JP2008255981A - Pressure switching valve device and injector equipped with the same - Google Patents
Pressure switching valve device and injector equipped with the same Download PDFInfo
- Publication number
- JP2008255981A JP2008255981A JP2007319118A JP2007319118A JP2008255981A JP 2008255981 A JP2008255981 A JP 2008255981A JP 2007319118 A JP2007319118 A JP 2007319118A JP 2007319118 A JP2007319118 A JP 2007319118A JP 2008255981 A JP2008255981 A JP 2008255981A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- low
- throttle
- channel
- switching valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M47/00—Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
- F02M47/02—Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
- F02M47/027—Electrically actuated valves draining the chamber to release the closing pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M63/00—Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
- F02M63/0012—Valves
- F02M63/0031—Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
- F02M63/0043—Two-way valves
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Fuel-Injection Apparatus (AREA)
Abstract
Description
本発明は、圧力切換弁装置のキャビテーションエロージョンの進行抑制に関するもので
ある。
The present invention relates to suppression of the progress of cavitation erosion of a pressure switching valve device.
近年、ディーゼルエンジン用のコモンレール式燃料噴射装置に用いられるインジェクタ
として、コモンレールによって蓄圧された高圧の燃料を噴射ノズル内の燃料室に供給する
と共に、噴孔を開閉するニードルを閉弁方向に押圧する背圧を発生させるニードル背圧室
に供給し、ソレノイドやピエゾスタック等のアクチュエータによってニードル背圧を増減
することで燃料の噴射と停止とを切換えて、噴射時期および噴射量を自在に設定できるも
のが広く用いられるようになっている。
In recent years, as an injector used in a common rail fuel injection device for a diesel engine, high pressure fuel accumulated by the common rail is supplied to the fuel chamber in the injection nozzle, and the needle for opening and closing the injection hole is pressed in the valve closing direction. Supply to the needle back pressure chamber that generates back pressure, and increase or decrease the needle back pressure by an actuator such as a solenoid or piezo stack to switch between fuel injection and stop, and freely set the injection timing and injection amount Are widely used.
特許文献1には、加圧された燃料を制御油としてニードル背圧を制御する制御バルブの
駆動に利用してアクチュエータの負荷を軽減するインジェクタが開示されている。
Patent Document 1 discloses an injector that reduces the load on an actuator by using a pressurized fuel as control oil to drive a control valve that controls needle back pressure.
図14に示す従来構造のインジェクタ1dは、筒状の基体125の先端に設けられた噴
孔120から高圧に蓄圧された燃料200の噴射と停止とを上記噴孔120の開閉によっ
て行う噴射ノズル部12と、上下動によって上記噴孔120の開閉を行うニードル122
と、上記ニードル122の背面圧力の高低を切換えて上記ニードル122の上下動を制御
する圧力切換弁装置10dと、圧力切換弁部装置10dを駆動するアクチュエータ13、
14と、を備えている。
An injector 1d having a conventional structure shown in FIG. 14 has an injection nozzle portion for injecting and stopping the fuel 200 accumulated at a high pressure from an injection hole 120 provided at the tip of a cylindrical base 125 by opening and closing the injection hole 120. 12 and a needle 122 that opens and closes the nozzle hole 120 by vertical movement.
A pressure switching valve device 10d for controlling the vertical movement of the needle 122 by switching the level of the back pressure of the needle 122, and an actuator 13 for driving the pressure switching valve device 10d,
14.
圧力切換弁装置10dは、コモンレール2により、高圧に蓄圧された高圧燃料200の
充填される高圧燃料流路151と低圧に維持された低圧燃料300の菜充填される低圧燃
料流路106とに接続される制御圧室101と、低圧燃料流路106と制御圧室101と
を連通する絞り流路104dとを具備し、弁体160により絞り流路104dを開閉して
高圧燃料200の制御室101から低圧流路105への流出を制御している。
The pressure switching valve device 10d is connected to the high-pressure fuel flow path 151 filled with the high-pressure fuel 200 accumulated at a high pressure and the low-pressure fuel flow path 106 filled with the vegetation of the low-pressure fuel 300 maintained at a low pressure by the common rail 2. The control pressure chamber 101, the throttle passage 104d communicating the low pressure fuel passage 106 and the control pressure chamber 101, and the throttle passage 104d is opened and closed by the valve body 160 to control the control chamber 101 of the high pressure fuel 200. To the low-pressure flow path 105 is controlled.
高圧燃料200は、制御圧室101を介してニードル背圧室127に供給されるととも
に噴射ノズル部12内に形成された燃料室123に供給され、低圧となった燃料は低圧流
路140を介して燃料タンク3へ還流している。
The high-pressure fuel 200 is supplied to the needle back pressure chamber 127 through the control pressure chamber 101 and is supplied to the fuel chamber 123 formed in the injection nozzle portion 12, and the low-pressure fuel passes through the low-pressure channel 140. To the fuel tank 3.
アクチュエータ13、14はソレノイド部14と制動部13とからなり、ソレノイド1
41の通電開閉によってアマーチャ143に連動する制動バルブ132が開閉駆動される
。制動バルブ132の開閉によって圧力切換弁装置10dの弁体160が上下動して、絞
り流路104dを開閉する。
弁体160が開弁されると、ニードル背圧室127内の高圧燃料200が制御圧室10
1を介して絞り流路104dから低圧流路105に放出され、燃料室123内の高圧燃料
200がニードル122を離座方向に押圧し、噴孔120が開放され、高圧燃料200が
噴孔120から噴射される。
弁体160が閉弁されると、高圧流路151から制御圧室101を介してニードル背圧
室127に導入された高圧燃料200によりニードル122を着座方向に押圧し、噴孔1
20が閉鎖され、燃料噴射が停止される。
ニードル背圧室127内の圧力の増減によってニードル122の離着座が制御され、噴
孔120からの高圧燃料200の噴射と停止とを制御できる。
The brake valve 132 interlocked with the armature 143 is opened and closed by energization opening and closing 41. As the brake valve 132 is opened and closed, the valve body 160 of the pressure switching valve device 10d moves up and down to open and close the throttle passage 104d.
When the valve body 160 is opened, the high-pressure fuel 200 in the needle back pressure chamber 127 is transferred to the control pressure chamber 10.
1, the high pressure fuel 200 in the fuel chamber 123 presses the needle 122 in the separating direction, the nozzle hole 120 is opened, and the high pressure fuel 200 is injected into the nozzle hole 120. Is injected from.
When the valve body 160 is closed, the needle 122 is pressed in the seating direction by the high-pressure fuel 200 introduced into the needle back-pressure chamber 127 from the high-pressure channel 151 through the control pressure chamber 101, and the injection hole 1
20 is closed and fuel injection is stopped.
The separation / seating seat of the needle 122 is controlled by increasing or decreasing the pressure in the needle back pressure chamber 127, and the injection and stop of the high-pressure fuel 200 from the injection hole 120 can be controlled.
ところが、この様な内燃機関用のインジェクタ1dにおいては、制御圧室101内の高
圧燃料200は、200MPaというような極めて高い圧力に蓄圧されており、一方、低
圧流路105内の低圧燃料300は、ほぼ大気圧(0.1MPa程度)に保たれている。
このため、弁体160を開弁して、制御圧室101内の高圧燃料200を絞り流路10
4dから低圧流路105内に噴出する際に、極めて高い圧力の燃料が瞬間的に低圧下に晒
されることになる。
However, in such an internal combustion engine injector 1d, the high-pressure fuel 200 in the control pressure chamber 101 is stored at an extremely high pressure of 200 MPa, while the low-pressure fuel 300 in the low-pressure channel 105 is The atmospheric pressure is maintained at about 0.1 MPa.
Therefore, the valve body 160 is opened, and the high-pressure fuel 200 in the control pressure chamber 101 is throttled.
When jetting into the low-pressure channel 105 from 4d, extremely high pressure fuel is momentarily exposed to low pressure.
図12に示すように、高圧下(P1)におかれた流体を瞬間的に低圧下(P0)に移動
し、その流体の蒸気圧以下の圧力に晒されると液体状態の流体が気化するキャビテーショ
ンが発生する。
更に、このキャビテーションが流路内壁面に衝突したり周りの流体の圧力が上昇したり
するとキャビテーションの崩壊がおこり液体に凝縮する。
この時、非常に高い衝撃圧力を発生することが知られている。
As shown in FIG. 12, when a fluid placed under high pressure (P 1 ) is momentarily moved under low pressure (P 0 ) and exposed to a pressure lower than the vapor pressure of the fluid, the fluid in a liquid state is vaporized. Cavitation occurs.
Furthermore, when this cavitation collides with the inner wall surface of the flow path or the pressure of the surrounding fluid rises, the cavitation collapses and condenses into a liquid.
At this time, it is known that a very high impact pressure is generated.
従って、インジェクタ1dの圧力切換弁装置10d内では、図13(a)に示すように
、弁体160が開弁して、高圧流体200が絞り流路104dを通って低圧流路105内
の低圧流体300中に高圧噴流201として噴出される。
この時、急激な圧力低下により、高圧噴流201と低圧流体300との界面に、高圧燃
料200が気化したキャビテーション層202が発生する。
更に、図13(b)に示すように、高圧噴流201は渦流204とキャビテーション層
202とを伴って、絞り流路104dに対向する低圧流路104の内壁105の表面に衝
突する。
低圧流路内壁106の表面では、衝突の圧力によりキャビテーション崩壊204が発生
する。キャビテーション崩壊204は、極めて高い衝撃圧を伴い、図13(c)に示すよ
うに、低圧流路内壁106の表面の金属をえぐり取るキャビテーションエロージョン20
6を引き起こすことがある。
この様なキャビテーションエロージョン206は、長期に渡って徐々に進行し、弁体1
60の動作に影響を与え、インジェクタの燃料噴射制御の精度を低下する虞がある。
Therefore, in the pressure switching valve device 10d of the injector 1d, as shown in FIG. 13A, the valve body 160 is opened, and the high pressure fluid 200 passes through the throttle channel 104d and the low pressure in the low pressure channel 105. It is ejected as a high-pressure jet 201 into the fluid 300.
At this time, due to a rapid pressure drop, a cavitation layer 202 in which the high-pressure fuel 200 is vaporized is generated at the interface between the high-pressure jet 201 and the low-pressure fluid 300.
Furthermore, as shown in FIG. 13B, the high-pressure jet 201 collides with the surface of the inner wall 105 of the low-pressure channel 104 facing the throttle channel 104d together with the vortex 204 and the cavitation layer 202.
Cavitation collapse 204 occurs on the surface of the low-pressure flow path inner wall 106 due to the pressure of the collision. The cavitation collapse 204 is accompanied by an extremely high impact pressure, and as shown in FIG. 13C, the cavitation erosion 20 that scavenges the metal on the surface of the inner wall 106 of the low-pressure flow path.
6 may be caused.
Such cavitation erosion 206 gradually progresses over a long period of time, and the valve body 1
60 may be affected, and the accuracy of injector fuel injection control may be reduced.
本発明は、かかる実情を鑑みてなされたものであり、キャビテーションエロージョンの
発生を抑制する構造の圧力切換弁装置およびそれを備えて正確な燃料噴射制御の維持を可
能とするインジェクタの提供を目的とする。
The present invention has been made in view of such circumstances, and it is an object of the present invention to provide a pressure switching valve device having a structure that suppresses the occurrence of cavitation erosion and an injector that can maintain accurate fuel injection control. To do.
請求項1の発明では、高圧流路から高圧流体が導入される制御圧室と、低圧に維持され
た低圧流路と、制御圧室と低圧流路とを連通する絞り流路と、絞り流路を開閉する弁体と
を具備し、弁体の開閉により制御圧室から低圧流路への高圧流体の流出を制御して制御圧
室の圧力を増減させる圧力切換弁装置であって、上記弁体の閉弁時に上記弁体により閉鎖
される面内に一端が開口する上記絞り流路を複数並設する。
In the first aspect of the invention, the control pressure chamber into which the high pressure fluid is introduced from the high pressure channel, the low pressure channel maintained at a low pressure, the throttle channel communicating the control pressure chamber and the low pressure channel, and the throttle flow A pressure switching valve device that controls the outflow of high-pressure fluid from the control pressure chamber to the low-pressure flow path by opening and closing the valve body, and increases or decreases the pressure in the control pressure chamber. A plurality of the throttle channels having one end opened in a plane closed by the valve body when the valve body is closed.
請求項1の発明によれば、制御圧室の高圧流体が絞り流路から低圧流路へ噴出した時の
、対向する低圧流路内壁でのキャビテーションの衝突位置を一箇所に集中することなく複
数箇所に分散させることができる。
加えて、絞り流路の数に反比例して、高圧噴流の流速の低下が早くなり、高圧噴流の低
圧流路内壁への衝突時間を短縮できる。
更に、並設された複数の絞り流路から噴出する高圧噴流の周りに形成される渦流によっ
て、互いの高圧噴流が干渉し合い、低圧流路内壁に衝突する前にキャビテーションの崩壊
を引き起こすので、低圧流路内壁に衝突するキャビテーションの数の低減を図ることがで
きる。
従って、低圧流路内壁表面でのキャビテーションエロージョンの発生が抑制され、圧力
切換弁装置の消耗を抑制できる。
According to the first aspect of the present invention, when the high-pressure fluid in the control pressure chamber is ejected from the throttle channel to the low-pressure channel, a plurality of cavitation collision positions on the opposing inner walls of the low-pressure channel are concentrated in one place. Can be dispersed in locations.
In addition, the flow velocity of the high-pressure jet is rapidly reduced in inverse proportion to the number of throttle channels, and the collision time of the high-pressure jet against the inner wall of the low-pressure channel can be shortened.
Furthermore, the vortex formed around the high-pressure jets ejected from a plurality of constricted flow paths, the high-pressure jets interfere with each other, causing cavitation to collapse before colliding with the inner wall of the low-pressure flow path. The number of cavitations that collide with the inner wall of the low-pressure channel can be reduced.
Therefore, the occurrence of cavitation erosion on the inner wall surface of the low-pressure channel is suppressed, and the consumption of the pressure switching valve device can be suppressed.
請求項2の発明では、複数の上記絞り流路を、その中心軸が延設された仮想中心軸が上
記低圧流路内で互いに交差する角度で設ける。
According to a second aspect of the present invention, the plurality of throttle channels are provided at an angle at which virtual central axes, the central axes of which are extended, intersect each other in the low-pressure channel.
請求項2の発明によれば、制御圧室から噴出した複数の高圧噴流が低圧流路内壁に衝突
する前に、低圧流路内で互いに衝突してキャビテーションの崩壊を引き起こし、低圧流路
内壁に衝突するキャビテーションの数が減少する。
従って、低圧流路内壁表面でのキャビテーションエロージョンの発生が更に抑制され、
圧力切換弁装置の消耗を抑制できる。
According to the invention of claim 2, before the plurality of high-pressure jets ejected from the control pressure chamber collide with the inner wall of the low-pressure channel, they collide with each other in the low-pressure channel to cause cavitation collapse, The number of colliding cavitations is reduced.
Therefore, the occurrence of cavitation erosion on the inner wall surface of the low-pressure channel is further suppressed,
The consumption of the pressure switching valve device can be suppressed.
請求項3の発明では、複数の上記絞り流路を、この複数の上記絞り流路を成す一の絞り
流路から噴出する噴流の噴射方向と他の絞り流路から噴出する噴流の噴射方向とが相反す
る方向となり、この相反する方向となる上記噴射方向の中心軸線が略同一線上に配されて
、相反する方向からの上記噴流を衝突させるように設ける。
In the invention of claim 3, the plurality of throttle channels are divided into jet directions of jets ejected from one throttle channel constituting the plurality of throttle channels and jet directions of jets ejected from the other throttle channels. Are arranged in a direction opposite to each other, and the central axes of the jetting directions that are the opposite directions are arranged on substantially the same line so that the jets from the opposite directions collide with each other.
請求項3の発明によれば、絞り流路から噴出された高圧流体が互いに衝突し、低圧流路
内壁に到達する前に、噴射圧力が相殺されるとともに、キャビテーションが崩壊する。
従って、低圧流路内壁表面でキャビテーションの崩壊が起こることなく、キャビテーシ
ョンエロージョンの発生が更に抑制され、圧力切換弁装置の消耗を抑制できる。
According to the invention of claim 3, before the high pressure fluids ejected from the throttle channel collide with each other and reach the inner wall of the low pressure channel, the injection pressure is canceled and the cavitation collapses.
Therefore, the occurrence of cavitation erosion is further suppressed without causing cavitation collapse on the inner wall surface of the low pressure flow path, and consumption of the pressure switching valve device can be suppressed.
請求項4の発明では、請求項3に記載の圧力切換弁装置において、弁体には、上記弁体
により閉鎖される面側を凹状に窪ませた凹部を形成し、該凹部の内部に複数の上記絞り流
路、および、相反する方向からの噴流を衝突させる噴流衝突室領域を形成する。
According to a fourth aspect of the present invention, in the pressure switching valve device according to the third aspect, the valve body is formed with a concave portion in which the surface side closed by the valve body is recessed in a concave shape, and a plurality of recesses are formed inside the concave portion. And the jet collision chamber region in which jets from opposite directions collide with each other.
請求項4の発明によれば、噴流衝突室領域内で、相反する方向からの複数の噴流が互い
に衝突して、キャビテーションが崩壊すると共に、噴流の噴射圧力が低下し、低圧流路内
に噴射されるときには、再びキャビテーションが発生することがない。従って、低圧流路
内壁でのキャビテーション崩壊が起こらず、圧力切換弁装置の消耗を抑制できる。
According to the invention of claim 4, a plurality of jets from opposite directions collide with each other in the jet collision chamber region, the cavitation collapses, the jet jet pressure decreases, and the jet jets into the low-pressure channel. Cavitation will not occur again. Therefore, cavitation collapse on the inner wall of the low-pressure channel does not occur, and consumption of the pressure switching valve device can be suppressed.
請求項5の発明では、筒状の基体の先端に設けられた噴孔から高圧に蓄圧された燃料の
噴射と停止とを上記噴孔の開閉によって行う噴射ノズル部と、上下動によって上記噴孔の
開閉を行うニードルと、上記ニードルの背面圧力の高低を切換えて上記ニードルの上下動
を制御する圧力切換弁装置と、上記圧力切換弁装置を駆動するアクチュエータと、を備え
たインジェクタにおいて、上記圧力切換弁装置として請求項1ないし3のいずれか1項に
記載の圧力切換弁装置を具備し、上記ニードルの背面に上記制御室を設けて、上記アクチ
ュエータにより上記弁体を開閉するのに伴い、上記制御圧室の圧力を増減させて上記ニー
ドルを上下動させる。
According to a fifth aspect of the present invention, an injection nozzle portion that performs injection and stop of fuel accumulated at high pressure from an injection hole provided at the tip of a cylindrical base body by opening and closing the injection hole, and the injection hole by vertical movement. In an injector comprising: a needle that opens and closes; a pressure switching valve device that controls the vertical movement of the needle by switching the pressure of the back surface of the needle; and an actuator that drives the pressure switching valve device. The pressure switching valve device according to any one of claims 1 to 3 is provided as a switching valve device, the control chamber is provided on the back surface of the needle, and the valve body is opened and closed by the actuator. The needle is moved up and down by increasing or decreasing the pressure in the control pressure chamber.
請求項5の発明によれば、圧力切換弁装置におけるキャビテーションエロージョンの発
生が抑制され、インジェクタにおける正確な燃料噴射制御の維持が可能となる。
According to the invention of claim 5, occurrence of cavitation erosion in the pressure switching valve device is suppressed, and accurate fuel injection control in the injector can be maintained.
本発明の第1の実施形態における圧力切換弁装置10について、図1、2を参照して説
明する。
図1(a)は、本発明の第1の実施形態における圧力切換弁装置10の構成を示す断面
図、(b)は、本図中A−A面における矢視平面図、(c)は、本実施形態の効果を示す
断面模式図である。
図1(a)、(b)に示すように、圧力切換弁装置10は、高圧に維持された高圧流体
200が導入される高圧流路として制御圧室101と、基体100に形成され低圧に維持
された低圧流体300が充填された低圧流路105と、基体100の絞り流路形成部10
3に設けられ御圧室101と低圧流路105とを連通する複数の絞り流路104と、絞り
流路104を開閉する弁体160とによって構成されている。
絞り流路104は、絞り流路形成部103の弁体160の閉弁時に弁体閉弁面161に
より閉鎖される絞り流路閉弁面102内に、一端が制御圧室101側に開口し、他端が低
圧流路105側に開口するように複数を並べて設けてある。
本発明の圧力切換弁装置10は、弁体160の開閉により制御圧室101から低圧流路
105への高圧流体200の流出を制御して制御圧室101の圧力を増減することができ
る。
A pressure switching valve device 10 according to a first embodiment of the present invention will be described with reference to FIGS.
1A is a cross-sectional view showing the configuration of the pressure switching valve device 10 according to the first embodiment of the present invention, FIG. 1B is a plan view taken along the line AA in FIG. 1C, and FIG. It is a cross-sectional schematic diagram which shows the effect of this embodiment.
As shown in FIGS. 1 (a) and 1 (b), the pressure switching valve device 10 is formed in a control pressure chamber 101 and a base body 100 as a high-pressure channel into which a high-pressure fluid 200 maintained at a high pressure is introduced. The low-pressure channel 105 filled with the maintained low-pressure fluid 300 and the throttle channel forming unit 10 of the base body 100
3, a plurality of throttle channels 104 that communicate the control pressure chamber 101 and the low-pressure channel 105, and a valve body 160 that opens and closes the throttle channel 104.
One end of the throttle channel 104 opens to the control pressure chamber 101 side in the throttle channel valve closing surface 102 that is closed by the valve element valve closing surface 161 when the valve element 160 of the throttle channel forming unit 103 is closed. A plurality of the other ends are arranged side by side so as to open to the low-pressure channel 105 side.
The pressure switching valve device 10 of the present invention can control the outflow of the high-pressure fluid 200 from the control pressure chamber 101 to the low-pressure channel 105 by opening and closing the valve body 160 to increase or decrease the pressure in the control pressure chamber 101.
図1(c)に示すように、弁体160が開弁されると、制御圧室101の高圧流体20
0が絞り流路104から低圧流路105内へ高圧噴流201となって噴出する。
高圧噴流201と低圧流体300との界面には、高圧噴流201の圧力と周りの定圧流
体300との圧力差によってキャビテーション202層が発生する。
しかしながら、複数の絞り流路104から噴出した高圧噴流201の周りに形成される
渦流204によって、互いの高圧噴流201が干渉し合う。
このことにより、キャビテーション202が低圧流路内壁106に衝突する前に、キャ
ビテーション202同士が互いに衝突し、低圧流路105内でキャビテーション崩壊20
4を引き起こすので、低圧流路内壁106に衝突するキャビテーション202の数を低減
することができる。
As shown in FIG. 1C, when the valve body 160 is opened, the high-pressure fluid 20 in the control pressure chamber 101 is opened.
0 is ejected from the throttle channel 104 into the low pressure channel 105 as a high pressure jet 201.
A cavitation 202 layer is generated at the interface between the high pressure jet 201 and the low pressure fluid 300 due to the pressure difference between the pressure of the high pressure jet 201 and the surrounding constant pressure fluid 300.
However, the high-pressure jets 201 interfere with each other due to the vortex flow 204 formed around the high-pressure jets 201 ejected from the plurality of throttle channels 104.
Thus, before the cavitation 202 collides with the inner wall 106 of the low pressure flow path, the cavitations 202 collide with each other, and the cavitation collapse 20 occurs in the low pressure flow path 105.
4, the number of cavitations 202 that collide with the inner wall 106 of the low-pressure flow path can be reduced.
また、低圧流路内壁106でのキャビテーション202の衝突範囲205は、絞り流路
104が単数の場合に比べて、一箇所に集中することなく広い範囲に分散させることがで
きる。
従って、低圧流路内壁106表面でのキャビテーションエロージョンの発生が一箇所に
集中することなく分散されるので、低圧流路内壁106の消耗が飛躍的に抑制される。
従って圧力切換弁装置10の耐久性が向上し、正確な圧力切換制御の長期的な維持が可能
となる。
Further, the collision range 205 of the cavitation 202 on the inner wall 106 of the low-pressure flow path can be dispersed over a wide range without being concentrated in one place, as compared with the case where there is a single throttle flow path 104.
Therefore, the occurrence of cavitation erosion on the surface of the low pressure flow path inner wall 106 is dispersed without being concentrated in one place, so that the consumption of the low pressure flow path inner wall 106 is remarkably suppressed.
Therefore, durability of the pressure switching valve device 10 is improved, and accurate pressure switching control can be maintained for a long time.
図2(a)は、一定容積の制御圧室101と低圧流路105とが複数の絞り流路104
によって連通している場合の絞り流路104の数と高圧噴流201の噴出速度ν並びに噴
出時間tとの関係を示す特性図である。
図2(a)に示すように、制御圧室101に設けた絞り流路104を開弁した瞬間の高
圧流体201の噴出する初速度ν0は、絞り流路104の数によらず一定である。
しかし、噴出速度νの減少率は、絞り流路104の数に比例して大きくなり、噴出速度
νは2次関数的に減速し、噴出時間tは絞り流路104の数に対して反比例して短くなる
。
従って、絞り流路104の数が増えるに従って、高圧噴流201の流速νの低下が早く
なり、高圧噴流201の低圧流路内壁106への衝突時間を短縮できる。
FIG. 2A shows a control pressure chamber 101 having a constant volume and a low pressure channel 105 having a plurality of throttle channels 104.
6 is a characteristic diagram showing the relationship between the number of throttle channels 104, the ejection velocity ν of the high-pressure jet 201, and the ejection time t when communicating with each other.
As shown in FIG. 2A, the initial velocity v 0 at which the high-pressure fluid 201 is ejected at the moment when the throttle channel 104 provided in the control pressure chamber 101 is opened is constant regardless of the number of throttle channels 104. is there.
However, the reduction rate of the ejection velocity ν increases in proportion to the number of throttle channels 104, the ejection velocity ν decreases in a quadratic function, and the ejection time t is inversely proportional to the number of throttle channels 104. Become shorter.
Therefore, as the number of throttle channels 104 increases, the flow velocity ν of the high-pressure jet 201 decreases more quickly, and the collision time of the high-pressure jet 201 with the low-pressure channel inner wall 106 can be shortened.
また、制御圧室101と低圧流路105とを連通したときに発生するキャビテーション
の総数は、絞り流路104の数によらず一定と考えられるが、図2(b)に示すように、
絞り流路104の数が増えるに従って、絞り流路104当たりに対向する低圧流路内壁1
06に衝突するキャビテーション202の数は判反比例的に減少する。
Further, the total number of cavitations that occur when the control pressure chamber 101 and the low pressure channel 105 communicate with each other is considered to be constant regardless of the number of throttle channels 104, but as shown in FIG.
As the number of throttle channels 104 increases, the inner wall 1 of the low-pressure channel facing the throttle channel 104 is opposed.
The number of cavitations 202 that collide with 06 decreases inversely.
図3、図4を参照して本発明の第2の実施形態における圧力切換弁装置10aについて
説明する。
なお、第1の実施形態と同一の構成については、同じ符号を付したので説明を省略する
(以下に述べる他の実施形態においても同様である。)。
図3(a)は、本発明の第2の実施形態における圧力切換弁装置10aの構成を示す断
面図、(b)は、本図中A−A面における矢視平面図、(c)は、本実施形態の効果を示
す断面模式図である。
図3(a)、(b)に示すように、本実施形態においては、絞り流路形成部103の絞
り流路閉弁面102内に複数の絞り流路104aを、その中心軸が延設された仮想中心軸
が低圧流路105内で互いに交差する角度θで設ける。
例えば、本実施形態においては、2つの絞り流路104aのなす交差角θを約30°に
設定する。
A pressure switching valve device 10a according to a second embodiment of the present invention will be described with reference to FIGS.
Note that the same components as those in the first embodiment are denoted by the same reference numerals, and thus the description thereof is omitted (the same applies to other embodiments described below).
3A is a cross-sectional view showing the configuration of the pressure switching valve device 10a according to the second embodiment of the present invention, FIG. 3B is a plan view taken along the AA plane in FIG. It is a cross-sectional schematic diagram which shows the effect of this embodiment.
As shown in FIGS. 3A and 3B, in the present embodiment, a plurality of throttle channels 104a are extended in the throttle channel closing surface 102 of the throttle channel forming portion 103 and the central axis thereof extends. The virtual center axes are provided at an angle θ that intersects each other in the low-pressure channel 105.
For example, in the present embodiment, the crossing angle θ formed by the two throttle channels 104a is set to about 30 °.
このため、図3(c)に示すように、弁体160を開弁すると、高圧噴流201が絞り
流路104aに対向する低圧流路内壁106に到達する前に、互いに衝突し、低圧流路1
05内でキャビテーション崩壊204を引き起こす。
また、本実施形態においては、絞り流路104aの中心軸を低圧流路内壁106に対し
て斜めに設けてあるので、絞り流路104aの中心軸を低圧流路内壁106に対して直角
に設けた場合の絞り流路104aの開口部から低圧流路内壁106までの距離Dに比べて
、高圧噴流201が低圧流路内壁106に到達するまでの噴流工程長さを長くすることが
可能となる。
Therefore, as shown in FIG. 3C, when the valve body 160 is opened, the high pressure jet 201 collides with each other before reaching the low pressure flow path inner wall 106 facing the throttle flow path 104a, and the low pressure flow path 1
Causes cavitation collapse 204 within 05.
In the present embodiment, the central axis of the throttle channel 104a is provided obliquely with respect to the low-pressure channel inner wall 106, so the central axis of the throttle channel 104a is provided at a right angle to the low-pressure channel inner wall 106. In this case, the length of the jet process until the high-pressure jet 201 reaches the low-pressure channel inner wall 106 can be made longer than the distance D from the opening of the throttle channel 104a to the low-pressure channel inner wall 106. .
ここで、図4に低圧流体中に高圧流体を噴出したときに噴出孔からの距離とキャビテー
ション崩壊時に発生する衝撃力との関係を示す。
一般にキャビテーション崩壊時の衝撃には2つのピークが存在し、第1ピークは噴出孔
からの距離が長くなるに従って急激に小さくなることが知られている。
従って、本実施形態においては、絞り流路104aから噴出した高圧噴流201が、低
圧流路内壁106に到達するまでの距離を、図4中斜線部で示した領域となるように設定
することにより、キャビテーション崩壊時に発生する衝撃力を小さくして、更にキャビテ
ーションエロージョンの低減を図ることも期待できる。
Here, FIG. 4 shows the relationship between the distance from the ejection hole and the impact force generated when cavitation collapses when the high-pressure fluid is ejected into the low-pressure fluid.
In general, it is known that there are two peaks in the impact at the time of cavitation collapse, and the first peak decreases rapidly as the distance from the ejection hole increases.
Therefore, in the present embodiment, the distance until the high-pressure jet 201 ejected from the throttle channel 104a reaches the low-pressure channel inner wall 106 is set so as to be in the region indicated by the hatched portion in FIG. Further, it can be expected that the impact force generated when the cavitation collapses is reduced to further reduce cavitation erosion.
絞り流路104の数は、上記実施形態に示したように、2個に限定するものではなく、
図5(a)に示すように、弁体160によって閉弁される絞り流路閉弁面102内であれ
ば、幾つ設けても良い。
The number of throttle channels 104 is not limited to two as shown in the above embodiment,
As shown in FIG. 5 (a), any number may be provided as long as it is within the throttle channel closing surface 102 closed by the valve body 160.
また、図5(b)に示すように、内径の異なる絞り流路104bを複数設けても良い。
この場合、絞り流路ごとに高圧噴流201の周りに発生する渦流204の方向、強さ等
にバラツキが生まれるため、低圧流路105内でのキャビテーション崩壊204の位置が
更に分散され、低圧流路内壁106表面でのキャビテーションエロージョンの発生を抑制
できると考えられる。
Further, as shown in FIG. 5B, a plurality of throttle channels 104b having different inner diameters may be provided.
In this case, since the direction, strength, and the like of the vortex flow 204 generated around the high-pressure jet 201 for each throttle channel varies, the position of the cavitation collapse 204 in the low-pressure channel 105 is further dispersed, and the low-pressure channel It is considered that the occurrence of cavitation erosion on the inner wall 106 surface can be suppressed.
更に、図5(c)に示すように、絞り流路104eを異形に設けても良い。
絞り流路104eを異形にすることにより、高圧噴流の周りに発生する渦流が複雑化さ
れ、低圧流路内でのキャビテーション崩壊の位置が分散され、低圧流路内壁表面でのキャ
ビテーションエロージョンの発生を抑制できると考えられる。
Further, as shown in FIG. 5C, the throttle channel 104e may be provided in a different shape.
By making the throttle channel 104e irregular, the vortex generated around the high-pressure jet is complicated, the position of cavitation collapse in the low-pressure channel is dispersed, and cavitation erosion occurs on the inner wall surface of the low-pressure channel. It can be suppressed.
図6(a)は、本発明の第3の実施形態における圧力切換弁装置10cの構成を示す断
面図、(b)は、本図中A−A面における矢視平面図、(c)は、本実施形態の効果を示
す断面模式図である。
本実施形態においては、複数の絞り流路104cを、絞り流路104cから噴出する高
圧流体201の噴射方向が互いに向かい合うように設けてある。
具体的には、絞り流路形成部103cを低圧流路105から制御圧室101に向かって
突出するように形成し、該絞り流路形成部103cの側面から複数の絞り流路104cを
突出部の中心に向かって穿設し、該突出部内には、相反する方向からの噴流を衝突させる
噴流衝突室領域105cが形成してある。
FIG. 6A is a cross-sectional view showing the configuration of the pressure switching valve device 10c in the third embodiment of the present invention, FIG. 6B is a plan view taken along the line AA in FIG. It is a cross-sectional schematic diagram which shows the effect of this embodiment.
In the present embodiment, the plurality of throttle channels 104c are provided such that the injection directions of the high-pressure fluid 201 ejected from the throttle channels 104c face each other.
Specifically, the throttle channel forming portion 103c is formed so as to project from the low pressure channel 105 toward the control pressure chamber 101, and a plurality of throttle channels 104c are projected from the side surface of the throttle channel forming portion 103c. A jet collision chamber region 105c is formed in the projecting portion to collide jets from opposite directions.
更に、弁体160には、弁体160により閉鎖される面側を凹状に窪ませた凹部165
を形成し、該凹部165の内部に上記突出部に形成された複数の絞り流路104cと噴流
衝突室領域105cとが配置される。
上記突出部の外側の平面部102cと弁体閉弁面161cとが密着して絞り流路104
cが閉弁された状態となる。
Further, the valve body 160 has a concave portion 165 in which a surface side closed by the valve body 160 is recessed in a concave shape.
A plurality of throttle channels 104c and jet collision chamber regions 105c formed in the protruding portion are disposed inside the recess 165.
The flat surface portion 102c outside the projecting portion and the valve element closing surface 161c are in close contact with each other so that the throttle channel 104
c is in a closed state.
図6(c)に示すように、本実施形態においては、噴流衝突室領域105cで、高圧噴
流201同士が衝突して、噴出圧力が低下するとともに、キャビテーション崩壊203が
発生する。
噴流衝突室領域105cから圧力の低下した高圧流体200が低圧流路104内に流入
する際には、再びキャビテーションが発生しない圧力まで圧力が低下しており、低圧流路
内壁106表面でのキャビテーションエロージョンが回避されると考えられる。
As shown in FIG. 6C, in the present embodiment, the high-pressure jets 201 collide with each other in the jet collision chamber region 105c, the jetting pressure is reduced, and the cavitation collapse 203 occurs.
When the high-pressure fluid 200 whose pressure has decreased from the jet collision chamber region 105 c flows into the low-pressure channel 104, the pressure decreases to a pressure at which cavitation does not occur again, and cavitation erosion on the surface of the low-pressure channel inner wall 106 Is thought to be avoided.
本発明の圧力弁装置をインジェクタに適用することにより、圧力弁装置におけるキャビ
テーションエロージョンが抑制され、インジェクタにおける正確な燃料噴射制御の維持が
可能となる。
本発明の第1の実施形態に示した圧力切換弁装置10の適用される内燃機関に高圧燃料
を噴射するインジェクタ1の構成について図7、図8を参照して説明する。
By applying the pressure valve device of the present invention to an injector, cavitation erosion in the pressure valve device is suppressed, and accurate fuel injection control in the injector can be maintained.
A configuration of an injector 1 for injecting high-pressure fuel into an internal combustion engine to which the pressure switching valve device 10 shown in the first embodiment of the present invention is applied will be described with reference to FIGS.
図7は、本実発明の圧力切換弁装置の適用されるインジェクタ1の断面図、図8は、そ
の要部を示す拡大断面図である。
インジェクタ1は、筒状の基体125の先端に設けられた噴孔120から高圧に蓄圧さ
れた燃料200の噴射と停止とを噴孔120の開閉によって行う噴射ノズル部12と、上
下動によって噴孔120の開閉を行うニードル122と、ニードル122の背面側に設け
られニードル背面の圧力の高低を切換えてニードル122の上下動を制御する圧力切換弁
装置10と、圧力切換弁装置10の弁体160の背圧を制御する弁体背圧制御部11と、
弁体背圧制御部11を介して圧力切換弁部装置10を駆動するアクチュエータ13、14
と、を備えている。
FIG. 7 is a cross-sectional view of the injector 1 to which the pressure switching valve device of the present invention is applied, and FIG. 8 is an enlarged cross-sectional view showing the main part thereof.
The injector 1 includes an injection nozzle portion 12 that performs injection and stop of the fuel 200 accumulated at a high pressure from an injection hole 120 provided at the tip of a cylindrical base 125 by opening and closing the injection hole 120, and an injection hole by vertical movement. A needle 122 that opens and closes 120, a pressure switching valve device 10 that is provided on the back surface side of the needle 122 and controls the vertical movement of the needle 122 by switching the pressure level on the needle back surface, and a valve body 160 of the pressure switching valve device 10. A valve body back pressure control unit 11 for controlling the back pressure of
Actuators 13 and 14 that drive the pressure switching valve unit 10 via the valve body back pressure control unit 11
And.
インジェクタ1は、コモンレール2と燃料タンク3と図略の制御装置とに接続され、コ
モンレール2により高圧に蓄圧された燃料200を、基端部15に設けられた高圧燃料流
路151から導入し、低圧となった燃料300を低圧燃料流路152から燃料タンク3へ
還流している。
The injector 1 is connected to a common rail 2, a fuel tank 3, and a control device (not shown), and introduces a fuel 200 accumulated at a high pressure by the common rail 2 from a high-pressure fuel flow path 151 provided in the base end portion 15. The low-pressure fuel 300 is returned from the low-pressure fuel flow path 152 to the fuel tank 3.
本実施形態における圧力切換弁装置10は、高圧燃料200の充填される高圧燃料流路
151と低圧に維持された低圧燃料流路105とに接続される制御圧室101と、低圧燃
料流路105と制御圧室101とを連通する複数の絞り流路104とを具備し、弁体16
0により絞り流路105を開閉して高圧燃料200の制御室101から低圧流路105へ
の流出を制御し、制御圧室101の圧力を増減している。
The pressure switching valve device 10 according to the present embodiment includes a control pressure chamber 101 connected to a high pressure fuel passage 151 filled with a high pressure fuel 200 and a low pressure fuel passage 105 maintained at a low pressure, and a low pressure fuel passage 105. And a plurality of throttle passages 104 communicating with the control pressure chamber 101, and the valve body 16
The throttle channel 105 is opened and closed by 0 to control the outflow of the high-pressure fuel 200 from the control chamber 101 to the low-pressure channel 105, and the pressure in the control pressure chamber 101 is increased or decreased.
絞り流路104は、圧力切換弁装置10の基体であるディスタンスピース100に形成
された絞り流路形成部103の弁体閉弁面161により閉鎖される絞り流路閉弁面102
内に複数個が並んで設けられており、一端が制御圧室101側に開口し、他端が低圧流路
104側に開口している。
The throttle channel 104 is closed by a valve body closing surface 161 of the throttle channel forming part 103 formed in the distance piece 100 that is the base of the pressure switching valve device 10.
A plurality of them are provided side by side, with one end opening to the control pressure chamber 101 side and the other end opening to the low pressure flow path 104 side.
高圧燃料流路151から導入された高圧燃料200は、主流路111から分岐され、制
御圧室101を介してニードル背圧室127に供給されるとともに、ディスタンスピース
100に形成された燃料供給路108を通って噴射ノズル部11内に形成された燃料室1
23に供給されている。
The high-pressure fuel 200 introduced from the high-pressure fuel flow path 151 is branched from the main flow path 111 and supplied to the needle back pressure chamber 127 via the control pressure chamber 101, and the fuel supply path 108 formed in the distance piece 100. The fuel chamber 1 formed in the injection nozzle portion 11 through the
23.
圧力切換弁装置10は、ニードル122の背面側に設けられ、弁体160の開閉によっ
て、ニードル背圧室127内に供給された高圧燃料200の低圧流路104内への流入を
制御し、制御圧室101の圧力を増減させてニードル122の背面の圧力を制御し、ニー
ドル122を上下動させる。
更に、ディスタンスピース100には、低圧流路105に連通し、外部の燃料タンク3
に接続される低圧燃料還流路107が形成されている。
The pressure switching valve device 10 is provided on the back side of the needle 122, and controls the inflow of the high-pressure fuel 200 supplied into the needle back pressure chamber 127 into the low-pressure channel 104 by opening and closing the valve body 160. The pressure on the back surface of the needle 122 is controlled by increasing / decreasing the pressure in the pressure chamber 101 to move the needle 122 up and down.
Further, the distance piece 100 communicates with the low-pressure flow path 105 and is connected to the external fuel tank 3.
A low-pressure fuel return passage 107 connected to is formed.
弁体160は、弁体背圧制御部11を介して、アクチュエータ13、14によって開閉
駆動されている。
弁体背圧制御部11は、弁体背圧制御部基体110と、高圧燃料流路151に連通する
主流路111と、分岐流路112、113、114と、制御圧室101の一部を形成する
制御圧室形成部115と、弁体160を摺動可能に保持する弁体保持部と、弁体160の
背面に形成される弁体背圧室115、弁体背圧室115と低圧室134とを連通する連通
路117と、低圧燃料還流路107に連通する低圧還流路118と、弁体160を閉弁方
向に付勢するコイルばね116とで構成されている。
主流路111から分岐された高圧燃料200は、弁体160内に形成される背圧流路1
63を通って、弁体160の背面に形成される弁体背圧室115に導入され、弁体160
を閉弁方向に押圧し、連通路117がアクチュエータ13、14によって開閉されると、
弁体背圧室115の圧力が増減し、弁体160が上下動する。
The valve body 160 is driven to open and close by the actuators 13 and 14 via the valve body back pressure control unit 11.
The valve body back pressure control unit 11 includes a valve body back pressure control unit base 110, a main channel 111 communicating with the high pressure fuel channel 151, branch channels 112, 113, 114, and a part of the control pressure chamber 101. The control pressure chamber forming portion 115 to be formed, the valve body holding portion for slidably holding the valve body 160, the valve body back pressure chamber 115 formed on the back surface of the valve body 160, the valve body back pressure chamber 115 and the low pressure The communication path 117 communicates with the chamber 134, the low-pressure recirculation path 118 communicates with the low-pressure fuel recirculation path 107, and the coil spring 116 that urges the valve body 160 in the valve closing direction.
The high-pressure fuel 200 branched from the main flow path 111 is a back pressure flow path 1 formed in the valve body 160.
63, the valve body 160 is introduced into the valve body back pressure chamber 115 formed on the back surface of the valve body 160.
When the communication path 117 is opened and closed by the actuators 13 and 14,
The pressure in the valve body back pressure chamber 115 increases or decreases, and the valve body 160 moves up and down.
アクチュエータ13、14はソレノイド部14と制動部13とによって構成されている
。制動部13は、制動バルブニードル132と制御バルブニードル131の先端に固定さ
れる制動バルブ弁体134と、制動バルブ132を摺動可能に保持する筒状基体131と
によって構成されている。
The actuators 13 and 14 are constituted by a solenoid part 14 and a braking part 13. The braking unit 13 includes a braking valve valve body 134 that is fixed to the distal ends of the braking valve needle 132 and the control valve needle 131, and a cylindrical base 131 that holds the braking valve 132 so as to be slidable.
ソレノイド部14は、アマーチャ143と、アマーチャ143を閉弁方向に付勢するコ
イルバネ142と、ソレノイド141と、ソレノイド141に通電する通電線140とに
よって構成されている。
アマーチャ143は、制動バルブ131の後端に固定され、ソレノイド141の通電開
閉によってアマーチャ143に連動する制動バルブ132が開閉駆動される。
ソレノイド141の通電時にはアマーチャ143が吸引され、制動バルブ132が開弁
し、ソレノイド141の閉電時には、付勢コイルバネ142によって、制動バルブ132
が閉弁する。
制動バルブ132の開閉によって弁体背圧室115の圧力が増減し、圧力切換弁装置1
0の弁体160が上下動する。
The solenoid unit 14 includes an armature 143, a coil spring 142 that biases the armature 143 in the valve closing direction, a solenoid 141, and an energization line 140 that energizes the solenoid 141.
The armature 143 is fixed to the rear end of the brake valve 131, and the brake valve 132 interlocked with the armature 143 is opened / closed by energization opening / closing of the solenoid 141.
When the solenoid 141 is energized, the armature 143 is attracted and the brake valve 132 is opened. When the solenoid 141 is closed, the biasing coil spring 142 causes the brake valve 132 to open.
Closes.
By opening and closing the brake valve 132, the pressure in the valve body back pressure chamber 115 increases or decreases, and the pressure switching valve device 1
The zero valve body 160 moves up and down.
基端部15は、インジェクタ基体150とコモンレール2からの高圧燃料200を導入
する高圧燃料供給部151と低圧燃料300を燃料タンク3へ戻す低圧燃料排出部152
と図略の制御装置に接続されアクチュエータ14に通電する端子部とによって構成されて
いる。
The base end portion 15 includes an injector base 150 and a high pressure fuel supply portion 151 for introducing the high pressure fuel 200 from the common rail 2 and a low pressure fuel discharge portion 152 for returning the low pressure fuel 300 to the fuel tank 3.
And a terminal portion that is connected to a control device (not shown) and energizes the actuator 14.
弁体160は、弁体閉弁面161で絞り流路104の開閉を行うと共に、後部閉弁面1
62で、制御圧室101への高圧燃料200の供給と停止を行う。
弁体160が上昇すると、制御圧室101への高圧燃料200の供給が停止されると共
に、絞り流路104が開弁され、ニードル背圧室127内の高圧燃料200が制御圧室1
01を介して絞り流路104から低圧流路105に放出され、ニードル背圧室127の圧
力が低下し、燃料室123内の高圧燃料200によってニードル122が離座方向に押圧
され、噴孔120が開放され、高圧燃料200が噴孔120から噴射される。
The valve body 160 opens and closes the throttle flow path 104 at the valve body closing surface 161 and the rear valve closing surface 1.
At 62, the high-pressure fuel 200 is supplied to the control pressure chamber 101 and stopped.
When the valve body 160 is raised, the supply of the high-pressure fuel 200 to the control pressure chamber 101 is stopped, the throttle channel 104 is opened, and the high-pressure fuel 200 in the needle back pressure chamber 127 is controlled to the control pressure chamber 1.
01 is discharged from the throttle channel 104 to the low pressure channel 105, the pressure in the needle back pressure chamber 127 decreases, the high pressure fuel 200 in the fuel chamber 123 presses the needle 122 in the seating direction, and the injection hole 120. Is opened, and the high-pressure fuel 200 is injected from the injection hole 120.
弁体160が下降すると、高圧燃料200が制御圧室101へ供給されると共に、絞り
流路104が閉弁され、制御圧室101の圧力が上昇し、更にニードル背圧室127に導
入された高圧燃料200によりニードル122が着座方向に押圧され、噴孔120が閉鎖
され、燃料噴射が停止される。
ニードル背圧室127内の圧力の増減によってニードル122の離着座が制御され、噴
孔120からの高圧燃料200の噴射と停止とを制御できる。
When the valve body 160 is lowered, the high-pressure fuel 200 is supplied to the control pressure chamber 101, the throttle channel 104 is closed, the pressure in the control pressure chamber 101 is increased, and further introduced into the needle back pressure chamber 127. The needle 122 is pressed in the seating direction by the high-pressure fuel 200, the nozzle hole 120 is closed, and fuel injection is stopped.
The separation / seating seat of the needle 122 is controlled by increasing or decreasing the pressure in the needle back pressure chamber 127, and the injection and stop of the high-pressure fuel 200 from the injection hole 120 can be controlled.
図9(a)は、本発明の第1の実施形態における圧力切換弁装置10を適用したインジ
ェクタ1におけるディスタンスピース100の断面図、(b)はその平面図である。
図9に示すように、ディスタンスピース100には、絞り流路形成部103の弁体16
0の閉弁時に弁体閉弁面161により閉鎖される絞り流路閉弁面102内に、一端が制御
圧室101側に開口し、他端が低圧流路105側に開口するように複数を並べて設けてあ
る。ディスタンスピース100をこのように形成することにより、極めて容易に、本発明の第1の実施形態における圧力切換弁装置10をインジェクタ1に適用することができる。本実施形態によれば、第1の実施形態と同様、低圧流路内壁106のキャビテーションエロージョンを抑制し、インジェクタ1における正確な燃料噴射制御の維持が可能となる。
FIG. 9A is a sectional view of the distance piece 100 in the injector 1 to which the pressure switching valve device 10 according to the first embodiment of the present invention is applied, and FIG. 9B is a plan view thereof.
As shown in FIG. 9, the distance piece 100 includes a valve body 16 of the throttle channel forming portion 103.
Plural such that one end opens to the control pressure chamber 101 side and the other end opens to the low pressure channel 105 side in the throttle channel closing surface 102 that is closed by the valve closing surface 161 when the zero valve is closed. Are arranged side by side. By forming the distance piece 100 in this way, the pressure switching valve device 10 according to the first embodiment of the present invention can be applied to the injector 1 very easily. According to the present embodiment, as in the first embodiment, cavitation erosion of the low pressure flow path inner wall 106 is suppressed, and accurate fuel injection control in the injector 1 can be maintained.
図10(a)は、本発明の第2の実施形態における圧力切換弁装置10aを適用したイ
ンジェクタ1におけるディスタンスピース100aの断面図、(b)はその平面図である
。なお、本実施形態においては、基本となる構成は上述した第1の実施形態における圧力
切換弁装置10を適用したインジェクタ1と同様であるので、特徴的な部分のみを説明す
る。
図10に示すように、ディスタンスピース100aには、絞り流路形成部103の絞り
流路閉弁面102内に複数の絞り流路104aを、その中心軸が延設された仮想中心軸が
低圧流路105内で互いに交差する角度で設ける。
例えば、本実施形態においては、2つの絞り流路104aのなす交差角を約30°に設
定する。ディスタンスピース100aをこのように形成することにより、極めて容易に、本発明の第2の実施形態における圧力切換弁装置10aをインジェクタ1に適用することができる。
更に、図5に示した絞り流路をディスタンスピース100に適宜形成すれば、上述した
効果と同様の効果が期待できる。
Fig.10 (a) is sectional drawing of the distance piece 100a in the injector 1 to which the pressure switching valve apparatus 10a in the 2nd Embodiment of this invention is applied, (b) is the top view. In the present embodiment, the basic configuration is the same as that of the injector 1 to which the pressure switching valve device 10 in the first embodiment described above is applied, so only the characteristic part will be described.
As shown in FIG. 10, the distance piece 100 a includes a plurality of throttle channels 104 a in the throttle channel closing surface 102 of the throttle channel forming unit 103, and a virtual central axis whose central axis is extended has a low pressure. They are provided at angles that intersect each other in the flow path 105.
For example, in the present embodiment, the crossing angle formed by the two throttle channels 104a is set to about 30 °. By forming the distance piece 100a in this way, the pressure switching valve device 10a according to the second embodiment of the present invention can be applied to the injector 1 very easily.
Furthermore, if the throttle channel shown in FIG. 5 is appropriately formed in the distance piece 100, the same effect as described above can be expected.
図11は、本発明の第3の実施形態における圧力切換弁装置10cを適用したインジェ
クタ1における要部拡大断面図である。
ディスタンスピース100cに形成した絞り流路形成部103cには、複数の絞り流路
104cを、絞り流路104cから噴出する高圧流体の噴射方向が互いに向かい合うよう
に設けてある。
具体的には、絞り流路形成部103cを低圧流路105から制御圧室101に向かって
突出するように形成し、該絞り流路形成部103cの側面から複数の絞り流路104cを
突出部の中心に向かって穿設し、該突出部内には、相反する方向からの噴流を衝突させる
噴流衝突室領域105cが形成してある。
更に、弁体160には、弁体160により閉鎖される面側を凹状に窪ませた凹部165
を形成し、該凹部165の内部に上記突出部に形成された複数の絞り流路104cと噴流
衝突室領域105cとが配置される。
上記突出部の外側の平面部102cと弁体閉弁面161cとが密着して絞り流路104
cが閉弁された状態となる。
以上により、本発明の第3の実施形態における圧力切換弁装置をインジェクタに適用で
きる。
FIG. 11 is an enlarged cross-sectional view of a main part of the injector 1 to which the pressure switching valve device 10c according to the third embodiment of the present invention is applied.
The throttle channel forming portion 103c formed in the distance piece 100c is provided with a plurality of throttle channels 104c so that the injection directions of the high-pressure fluid ejected from the throttle channel 104c face each other.
Specifically, the throttle channel forming portion 103c is formed so as to project from the low pressure channel 105 toward the control pressure chamber 101, and a plurality of throttle channels 104c are projected from the side surface of the throttle channel forming portion 103c. A jet collision chamber region 105c is formed in the projecting portion to collide jets from opposite directions.
Further, the valve body 160 has a concave portion 165 in which a surface side closed by the valve body 160 is recessed in a concave shape.
A plurality of throttle channels 104c and jet collision chamber regions 105c formed in the protruding portion are disposed inside the recess 165.
The flat surface portion 102c outside the projecting portion and the valve element closing surface 161c are in close contact with each other so that the throttle channel 104
c is in a closed state.
As described above, the pressure switching valve device according to the third embodiment of the present invention can be applied to an injector.
なお、本発明は上記実施形態に限定されず、本発明の要旨を逸脱しない範囲で各種変更が可能である。例えば、上記実施形態において、アクチュエータとしてソレノイドを用いたインジェクタについて説明したが、ピエゾスタックを用いた場合においても本発明は適宜採用し得るものである。 In addition, this invention is not limited to the said embodiment, A various change is possible in the range which does not deviate from the summary of this invention. For example, in the above embodiment, an injector using a solenoid as an actuator has been described. However, the present invention can be appropriately adopted even when a piezo stack is used.
また、上記実施形態においては、弁体が高圧流路内に載置される圧力切換弁装置につい
て説明したが、弁体が低圧流路内に載置される圧力切換弁装置の場合にも、本発明は適宜
採用し得るものである。この場合、高圧流路から絞り流路を介して噴射される高圧噴流が、低圧流路内の弁体をキャビテーションエロージョンにより、浸食する虞があるが、複数の絞り流路を形成することにより弁体のキャビテーションエロージョンによる消耗を抑制することが可能となる。
Further, in the above embodiment, the pressure switching valve device in which the valve body is placed in the high pressure flow path has been described, but also in the case of the pressure switching valve device in which the valve body is placed in the low pressure flow path, The present invention can be adopted as appropriate. In this case, the high-pressure jet injected from the high-pressure channel through the throttle channel may corrode the valve body in the low-pressure channel due to cavitation erosion, but the valve is formed by forming a plurality of throttle channels. It is possible to suppress wear due to body cavitation erosion.
10 圧力切換弁装置
101 制御圧室
102 絞り流路閉弁面
103 絞り流路形成部
104 絞り流路
105 低圧流路
106 低圧流路内壁
160 弁体
161 弁体閉弁面
200 高圧流体
201 高圧噴流
202 キャビテーション
203 キャビテーション崩壊
204 渦流
300 低圧流体
DESCRIPTION OF SYMBOLS 10 Pressure switching valve apparatus 101 Control pressure chamber 102 Restriction flow path valve closing surface 103 Restriction flow path formation part 104 Restriction flow path 105 Low pressure flow path 106 Low pressure flow path inner wall 160 Valve body 161 Valve body valve closing surface
200 High Pressure Fluid 201 High Pressure Jet 202 Cavitation 203 Cavitation Collapse 204 Vortex 300 Low Pressure Fluid
Claims (5)
圧流路と、上記制御圧室と上記低圧流路とを連通する絞り流路と、上記絞り流路を開閉す
る弁体とを具備し、上記弁体の開閉により上記制御圧室から上記低圧流路への上記高圧流
体の流出を制御して上記制御圧室の圧力を増減させる圧力切換弁装置であって、
上記弁体の閉弁時に上記弁体により閉鎖される絞り流路閉弁面内に一端が開口する上記
絞り流路を複数並設したことを特徴とする圧力切換弁装置。 A control pressure chamber into which high-pressure fluid is introduced from a high-pressure channel maintained at a high pressure; a low-pressure channel maintained at a low pressure; a throttle channel communicating the control pressure chamber and the low-pressure channel; and the throttle A pressure switching valve for controlling the outflow of the high-pressure fluid from the control pressure chamber to the low-pressure channel by opening and closing the valve body, and increasing or decreasing the pressure of the control pressure chamber. A device,
A pressure switching valve device, wherein a plurality of the throttle channels having one end opened in parallel within a throttle channel closing surface that is closed by the valve when the valve is closed.
交差する角度で設けたことを特徴とする請求項1に記載の圧力切換弁装置。 2. The pressure switching valve device according to claim 1, wherein the plurality of throttle passages are provided at angles at which virtual central axes, the central axes of which are extended, intersect each other in the low-pressure passage.
の噴射方向と他の絞り流路から噴出する噴流の噴射方向とが相反する方向となり、この相
反する方向となる上記噴射方向の中心軸線が略同一線上に配されて、相反する方向からの
上記噴流を衝突させるように設けたことを特徴とする請求項1または2に記載の圧力切換
弁装置。 In the plurality of throttle channels, the jet direction of the jet ejected from one throttle channel constituting the plurality of throttle channels and the jet direction of the jet ejected from the other throttle channel are opposite to each other. 3. The pressure switching valve according to claim 1, wherein central axes of the injection directions that are opposite directions are arranged on substantially the same line so that the jets from the opposite directions collide with each other. 4. apparatus.
の内部に複数の上記絞り流路、および、相反する方向からの上記噴流を衝突させる噴流衝
突室領域を形成することを特徴とする請求項3に記載の圧力切換弁装置。 The valve body is formed with a concave portion in which the surface side closed by the valve body is recessed in a concave shape, and the plurality of throttle channels and the jets from opposite directions collide with the inside of the concave portion. The pressure switching valve device according to claim 3, wherein a jet collision chamber region is formed.
孔の開閉によって行う噴射ノズル部と、上下動によって上記噴孔の開閉を行うニードルと
、上記ニードルの背面圧力の高低を切換えて上記ニードルの上下動を制御する圧力切換弁
装置と、上記圧力切換弁装置を駆動するアクチュエータと、を備えたインジェクタにおい
て、
上記圧力切換弁装置として請求項1ないし4のいずれか1項に記載の圧力切換弁装置を
具備し、
上記ニードルの背面に上記制御室を設けて、上記アクチュエータにより上記弁体を開閉
するのに伴い、上記制御圧室の圧力を増減させて上記ニードルを上下動させることを特徴
とするインジェクタ。 An injection nozzle part that performs injection and stop of fuel accumulated at high pressure from an injection hole provided at the tip of a cylindrical base by opening and closing the injection hole, and a needle that opens and closes the injection hole by vertical movement; In an injector comprising a pressure switching valve device that controls the vertical movement of the needle by switching the level of the back pressure of the needle, and an actuator that drives the pressure switching valve device,
The pressure switching valve device according to any one of claims 1 to 4 is provided as the pressure switching valve device,
An injector characterized in that the control chamber is provided on the back surface of the needle, and the needle is moved up and down by increasing or decreasing the pressure in the control pressure chamber as the valve body is opened and closed by the actuator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007319118A JP2008255981A (en) | 2007-03-12 | 2007-12-11 | Pressure switching valve device and injector equipped with the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007061752 | 2007-03-12 | ||
JP2007319118A JP2008255981A (en) | 2007-03-12 | 2007-12-11 | Pressure switching valve device and injector equipped with the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008255981A true JP2008255981A (en) | 2008-10-23 |
Family
ID=39688388
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007319118A Pending JP2008255981A (en) | 2007-03-12 | 2007-12-11 | Pressure switching valve device and injector equipped with the same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2008255981A (en) |
DE (1) | DE102008000440A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011202546A (en) * | 2010-03-24 | 2011-10-13 | Denso Corp | Fuel injection device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006257874A (en) | 2004-04-30 | 2006-09-28 | Denso Corp | Injector |
-
2007
- 2007-12-11 JP JP2007319118A patent/JP2008255981A/en active Pending
-
2008
- 2008-02-28 DE DE200810000440 patent/DE102008000440A1/en not_active Ceased
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011202546A (en) * | 2010-03-24 | 2011-10-13 | Denso Corp | Fuel injection device |
Also Published As
Publication number | Publication date |
---|---|
DE102008000440A1 (en) | 2008-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4579997B2 (en) | A pressure regulating check valve and a fuel injection device including the same. | |
JP2008309015A (en) | Fuel injection control device for internal combustion engine | |
JP3625832B2 (en) | Needle splash eliminator with notches formed | |
JP4400670B2 (en) | Fuel injection valve | |
JP4294671B2 (en) | Fuel injection device | |
WO2016181755A1 (en) | High-pressure fuel pump | |
JP2007514095A (en) | Fuel injector with directly controlled injection valve member | |
JP2008255981A (en) | Pressure switching valve device and injector equipped with the same | |
KR101625587B1 (en) | Injection valve | |
JP5838107B2 (en) | Fuel injection valve | |
JP4023804B2 (en) | Injector for internal combustion engine | |
EP2960485A1 (en) | Control valve | |
KR20170008838A (en) | Injector for injecting fluid | |
JP2007205324A (en) | Fuel injection valve | |
JP2008038715A (en) | Fuel injection nozzle | |
JP4135628B2 (en) | Fuel injection valve | |
JP4214970B2 (en) | Fuel injection valve | |
JP6588161B2 (en) | High pressure fuel supply pump | |
JP2011069292A (en) | Fuel injection valve | |
EP3234341B1 (en) | A fuel injector for an internal combustion piston engine | |
JP5002023B2 (en) | Fuel injector with coupler | |
JP2008274792A (en) | Fluid injection nozzle | |
JP5333918B2 (en) | Fuel injection device | |
KR101106814B1 (en) | Arrangement in fuel supply apparatus | |
JP2009216022A (en) | Fuel injection device |