detection wavelength for each different. しかし、このような構成では観察する臓器に合わせて励起波長及び検出波長を予め交換して蛍光観察を行うために診断時の操作が煩雑であった。 However, operation at the time of diagnosis is complicated in order to perform the previously exchanged to fluorescence observation excitation wavelength and detection wavelength in accordance with the organ to be observed in such a structure. また、励起波長及び検出波長が観察部位に適合していないことに気付かずに診断を行うと正確な診断ができないおそれがある。 Further, there is a risk that excitation and detection wavelengths when performing diagnosis without noticing that do not conform to the examination site can not be accurately diagnosed.

【0030】そこで、観察部位を判別してその臓器に適した励起波長及び検出波長を自動的に選択することが可能で、診断時の操作性を向上させると共に観察部位の正確な診断を行うことのできる蛍光観察装置の構成例を実施例として以下に示す。 [0030] Therefore, is possible to automatically select the excitation wavelength and detection wavelength suitable for the organ to determine the observed region, to perform an accurate diagnosis of the observed region improves the operability at the time of diagnosis configuration example of a fluorescence observation apparatus capable of is shown below as an example.

【0031】図3ないし図5は本発明の第2実施例に係り、図3は蛍光観察装置の概略構成を示す構成説明図、 [0031] FIGS. 3 to 5 relates to a second embodiment of the present invention, FIG. 3 is an explanatory diagram showing a schematic configuration of a fluorescence observation apparatus,
図4は検出波長切換え用フィルタを示す構成説明図、図5は励起波長切換え用フィルタを示す構成説明図である。 Figure 4 is configuration diagram illustrating a detection wavelength switching filter, Figure 5 is a block diagram illustrating a filter for excitation wavelength switching.

【0032】図3に示すように、本実施例の蛍光観察装置は、励起光を発生する光源装置31と、光源装置31 As shown in FIG. 3, the fluorescence observation apparatus of this embodiment includes a light source device 31 for generating excitation light, the light source device 31
からの励起光を生体内の観察部位に照射して、励起光による蛍光像を検出し生体外に伝達する内視鏡32と、接続された内視鏡の種類(例えば、上部消化管用、下部消化管用、気管支用等)を検出する内視鏡種類検出手段3 The excitation light from the irradiating the observation site in the body, the endoscope 32 to transmit the detected vitro fluorescence image by the excitation light, the type of the connected endoscope (e.g., for an upper gastrointestinal tract, the lower the endoscope-type detection means 3 for detecting a digestive tract, bronchi for like)
3と、内視鏡種類検出手段33からの信号を入力し、接続された内視鏡の種類を判別する内視鏡判別回路34 3, the endoscope type inputs a signal from the detection means 33, the endoscope discriminating circuit 34 for discriminating the type of the connected endoscope
と、内視鏡判別回路34からの信号により励起波長及び検出波長を決定し、それぞれの波長の切換えを制御する波長切換制御手段35と、波長切換制御手段35からの信号を受けて蛍光検出波長を切換える検出波長切換手段36と、内視鏡32で得られた蛍光像を撮影し電気信号に変換するカメラ37と、カメラ37からの画像信号を処理し蛍光画像を生成する蛍光画像処理部38と、蛍光画像処理部38により生成された蛍光画像を表示する表示部39とを備えて構成されている。 If, to determine the excitation wavelength and detection wavelength by a signal from the endoscope discriminating circuit 34, a wavelength switching control means 35 for controlling the switching of each wavelength, the fluorescence detection wavelength by receiving a signal from the wavelength switching control means 35 and detection wavelength switching means 36 for switching, a camera 37 for converting into an electric signal by photographing a fluorescence image obtained by the endoscope 32, the fluorescent image processing unit 38 for generating the processed fluorescence image an image signal from the camera 37 When it is configured by a display unit 39 for displaying the fluorescence image generated by the fluorescent image processing unit 38.

【0033】内視鏡種類検出手段33は、内視鏡32の接眼部に設けたバーコードラベル40と、このバーコードラベル40を読み取るための接眼部に取り付けられるバーコードスキャナ41とを備えて構成される。 The endoscope-type detection unit 33 includes a bar code label 40 provided on the eyepiece section of the endoscope 32, and a bar code scanner 41 attached to the eyepiece section for reading the bar code label 40 with configured.

【0034】検出波長切換手段36は、内視鏡32から入射する蛍光像を2つの光路に分割するダイクロイックミラー42,ミラー43と、検出する蛍光の波長帯域を選択的に透過する検出波長切換フィルタ44と、検出波長切換フィルタ44を回転駆動するフィルタ駆動部45 [0034] Detection wavelength switching means 36, a dichroic mirror 42 for dividing the fluorescent image that is incident from the endoscope 32 into two optical paths, a mirror 43, detection wavelength switching filter that selectively transmits a wavelength band of the fluorescence detecting 44, the filter drive section 45 for rotating the detection wavelength switching filter 44
とを備えて構成される。 Configured with the door.

【0035】カメラ37は、検出波長切換手段36から入射する2つの蛍光像をそれぞれ増幅するイメージインテンシファイア16,17と、イメージインテンシファイア16の出力像を撮像するCCD18と、イメージインテンシファイア17の出力像を撮像するCCD19とを備えて構成される。 The camera 37 includes an image intensifier 16 and 17 for amplifying the two fluorescent images incident from the detection wavelength switching means 36, respectively, and CCD18 imaging the output image of the image intensifier 16, an image intensifier constructed and a CCD19 imaging the output image of 17.

【0036】光源装置31は、数種類の波長を含む光を発生する多波長光源(例えば水銀ランプ等)46と、出射する励起光の波長帯域を選択的に透過する励起波長切換フィルタ47と、励起波長切換フィルタ47を回転駆動するフィルタ駆動部48とを備えて構成される。 The light source device 31 includes a multi-wavelength light source (e.g. a mercury lamp or the like) 46 for generating light containing several wavelengths, the excitation wavelength switching filter 47 for selectively transmitting the wavelength band of the excitation light emitted excitation constructed and a filter drive unit 48 for rotating the wavelength switching filter 47.

【0037】本実施例では、内視鏡32を内視鏡種類検出手段33に接続すると、内視鏡接眼部に取り付けられた内視鏡の種類を示すバーコードラベル40がバーコードスキャナ41により読み取られ、バーコードの情報が内視鏡判別回路34に送られる。 [0037] In the present embodiment, the endoscope when the mirror 32 is connected to the endoscope-type detection unit 33, the bar code label 40 has a bar code scanner 41 that indicates the type of the endoscope, which is attached to the endoscope eyepiece section read by the information of the bar code is sent to the endoscope discriminating circuit 34. 内視鏡判別回路34 The endoscope discriminating circuit 34
は、前記バーコードの情報より接続された内視鏡の種類を判別して、内視鏡種類の情報を波長切換制御手段35 , The determine the type of the connected endoscope based on information of the bar code, the endoscope type information wavelengths switching control means 35
に伝達する。 Transmitted to. 波長切換制御手段35は、判別された内視鏡の種類から観察する臓器に適した検出波長を選択し、 Wavelength switching control means 35 selects the detected wavelength suitable organ to be observed from the type of the discriminated endoscope,
検出波長切換手段36内のフィルタ駆動部45に制御信号を送出して検出波長切換フィルタ44を回転させる。 Sends a control signal to the filter driving section 45 in the detection wavelength switching means 36 to rotate the detection wavelength switching filter 44.

【0038】検出波長切換フィルタ44は、図4に示すように、円盤状のフィルタ枠に異なる透過波長帯域を持つ6枚のバンドパスフィルタ44a〜44fが配設されて構成されており、内視鏡の種類に応じて、イメージインテンシファイア16,17の前に44aと44bの領域、44cと44dの領域、44eと44fの領域のいずれかを選択的に配置することで、蛍光像の検出波長帯域を変えることができる。 [0038] Detection wavelength switching filter 44, as shown in FIG. 4, is constituted six bandpass filter 44a~44f having different transmission wavelength band in a disk-shaped filter frame is provided, the endoscope depending on the type of mirror, by selectively placing area of ​​44a and 44b, the region of 44c and 44d, one of the regions of 44e and 44f in front of the image intensifier 16 and 17, detection of fluorescence images it is possible to change the wavelength band.

【0039】また、前記検出波長帯域の切換えと共に、 Further, the switching of the detection wavelength band,
波長切換制御手段35は、判別された内視鏡の種類から観察する臓器に適した励起波長を選択し、光源装置31 Wavelength switching control means 35 selects the excitation wavelength suitable organ to be observed from the type of the discriminated endoscope light source device 31
内のフィルタ駆動部48に制御信号を送出して励起波長切換フィルタ47を回転させる。 Rotating the excitation wavelength switching filter 47 to the filter drive section 48 of the inner control signal sent to the.

【0040】励起波長切換フィルタ47は、図5に示すように、円盤状のフィルタ枠に3枚の異なる透過波長帯域を持つバンドパスフィルタ47a,47b,47cが配設されて構成されており、内視鏡の種類に応じて、多波長光源46の前に47a,47b,47cのいずれかの領域を配置することで、観察部位へ照射する励起波長帯域を変えることができる。 The excitation wavelength switching filter 47, as shown in FIG. 5, band-pass filter 47a having different transmission wavelength bands of three disc-shaped filter frame, 47b, are configured to 47c are disposed, depending on the type of the endoscope, by arranging 47a, 47b, one of the regions of 47c prior to multi-wavelength light source 46, it is possible to change the excitation wavelength band is irradiated to the observation site.

【0041】このように観察部位に適した励起波長及び検出波長が選択された後、光源装置31より励起光が内視鏡32のライトガイド21に導光され、ライトガイド21を通じて観察部位に照射される。 [0041] After the excitation wavelength and detection wavelength suitable for observation region thus has been selected, the pumping light from the light source device 31 is guided to the light guide 21 of the endoscope 32, irradiating the observation site through the light guide 21 It is. 観察部位より出た蛍光は、内視鏡32のイメージガイド22を通じて接眼部まで伝達され、検出波長切換手段36に入射される。 Exiting from the observed region fluorescence is transmitted through the image guide 22 of the endoscope 32 to an eyepiece unit, and enters the detection wavelength switching means 36.
検出波長切換手段36に入射された蛍光像は、ダイクロイックミラー42,ミラー43により透過及び反射して2つの光路に分割され、検出波長切換フィルタ44中の選択されたいずれかのバンドパスフィルタをそれぞれ透過する。 Fluorescence image incident on the detection wavelength switching means 36, the dichroic mirror 42, is divided into two optical paths is transmitted through and reflected by the mirror 43 and the detection wavelength switching filter 44 in a selected respective one of the band-pass filter To Penetrate. この2つの蛍光像は、イメージインテンシファイア16,17によりそれぞれ増幅され、CCD18, The two fluorescent images are respectively amplified by the image intensifier 16, 17, CCD 18,
19により撮像されてビデオ信号に変換される。 It is captured and converted into a video signal by 19.

【0042】CCD18及びCCD19で得られた2つの波長帯域の蛍光像のビデオ信号は、蛍光画像処理部3 [0042] CCD18 and video signals of the fluorescence image of two wavelength bands obtained in CCD19 a fluorescent image processing unit 3
8に入力され、蛍光画像処理部38において第1実施例の画像処理部4と同様の演算処理が施されて蛍光観察画像が生成される。 Is input to 8, the fluorescence observation image is generated is subjected same calculation processing as the image processing unit 4 of the first embodiment in the fluorescent image processing unit 38. そして、蛍光画像処理部38の出力が表示部39へ送られ、蛍光観察画像が表示部39に表示される。 The output of the fluorescent image processing unit 38 is sent to the display unit 39, the fluorescence observation image is displayed on the display unit 39.

【0043】このように本実施例の蛍光観察装置では、 [0043] In this way, the fluorescence observation apparatus of this embodiment,
接続した内視鏡の用途別の種類を判別することによって観察部位を判別し、観察する臓器に適した励起波長及び検出波長を自動的に選択して切換えることが可能になっており、これにより、複数種類の臓器について各臓器に応じた正確な蛍光診断を煩雑な操作なく行うことができる。 The observed region was determined by determining the application-specific type of endoscope connected, it has become possible to switch automatically selected and the excitation wavelength and detection wavelength suitable organ to be observed, thereby , it can be performed without complicated operation accurate fluorescence diagnosis corresponding to each organ for a plurality of types of organs.

【0044】なお、内視鏡種類検出手段33は、内視鏡のライトガイド部と光源装置との接続部分に設けるようにしても良い。 [0044] Incidentally, the endoscope-type detection unit 33 may be provided in the connecting portion between the light guide portion of the endoscope and a light source device. また、バーコードを用いたものに限らず、他の光学的センサによるもの、磁気センサによるもの、機械的な接触によるものなどで内視鏡の種類を判別する構成としても良い。 Further, not limited to using a bar code, due to other optical sensors, due to the magnetic sensor may be configured to determine the type of endoscope or the like due to mechanical contact.

【0045】また、検出波長切換フィルタ44と励起波長切換フィルタ47のバンドパスフィルタの数を変更することで、検出波長及び励起波長の選択数を変えることができる。 Further, by changing the number of the band pass filter of the detection wavelength switching filter 44 with an excitation wavelength switching filter 47 can change the number of selected detection wavelength and excitation wavelength.

【0046】また、検出波長切換手段と励起波長切換手段は、どちらか一方を備えるだけでも良い。 [0046] The excitation wavelength switching means and the detection wavelength switching means may only comprise one or the other.

【0047】図6は本発明の第3実施例に係る蛍光観察装置の概略構成を示す構成説明図である。 [0047] FIG. 6 is an explanatory diagram showing a schematic configuration of a fluorescence observation apparatus according to a third embodiment of the present invention. 第3実施例は、接続された内視鏡の種類と内視鏡挿入部の挿入長とから異なる部位の臓器(食道と胃、直腸と結腸等)を判別可能とした構成例である。 The third embodiment is an example of a configuration to allow determining the connected endoscope type and the endoscope insertion portion of the insertion length from the different sites of organs (esophagus and stomach, rectum and colon, etc.).

【0048】図6に示すように、本実施例の蛍光観察装置は、励起光を発生する光源装置51と、内視鏡32の挿入部に取り付けられた挿入部の挿入長を測定するセンサ群52と、センサ群52の出力信号を受けて挿入長を検出する挿入長検出回路53と、内視鏡種類検出手段3 [0048] As shown in FIG. 6, the fluorescence observation apparatus of this embodiment includes a light source device 51 for generating excitation light, sensor group for measuring the insertion length of the insertion portion attached to the insertion portion of the endoscope 32 and 52, an insertion length detection circuit 53 for detecting the insertion length in response to an output signal of the sensor group 52, the endoscope-type detection means 3
3と挿入長検出回路53からの情報を基に内視鏡の種類と観察臓器部位を判別する観察部位判別回路54とを備えて構成されている。 3 and is constituted by a viewing region determining circuit 54 for identifying the type and observation organ site of the endoscope based on information from the insertion length detection circuit 53. その他の部分の構成は前記第2実施例と同様であり、同一構成要素には同一符号を付して説明を省略する。 Other configurations of the are the same as the second embodiment, the same constituent elements will not be described are denoted by the same reference numerals.

【0049】光源装置51は、異なる波長の光を発生する3つのレーザA55,レーザB56,レーザC57 The light source device 51, three laser A55 for generating light of different wavelengths, the laser B 56, laser C57
と、前記レーザからの3つの光のうちいずれか1つの光を内視鏡32のライトガイド21へ導くための可動ミラー58,可動ミラー59,ミラー60と、前記可動ミラー58,59を駆動する可動ミラー駆動部61とを備えて構成される。 When the light guide 21 movable mirror 58 for guiding the endoscope 32 to one of the light of the three light from the laser, the movable mirror 59, a mirror 60, and drives the movable mirror 58 and 59 It constructed a movable mirror driving unit 61.

【0050】内視鏡32を内視鏡種類検出手段33に接続すると、第2実施例と同様に、バーコードスキャナ4 The endoscope when the mirror 32 is connected to the endoscope-type detection unit 33, as in the second embodiment, the bar code scanner 4
1によりバーコードの情報が読み取られ、観察部位判別回路54に送られて接続された内視鏡の種類が判別される。 Information of the bar code is read by 1, the type of the connected endoscope is determined is sent to observation region determining circuit 54. そして、この内視鏡種類判別結果を基に、波長切換制御手段35により検出波長切換手段36内のフィルタ駆動部45を介して検出波長切換フィルタ44が駆動制御されて検出波長が切換えられる。 Then, based on the endoscope type identification result, detection wavelength switching filter 44 through the filter driving section 45 in the detection wavelength switching means 36 by the wavelength switching control means 35 is switched is detected wavelength is controlled drive.

【0051】また、波長切換制御手段35によって、光源装置51内の可動ミラー駆動部61に制御信号が送られて可動ミラー58及び59が駆動制御され、レーザA [0051] Also, by the wavelength switching control means 35, the movable mirror 58 and 59 control signals to the movable mirror drive unit 61 is sent to in the light source device 51 is driven and controlled, the laser A
55,レーザB56,レーザC57のうち観察臓器に適した波長のレーザが選択されて内視鏡32のライトガイド21に照射される。 55, the laser B 56, is irradiated onto the light guide 21 of the endoscope 32 laser with a wavelength suitable for observation organ of laser C57 is selected.

【0052】次に、内視鏡32の挿入部を患者体腔内に挿入すると、挿入部に設けたセンサ群52の各光センサにより挿入部周囲の明るさが感知され、各光センサの出力が挿入長検出回路53へ送られる。 Next, when the insertion portion of the endoscope 32 is inserted into the body cavity of a patient, is sensed brightness of the insertion portion around the respective optical sensors of the sensor group 52 provided in the insertion portion, the output of each optical sensor It is sent to the insertion length detection circuit 53. 挿入長検出回路5 Insert length detector 5
3は、明るさを感知していない光センサが挿入部先端側から何番目まであるかを検出することによって挿入部の挿入長を検出する。 3 detects the insertion length of the insertion portion by detecting whether an optical sensor not sensing the brightness is up to what number from the insertion tip side. 観察部位判別回路54は、挿入長検出結果を基に、内視鏡32が観察している部位を予測し、観察部位の情報を波長切換制御手段35に伝達する。 Observed region discrimination circuit 54, based on the insertion length detection result, predicts a site endoscope 32 is observed, to transmit the information of the observed region in the wavelength switching control means 35. 例えば、内視鏡の種類が上部消化管用の場合には、 For example, when the type of the endoscope for the upper digestive tract,
挿入長より観察部位が食道、胃などのいずれであるかを判断する。 Observed region from the insertion length determines the esophagus, which one of such as the stomach. そして、観察部位検出結果を基に、波長切換制御手段35により検出波長及び励起波長が再び切換えられる。 Then, based on the observed region detection result and the detection wavelength and the excitation wavelength is switched again by the wavelength switching control means 35.

【0053】以降の蛍光像の撮影及び蛍光観察画像の生成に関する動作は、前記第2実施例と同様に行われ、表示部39に蛍光観察画像が表示される。 [0053] and later in the fluorescent image capturing and operation relating to generation of the fluorescence observation image, the performed similarly to the second embodiment, the fluorescence observation image is displayed on the display unit 39.

【0054】このように本実施例によれば、内視鏡挿入部の挿入長を検出することにより、観察臓器を予測できるため、蛍光観察に適した励起波長,検出波長が、同一の内視鏡で観察できる臓器毎(胃と食道、結腸と直腸等)に異なる場合でも、各臓器部位に適した励起波長及び検出波長を自動的に選択でき、診断時の作業性が良好で、かつ観察部位に応じた正確な蛍光診断を行うことができる。 [0054] According to this embodiment, by detecting the insertion length of the endoscope insertion portion, it is possible to predict the observed organ, excitation wavelength suitable for fluorescent observation, the detection wavelength, the same endoscope each organ can be observed in the mirror (stomach and esophagus, colon and rectum, etc.) even if different in the excitation wavelength and detection wavelength suitable for each organ site can be automatically selected, has good workability at the time of diagnosis, and observed it is possible to perform an accurate fluorescence diagnosis in accordance with the site.

【0055】なお、本実施例で用いた光源装置51は、 [0055] The light source apparatus 51 used in this embodiment,
図3に示した第2実施例の光源装置31と交換可能である。 It is interchangeable with the light source device 31 of the second embodiment shown in FIG.

【0056】また、本実施例においても、内視鏡種類検出手段33は、内視鏡のライトガイド部と光源装置との接続部分に設けるようにしても良い。 [0056] Also in this embodiment, the endoscope-type detection unit 33 may be provided in the connecting portion between the light guide portion of the endoscope and a light source device.

【0057】また、センサ群は、光センサの代わりに圧力センサを設け、圧力センサにより圧力がかかっているか否かで挿入長を判別する構成としても良い。 [0057] The sensor group, the pressure sensor is provided in place of the optical sensor may be configured to determine the insertion length in whether under pressure by the pressure sensor. また、図6には6個のセンサを示したが、センサの数はこれより多くても少なくても良い。 Further, although the six sensors in FIG. 6, the number of sensors may be more or less than this.

【0058】図7は本発明の第4実施例に係る蛍光観察装置の概略構成を示す構成説明図である。 [0058] FIG. 7 is an explanatory diagram showing a schematic configuration of a fluorescence observation apparatus according to a fourth embodiment of the present invention. 第4実施例は、蛍光観察画像から観察臓器を判別し、その臓器に適した励起波長及び検出波長を選別するようにした構成例である。 The fourth embodiment determines the observing organs from the fluorescent observation image is a configuration example in which so as to sort the excitation wavelength and detection wavelength appropriate to that organ.

【0059】図7に示すように、本実施例の蛍光観察装置は、励起光を発生する光源装置51と、励起光を生体内の観察部位に照射して励起光による蛍光像を得る内視鏡2と、内視鏡2の接眼部に取り付けられ、蛍光検出波長を切換える検出波長切換手段36と、内視鏡2で得られた蛍光像を撮影するカメラ37と、カメラ37からの画像信号を処理し蛍光画像を生成する蛍光画像処理部3 As shown in FIG. 7, the fluorescence observation apparatus of this embodiment includes a light source device 51 for generating excitation light, an endoscope to obtain a fluorescent image by the excitation light irradiating the excitation light to the observation site in the body a mirror 2 is mounted on the eyepiece section of the endoscope 2, and the detection wavelength switching means 36 for switching the fluorescence detection wavelength, a camera 37 for capturing a fluorescent image obtained by the endoscope 2, an image from the camera 37 fluorescence image processing unit 3 for generating a fluorescence image by processing the signal
8と、蛍光観察画像を表示する表示部39とを備えると共に、蛍光画像処理部38からの蛍光観察画像を基に画像の特徴を認識する画像認識部65と、認識された画像から観察部位を判別する観察部位判別回路66と、観察部位判別回路66からの信号により励起波長及び検出波長を決定し、それぞれの波長の切換えを制御する波長切換制御手段35とを備えて構成されている。 8, along with a display unit 39 for displaying the fluorescence observation image and a fluorescence observation image image recognition unit 65 recognizes the characteristics of the image based on from the fluorescent image processing unit 38, the observation portion from the recognized image the observed region discrimination circuit 66 for discriminating, to determine the excitation wavelength and detection wavelength by a signal from the observed region discrimination circuit 66 is configured by a wavelength switching control means 35 for controlling the switching of each wavelength.

【0060】本実施例では、まず、任意の励起波長及び検出波長で励起光の照射及び蛍光像の撮影を行い、蛍光画像処理部38で体腔内観察部位の蛍光観察画像を生成する。 [0060] In this embodiment first performs the shooting illumination and fluorescence image of the excitation light at any excitation wavelength and detection wavelength, to produce a fluorescent observation image in the body cavity observation region in the fluorescent image processing unit 38. 生成された蛍光観察画像は画像認識部65に伝達される。 The generated fluorescence observation image is transmitted to the image recognition unit 65.

【0061】画像認識部65は、ニューラルネットを用いたパーセプトロンとか、Back Propagation法(以下略してBP法と称する)等の画像パターン認識法により、 [0061] The image recognition unit 65, Toka perceptron using neural network, the Back Propagation method (abbreviated hereinafter referred to as BP method) image pattern recognition methods such as,
蛍光観察画像から食道、胃、大腸、気管支等の臓器を認識できるように、予め各臓器の観察画像を使用して学習させており、各臓器の画像の特徴が記憶されている。 As can be appreciated esophagus, stomach, large intestine, organs bronchial like from the fluorescence observation image, and is trained by using the observation image in advance each organ, features of the image of each organ is stored. そして、画像認識部65は、蛍光画像処理部38より伝達された蛍光観察画像の各画素毎の信号に重み付けをし、 Then, the image recognition unit 65, the weighted signals for each pixel of the fluorescence observation image that is transmitted from the fluorescent image processing unit 38,
その総和をとることで画像パターンを認識する。 Recognizing an image pattern by taking the sum.

【0062】例えば、食道においては、管腔であるため観察画像は中央付近になるにしたがい暗くなる。 [0062] For example, in the esophagus, the observation image because of the lumen becomes dark according to approximately the center. 一方、 on the other hand,
胃においては、観察画像は全体的に明るいか一方側が暗いなど、食道とは画像パターンが明らかに異なる。 In the stomach, viewing images, etc. is dark overall bright or the other side, the image pattern is clearly different from the esophagus. そこで本実施例では、このような画像の違いを、パーセプトロンとかBP法等を用いて画像パターン認識を行うことによって判別し、観察している臓器を判別する。 In this embodiment, the difference between such images, to determine by performing image pattern recognition using perceptron Toka BP method, to determine the organ being observed.

【0063】画像認識部65で認識された画像パターン信号は、観察部位判別回路66に送られ、観察部位判別回路66において画像パターンより観察臓器が判別される。 [0063] image pattern signals recognized by the image recognition unit 65 is sent to observation region determining circuit 66, observed from the image pattern organs is determined in the observation region determining circuit 66. この観察臓器の情報は、波長切換制御手段35に伝達され、前述の実施例と同様に観察する臓器に適した励起波長及び検出波長に切換えられる。 The information in this observation organ is transmitted to the wavelength switching control means 35 is switched to the excitation wavelength and detection wavelength suitable organ to be observed as in the previous embodiments.

【0064】以降の蛍光像の撮影及び蛍光観察画像の生成に関する動作は、前記第2実施例と同様に行われ、表示部39に蛍光観察画像が表示される。 [0064] and later in the fluorescent image capturing and operation relating to generation of the fluorescence observation image, the performed similarly to the second embodiment, the fluorescence observation image is displayed on the display unit 39.

【0065】このように本実施例によれば、蛍光観察画像の画像パターンを認識することで自動的に観察臓器を判別することができるため、煩雑な作業なしに各臓器部位に適した励起波長及び検出波長を選択でき、観察部位に応じた正確な蛍光診断を行うことができる。 [0065] According to this embodiment, it is possible to automatically determine which observation organ by recognizing an image pattern of the fluorescence observation image, the excitation wavelength suitable without troublesome operations to each organ site and can select the detection wavelength, it is possible to perform accurate fluorescence diagnosis according to the observation site.

【0066】なお、画像認識部65において行う画像パターン認識は、白色光源を用いた通常観察時に行うようにしても良い。 [0066] Note that the image pattern recognition performed by the image recognition unit 65, a white light source usually may be performed at the time of observation with.

【0067】次に、第5実施例として、光源のレーザ出力の測定及び記録が可能な蛍光観察装置の構成例を説明する。 Next, as a fifth embodiment, a configuration example of the measurement and recording fluorescent observation device of the laser output of the light source. 図8は本発明の第5実施例に係る蛍光観察装置の概略構成を示す構成説明図である。 Figure 8 is an explanatory diagram showing a schematic configuration of a fluorescence observation apparatus according to a fifth embodiment of the present invention.

【0068】本実施例の蛍光観察装置は、励起光を発生する光源装置71と、励起光を生体内の観察部位に照射して励起光による蛍光像を得る内視鏡2と、内視鏡2で得られた蛍光像を撮影するカメラ72と、カメラ72からの画像信号を処理し蛍光観察画像を生成する蛍光画像処理部73と、蛍光観察画像を表示する表示部39とを備えると共に、蛍光観察画像を記録するビデオテープレコーダ(VTR)74と、患者情報を記録するデータレコーダ75とを備えて構成されている。 [0068] Fluorescence observation apparatus of this embodiment includes a light source device 71 for generating excitation light, an endoscope 2 to obtain a fluorescent image by the excitation light irradiating the excitation light to the observation site in the body, the endoscope together comprises a camera 72 for capturing a fluorescent image obtained by 2, the fluorescent image processing unit 73 for generating the fluorescence observation image by processing an image signal from the camera 72, and a display unit 39 for displaying the fluorescence observation image, a video tape recorder (VTR) 74 that records the fluorescence observation image is configured by a data recorder 75 for recording patient information.

【0069】光源装置71は、励起光としてレーザ光を発生する励起用レーザ76と、励起用レーザ76からのレーザ光を2方向に分割するハーフミラー77と、分割された一方のレーザ光を検出する光センサ78と、光センサ78で検出された光量よりレーザ出力を測定する出力測定器79とを備えて構成される。 [0069] The light source device 71 includes a pumping laser 76 which generates a laser beam as the excitation light, a half mirror 77 for splitting the laser light from the excitation laser 76 in two directions, it divided one detected laser beam an optical sensor 78, and an output meter 79 for measuring the laser output from the detected light amount by the optical sensor 78 configured to.

【0070】蛍光画像処理部73は、蛍光観察画像を生成するイメージプロセッサ80と、生成された蛍光観察画像にレーザ光の出力データを重ね合わせるスーパーインポーズ部81と、光源装置71から送られてくるレーザ光の出力データをデータレコーダ75とスーパーインポーズ部81とに送るコンピュータ82とを備えて構成される。 [0070] Fluorescence image processing unit 73 includes an image processor 80 that generates a fluorescence observation image, and superimpose unit 81 to superimpose the output data of the laser beam generated fluorescence observation image, transmitted from the light source device 71 constructed and a computer 82 to send the output data of the coming laser light to a data recorder 75 and the superimpose unit 81.

【0071】光源装置71において、励起用レーザ76 [0071] In the light source device 71, pumping laser 76
から出射したレーザ光は、ハーフミラー77を通過して内視鏡のライトガイド21に導光されると共に、ハーフミラー77により反射されて光センサ78に入射する。 The laser beam emitted from, while being guided to the light guide 21 of the endoscope passes through the half mirror 77, it is reflected by the half mirror 77 and enters the optical sensor 78.
光センサ78において、入射したレーザ光の光量が検出され、この検出光量を基に出力測定器79によって励起用レーザ76のレーザ出力が測定される。 The optical sensor 78 is detected amount of laser light incident laser power of the excitation laser 76 is measured by the output measuring instrument 79 of this detected light based.

【0072】測定されたレーザ出力データは、蛍光画像処理部73に送られ、コンピュータ82を介してスーパーインポーズ部81に入力されてイメージプロセッサ8 [0072] The measured laser output data is transmitted to the fluorescent image processing unit 73, the image processor 8 is inputted to the superimpose unit 81 via the computer 82
0で生成された蛍光観察画像と重ね合わされ、VTR7 It is superimposed with the fluorescence observation image generated by the 0, VTR 7
4に記録される。 4 is recorded in. また、このレーザ出力データは、コンピュータ82よりデータレコーダ75にも送られ、患者情報と共に記録される。 Further, the laser output data is also sent to the data recorder 75 from the computer 82, is recorded with the patient information. なお、スーパーインポーズ部8 It should be noted, superimpose section 8
1でレーザ出力データを重畳した蛍光観察画像を表示部39に出力して表示することもできる。 It may be displayed and outputs the fluorescence observation image obtained by superimposing the laser output data to the display unit 39 1.

【0073】このように本実施例によれば、レーザ出力データをコンピュータを通じ自動的に記録するようにしているため、煩雑な操作なく簡単で、かつ、入力ミスなくデータを記録することができる。 [0073] According to this embodiment, since the laser output data to be automatically recorded through a computer, complicated operation without simple and can record the input without error data.

【0074】[付記]以上詳述したように本発明の実施態様によれば、以下のような構成を得ることができる。 [0074] According to an embodiment of the present invention as [Appendix] above in detail, it is possible to obtain the following configurations.
すなわち、 (1) 体腔内組織を照明する照明光を発生する光源と、前記組織からの前記照明光の反射により得られる通常画像と前記組織を前記照明光により励起して得られる蛍光像とをそれぞれ撮像する撮像手段と、を有する蛍光観察装置において、前記光源は、前記蛍光像の属する波長帯域と前記通常画像を構成する波長帯域とが互いに分離するような波長の照明光を発生してなることを特徴とする蛍光観察装置。 That is, a fluorescent image obtained by excitation by the illuminating light and the light source for generating illumination light, said tissue and normal image obtained by the reflection of the illumination light from the tissue to illuminate the (1) tissue in the body cavity in the fluorescence observation apparatus including imaging means for imaging each of the light source is formed by generating an illumination light having a wavelength such as a wavelength band which constitutes the normal image and the wavelength band belongs the fluorescent image are separated from each other fluorescence observation apparatus characterized by.

【0075】(2) 前記光源は3原色のレーザ光である照明光を発生するRGB光源であることを特徴とする付記1に記載の蛍光観察装置。 [0075] (2) The light source is a fluorescent observation apparatus according to note 1, characterized in that the RGB light source for generating illumination light is a laser beam of three primary colors.

【0076】付記2の構成のように、RGB光源により、通常画像を得るための3原色の照明光と、体腔内組織を励起し蛍光を発生させるための前記3原色の照明光の波長帯域のうちいずれかに属する励起光とを発生し、 [0076] As the note 2 configuration, the RGB light source, 3 a primary illumination light for obtaining a normal image, the three primary wavelength bands of the illumination light for generating fluorescence by exciting the tissue in the body cavity out it occurs and the excitation light that belongs to any one,
前記蛍光像の属する波長帯域と前記通常画像を構成する波長帯域とが互いに分離するようにして両画像を撮像することにより、光源や撮像手段を切換えることなく蛍光像と通常画像を同時に得ることが可能であると共に、励起光発生用の光源を特に設けずに光源の構成を簡略化できるため装置構成を小型化できる。 By the wavelength band constituting the normal image and the wavelength band belongs the fluorescent image is captured the two images so as to separate from each other, be obtained at the same time fluorescence image and normal image without switching the light source and the imaging means with possible, the apparatus can be downsized configuration for simplifying the particular light source without providing constituting the light source for excitation light generation.

【0077】(3) 前記光源は、前記体腔内組織を励起し蛍光を発生させるための励起光である照明光を発生させるレーザ光源と、前記通常画像を得るための3原色のレーザ光である照明光を発生させるRGB光源と、を備えることを特徴とする付記1に記載の蛍光観察装置。 [0077] (3) The light source includes a laser light source for generating illumination light to excite the tissue inside a body cavity which is excitation light for generating fluorescence, is the laser light of three primary colors for obtaining the normal image fluorescence observation apparatus according to note 1, characterized in that it comprises a RGB light source for generating illumination light.

【0078】付記3の構成のように、レーザ光源より発生する励起光の波長帯域と、RGB光源より発生する3 [0078] As Appendix 3 configuration, the wavelength band of the excitation light generated from the laser light source, 3 generated from RGB light sources
原色の照明光の波長帯域と、撮像手段において検出する複数の特定波長帯域からなる蛍光像の波長帯域とが、互いに重なり合わないようにすることにより、蛍光像の属する波長帯域と通常画像を構成する波長帯域とが互いに分離され、光源や撮像手段を切換えることなく蛍光像と通常画像を同時に得ることができる。 Configuration and the wavelength band of the primary illumination light, the wavelength band of the fluorescence image consisting of a plurality of specific wavelength band for detecting the imaging means, by not overlap each other, the wavelength band and a normal image belongs fluorescent image a wavelength band are separated from each other, the fluorescence image and normal image without switching the light source and the imaging means can be obtained simultaneously.

【0079】(4) 前記蛍光像は特定の波長帯域に属する複数の特定波長蛍光像からなり、前記撮像手段は、 [0079] (4) the fluorescence image comprises a plurality of specific wavelength fluorescence images belonging to a specific wavelength band, said imaging means,
前記複数の特定波長蛍光像を分離して撮像することを特徴とする付記1に記載の蛍光観察装置。 Fluorescence observation apparatus according to note 1, characterized in that imaging by separating the plurality of specific wavelengths fluorescence images.

【0080】(5) 前記撮像手段により撮像する蛍光像の特定波長帯域は、赤の領域と緑の領域に分布を持つことを特徴とする付記4に記載の蛍光観察装置。 [0080] (5) specific wavelength band of the fluorescence image to be captured by the imaging means, the fluorescence observation apparatus according to note 4, characterized by having a distribution in the red region and green region.

【0081】(6) 体腔内組織を励起し蛍光を発生させるための励起光を発生する光源と、前記励起光を体腔内組織に導光し、前記励起光により発生した組織からの蛍光像を伝達する内視鏡と、前記光源より出射する励起光の波長帯域を選択的に切換える励起波長切換え手段と、前記内視鏡により伝達される蛍光像から特定の波長帯域を選択的に切換えて検出する検出波長切換え手段と、前記蛍光像の特定波長帯域と前記励起光の波長帯域とを選択する波長選択手段と、前記波長選択手段からの情報を受け、観察部位に応じて前記蛍光像の特定波長帯域と前記励起光の波長帯域の少なくとも一方の波長を切換える波長切換え制御手段と、を備えたことを特徴とする蛍光観察装置。 [0081] (6) a light source for generating excitation light for generating excited fluorescent body cavity tissue, a fluorescent image from the excitation light guided to the body cavity tissue, generated by the excitation light tissue an endoscope for transmitting an excitation wavelength switching means for switching a wavelength band of the excitation light emitted from the light source selectively, the detection switches selectively a specific wavelength band from the fluorescence image transmitted by the endoscope and detection wavelength switching means for, and the wavelength selection means for selecting a wavelength band of a specific wavelength band as the excitation light of the fluorescent image, receives information from the wavelength selection means, a particular said fluorescent image in accordance with the observation site fluorescence observation apparatus comprising: the wavelength switching control means for switching at least one wavelength of the wavelength band of the wavelength band as the excitation light, further comprising a.

【0082】付記6の構成によれば、観察する臓器に合わせて、自動的に励起波長及び検出波長を各臓器の蛍光観察に適した波長に切換えることができ、煩雑な波長切換えの操作を行う必要がなく、正確な蛍光診断を行うことが可能となる。 [0082] According to the appendix 6, in accordance with the organ to be observed, automatically excitation wavelength and detection wavelength can be switched to the wavelength suitable for the fluorescence observation of each organ, operate the complicated wavelength switching it is not necessary, it is possible to perform an accurate fluorescence diagnostics.

【0083】(7) 前記波長選択手段は、前記内視鏡の種類を判別する内視鏡種類判別手段である付記6に記載の蛍光観察装置。 [0083] (7) the wavelength selection means, the fluorescence observation apparatus according to note 6 is an endoscope type identification means for discriminating the type of the endoscope.

【0084】(8) 前記波長選択手段は、前記内視鏡により観察している臓器を判別する観察部位判別手段である付記6に記載の蛍光観察装置。 [0084] (8) the wavelength selection means, the fluorescence observation apparatus according to note 6 is observed region discrimination means for discriminating an organ being observed by the endoscope.

【0085】(9) 前記観察部位判別手段は、前記内視鏡により得られる観察画像を基に画像認識を行い、前記観察画像中の臓器を判別する画像認識手段である付記8に記載の蛍光観察装置。 [0085] (9) the observed region determination means, the fluorescence of statement 8 is an image recognition unit that performs image recognition on the basis of the observation image obtained by the endoscope to determine the organ in the observation image observation device.

【0086】(10) 前記観察部位判別手段は、前記内視鏡の種類を判別する内視鏡種類判別手段と、前記内視鏡の挿入部の生体内挿入長を検出する挿入長検出手段と、を有して構成される付記8に記載の蛍光観察装置。 [0086] (10) the observation region determining means, and endoscope type identification means for discriminating the type of the endoscope, the insertion length detection means for detecting the in vivo insertion length of the insertion portion of the endoscope , fluorescence observation apparatus according to configured Supplementary note 8 a.

【0087】 [0087]

【発明の効果】以上説明したように本発明によれば、通常観察画像と蛍光観察画像を、光源や撮像手段を切換えることなく、両方同時にリアルタイム表示することができ、両画像にズレがなくかつ明るい画像を得ることが可能となる効果がある。 According to the present invention described above, according to the present invention, a normal observation image and a fluorescence observation image, without switching the light source and the imaging means, both can be displayed in real time simultaneously and there is no deviation in both images there is an effect that it is possible to obtain a bright image.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の第1実施例に係る蛍光観察装置の概略構成を示す構成説明図 An explanatory diagram showing a schematic configuration of a fluorescence observation apparatus according to a first embodiment of the present invention; FIG

【図2】第1実施例の構成における観察部位へ照射する各照明光及び生体組織から検出される蛍光の波長帯域と各フィルタの透過波長特性との関係を示す特性図 [Figure 2] characteristic diagram showing the relationship between the wavelength bands and transmission wavelength characteristics of the filters of the fluorescence detected from the illumination light and the biological tissue is irradiated to the observation site in the structure of the first embodiment

【図3】本発明の第2実施例に係る蛍光観察装置の概略構成を示す構成説明図 An explanatory diagram showing a schematic configuration of a fluorescence observation apparatus according to a second embodiment of the present invention; FIG

【図4】第2実施例において設けられる検出波長切換え用フィルタを示す構成説明図 [4] configuration diagram illustrating a detection wavelength switching filter provided in the second embodiment

【図5】第2実施例において設けられる励起波長切換え用フィルタを示す構成説明図 [5] structure explanatory diagram showing the excitation wavelength switching filter provided in the second embodiment

【図6】本発明の第3実施例に係る蛍光観察装置の概略構成を示す構成説明図 [6] an explanatory diagram showing a schematic configuration of a fluorescence observation apparatus according to a third embodiment of the present invention

【図7】本発明の第4実施例に係る蛍光観察装置の概略構成を示す構成説明図 [7] an explanatory diagram showing a schematic configuration of a fluorescence observation apparatus according to a fourth embodiment of the present invention

【図8】本発明の第5実施例に係る蛍光観察装置の概略構成を示す構成説明図 [8] an explanatory diagram showing a schematic configuration of a fluorescence observation apparatus according to a fifth embodiment of the present invention

【符号の説明】 DESCRIPTION OF SYMBOLS

1…光源装置 2…内視鏡 3…カメラ 4…画像処理部 5…表示部 6…励起用レーザ 7…RGBレーザ 13,14…バンドパスフィルタ 15…レーザカットフィルタ 16,17…イメージインテンシファイア 18,19,20…CCD 1 ... light source apparatus 2 ... endoscope 3 ... camera 4 ... image processing unit 5 ... display section 6 ... excitation laser 7 ... RGB laser 13, 14 ... band-pass filter 15 ... laser cut filter 16, 17 ... image intensifier 18,19,20 ... CCD

Claims (1)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 体腔内組織を照明する照明光を発生する光源と、 前記組織からの前記照明光の反射により得られる通常画像と前記組織を前記照明光により励起して得られる蛍光像とをそれぞれ撮像する撮像手段と、を有する蛍光観察装置において、 前記光源は、前記蛍光像の属する波長領域と前記通常画像を構成する波長領域とが互いに分離するような波長の照明光を発生してなることを特徴とする蛍光観察装置。 And 1. A light source for generating illumination light for illuminating the body cavity tissue and fluorescence images obtained by the tissue and normal image obtained by the reflection of the illumination light from the tissue is excited by the illumination light in the fluorescence observation apparatus having an imaging means for imaging each light source is formed by generating an illumination light having a wavelength such as a wavelength region constituting the normal image and the wavelength region belongs the fluorescent image are separated from each other fluorescence observation apparatus characterized by.
JP03544495A 1995-02-23 1995-02-23 Fluorescence observation apparatus Expired - Fee Related JP3560671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03544495A JP3560671B2 (en) 1995-02-23 1995-02-23 Fluorescence observation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03544495A JP3560671B2 (en) 1995-02-23 1995-02-23 Fluorescence observation apparatus

Publications (2)

Publication Number Publication Date
JPH08224209A true JPH08224209A (en) 1996-09-03
JP3560671B2 JP3560671B2 (en) 2004-09-02

Family

ID=12442007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03544495A Expired - Fee Related JP3560671B2 (en) 1995-02-23 1995-02-23 Fluorescence observation apparatus

Country Status (1)

Country Link
JP (1) JP3560671B2 (en)

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6179777B1 (en) 1997-11-27 2001-01-30 Asahi Kogaku Kogyo Kabushiki Kaisha Fluorescent diagnosing apparatus including optical path switching member
JP2001517519A (en) * 1997-09-29 2001-10-09 ボストン サイエンティフィック コーポレイション Visual display unit for the interventional device
JP2002238839A (en) * 2001-02-16 2002-08-27 Olympus Optical Co Ltd Endoscope system
JP2002336196A (en) * 2001-05-16 2002-11-26 Olympus Optical Co Ltd Endoscopic equipment
US6603552B1 (en) 1999-12-22 2003-08-05 Xillix Technologies Corp. Portable system for detecting skin abnormalities based on characteristic autofluorescence
JP2004525697A (en) * 2001-03-16 2004-08-26 ユニバーシティ・オブ・ユタ・リサーチ・ファウンデーション Device and method for photodynamic diagnosis of tumor tissue
US6821245B2 (en) 2000-07-14 2004-11-23 Xillix Technologies Corporation Compact fluorescence endoscopy video system
US6826424B1 (en) 2000-12-19 2004-11-30 Haishan Zeng Methods and apparatus for fluorescence and reflectance imaging and spectroscopy and for contemporaneous measurements of electromagnetic radiation with multiple measuring devices
US6899675B2 (en) 2002-01-15 2005-05-31 Xillix Technologies Corp. Fluorescence endoscopy video systems with no moving parts in the camera
JP2005348902A (en) * 2004-06-09 2005-12-22 Olympus Corp Endoscope apparatus
JP2007319442A (en) * 2006-06-01 2007-12-13 Fujifilm Corp Capsule endoscope system and image processing unit
US7333189B2 (en) 2002-01-18 2008-02-19 Pentax Corporation Spectroscopic diagnostic methods and system
JPWO2005104926A1 (en) * 2004-04-30 2008-03-13 株式会社モリタ製作所 Vivo examination apparatus, intraoral imaging apparatus and medical care instruments
US7404929B2 (en) 2002-01-18 2008-07-29 Newton Laboratories, Inc. Spectroscopic diagnostic methods and system based on scattering of polarized light
JP2008259722A (en) * 2007-04-13 2008-10-30 Hoya Corp Fluorescent endoscope system and light source unit
JP2008259591A (en) * 2007-04-10 2008-10-30 Hamamatsu Photonics Kk Light source device for fluorescence observation and fluorescence observation instrument using the same
JP2008259595A (en) * 2007-04-10 2008-10-30 Hamamatsu Photonics Kk Fluorescence observation apparatus
JP2009279171A (en) * 2008-05-22 2009-12-03 Fujinon Corp Fluorescent image obtainment method and apparatus
JP2009279170A (en) * 2008-05-22 2009-12-03 Fujinon Corp Fluorescent image obtainment method and apparatus
JP2010068924A (en) * 2008-09-17 2010-04-02 Fujinon Corp Method and apparatus for image acquisition
JP2010125271A (en) * 2008-12-01 2010-06-10 Fujifilm Corp Photo tomographical image providing apparatus
JPWO2009028136A1 (en) * 2007-08-29 2010-11-25 パナソニック株式会社 Fluorescence observation apparatus
WO2011074448A1 (en) * 2009-12-15 2011-06-23 オリンパス株式会社 Light control device, control device, optical scope and optical scanning device
WO2011080996A1 (en) * 2009-12-28 2011-07-07 オリンパス株式会社 Image processing device, electronic apparatus, program, and image processing method
WO2011126065A1 (en) * 2010-04-07 2011-10-13 オリンパス株式会社 Fluorescence observation device
JP2011200572A (en) * 2010-03-26 2011-10-13 Fujifilm Corp Electronic endoscope system
JP2011218003A (en) * 2010-04-12 2011-11-04 Olympus Corp Fluorescence observation device and method for processing fluorescent image
JP2012152333A (en) * 2011-01-25 2012-08-16 Fujifilm Corp Endoscope system and method of controlling light source thereof
JP2012217673A (en) * 2011-04-11 2012-11-12 Fujifilm Corp Endoscopic diagnosis system
JP2013162978A (en) * 2012-02-13 2013-08-22 Aichi Prefecture Detection system for detection target region
CN103431833A (en) * 2013-05-24 2013-12-11 中国科学院苏州生物医学工程技术研究所 Medical multiband narrow band imaging system
JP2014014716A (en) * 2013-10-17 2014-01-30 Fujifilm Corp Endoscopic apparatus
JP2015150277A (en) * 2014-02-17 2015-08-24 株式会社長田中央研究所 Periodontal pocket depth measuring device and periodontal pocket depth measuring method
US9386909B2 (en) 2006-07-28 2016-07-12 Novadaq Technologies Inc. System and method for deposition and removal of an optical element on an endoscope objective
JP2016182235A (en) * 2015-03-26 2016-10-20 パナソニックIpマネジメント株式会社 Skin diagnosis device
WO2017047141A1 (en) * 2015-09-14 2017-03-23 オリンパス株式会社 Endoscope device and endoscope system
US9610021B2 (en) 2008-01-25 2017-04-04 Novadaq Technologies Inc. Method for evaluating blush in myocardial tissue
US9642532B2 (en) 2008-03-18 2017-05-09 Novadaq Technologies Inc. Imaging system for combined full-color reflectance and near-infrared imaging
US9814378B2 (en) 2011-03-08 2017-11-14 Novadaq Technologies Inc. Full spectrum LED illuminator having a mechanical enclosure and heatsink
US9816930B2 (en) 2014-09-29 2017-11-14 Novadaq Technologies Inc. Imaging a target fluorophore in a biological material in the presence of autofluorescence
US9877654B2 (en) 2006-02-07 2018-01-30 Novadaq Technologies Inc. Near infrared imaging
WO2018034075A1 (en) * 2016-08-19 2018-02-22 ソニー株式会社 Imaging system
US10041042B2 (en) 2008-05-02 2018-08-07 Novadaq Technologies ULC Methods for production and use of substance-loaded erythrocytes (S-IEs) for observation and treatment of microvascular hemodynamics
US10182709B2 (en) 2002-01-15 2019-01-22 Novadaq Technologies ULC Filter for use with imaging endoscopes
US10219742B2 (en) 2008-04-14 2019-03-05 Novadaq Technologies ULC Locating and analyzing perforator flaps for plastic and reconstructive surgery
US10265419B2 (en) 2006-09-01 2019-04-23 Novadaq Technologies ULC Intraoperative determination of nerve location

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008043383A (en) * 2006-08-11 2008-02-28 Pentax Corp Fluorescence observation endoscope instrument
CN106461462B (en) * 2014-03-21 2019-03-26 海佩尔梅德影像有限公司 Compact optical sensor

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001517519A (en) * 1997-09-29 2001-10-09 ボストン サイエンティフィック コーポレイション Visual display unit for the interventional device
US6179777B1 (en) 1997-11-27 2001-01-30 Asahi Kogaku Kogyo Kabushiki Kaisha Fluorescent diagnosing apparatus including optical path switching member
US6603552B1 (en) 1999-12-22 2003-08-05 Xillix Technologies Corp. Portable system for detecting skin abnormalities based on characteristic autofluorescence
US7722534B2 (en) 2000-07-14 2010-05-25 Novadaq Technologies, Inc. Compact fluorescence endoscopy video system
US9968244B2 (en) 2000-07-14 2018-05-15 Novadaq Technologies ULC Compact fluorescence endoscopy video system
US8961403B2 (en) 2000-07-14 2015-02-24 Novadaq Technologies Inc. Compact fluorescence endoscopy video system
US6821245B2 (en) 2000-07-14 2004-11-23 Xillix Technologies Corporation Compact fluorescence endoscopy video system
US7341557B2 (en) 2000-07-14 2008-03-11 Novadaq Technologies Inc. Compact fluorescence endoscopy video system
US6826424B1 (en) 2000-12-19 2004-11-30 Haishan Zeng Methods and apparatus for fluorescence and reflectance imaging and spectroscopy and for contemporaneous measurements of electromagnetic radiation with multiple measuring devices
US7190452B2 (en) 2000-12-19 2007-03-13 Perceptronix Medical, Inc. Imaging systems for fluorescence and reflectance imaging and spectroscopy and for contemporaneous measurements of electromagnetic radiation with multiple measuring devices
US6898458B2 (en) 2000-12-19 2005-05-24 Haishan Zeng Methods and apparatus for fluorescence and reflectance imaging and spectroscopy and for contemporaneous measurements of electromagnetic radiation with multiple measuring devices
US7115841B2 (en) 2000-12-19 2006-10-03 Perceptronix Medical, Inc. Imaging methods for fluorescence and reflectance imaging and spectroscopy and for contemporaneous measurements of electromagnetic radiation with multiple measuring devices
US7253894B2 (en) 2000-12-19 2007-08-07 Perceptronix Medical, Inc. Image detection apparatus for fluorescence and reflectance imaging and spectroscopy and for contemporaneous measurements of electromagnetic radiation with multiple measuring devices
JP2002238839A (en) * 2001-02-16 2002-08-27 Olympus Optical Co Ltd Endoscope system
JP4624575B2 (en) * 2001-02-16 2011-02-02 オリンパス株式会社 The endoscope system
JP2004525697A (en) * 2001-03-16 2004-08-26 ユニバーシティ・オブ・ユタ・リサーチ・ファウンデーション Device and method for photodynamic diagnosis of tumor tissue
JP2002336196A (en) * 2001-05-16 2002-11-26 Olympus Optical Co Ltd Endoscopic equipment
US6899675B2 (en) 2002-01-15 2005-05-31 Xillix Technologies Corp. Fluorescence endoscopy video systems with no moving parts in the camera
US10182709B2 (en) 2002-01-15 2019-01-22 Novadaq Technologies ULC Filter for use with imaging endoscopes
US7404929B2 (en) 2002-01-18 2008-07-29 Newton Laboratories, Inc. Spectroscopic diagnostic methods and system based on scattering of polarized light
US7333189B2 (en) 2002-01-18 2008-02-19 Pentax Corporation Spectroscopic diagnostic methods and system
JP4576377B2 (en) * 2004-04-30 2010-11-04 株式会社モリタ製作所 Vivo examination apparatus, intraoral imaging apparatus and medical care instruments
JPWO2005104926A1 (en) * 2004-04-30 2008-03-13 株式会社モリタ製作所 Vivo examination apparatus, intraoral imaging apparatus and medical care instruments
JP2005348902A (en) * 2004-06-09 2005-12-22 Olympus Corp Endoscope apparatus
US9877654B2 (en) 2006-02-07 2018-01-30 Novadaq Technologies Inc. Near infrared imaging
JP2007319442A (en) * 2006-06-01 2007-12-13 Fujifilm Corp Capsule endoscope system and image processing unit
US9386909B2 (en) 2006-07-28 2016-07-12 Novadaq Technologies Inc. System and method for deposition and removal of an optical element on an endoscope objective
US10265419B2 (en) 2006-09-01 2019-04-23 Novadaq Technologies ULC Intraoperative determination of nerve location
JP2008259595A (en) * 2007-04-10 2008-10-30 Hamamatsu Photonics Kk Fluorescence observation apparatus
JP2008259591A (en) * 2007-04-10 2008-10-30 Hamamatsu Photonics Kk Light source device for fluorescence observation and fluorescence observation instrument using the same
JP2008259722A (en) * 2007-04-13 2008-10-30 Hoya Corp Fluorescent endoscope system and light source unit
JPWO2009028136A1 (en) * 2007-08-29 2010-11-25 パナソニック株式会社 Fluorescence observation apparatus
US9610021B2 (en) 2008-01-25 2017-04-04 Novadaq Technologies Inc. Method for evaluating blush in myocardial tissue
US9936887B2 (en) 2008-01-25 2018-04-10 Novadaq Technologies ULC Method for evaluating blush in myocardial tissue
US9642532B2 (en) 2008-03-18 2017-05-09 Novadaq Technologies Inc. Imaging system for combined full-color reflectance and near-infrared imaging
US10219742B2 (en) 2008-04-14 2019-03-05 Novadaq Technologies ULC Locating and analyzing perforator flaps for plastic and reconstructive surgery
US10041042B2 (en) 2008-05-02 2018-08-07 Novadaq Technologies ULC Methods for production and use of substance-loaded erythrocytes (S-IEs) for observation and treatment of microvascular hemodynamics
JP2009279170A (en) * 2008-05-22 2009-12-03 Fujinon Corp Fluorescent image obtainment method and apparatus
JP2009279171A (en) * 2008-05-22 2009-12-03 Fujinon Corp Fluorescent image obtainment method and apparatus
JP2010068924A (en) * 2008-09-17 2010-04-02 Fujinon Corp Method and apparatus for image acquisition
JP2010125271A (en) * 2008-12-01 2010-06-10 Fujifilm Corp Photo tomographical image providing apparatus
WO2011074448A1 (en) * 2009-12-15 2011-06-23 オリンパス株式会社 Light control device, control device, optical scope and optical scanning device
US9335269B2 (en) 2009-12-15 2016-05-10 Olympus Corporation Optical control device, control device, optical scope, and scanning optical device
WO2011080996A1 (en) * 2009-12-28 2011-07-07 オリンパス株式会社 Image processing device, electronic apparatus, program, and image processing method
CN102695446A (en) * 2009-12-28 2012-09-26 奥林巴斯株式会社 Image processing device, electronic apparatus, program, and image processing method
US8913111B2 (en) 2009-12-28 2014-12-16 Olympus Corporation Image processing device, electronic apparatus, information storage device, and image processing method
JP2011200572A (en) * 2010-03-26 2011-10-13 Fujifilm Corp Electronic endoscope system
US8818062B2 (en) 2010-04-07 2014-08-26 Olympus Corporation Fluoroscopy device
JP2011217886A (en) * 2010-04-07 2011-11-04 Olympus Corp Fluorescence observation device
CN102843951A (en) * 2010-04-07 2012-12-26 奥林巴斯株式会社 Fluorescence observation device
WO2011126065A1 (en) * 2010-04-07 2011-10-13 オリンパス株式会社 Fluorescence observation device
JP2011218003A (en) * 2010-04-12 2011-11-04 Olympus Corp Fluorescence observation device and method for processing fluorescent image
US8421034B2 (en) 2010-04-12 2013-04-16 Olympus Corporation Fluoroscopy apparatus and fluorescence image processing method
CN102843952A (en) * 2010-04-12 2012-12-26 奥林巴斯株式会社 Fluorescence observation apparatus and the fluorescent image processing method
JP2012152333A (en) * 2011-01-25 2012-08-16 Fujifilm Corp Endoscope system and method of controlling light source thereof
US9814378B2 (en) 2011-03-08 2017-11-14 Novadaq Technologies Inc. Full spectrum LED illuminator having a mechanical enclosure and heatsink
JP2012217673A (en) * 2011-04-11 2012-11-12 Fujifilm Corp Endoscopic diagnosis system
JP2013162978A (en) * 2012-02-13 2013-08-22 Aichi Prefecture Detection system for detection target region
CN103431833A (en) * 2013-05-24 2013-12-11 中国科学院苏州生物医学工程技术研究所 Medical multiband narrow band imaging system
JP2014014716A (en) * 2013-10-17 2014-01-30 Fujifilm Corp Endoscopic apparatus
JP2015150277A (en) * 2014-02-17 2015-08-24 株式会社長田中央研究所 Periodontal pocket depth measuring device and periodontal pocket depth measuring method
US9816930B2 (en) 2014-09-29 2017-11-14 Novadaq Technologies Inc. Imaging a target fluorophore in a biological material in the presence of autofluorescence
JP2016182235A (en) * 2015-03-26 2016-10-20 パナソニックIpマネジメント株式会社 Skin diagnosis device
WO2017047141A1 (en) * 2015-09-14 2017-03-23 オリンパス株式会社 Endoscope device and endoscope system
WO2018034075A1 (en) * 2016-08-19 2018-02-22 ソニー株式会社 Imaging system

Also Published As

Publication number Publication date
JP3560671B2 (en) 2004-09-02

Similar Documents

Publication Publication Date Title
AU2002215792B2 (en) Methods and apparatus for contemporaneous fluorescence and reflectance measurements with multiple measuring devices
US6678398B2 (en) Dual mode real-time screening and rapid full-area, selective-spectral, remote imaging and analysis device and process
EP1472972B1 (en) Apparatus and method for imaging diseased tissue using integrated autofluorescence
US8630698B2 (en) Filter for use with imaging endoscopes
AU752829B2 (en) Fluorescence imaging endoscope
EP2305094B1 (en) Electronic endoscope system and processor for electronic endoscope
JP4343594B2 (en) Endoscope apparatus
US6600861B2 (en) Fiber bundle and endoscope apparatus
EP1301118B1 (en) Compact fluorescence endoscopy video system
US5749830A (en) Fluorescent endoscope apparatus
US8024027B2 (en) Infrared endoscopic balloon probes
US6741884B1 (en) Infrared endoscopic balloon probes
US6790174B2 (en) Fluorescent imaging device
JP5028008B2 (en) Fluorescence endoscope apparatus
EP1275338B1 (en) Apparatus for obtaining fluorescence images, and computer executable program therefor
US20020037252A1 (en) Method and apparatus for obtaining an optical tomographic image of a sentinel lymph node
JP4147033B2 (en) Endoscope apparatus
EP1889563A1 (en) Endoscope and image processing device
EP2122331B1 (en) System for multi- wavelength fluorescence and reflectance imaging
US5647368A (en) Imaging system for detecting diseased tissue using native fluorsecence in the gastrointestinal and respiratory tract
JP4855586B2 (en) Endoscope apparatus
JP6127072B2 (en) Tethered capsule endoscope for Barrett's esophagus screening
US20030040668A1 (en) Endoscope apparatus
JP4009560B2 (en) The endoscope apparatus and a signal processing device
US9345389B2 (en) Additional systems and methods for providing real-time anatomical guidance in a diagnostic or therapeutic procedure

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040308

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040526

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080604

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees