JP2008256470A - Pressure distribution sensor system - Google Patents

Pressure distribution sensor system Download PDF

Info

Publication number
JP2008256470A
JP2008256470A JP2007097684A JP2007097684A JP2008256470A JP 2008256470 A JP2008256470 A JP 2008256470A JP 2007097684 A JP2007097684 A JP 2007097684A JP 2007097684 A JP2007097684 A JP 2007097684A JP 2008256470 A JP2008256470 A JP 2008256470A
Authority
JP
Japan
Prior art keywords
pressure
pressure distribution
distribution sensor
sensitive conductive
sensor system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007097684A
Other languages
Japanese (ja)
Inventor
Masahiro Hatsuda
雅弘 初田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitta Corp
Original Assignee
Nitta Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitta Corp filed Critical Nitta Corp
Priority to JP2007097684A priority Critical patent/JP2008256470A/en
Priority to KR1020080004764A priority patent/KR20080090262A/en
Priority to TW097103326A priority patent/TW200900670A/en
Priority to CNA2008100823272A priority patent/CN101281066A/en
Publication of JP2008256470A publication Critical patent/JP2008256470A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/18Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C19/00Dental auxiliary appliances
    • A61C19/04Measuring instruments specially adapted for dentistry
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00134Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising flexible or deformable structures
    • B81C1/00158Diaphragms, membranes

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Human Computer Interaction (AREA)
  • Dentistry (AREA)
  • Epidemiology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pressure distribution sensor system wherein (1) a circuit part has a light weight and a small size, (2) a pressure distribution sensor is inexpensive, and (3) the whole system is inexpensive. <P>SOLUTION: This system is equipped with the pressure distribution sensor S having 2-8 pressure-sensitive conductive elements 4 which are mutually independent in a film base material 1, wires 2 extending therefrom individually and terminals 3 (having the pressure-sensitive conductive elements on crossing points between one row electrode and 2-8 column electrodes); a processing circuit having an amplifier connected to each terminal 3 for measuring individually an electric resistance change of each pressure-sensitive conductive element 4; and a software for operating a signal acquired from the processing circuit, and displaying, recording and analyzing a measurement result. The shape in a plan view of the film base material 1 and the position of each pressure-sensitive conductive element 4 in the film base material 1 are adapted for a use. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、圧力分布センサシステムに関するものであり、この圧力分布センサシステムによれば、例えば、スキージやローラの圧力分布計測評価、噛み合わせ時の圧力バランスの評価、物体の把持時の圧力分布計測評価、歩行機能計測評価、及び重心動揺計測評価が可能である。   The present invention relates to a pressure distribution sensor system. According to this pressure distribution sensor system, for example, pressure distribution measurement evaluation of a squeegee or a roller, evaluation of a pressure balance at the time of meshing, measurement of pressure distribution at the time of gripping an object Evaluation, walking function measurement evaluation, and center-of-gravity sway measurement evaluation are possible.

上記の如き計測評価ができる圧力分布センサシステムには、所謂マトリクスセンサーシート9が用いられている。   A so-called matrix sensor sheet 9 is used in the pressure distribution sensor system capable of measuring and evaluating as described above.

上記マトリクスセンサ9は、図16に示すように、フィルム基材90aに銀ペースト90b、感圧導電インク90cの順で塗布して多数の行電極(及び列電極)を形成し、前記行電極を持つフィルム基材90aと列電極を持つフィルム基材90aとを交差する態様で貼り合わせて形成されている。そして、この圧力分布センサシステムでは、図15や図17に示すように、上記多数の行・列電極に順次通電するためのマルチプレクサ及び各感圧電極の交差点(感圧導電性素子)の電気抵抗を計測するための複数のアンプを内臓した回路部Kと、採取された信号を演算処理し、表示記録解析するためのソフトウエアを有するコンピュータCとを備えている。     As shown in FIG. 16, the matrix sensor 9 applies a silver paste 90b and a pressure-sensitive conductive ink 90c in this order to a film substrate 90a to form a plurality of row electrodes (and column electrodes). The film base material 90a having the film substrate 90a and the film base material 90a having the column electrode are bonded together in an intersecting manner. In this pressure distribution sensor system, as shown in FIG. 15 and FIG. 17, the multiplexer for sequentially energizing the numerous row / column electrodes and the electrical resistance at the intersection (pressure-sensitive conductive element) of each pressure-sensitive electrode A circuit unit K having a plurality of amplifiers for measuring the signal and a computer C having software for performing arithmetic processing on the collected signals and performing display record analysis.

しかしながら、上記圧力分布センサシステムは、(1)回路部の部品点数が多いため大型・重量化し、(2)圧力分布センサが必要以上に大型となり(3)システム全体として高額になるという問題があった。
特開平8−327474
However, the above pressure distribution sensor system has the problem that (1) the number of parts of the circuit section is large and the size and weight are increased, (2) the pressure distribution sensor becomes larger than necessary, and (3) the entire system is expensive. It was.
JP-A-8-327474

そこで、この発明では、(1)回路部が軽量小型であり、(2)圧力分布センサが安価であり、(3)システム全体が低額である、圧力分布センサシステムを提供することを課題とする。   Accordingly, an object of the present invention is to provide a pressure distribution sensor system in which (1) the circuit portion is light and small, (2) the pressure distribution sensor is inexpensive, and (3) the entire system is inexpensive. .

(請求項1記載の発明)
この発明の圧力分布センサシステムは、フィルム基材内に、一本の行電極と2〜8本の列電極との交差点に感圧導電性素子を具えている圧力分布センサと、前記感圧導電性素子の電気抵抗変化を各別に計測すべく各端子に接続されるアンプを有する処理回路と、前記処理回路から得られた信号の演算と計測結果の表示、記録、解析を行うためのソフトウエアと、を備えており、上記フィルム基材の平面視形状及びフィルム基材内の感圧導電性素子の位置を、用途に適合させるようにしてあることを特徴とする圧力分布センサシステム。
(Invention of Claim 1)
The pressure distribution sensor system according to the present invention includes a pressure distribution sensor having a pressure-sensitive conductive element at an intersection of one row electrode and 2 to 8 column electrodes in a film substrate, and the pressure-sensitive conductive material. A processing circuit having an amplifier connected to each terminal to measure a change in electrical resistance of the conductive element, and a software for performing calculation of a signal obtained from the processing circuit and displaying, recording, and analyzing a measurement result The pressure distribution sensor system is characterized in that the shape of the film substrate in plan view and the position of the pressure-sensitive conductive element in the film substrate are adapted to the application.

(請求項2記載の発明)
この発明の圧力分布センサシステムは、フィルム基材内に相互に独立する2〜8個の感圧導電性素子及びこれから各別に延びる配線並び端子を有する圧力分布センサと、前記感圧導電性素子の電気抵抗変化を各別に計測すべく各端子に接続されるアンプを有する処理回路と、前記処理回路から得られた信号の演算と計測結果の表示、記録、解析を行うためのソフトウエアと、を備えており、上記フィルム基材の平面視形状及びフィルム基材内の感圧導電性素子の位置を、用途に適合させるようにしてある。
(Invention of Claim 2)
The pressure distribution sensor system according to the present invention includes a pressure distribution sensor having 2 to 8 pressure-sensitive conductive elements that are independent from each other in the film substrate and wiring arrangement terminals that extend from the pressure-sensitive conductive elements, and the pressure-sensitive conductive elements. A processing circuit having an amplifier connected to each terminal to measure a change in electrical resistance separately, and software for performing calculation of a signal obtained from the processing circuit and displaying, recording, and analyzing a measurement result; The plan view shape of the film base and the position of the pressure-sensitive conductive element in the film base are adapted to the application.

(請求項3記載の発明)
この発明の圧力分布センサシステムは、上記請求項1又は2記載の発明に関し、圧力分布センサの感圧導電性素子が平面視で横一列に配列されており、スキージーやローラの圧力分布計測評価が可能である。
(Invention of Claim 3)
The pressure distribution sensor system according to the present invention relates to the invention according to claim 1 or 2, wherein the pressure-sensitive conductive elements of the pressure distribution sensor are arranged in a horizontal line in a plan view, and pressure distribution measurement evaluation of a squeegee or a roller is performed. Is possible.

(請求項4記載の発明)
この発明の圧力分布センサシステムは、上記請求項1又は2記載の発明に関し、圧力分布センサが平面視でU字又はV字状の形状であり、人の歯の噛み合わせ時の圧力バランスの計測に適した位置に感圧導電性素子が配置され、噛み合わせ時の圧力バランスの評価が可能であることを特徴とする請求項1記載の圧力分布センサシステム。
(Invention of Claim 4)
The pressure distribution sensor system according to the present invention relates to the invention according to claim 1 or 2, wherein the pressure distribution sensor has a U-shape or a V-shape in plan view, and measures a pressure balance when meshing human teeth. 2. The pressure distribution sensor system according to claim 1, wherein the pressure-sensitive conductive element is disposed at a position suitable for the pressure, and the pressure balance at the time of meshing can be evaluated.

(請求項5記載の発明)
この発明の圧力分布センサシステムは、上記請求項1又は2記載の発明に関し、人やヒューマノイドロボットの手で物体を把持する際の、掌の圧力分布を計測するのに適した位置に複数の感圧導電性素子を配置し、物体の把持時の圧力分布計測評価が可能である。
(Invention of Claim 5)
The pressure distribution sensor system according to the present invention relates to the invention according to claim 1 or 2, wherein a plurality of senses are provided at positions suitable for measuring the pressure distribution of the palm when an object is gripped by a human or humanoid robot. A pressure conductive element can be arranged to measure and evaluate pressure distribution when gripping an object.

(請求項6記載の発明)
この発明の圧力分布センサシステムは、上記請求項1又は2記載の発明に関し、人やヒューマノイドロボットが二足歩行をする際の、足裏の圧力分布や体重の重心移動を計測するのに適した位置に複数の感圧素子を配置し、歩行機能計測評価が可能である。
(Invention of Claim 6)
The pressure distribution sensor system according to the present invention relates to the invention according to claim 1 or 2 and is suitable for measuring a pressure distribution of a sole and a center of gravity shift of a body weight when a human or humanoid robot walks on two legs. A plurality of pressure-sensitive elements are arranged at the position, and walking function measurement evaluation is possible.

(請求項7記載の発明)
この発明の圧力分布センサシステムは、上記請求項1又は2記載の発明に関し、人の静止立位時のふらつきレベルを測定するのに適した位置に複数の感圧素子を配置し、重心動揺計測評価が可能であることを特徴とする請求項1記載の圧力分布センサシステム。
(Invention of Claim 7)
The pressure distribution sensor system according to the present invention relates to the invention according to claim 1 or 2, wherein a plurality of pressure sensitive elements are arranged at a position suitable for measuring a wobbling level when a person is standing still, and the center of gravity fluctuation measurement is performed. 2. The pressure distribution sensor system according to claim 1, wherein the evaluation is possible.

この発明の圧力分布センサシステムは、(1)回路部が軽量小型であり、(2)圧力分布センサが安価であり、(3)システム全体が低額である、ものとなる。   In the pressure distribution sensor system of the present invention, (1) the circuit portion is light and small, (2) the pressure distribution sensor is inexpensive, and (3) the entire system is inexpensive.

以下に、この発明の圧力分布センサシステムを実施するための最良の形態としての実施例について詳細に説明する。   Hereinafter, an embodiment as the best mode for carrying out the pressure distribution sensor system of the present invention will be described in detail.

(この発明の圧力分布センサシステムの基本的形態について)
この圧力分布センサシステムは、フィルム基材内に、一本の行電極と2〜8本の列電極との交差点に感圧導電性素子を具えている圧力分布センサと、前記感圧導電性素子の電気抵抗変化を各別に計測すべく各端子に接続されるアンプを有する処理回路と、前記処理回路から得られた信号の演算と計測結果の表示、記録、解析を行うためのソフトウエアと、を備えており、上記フィルム基材の平面視形状及びフィルム基材内の感圧導電性素子の大きさ及び位置を、用途に適合させるようにしてある。
(Basic form of pressure distribution sensor system of the present invention)
This pressure distribution sensor system comprises a pressure distribution sensor comprising a pressure sensitive conductive element at the intersection of one row electrode and two to eight column electrodes in a film substrate, and the pressure sensitive conductive element. A processing circuit having an amplifier connected to each terminal in order to measure the electrical resistance change separately, software for performing calculation of a signal obtained from the processing circuit and display, recording, and analysis of a measurement result, The shape of the film substrate in plan view and the size and position of the pressure-sensitive conductive element in the film substrate are adapted to the application.

この圧力分布センサシステムは、フィルム基材内に相互に独立する2〜8個の感圧導電性素子及びこれから各別に延びる配線並び端子を有する圧力分布センサと、前記感圧導電性素子の電気抵抗変化を各別に計測すべく各端子に接続されるアンプを有する処理回路と、前記処理回路から得られた信号の演算と計測結果の表示、記録、解析を行うためのソフトウエアと、を備えており、上記フィルム基材の平面視形状及びフィルム基材内の感圧導電性素子の大きさ及び位置を、用途に適合させるようにしてもよい。   This pressure distribution sensor system includes a pressure distribution sensor having 2 to 8 pressure-sensitive conductive elements that are independent from each other in the film substrate and wiring arrangement terminals that extend separately from each other, and an electric resistance of the pressure-sensitive conductive element. A processing circuit having an amplifier connected to each terminal to measure changes separately, and software for performing calculation of signals obtained from the processing circuit and displaying, recording, and analyzing measurement results The planar shape of the film substrate and the size and position of the pressure-sensitive conductive element in the film substrate may be adapted to the application.

ここで、上記圧力分布センサの基本的形態は以下の通りである。
「フィルム基材」
可撓性を有する各種樹脂等であれば使用できるが、例えば、ポリエステル樹脂、ポリイミド樹脂等が採用できる。なお、厚みは10〜100μmである。
Here, the basic form of the pressure distribution sensor is as follows.
"Film substrate"
Any resin can be used as long as it has flexibility. For example, a polyester resin, a polyimide resin, or the like can be used. The thickness is 10 to 100 μm.

「感圧導電性素子」
感圧導電性素子は、印加電極とレシーブ電極を対向させると共に、前記印加電極とレシーブ電極との対向側面にそれぞれ感圧インク層を設けてなる。
"Pressure-sensitive conductive element"
The pressure-sensitive conductive element has an application electrode and a receive electrode opposed to each other, and a pressure-sensitive ink layer is provided on each side surface of the application electrode and the receive electrode.

印加電極及びレシーブ電極は、導電性インクにより構成されている。導電性インクとしては、各種レジン(例えばポリエステルレジン)に銀の粉末を混合してなる銀インクがある。なお印刷形成された導電性インクの厚みは10〜20μmである。   The application electrode and the receive electrode are made of conductive ink. As the conductive ink, there is a silver ink obtained by mixing silver powder into various resins (for example, polyester resin). The thickness of the printed conductive ink is 10 to 20 μm.

また、感圧インク層は、印加電極及びレシーブ電極に印刷形成されるものであり、レジンに半導体粒子と導体粒子を含むインクにより構成される。なお、厚みは10〜50μmである。   The pressure-sensitive ink layer is printed on the application electrode and the receive electrode, and is composed of ink containing semiconductor particles and conductor particles in the resin. The thickness is 10 to 50 μm.

「配線、端子」
印加側並びにレシーブ側配線及び端子は、それぞれ導電性インクにより構成されている。導電性インクとしては、各種レジン(例えばポリエステルレジン)に銀の粉末を混合してなる銀インクがある。なお印刷形成された導電性インクの厚みは10〜20μmである。
"Wiring, terminals"
The application side, receive side wiring, and terminal are each made of conductive ink. As the conductive ink, there is a silver ink obtained by mixing silver powder into various resins (for example, polyester resin). The thickness of the printed conductive ink is 10 to 20 μm.

次に、上記した感圧導電性素子の電気抵抗変化を各別に計測すべく各端子に接続される処理回路は、図14に示すように、基本的には8個(2個〜8個の範囲であればよい)のオペアンプ及びA/D変換器とから成り、前記処理回路から得られた信号の演算と計測結果の表示、記録、解析を行うためのソフトウエア演算、表示、記録等の作業がなされるようにしてある。   Next, as shown in FIG. 14, the number of processing circuits connected to each terminal to measure the electrical resistance change of the pressure-sensitive conductive element is basically 8 (2 to 8). Range of the operational amplifier and A / D converter, and software calculation, display, recording, etc. for performing calculation of the signal obtained from the processing circuit and display, recording, and analysis of the measurement result Work is done.

この実施例1の圧力分布センサシステムは、スキージ圧力、ローラ圧力のバランス計測システムに関するものである。   The pressure distribution sensor system according to the first embodiment relates to a balance measurement system for squeegee pressure and roller pressure.

この圧力分布センサSの構造は、図1に示すように、全体がL字又はT字形状に形成されており、横桟部分に8個の線状の感圧導電性素子4が21mm間隔で配置されていると共に、有効な感圧部幅を、一般的な小型のスクリーン印刷機に適した168mmとしてある。つまりこの圧力分布センサSは、一本の行電極と8本の列電極との交差点に感圧導電性素子4を具えている。   As shown in FIG. 1, the structure of the pressure distribution sensor S is formed in an L shape or a T shape as a whole, and eight linear pressure-sensitive conductive elements 4 are arranged at intervals of 21 mm in the horizontal cross section. In addition, the effective width of the pressure-sensitive portion is 168 mm suitable for a general small-sized screen printer. That is, the pressure distribution sensor S includes a pressure-sensitive conductive element 4 at the intersection of one row electrode and eight column electrodes.

次に、この圧力分布センサSは、二枚のフィルム基材1,1の対向面側に、配線2(一方に印加側配線2a、他方にレシーブ側配線2b)及び端子3(一方に印加側端子3a、他方にレシーブ側端子3b)を設けると共に前記配線2a,2b側端部に感圧インク層4a,4bを設け、これらフィルム基材1,1相互間において対向する配線2a,2b及び端子3 a,3b相互が電気的絶縁状態となる態様で貼り合わせ形成されている。これにより、対向する感圧インク層4a,4b相互の重なり部が感圧導電性素子4となり、当該感圧導電性素子4への加圧力に応じて抵抗値が変化するようにしてある。   Next, the pressure distribution sensor S has a wiring 2 (application side wiring 2a on one side and a receiving side wiring 2b on the other side) and a terminal 3 (application side on one side) on the opposite surface side of the two film bases 1 and 1. A terminal 3a and a receiving terminal 3b) on the other side, and pressure sensitive ink layers 4a and 4b on the ends of the wirings 2a and 2b. The wirings 2a and 2b and terminals facing each other between the film bases 1 and 1 are provided. 3 a and 3 b are bonded and formed in such a manner that they are electrically insulated from each other. Thereby, the overlapping portion between the pressure-sensitive ink layers 4a and 4b facing each other becomes the pressure-sensitive conductive element 4, and the resistance value changes according to the pressure applied to the pressure-sensitive conductive element 4.

なお、圧力分布センサの横幅、つまり計測したいスキージやロールの横長さには、170mm以外に、600mm乃至1000mmのものがあるため、感圧導電性素子数8個を維持したまま列電極の配置間隔を広げて長尺に対応させる。   Note that the lateral width of the pressure distribution sensor, that is, the lateral length of the squeegee or roll to be measured is 600 mm to 1000 mm in addition to 170 mm, so that the arrangement interval of the column electrodes is maintained while maintaining the number of pressure-sensitive conductive elements. Widen to accommodate longer lengths.

また、圧力分布センサ〜処理回路〜コンピュータの関連については、(この発明の圧力分布センサシステムの基本的形態について)の場合と同様である。   The relationship between the pressure distribution sensor, the processing circuit, and the computer is the same as in the case of (basic form of the pressure distribution sensor system of the present invention).

したがって、この発明の圧力分布センサシステムを用いた場合、回路部5が軽量小型であり、圧力分布センサもかなり安価となり、システム全体が低コストとなる。   Therefore, when the pressure distribution sensor system of the present invention is used, the circuit unit 5 is light and small, the pressure distribution sensor is considerably cheaper, and the entire system is low in cost.

「従来のスキージ圧力、ローラ圧力バランス計測システム」
従来のものは、表示操作デバイスにLEDレベルメータ方式とPDA液晶表示の二種類あるが、いずれも回路部5は、マトリクスアレイ状の圧力分布システム用(電極数最大数52×44)を使用していた。
"Conventional squeegee pressure and roller pressure balance measurement system"
Conventionally, there are two types of display operation devices, LED level meter type and PDA liquid crystal display, both of which use a circuit array 5 for a matrix array pressure distribution system (maximum number of electrodes 52 × 44). It was.

圧力分布センサには2行×33列=66の感圧導電性素子を有するものの、出力表示は横に隣接した3個の感圧導性電素子の出力を合算しているため実質11列分の出力を表示していた。つまり、常時計測に使用する1行×11列=11個の感圧導電性素子の荷重計測に対して、最大2288点用のハードウエアを使用していた(図2参照)。   Although the pressure distribution sensor has 2 rows × 33 columns = 66 pressure-sensitive conductive elements, the output display is the sum of the outputs of three pressure-sensitive conductive elements adjacent to each other. Was displayed. That is, hardware for a maximum of 2288 points was used for load measurement of 1 row × 11 columns = 11 pressure-sensitive conductive elements used for constant measurement (see FIG. 2).

また、上記従来のセンサはマトリクスアレイ状の圧力分布システムに使用されるものであるから、回路部5には数多くのマルチプレクサは必須である。   In addition, since the conventional sensor is used for a matrix array pressure distribution system, the circuit unit 5 must have many multiplexers.

したがって、従来の圧力分布センサシステムでは、圧力分布センサ自体が大きく、回路部5の部品点数が多く、コスト面で非常に無駄が多かった。   Therefore, in the conventional pressure distribution sensor system, the pressure distribution sensor itself is large, the number of parts of the circuit unit 5 is large, and the cost is very wasteful.

この実施例2の圧力分布センサシステムは、咬合力バランスシステムに関するものである。   The pressure distribution sensor system according to the second embodiment relates to an occlusal force balance system.

この圧力分布センサの構造は、図3に示すように、平面視でU字又はV字状の形状であり、人の歯の噛み合わせ時の圧力バランスの計測に適した位置(左右にそれぞれ4個)に感圧導電性素子4が配置され、噛み合わせ時の圧力バランスの評価をするものである。ここで、配線2(一方に印加側配線2a、他方にレシーブ側配線2b)及び端子3(一方に印加側端子3a、他方にレシーブ側端子3b)については実施例1と同様である。   As shown in FIG. 3, the structure of this pressure distribution sensor is U-shaped or V-shaped in plan view, and is suitable for measuring pressure balance at the time of engagement of human teeth (4 on the left and right sides). The pressure-sensitive conductive element 4 is arranged on the individual and the pressure balance at the time of meshing is evaluated. Here, the wiring 2 (the application side wiring 2a on one side and the reception side wiring 2b on the other side) and the terminal 3 (application side terminal 3a on one side and the reception side terminal 3b on the other side) are the same as in the first embodiment.

なお、圧力分布センサ〜処理回路〜コンピュータの関連については、(この発明の圧力分布センサシステムの基本的形態について)の場合と同様である。   The relationship between the pressure distribution sensor, the processing circuit, and the computer is the same as in the case of (basic form of the pressure distribution sensor system of the present invention).

したがって、この発明の圧力分布センサシステムを用いた場合、回路部5が軽量小型であり、圧力分布センサもかなり安価となり、システム全体が低コストとなることが明らかである。   Therefore, when the pressure distribution sensor system of the present invention is used, it is clear that the circuit unit 5 is light and small, the pressure distribution sensor is considerably cheap, and the entire system is low in cost.

「従来の咬合力バランス計測システム」
従来のものは、空間分解能1.27mmで感圧導電性素子数約1000点を有し、マトリクスアレイ状圧力分布センサシステム用ハード(電極数最大52×44)を使用している。このように高い空間分解能により歯のどの部分に高い荷重がかかっているか噛み合わせの不具合がリアルタイムに計測できる利点を有するものの、左右の荷重バランスや最大咬合力の計測など、基本的な咬合能力の評価装置としてはオーバースペックであり、高額ゆえ利用しづらかった。回路部の部品点数が多く、コスト面で非常に無駄が多かったからである。
"Conventional occlusal force balance measurement system"
The conventional one has a spatial resolution of 1.27 mm and has about 1000 pressure-sensitive conductive elements, and uses hardware for a matrix array pressure distribution sensor system (maximum number of electrodes: 52 × 44). Although it has the advantage of being able to measure in real time whether or not a tooth has a high load due to its high spatial resolution, it has basic occlusal capabilities such as left and right load balance and maximum occlusal force measurement. As an evaluation device, it was over-spec and was difficult to use due to its high price. This is because the number of parts in the circuit portion is large and the cost is very wasteful.

この実施例3の圧力分布センサシステムは、グローブ圧力計測システムに関するものである。   The pressure distribution sensor system according to the third embodiment relates to a globe pressure measurement system.

この実施例3の圧力分布センサの構造は、図5に示すように、人やヒューマノイドロボットの手で物体を把持する際の、掌の圧力分布を計測するのに適した位置に複数の感圧導電性素子4を配置し、物体の把持時の圧力分布の計測評価に関するものである。この実施例では、圧力分布センサでは、図5に示すように、感圧導電性素子4を8個具えており、その位置は五指先に5点、指(中指、薬指、小指)の付け根に3点としてある。なお、前記感圧導電性素子4の位置は適宜変えることができる。   As shown in FIG. 5, the pressure distribution sensor according to the third embodiment has a plurality of pressure sensitive sensors at positions suitable for measuring a palm pressure distribution when an object is gripped by a human or humanoid robot. The conductive element 4 is arranged, and the pressure distribution measurement and evaluation at the time of gripping an object is performed. In this embodiment, as shown in FIG. 5, the pressure distribution sensor has eight pressure-sensitive conductive elements 4 at five points on the five fingertips and at the base of the finger (middle finger, ring finger, little finger). There are 3 points. The position of the pressure-sensitive conductive element 4 can be changed as appropriate.

このシステムでは、上記圧力分布センサSを被験者やロボットの掌に直接又は間接的(布製のグローブ等に貼り付け)に装着する。次に、圧力分布センサSの端子をオペアンプとA/D変換機能を備えた基板に接続し、コンピュータに接続する。すると、物体を把持する際の荷重配分の計測が可能になる。   In this system, the pressure distribution sensor S is attached directly or indirectly (attached to a cloth glove or the like) to the subject or the palm of the robot. Next, the terminals of the pressure distribution sensor S are connected to a substrate having an operational amplifier and an A / D conversion function, and then connected to a computer. Then, it becomes possible to measure load distribution when gripping an object.

なお、圧力分布センサ〜処理回路〜コンピュータの関連については、(この発明の圧力分布センサシステムの基本的形態について)の場合と同様である。   The relationship between the pressure distribution sensor, the processing circuit, and the computer is the same as in the case of (basic form of the pressure distribution sensor system of the present invention).

ここで、このセンサでは、感圧導電性素子4のサイズは直径3〜6mmとし、その外形を11mmに抑えることにより、従来の圧力分布センサで発生していた指回りに貼り付けた際の曲率による皺や折れによる出力を防止することが可能である。   Here, in this sensor, the size of the pressure-sensitive conductive element 4 is 3 to 6 mm in diameter, and its outer shape is suppressed to 11 mm, so that the curvature when pasted around a finger generated in a conventional pressure distribution sensor is obtained. It is possible to prevent the output due to wrinkles or breakage due to.

また、この発明の圧力分布センサシステムを使用した場合、回路部5が軽量小型であり、圧力分布センサもかなり安価となり、システム全体が低コストとなることが明らかである。   In addition, when the pressure distribution sensor system of the present invention is used, it is clear that the circuit unit 5 is light and small, the pressure distribution sensor is considerably inexpensive, and the entire system is low cost.

「従来のグローブ圧力計測システム」
従来の圧力分布センサSの構造は、4行×4列のマトリクスセンサ20個が一体となった構造であり、総数320点の感圧導電性素子を有する。この圧力分布センサとマトリクスアレイ状圧力分布センサシステム用ハード(電極数最大52×44)の組み合わせで人やロボットの手が物体を把持する際の圧力分布を計測している。
"Conventional globe pressure measurement system"
The structure of the conventional pressure distribution sensor S is a structure in which 20 matrix sensors of 4 rows × 4 columns are integrated, and has 320 pressure-sensitive conductive elements in total. The combination of this pressure distribution sensor and matrix array pressure distribution sensor system hardware (maximum number of electrodes: 52 × 44) measures the pressure distribution when a human or robot hand holds an object.

しかしながら、従来の圧力分布センサSの構造では、数多くの感圧導電点を掌面に配置することで高度な解析が可能になる反面、曲率を持った指や掌にセンサを沿わせるため、センサに曲げ、折れ、皺が発生し、把持圧以外の出力がノイズとして出現し、計測解析の妨げとなっていた。   However, in the structure of the conventional pressure distribution sensor S, by arranging a number of pressure-sensitive conductive points on the palm surface, advanced analysis is possible, but on the other hand, the sensor is placed along a finger or palm with curvature. Bending, bending, wrinkles, and output other than the gripping pressure appeared as noise, hindering measurement analysis.

また、従来の圧力分布センサシステムでは、圧力分布センサ自体が大きく、回路部5の部品点数が多く、コスト面で非常に無駄が多かった。   In the conventional pressure distribution sensor system, the pressure distribution sensor itself is large, the number of parts of the circuit unit 5 is large, and the cost is very wasteful.

この実施例4の圧力分布センサシステムは、歩行機能計測力バランス計測システムに関するものである。   The pressure distribution sensor system according to the fourth embodiment relates to a walking function measuring force balance measuring system.

この実施例4の圧力分布センサSの構造は、図7に示す通りであり、健常者の歩行時の足裏の接触面圧分布は、足圧分布から演算された荷重重心軌跡は踵から徐々につま先側へと移り、最後は親指位置を通ることがわかっている(図9参照)。なお、図8で示したものは人の歩行時の足裏における接触面図の図である。   The structure of the pressure distribution sensor S of Example 4 is as shown in FIG. 7, and the contact surface pressure distribution of the sole of the normal person when walking is the load center of gravity locus calculated from the foot pressure distribution gradually from the heel. It is known that it moves to the toe side and finally passes through the thumb position (see FIG. 9). In addition, what was shown in FIG. 8 is the figure of the contact surface figure in the sole at the time of a person's walk.

パーキンソン病、脳神経疾患、膝関節症、加齢に伴い歩行機能の障害が及ぶと、この足裏の圧力分布により演算された重心の軌跡が大きく逸脱する。また、重心軌跡の移動速度にもばらつきが見られるようになる。   When Parkinson's disease, cranial nerve disease, knee arthropathy, and impaired gait function with aging, the locus of the center of gravity calculated by the pressure distribution on the soles deviates greatly. In addition, variation in the moving speed of the barycentric locus is also seen.

そこでこの圧力分布センサSでは、健常者の足裏の重心軌跡下に、複数の感圧導電性素子4を配置したフィルム状圧力センサを考案した。この圧力分布センサを、感圧導電性素子4の点数と同じ数のオペアンプを有した基盤と接続し、A/D変換処理後、パソコンに接続し、予めパソコンにインストールしておいたソフトウエアにて重心の軌跡を計測、演算、記録、表示を可能にする。   Therefore, in this pressure distribution sensor S, a film-like pressure sensor is devised in which a plurality of pressure-sensitive conductive elements 4 are arranged under the locus of the center of gravity of the sole of a healthy person. This pressure distribution sensor is connected to a base board having the same number of operational amplifiers as the number of pressure-sensitive conductive elements 4, and after A / D conversion processing, connected to a personal computer and installed in the personal computer in advance. This makes it possible to measure, calculate, record, and display the locus of the center of gravity.

この圧力分布センサSの感圧導電性素子4のサイズは直径2mm〜20mm程度とし、その点は8点が望ましい。感圧導電性素子4の配置間隔は重心の移動速度を算出する上で等間隔である方が望ましいが、予め配置した配置した距離が判明しているので著しくなければ同一にしなくてもよい。また、感圧導電性素子4の配置は理想的な重心軌跡上に1本に並ぶ形でもよいし、異常な箇所に体重がかかったことを認識するために理想的な重心軌跡から逸脱した位置に分岐して配置しても良い。使用の際は圧力分布センサSを直接足裏に貼り付けても良いし、靴底に固定しても良い。   The size of the pressure-sensitive conductive element 4 of the pressure distribution sensor S is about 2 mm to 20 mm in diameter, and 8 points are desirable. The interval between the pressure-sensitive conductive elements 4 is preferably equal in calculating the moving speed of the center of gravity. However, since the distance at which the pressure-sensitive conductive element 4 is arranged in advance is known, it may not be the same if it is not significant. Further, the pressure-sensitive conductive elements 4 may be arranged in a line on the ideal center of gravity locus, or a position deviating from the ideal center of gravity locus in order to recognize that a weight has been applied to an abnormal location. It may be branched and arranged. In use, the pressure distribution sensor S may be directly attached to the sole or may be fixed to the sole.

各感圧導電性素子4に負荷された体重は、重心の移動に伴いその出力が順次移動する。この時の複数の感圧導電性素子4の出力の最大値の発現時間と消失時間を配置した感圧導電性素子4の距離をもとに重心の移動速度を算出する。各感圧導電性子4,4間の重心移動速度のばらつき傾向を健常者と比較演算することで各疾患の進行度、加齢度と歩行機能の評価が可能となる。   The output of the weight loaded on each pressure-sensitive conductive element 4 sequentially moves as the center of gravity moves. The moving speed of the center of gravity is calculated based on the distance of the pressure-sensitive conductive elements 4 in which the maximum output time and the disappearance time of the pressure-sensitive conductive elements 4 are arranged. It is possible to evaluate the degree of progression of each disease, the degree of aging, and the walking function by calculating the variation tendency of the center-of-gravity moving speed between each pressure-sensitive conductive element 4 and 4 with a healthy person.

また、このシステムを左右の足に各一台装着し、両者の足裏荷重、重心移動を計測することで、より高度な解析が可能となる。例えば、左右の足の同一箇所(踵)の出力最大値及び出力発生、消失時間の平均を左右の足で差分を取ることにより、被検者の一歩にかかった時間が算出できる。   In addition, it is possible to perform more advanced analysis by mounting this system on each of the left and right feet and measuring the foot load and center of gravity movement of both. For example, the time taken for one step of the subject can be calculated by taking the difference between the left and right foot averages of the maximum output value and the output generation and disappearance time of the same part (踵) of the left and right feet.

先に補足した足圧分布により算出した重心移動速度、この一歩の時間からおおよその歩行速度の算出が可能となり、これら歩行速度、重心移動速度、一歩時間の平均値を健常者と比較演算することで、疾患の進行度、加齢度など、歩行機能の評価が可能となる。   It is possible to calculate the approximate walking speed from the center of gravity movement speed calculated from the foot pressure distribution supplemented earlier and the time of this one step, and compare the average value of these walking speed, center of gravity movement speed, and one step time with a healthy person Thus, it is possible to evaluate the walking function such as the degree of disease progression and the degree of aging.

なお、この発明の圧力分布センサシステムを使用した場合、回路部5が軽量小型であり、圧力分布センサSもかなり安価となり、システム全体が低コストとなることが明らかである。   When the pressure distribution sensor system of the present invention is used, it is clear that the circuit unit 5 is light and small, the pressure distribution sensor S is considerably cheaper, and the entire system is low cost.

「従来の足裏圧力バランス計測システム」
従来の足裏圧力分布センサSの構造は、最大約1000点の感圧導電性素子4を有するマトリクス構造であり、靴底に装着して歩行時の動的な体重荷重分布を計測している。
"Conventional sole pressure balance measurement system"
The structure of the conventional foot pressure distribution sensor S is a matrix structure having a maximum of about 1000 pressure-sensitive conductive elements 4 and is mounted on a shoe sole to measure a dynamic weight load distribution during walking. .

このものは、数多くの感圧点を足裏に配置することで高度な解析が可能となる反面、部品点数が多く大型となるため足裏に装着した際に動作の妨げにもなっていた。また、高額であるゆえに使用しづらいという欠点があった。   Although this device enables a high degree of analysis by arranging a large number of pressure sensitive points on the sole, it has a large number of parts and large size, which has hindered operation when mounted on the sole. In addition, it is expensive and difficult to use.

この実施例5の圧力分布センサシステムは、重心動揺計測評価システムに関するものである。   The pressure distribution sensor system according to the fifth embodiment relates to a center of gravity fluctuation measurement evaluation system.

この実施例5の圧力分布センサの構造は、図11に示すように、感圧導電性素子4のサイズを足裏の大きさに合わせて、前後方向に各素子4分割、左右方向に各素子2分割して片足8分割して成るものであり、それぞれに通電して感圧導電性素子4の電気抵抗を計測するためのオペアンプ及びA/D変換装置で構成し、パーソナルコンピュータに接続することによって予めパーソナルコンピュータ内にインストールした専用のソフトウエアにて被検者の重心揺動を評価するようにしてある。   As shown in FIG. 11, the pressure distribution sensor according to the fifth embodiment has a structure in which the pressure-sensitive conductive element 4 is divided into four elements in the front-rear direction and the elements in the left-right direction according to the size of the sole. It is divided into two parts and divided into eight legs, and is composed of an operational amplifier and an A / D converter for measuring the electric resistance of the pressure-sensitive conductive element 4 by energizing each of them and connecting to a personal computer. Thus, the center-of-gravity fluctuation of the subject is evaluated by dedicated software installed in the personal computer in advance.

各感圧導電性素子4の出力値は、足底への荷重配分が異なるため、一定ではない。例えば、土踏まずの部分の出力は踵や指の付け根に対して極端に低い。また、被検者によっては踵に体重が偏っている場合もある。   The output value of each pressure-sensitive conductive element 4 is not constant because the load distribution to the sole is different. For example, the output of the arch is extremely low relative to the heel and finger base. In addition, depending on the subject, the weight may be biased to the heel.

しかしながら、その各感圧導電性素子が検地する荷重出力値は静止立位状態であれば一定となる。つまり、各感圧導電性素子4の出力の割合の変化を読み取ることで、被検者の重心のふらつき度を測ることが可能になる。   However, the load output value detected by each pressure-sensitive conductive element is constant if it is in a static standing state. That is, it is possible to measure the degree of wobbling of the center of gravity of the subject by reading the change in the output ratio of each pressure-sensitive conductive element 4.

このシステムにおいては、重心のふらつきは各感圧導電性素子4の出力の変化を下式にて数値化し、予め同一の条件で計測した健常者の結果と比較演算することで、被検者の異常の程度を評価することが可能となる。   In this system, the fluctuation of the center of gravity is obtained by converting the change in the output of each pressure-sensitive conductive element 4 into a numerical value by the following formula and performing a comparison operation with the result of a healthy person measured in advance under the same conditions. It is possible to evaluate the degree of abnormality.

ここで、ふらつきの数値化事例は、(1)変動幅実測値=(一定時間内の最大値―同最小値)、(2)変動幅割合=(一定時間内の出力の最大値―同最小値)/同平均値×100%、(3)変動係数=(一定時間内の出力の標準偏差)/平均出力、(4)変動速度=一定時間(フレーム間)の出力差最大値/時間(フレーム)、(5)上記(1)〜(4)の各感圧導電性素子別算出結果を平均した値である。   Here, the fluctuations are digitized in the following cases: (1) Fluctuation value = (maximum value within a certain period-same minimum value), (2) Fluctuation ratio = (maximum output value within a certain time-same minimum) Value) / average value × 100%, (3) coefficient of variation = (standard deviation of output within a fixed time) / average output, (4) variable speed = maximum output difference / time of fixed time (between frames) (time) (Frame), (5) A value obtained by averaging the calculation results for each pressure-sensitive conductive element of (1) to (4) above.

1000点近くの多数の感圧導電性素子4を持つ従来のマトリクスアレイ状センサシートや、3個ないし4個のロードセルを剛性のある板の下に設置した重心動揺計に比べて、部品点数の削減が可能となり、軽量コンパクト、低コストでの重心動揺計測が可能となる。図12は、感圧導電性素子4(ch1〜ch8)により検知された各ch1〜ch8における「ふらつき」についてのデータである。   Compared to the conventional matrix array sensor sheet having a large number of pressure-sensitive conductive elements 4 close to 1000 points and the center of gravity sway meter in which 3 to 4 load cells are installed under a rigid plate, the number of parts This makes it possible to reduce the center of gravity in a lightweight, compact, and low-cost manner. FIG. 12 shows data on “fluctuation” in each of the ch1 to ch8 detected by the pressure-sensitive conductive element 4 (ch1 to ch8).

またインソール等靴の中に装着して計測が可能となるため、ロードセル式重心動揺計のように被験者に立つ位置を細かく指定する必要がない。計測時に裸足になる必要がないため、靴をはいたままの状態での重心動揺計測が可能となる。   In addition, since it can be measured by wearing it in a shoe such as an insole, it is not necessary to specify the position where the subject stands on the subject like a load cell type sway meter. Since there is no need to be barefoot during the measurement, it is possible to measure the center-of-gravity while wearing shoes.

この発明の圧力分布センサシステムを使用した場合、回路部5が軽量小型であり、圧力分布センサSもかなり安価となり、システム全体が低コストとなることが明らかである。   When the pressure distribution sensor system of the present invention is used, it is clear that the circuit unit 5 is light and small, the pressure distribution sensor S is considerably inexpensive, and the entire system is low cost.

「従来の重心動揺計測システム」
従来の重心動揺計測システムでは、圧力分布センサSは44行×52列のマトリクスアレイ構造となっている。これにマトリクスアレイ状圧力分布センサシステム用ハード(電極数最大52×44)を組み合わせ、人の静止立位時の重心揺動計測を可能としている。
“Conventional center of gravity measurement system”
In the conventional center-of-gravity fluctuation measurement system, the pressure distribution sensor S has a matrix array structure of 44 rows × 52 columns. This is combined with matrix array-type pressure distribution sensor system hardware (maximum number of electrodes: 52 × 44) to enable measurement of center-of-gravity oscillation when a person is standing still.

このシステムは、数多くの感圧点を足裏面に配置することで高度な解析、例えば重心軌跡の長さや、重心軌跡が描く面積など重心揺動の評価に有効な結果を得ることができる。   In this system, a large number of pressure-sensitive points are arranged on the sole surface, so that an effective result can be obtained for advanced analysis, for example, evaluation of the center of gravity swing such as the length of the center of gravity locus and the area drawn by the center of gravity locus.

しかしながら、その反面、ただ単に左右の下肢荷重分布や前後の重心のふらつき等を簡易的にみる場合、圧力分布センサ自体が大きく、5の部品点数が多く、コスト面で非常に無駄が多かった。   On the other hand, however, when simply looking at the left and right lower limb load distribution and the fluctuation of the center of gravity in the front and rear, the pressure distribution sensor itself is large, the number of parts is large, and the cost is very wasteful.

この発明の実施例1の圧力分布センサの平面図。The top view of the pressure distribution sensor of Example 1 of this invention. この発明の実施例1と対応する従来の圧力分布センサの平面図。The top view of the conventional pressure distribution sensor corresponding to Example 1 of this invention. この発明の実施例2の圧力分布センサの平面図。The top view of the pressure distribution sensor of Example 2 of this invention. この発明の実施例2と対応する従来の圧力分布センサの平面図。The top view of the conventional pressure distribution sensor corresponding to Example 2 of this invention. この発明の実施例3の圧力分布センサの平面図。The top view of the pressure distribution sensor of Example 3 of this invention. この発明の実施例3と対応する従来の圧力分布センサの平面図。The top view of the conventional pressure distribution sensor corresponding to Example 3 of this invention. この発明の実施例4の圧力分布センサの平面図。The top view of the pressure distribution sensor of Example 4 of this invention. 歩行時の足裏の接触面を示す平面図。The top view which shows the contact surface of the sole at the time of a walk. 実施例4と対応する、圧力分布センサのチャンネル位置と歩行時において足裏が着地する態様を示した表。The table | surface which showed the aspect which the foot sole lands at the time of the channel position of a pressure distribution sensor corresponding to Example 4, and a walk. この発明の実施例4と対応する従来の圧力分布センサの平面図。The top view of the conventional pressure distribution sensor corresponding to Example 4 of this invention. この発明の実施例5の圧力分布センサの平面図。The top view of the pressure distribution sensor of Example 5 of this invention. 実施例5と対応する、圧力分布センサのチャンネル位置と静止立位時において足裏と床面の間に発生する圧力の態様を示した表。The table | surface which showed the aspect of the pressure generate | occur | produced between a sole and a floor surface at the time of a channel position of a pressure distribution sensor corresponding to Example 5, and a still standing position. この発明の実施例5と対応する従来の圧力分布センサの平面図。The top view of the conventional pressure distribution sensor corresponding to Example 5 of this invention. 本願発明のシステムに使用される圧力分布センサからの出力を解析処理装置により読み取らせるためのシステムの図。The figure of the system for making an analysis processing apparatus read the output from the pressure distribution sensor used for the system of this invention. 従来の圧力分布センサシステムの斜視図。The perspective view of the conventional pressure distribution sensor system. 従来の圧力分布センサシステムの斜視図。The perspective view of the conventional pressure distribution sensor system. 従来のシステムに使用される圧力分布センサからの出力を解析処理装置により読み取らせるためのシステムの回路図。The circuit diagram of the system for making the output from the pressure distribution sensor used for the conventional system read by an analysis processing apparatus.

符号の説明Explanation of symbols

S 圧力分布センサ
1 フィルム基材
2 配線
3 端子
4 感圧導電性素子
S Pressure distribution sensor
1 Film base 2 Wiring 3 Terminal
4 Pressure-sensitive conductive elements

Claims (7)

フィルム基材内に、一本の行電極と2〜8本の列電極との交差点に感圧導電性素子を具えている圧力分布センサと、前記感圧導電性素子の電気抵抗変化を各別に計測すべく各端子に接続されるアンプを有する処理回路と、前記処理回路から得られた信号の演算と計測結果の表示、記録、解析を行うためのソフトウエアと、を備えており、上記フィルム基材の平面視形状及びフィルム基材内の感圧導電性素子の位置を、用途に適合させるようにしてあることを特徴とする圧力分布センサシステム。 A pressure distribution sensor having a pressure-sensitive conductive element at the intersection of one row electrode and two to eight column electrodes in a film substrate, and a change in electric resistance of the pressure-sensitive conductive element A processing circuit having an amplifier connected to each terminal for measurement, and software for performing calculation of a signal obtained from the processing circuit and displaying, recording, and analyzing a measurement result. A pressure distribution sensor system characterized in that the shape of the substrate in plan view and the position of the pressure-sensitive conductive element in the film substrate are adapted to the application. フィルム基材内に相互に独立する2〜8個の感圧導電性素子及びこれから各別に延びる配線並び端子を有する圧力分布センサと、前記感圧導電性素子の電気抵抗変化を各別に計測すべく各端子に接続されるアンプを有する処理回路と、前記処理回路から得られた信号の演算と計測結果の表示、記録、解析を行うためのソフトウエアと、を備えており、上記フィルム基材の平面視形状及びフィルム基材内の感圧導電性素子の位置を、用途に適合させるようにしてあることを特徴とする圧力分布センサシステム。 A pressure distribution sensor having 2 to 8 pressure-sensitive conductive elements that are independent from each other in the film substrate and wiring arrangement terminals that extend from the pressure-sensitive conductive elements, and a change in electric resistance of the pressure-sensitive conductive elements. A processing circuit having an amplifier connected to each terminal; and software for performing calculation of a signal obtained from the processing circuit and display, recording, and analysis of a measurement result. A pressure distribution sensor system characterized in that the shape in plan view and the position of a pressure-sensitive conductive element in a film substrate are adapted to the application. 圧力分布センサの感圧導電性素子が平面視で横一列に配列されており、スキージやローラの圧力分布計測評価が可能であることを特徴とする請求項1又は2記載の圧力分布センサシステム。 3. The pressure distribution sensor system according to claim 1, wherein pressure-sensitive conductive elements of the pressure distribution sensor are arranged in a horizontal line in a plan view, and pressure distribution measurement evaluation of a squeegee or a roller is possible. 圧力分布センサが平面視でU字又はV字状の形状であり、人の歯の噛み合わせ時の圧力バランスの計測に適した位置に感圧導電性素子が配置され、噛み合わせ時の圧力バランスの評価が可能であることを特徴とする請求項1又は2記載の圧力分布センサシステム。 The pressure distribution sensor is U-shaped or V-shaped in plan view, and a pressure-sensitive conductive element is arranged at a position suitable for pressure balance measurement when a person's teeth are meshed, and the pressure balance when meshed The pressure distribution sensor system according to claim 1, wherein the pressure distribution sensor system can be evaluated. 人やヒューマノイドロボットの手で物体を把持する際の、掌の圧力分布を計測するのに適した位置に複数の感圧導電性素子を配置し、物体の把持時の圧力分布計測評価が可能であることを特徴とする請求項1又は2記載の圧力分布センサシステム。 Multiple pressure-sensitive conductive elements are placed at positions suitable for measuring the pressure distribution of the palm when grasping an object with the hand of a human or humanoid robot, and pressure distribution measurement evaluation when grasping an object is possible 3. The pressure distribution sensor system according to claim 1, wherein the pressure distribution sensor system is provided. 人やヒューマノイドロボットが二足歩行をする際の、足裏の圧力分布や体重の重心移動を計測するのに適した位置に複数の感圧素子を配置し、歩行機能計測評価が可能であることを特徴とする請求項1又は2記載の圧力分布センサシステム。 When humans and humanoid robots are walking on two legs, it is possible to evaluate the walking function by placing multiple pressure sensitive elements at positions suitable for measuring the pressure distribution of the soles and the center of gravity movement of the body weight. The pressure distribution sensor system according to claim 1 or 2. 人の静止立位時のふらつきレベルを測定するのに適した位置に複数の感圧素子を配置し、重心動揺計測評価が可能であることを特徴とする請求項1又は2記載の圧力分布センサシステム。 3. The pressure distribution sensor according to claim 1 or 2, wherein a plurality of pressure sensitive elements are arranged at a position suitable for measuring a wobbling level when a person is standing still, and a center of gravity fluctuation measurement evaluation is possible. system.
JP2007097684A 2007-04-03 2007-04-03 Pressure distribution sensor system Pending JP2008256470A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007097684A JP2008256470A (en) 2007-04-03 2007-04-03 Pressure distribution sensor system
KR1020080004764A KR20080090262A (en) 2007-04-03 2008-01-16 System for sensing pressure distribution
TW097103326A TW200900670A (en) 2007-04-03 2008-01-29 Pressure distribution sensor system
CNA2008100823272A CN101281066A (en) 2007-04-03 2008-02-29 Pressure distribution sensor system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007097684A JP2008256470A (en) 2007-04-03 2007-04-03 Pressure distribution sensor system

Publications (1)

Publication Number Publication Date
JP2008256470A true JP2008256470A (en) 2008-10-23

Family

ID=39980180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007097684A Pending JP2008256470A (en) 2007-04-03 2007-04-03 Pressure distribution sensor system

Country Status (4)

Country Link
JP (1) JP2008256470A (en)
KR (1) KR20080090262A (en)
CN (1) CN101281066A (en)
TW (1) TW200900670A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011232124A (en) * 2010-04-27 2011-11-17 Honda Motor Co Ltd Edge estimation device and edge estimation method
JP2012167939A (en) * 2011-02-10 2012-09-06 Dainippon Printing Co Ltd Pressure sensor and inclination detector
JP2014132834A (en) * 2013-01-08 2014-07-24 National Institute Of Advanced Industrial & Technology Water drinking action measuring apparatus
JP2015513068A (en) * 2012-01-30 2015-04-30 ピーエスティ・センサーズ・(プロプライエタリー)・リミテッドPst Sensors (Proprietary) Limited Thermal image sensor
CN105012039A (en) * 2015-07-28 2015-11-04 安徽工程大学 Comprehensive tooth measuring instrument
CN105014537A (en) * 2015-07-28 2015-11-04 芜湖科创生产力促进中心有限责任公司 Grinding dynamometer for ultra-precise silicon chip
CN105769202A (en) * 2016-04-29 2016-07-20 中国科学院苏州生物医学工程技术研究所 Multi-body-position pressure balance evaluating system
JP2018011890A (en) * 2016-07-22 2018-01-25 広島県 Walking data acquisition device and walking data acquisition system
JP2018048909A (en) * 2016-09-21 2018-03-29 エルジー ディスプレイ カンパニー リミテッド Sensor device
WO2018164157A1 (en) * 2017-03-08 2018-09-13 国立大学法人お茶の水女子大学 Walking and foot evaluation method, walking and foot evaluation program, and walking and foot evaluation device
CN109186837A (en) * 2018-10-16 2019-01-11 西北工业大学 Buttocks presses force volume imaging system
JPWO2017142082A1 (en) * 2016-02-19 2019-04-25 Cyberdyne株式会社 Wearable gait detection device, walking ability improvement system and wearable gait detection system
JP2019084130A (en) * 2017-11-08 2019-06-06 国立大学法人電気通信大学 Walking motion evaluation apparatus, walking motion evaluation method, and program
CN112971773A (en) * 2021-03-12 2021-06-18 哈尔滨工业大学 Hand motion mode recognition system based on palm bending information
KR20210155108A (en) * 2020-06-15 2021-12-22 재단법인 경북아이티융합 산업기술원 Malocclusion monitoring system using an electronic articulator inserted into the oral cavity and method thereof

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4824831B2 (en) * 2008-09-29 2011-11-30 日本写真印刷株式会社 Pressure sensor
CN102693772B (en) * 2012-06-11 2016-01-20 清华大学深圳研究生院 Flexible transparent conducting film and manufacture method thereof
KR101384392B1 (en) * 2012-10-05 2014-04-10 이화여자대학교 산학협력단 Apparatus and method to measure dental bite force
CN104959914A (en) * 2015-07-28 2015-10-07 芜湖科创生产力促进中心有限责任公司 Three-dimensional grinding measuring cell for ultra-precise silicon wafer
CN104997569B (en) * 2015-07-28 2017-01-18 安徽机电职业技术学院 Comprehensive tooth measuring instrument based on detachable tooth socket
KR102396294B1 (en) * 2015-10-16 2022-05-11 삼성디스플레이 주식회사 Clamping apparatus
CN105222702A (en) * 2015-11-14 2016-01-06 际华三五一五皮革皮鞋有限公司 Three dimensionality resistance-type curved surface sensor
CN105708481A (en) * 2016-01-13 2016-06-29 大连楼兰科技股份有限公司 Shoe built-in dynamic plantar pressure sensors based on PVDF (polyvinylidene fluoride)
WO2018129631A1 (en) * 2017-01-13 2018-07-19 石庆学 Pressure sensor
CN109141690A (en) * 2018-08-02 2019-01-04 贵州大学 A kind of pliable pressure sensor for infant creeping pad
KR20200075275A (en) 2018-12-18 2020-06-26 김덕환 Automatic coupling device using distribution pressure gauge
CN109764994B (en) * 2019-03-06 2024-01-26 南京林业大学 Finger pressure detection device capable of networking
CN110074888B (en) * 2019-05-07 2021-10-15 北京大学口腔医学院 Accurate accuse power periodontal probe
CN110554248A (en) * 2019-07-26 2019-12-10 中国航空工业集团公司济南特种结构研究所 Positioning device for positioning gravity center of special-shaped curved surface by using method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011232124A (en) * 2010-04-27 2011-11-17 Honda Motor Co Ltd Edge estimation device and edge estimation method
JP2012167939A (en) * 2011-02-10 2012-09-06 Dainippon Printing Co Ltd Pressure sensor and inclination detector
JP2015513068A (en) * 2012-01-30 2015-04-30 ピーエスティ・センサーズ・(プロプライエタリー)・リミテッドPst Sensors (Proprietary) Limited Thermal image sensor
JP2014132834A (en) * 2013-01-08 2014-07-24 National Institute Of Advanced Industrial & Technology Water drinking action measuring apparatus
CN105012039A (en) * 2015-07-28 2015-11-04 安徽工程大学 Comprehensive tooth measuring instrument
CN105014537A (en) * 2015-07-28 2015-11-04 芜湖科创生产力促进中心有限责任公司 Grinding dynamometer for ultra-precise silicon chip
JPWO2017142082A1 (en) * 2016-02-19 2019-04-25 Cyberdyne株式会社 Wearable gait detection device, walking ability improvement system and wearable gait detection system
CN105769202A (en) * 2016-04-29 2016-07-20 中国科学院苏州生物医学工程技术研究所 Multi-body-position pressure balance evaluating system
JP2018011890A (en) * 2016-07-22 2018-01-25 広島県 Walking data acquisition device and walking data acquisition system
JP2018048909A (en) * 2016-09-21 2018-03-29 エルジー ディスプレイ カンパニー リミテッド Sensor device
WO2018164157A1 (en) * 2017-03-08 2018-09-13 国立大学法人お茶の水女子大学 Walking and foot evaluation method, walking and foot evaluation program, and walking and foot evaluation device
JPWO2018164157A1 (en) * 2017-03-08 2020-04-16 国立大学法人お茶の水女子大学 Gait / foot evaluation method, gait / foot evaluation program, and gait / foot evaluation device
JP2019084130A (en) * 2017-11-08 2019-06-06 国立大学法人電気通信大学 Walking motion evaluation apparatus, walking motion evaluation method, and program
JP7038403B2 (en) 2017-11-08 2022-03-18 国立大学法人電気通信大学 Walking motion evaluation device and program
CN109186837A (en) * 2018-10-16 2019-01-11 西北工业大学 Buttocks presses force volume imaging system
KR20210155108A (en) * 2020-06-15 2021-12-22 재단법인 경북아이티융합 산업기술원 Malocclusion monitoring system using an electronic articulator inserted into the oral cavity and method thereof
KR102455072B1 (en) 2020-06-15 2022-10-14 재단법인 경북아이티융합 산업기술원 Malocclusion monitoring system using an electronic articulator inserted into the oral cavity and method thereof
CN112971773A (en) * 2021-03-12 2021-06-18 哈尔滨工业大学 Hand motion mode recognition system based on palm bending information

Also Published As

Publication number Publication date
TW200900670A (en) 2009-01-01
KR20080090262A (en) 2008-10-08
CN101281066A (en) 2008-10-08

Similar Documents

Publication Publication Date Title
JP2008256470A (en) Pressure distribution sensor system
US20190041277A1 (en) Force sensing device
US10352787B2 (en) Sensor systems integrated with footwear
CN102525439A (en) Flexible multi-point sphygmus sensor device
US20060135888A1 (en) Device for determining a value that is representative of accelerations as well as an ergometer
CZ308222B6 (en) Device for contactless monitoring of vital patient signs
KR20180049677A (en) Insol of sensing pressure
Sergio et al. A textile-based capacitive pressure sensor
JP4575510B1 (en) Tongue pressure sensor
JP4668777B2 (en) Occlusal force measuring device
KR20210156540A (en) System of analyzing walking pattern using insoles
Saeedi et al. Plantar pressure monitoring by developing a real-time wireless system
Bark et al. Design and development of a force-sensing shoe for gait analysis and monitoring
JP2013188260A (en) Load measuring system and information processing apparatus
JP2018105775A (en) Flexible device
CN111110246A (en) Gait analysis system based on high-deformation strain type sensor
Gao et al. Smart Insole: Stand-Alone Soft 3-Axis Force Sensing Array in a Shoe
KR101415047B1 (en) Plantar pressure measurement devices
US20240060839A1 (en) Sensors and sensor systems for measuring shear force and vertical torque
JP2019168247A (en) Tactile sensor
KR20240011550A (en) Balance ability measuring device and measuring method
Giovanelli et al. A mechatronic system mounted on insole for analyzing human gait
JP4877668B2 (en) Standing balance measuring device
Emani et al. Smart Insole: A Wireless Gait Monitoring and Pressure Distribution Device
CN115606908A (en) Multi-dimensional force measurement insole

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091120