JP2008255888A - Steam collecting facilities - Google Patents

Steam collecting facilities Download PDF

Info

Publication number
JP2008255888A
JP2008255888A JP2007099105A JP2007099105A JP2008255888A JP 2008255888 A JP2008255888 A JP 2008255888A JP 2007099105 A JP2007099105 A JP 2007099105A JP 2007099105 A JP2007099105 A JP 2007099105A JP 2008255888 A JP2008255888 A JP 2008255888A
Authority
JP
Japan
Prior art keywords
steam
flash tank
pressure
vapor
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007099105A
Other languages
Japanese (ja)
Other versions
JP4787199B2 (en
Inventor
Masaki Matsukuma
正樹 松隈
Takamasu Matsui
孝益 松井
Kazuhiro Uehara
一浩 上原
Takayuki Wakita
高行 脇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2007099105A priority Critical patent/JP4787199B2/en
Priority to CN2008100911790A priority patent/CN101280695B/en
Publication of JP2008255888A publication Critical patent/JP2008255888A/en
Application granted granted Critical
Publication of JP4787199B2 publication Critical patent/JP4787199B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steam collecting facilities capable of collecting gas phase steam from used gas/liquid two phase steam discharged from demand facilities and effectively using the collected steam. <P>SOLUTION: Gas liquid mixed fluid of liquid phase hot water and gas phase steam discharged from the demand facilities 2 is decompressed and injected in a flash tank 9 to re-evaporate, and residual liquid phase hot water is separated at a lower part. Gas phase steam is led out from the upper part of the flash tank 9 via a collection line 11, is compressed by a compressor 10 and is re-circulated to a supply line 5. Pressure in the flash tank 9 is detected by the pressure detection means 14. Volume of the compressor 10 is controlled according to pressure in the flash tank 9 detected by the pressure detection means 14. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、蒸気を利用した後の気液2相の混合流体から気相の蒸気を回収して再利用するための蒸気回収設備に関する。   The present invention relates to a steam recovery facility for recovering and reusing gas phase steam from a gas-liquid two-phase mixed fluid after using steam.

例えば、蒸気でタービンを回して発電機を駆動する発電設備のように、蒸気の熱エネルギーを消費する様々な需要設備が存在する。このような需要設備において、熱が消費された蒸気は、その一部または全部が潜熱を消費して液相の温水となり、排出される。特に、需要設備から液相の温水と蒸気との気液混合流体が排出される場合、潜熱を有する気相の蒸気を回収して再利用することでエネルギー効率を高めることが望まれる。   For example, there are various demand facilities that consume the thermal energy of steam, such as power generation equipment that drives a generator by turning a turbine with steam. In such a demand facility, a part of or all of the steam whose heat has been consumed consumes latent heat to become liquid hot water and is discharged. In particular, when a gas-liquid mixed fluid of liquid hot water and steam is discharged from the demand facility, it is desired to improve energy efficiency by recovering and reusing the vapor in the vapor phase having latent heat.

例えば、特許文献1では、蒸気タービンを用いた発電装置において、高圧蒸気から気水分離器で分離した水分をフラッシュタンクに噴出させて低圧の蒸気を発生させ、この低圧蒸気により、蒸発器への給水を加熱するために利用することで熱回収をしている。   For example, in Patent Document 1, in a power generation apparatus using a steam turbine, moisture separated from high-pressure steam by a steam separator is ejected to a flash tank to generate low-pressure steam, and this low-pressure steam causes Heat is recovered by using it to heat the water supply.

しかしながら、低圧蒸気を利用できる量には限度があるため、特許文献1の設備では、余剰の低圧蒸気は、復水器へと送られ、蒸気のエネルギー、特に利用価値の高い潜熱がそのまま廃棄されるようになっている。
特開平5−100088号公報
However, since there is a limit to the amount of low-pressure steam that can be used, in the facility of Patent Document 1, surplus low-pressure steam is sent to the condenser, and steam energy, particularly latent heat with high utility value, is discarded as it is. It has become so.
Japanese Patent Laid-Open No. 5-100088

本発明は、前記問題点に鑑みて、需要設備から排出される気液2相の使用済みの蒸気から気相の蒸気を回収して、回収した蒸気を有効に利用できる蒸気回収設備を提供することを課題とする。   In view of the above problems, the present invention provides a vapor recovery facility that recovers gas phase vapor from gas-liquid two-phase used vapor discharged from a demand facility, and can effectively use the recovered vapor. This is the issue.

前記課題を解決するために、本発明による蒸気回収設備は、蒸気供給ラインから供給される蒸気の熱を消費する需要設備から排出される液相の温水と気相の蒸気との気液混合流体から気相の蒸気を回収する蒸気回収設備であって、前記需要設備から排出される気液混合流体を減圧噴射して再蒸発させるとともに、残留する液相の温水を下部に分離するフラッシュタンクと、前記フラッシュタンクの上部から気相の蒸気を導出して、圧縮機により圧縮して前記供給ラインに環流させる回収ラインと、前記フラッシュタンク内の圧力を検出する圧力検出手段と、前記圧力検出手段が検出した前記フラッシュタンク内の圧力に応じて、前記圧縮機の容量を制御する制御手段とを備えるものとする。   In order to solve the above problems, a steam recovery facility according to the present invention is a gas-liquid mixed fluid of liquid phase hot water and gas phase steam discharged from a demand facility that consumes heat of steam supplied from a steam supply line. A vapor recovery facility for recovering vapor in the vapor phase from the demand facility, wherein the gas-liquid mixed fluid discharged from the demand facility is jetted under reduced pressure to re-evaporate, and a flash tank for separating the remaining liquid phase hot water into the lower part; A recovery line for extracting vapor in the vapor phase from the upper part of the flash tank, compressing it by a compressor and circulating it to the supply line, pressure detecting means for detecting the pressure in the flash tank, and the pressure detecting means And control means for controlling the capacity of the compressor in accordance with the pressure in the flash tank detected by.

この構成によれば、需要設備から排出された気液混合流体をフラッシュタンクに減圧噴射して、その一部を再蒸発させ、液相の温水を分離した後の気相の蒸気だけを圧縮機で加圧加熱して蒸気供給ラインに環流させるので、フラッシュタンクで得られた蒸気を、需要設備において全量利用できる。つまり、需要設備から排出された気液混合流体の熱エネルギーを最大限に回収して、無駄なく利用することができる。   According to this configuration, the gas-liquid mixed fluid discharged from the demand facility is jetted under reduced pressure to the flash tank, a part of the fluid is re-evaporated, and only the vapor in the vapor phase after separating the liquid hot water is used as the compressor. Since the steam is pressurized and heated to be recirculated to the steam supply line, all the steam obtained in the flash tank can be used in the demand facility. That is, the thermal energy of the gas-liquid mixed fluid discharged from the demand facility can be recovered to the maximum and used without waste.

また、蒸気供給ラインに環流される蒸気は、スクリュ圧縮機で加圧加熱された乾き蒸気であるので、需要設備に供給される蒸気の乾き度を改善して、需要設備の効率をも改善し得る。また、フラッシュタンクの圧力を一定になるように制御するので、フラッシュタンクで分離された温水の温度が一定になり、回収した温水も有効に利用できる。   In addition, since the steam circulated to the steam supply line is dry steam pressurized and heated by a screw compressor, the dryness of the steam supplied to the demand equipment is improved and the efficiency of the demand equipment is also improved. obtain. Further, since the pressure of the flash tank is controlled to be constant, the temperature of the hot water separated by the flash tank becomes constant, and the recovered hot water can be used effectively.

また、本発明の蒸気回収設備において、前記圧縮機は、回転数の上昇によって容量が増加する容積式圧縮機が好ましく、前記制御手段は、前記フラッシュタンク内の圧力を、予め設定した目標値に近づけるように、前記圧縮機の容量を制御する例えばPIDコントローラであることが好ましい。   Further, in the steam recovery facility of the present invention, the compressor is preferably a positive displacement compressor whose capacity increases as the rotational speed increases, and the control means sets the pressure in the flash tank to a preset target value. A PID controller, for example, that controls the capacity of the compressor so as to be close to each other is preferable.

これより、本発明の実施形態について、図面を参照しながら説明する。
図1に、本発明の1つの実施形態の蒸気回収設備1を備え、蒸気需要設備2へ蒸気を供給するシステムの概要を示す。
Embodiments of the present invention will now be described with reference to the drawings.
FIG. 1 shows an outline of a system that includes a steam recovery facility 1 according to one embodiment of the present invention and supplies steam to a steam demand facility 2.

蒸気需要設備2には、例えば、発電設備における熱交換器、穀類を蒸し煮する装置、有機性廃棄物を熱分解によりガス化して生成されたタールや蒸気で改質するための改質炉などのプロセス設備がある。   The steam demand facility 2 includes, for example, a heat exchanger in a power generation facility, a device for steaming cereals, a reforming furnace for reforming organic waste by gasification by pyrolysis or steam, etc. There are process facilities.

このシステムでは、蒸気ヘッダ3から、例えば、圧力Po=6barGで、温度159℃の蒸気が供給され、制御弁4によって流量を調節しながら、供給ライン5を介して蒸気需要設備2に蒸気が導入される。蒸気需要設備2は、例えば、プロセス温度を測定する温度センサ6を有する。そして、コントローラ7がコンソール8からの入力によって予め設定された目標値にプロセス温度を制御するために、制御弁4の開度をコントロールする。   In this system, for example, steam at a temperature of 159 ° C. is supplied from the steam header 3 at a pressure Po = 6 barG, and the steam is introduced into the steam demand facility 2 via the supply line 5 while adjusting the flow rate by the control valve 4. Is done. The steam demand facility 2 includes, for example, a temperature sensor 6 that measures a process temperature. Then, the controller 7 controls the opening of the control valve 4 in order to control the process temperature to a target value set in advance by input from the console 8.

例えば、コントローラ7は、蒸気需要設備2の温度と目標値との偏差を算出し、算出した偏差に負の定数を乗じた値と、同じ偏差の積分値に負の定数を乗じた値と、同じ偏差の微分値に負の定数を乗じた値とを現在の制御弁4の開度の制御出力に加算するPID制御を行う。   For example, the controller 7 calculates a deviation between the temperature of the steam demand facility 2 and the target value, a value obtained by multiplying the calculated deviation by a negative constant, a value obtained by multiplying the integral value of the same deviation by a negative constant, PID control is performed in which a value obtained by multiplying the differential value of the same deviation by a negative constant is added to the current control output of the opening degree of the control valve 4.

蒸気需要設備2では、蒸気がプロセスに利用されて熱を奪われる。そして、蒸気の一部が凝縮して液相になり、低圧の気液混合流体が蒸気回収設備1に排出される。蒸気回収設備1は、フラッシュタンク9と、スクリュ圧縮機10が介設された回収ライン11と、温水ポンプ12とを備える。   In the steam demand facility 2, steam is used for the process and heat is taken away. Then, a part of the steam is condensed into a liquid phase, and the low-pressure gas-liquid mixed fluid is discharged to the steam recovery facility 1. The steam recovery facility 1 includes a flash tank 9, a recovery line 11 provided with a screw compressor 10, and a hot water pump 12.

蒸気需要設備2から排出された低圧の気液混合流体は、フラッシュタンク9内に減圧噴射される。これによって、蒸気需要設備2から排出された気液混合流体は、圧力Pfにまでさらに減圧され、液相であった温水の一部が再蒸発する。   The low-pressure gas-liquid mixed fluid discharged from the steam demand facility 2 is injected into the flash tank 9 under reduced pressure. As a result, the gas-liquid mixed fluid discharged from the steam demand facility 2 is further depressurized to the pressure Pf, and a part of the hot water that is in the liquid phase is re-evaporated.

フラッシュタンク9の中で、液相の温水はその自重により下方に落下するので、上部に気相の蒸気が、下部に液相の温水が、それぞれ分離されて滞留する。フラッシュタンク9の上部の蒸気は、スクリュ圧縮機10が介設された回収ライン11から導出される。また、フラッシュタンク9の下部の温水は、温水ポンプ12によって導出され、温水ライン13を介して不図示の温水回収設備に移送される。なお、温水ポンプ12は、フラッシュタンク9内の温水の液面を所定の範囲内に保つように制御される。   In the flash tank 9, the liquid-phase hot water falls downward due to its own weight, so that the vapor in the vapor phase is separated in the upper part and the liquid-phase hot water is retained in the lower part. The steam in the upper part of the flash tank 9 is led out from a recovery line 11 provided with a screw compressor 10. Further, the hot water in the lower part of the flash tank 9 is led out by the hot water pump 12 and transferred to a hot water recovery facility (not shown) via the hot water line 13. The hot water pump 12 is controlled so as to keep the level of the hot water in the flash tank 9 within a predetermined range.

また、フラッシュタンク9は、内部の圧力Pfを検出する圧力センサ(圧力検出手段)14と、異常な圧力上昇を防ぐ安全弁15とを備える。   The flash tank 9 also includes a pressure sensor (pressure detection means) 14 that detects the internal pressure Pf, and a safety valve 15 that prevents an abnormal pressure increase.

蒸気回収設備1は、さらに、スクリュ圧縮機10の駆動減であるモータ16と、モータ16の回転数を制御するドライバ17と、ドライバ17のモータ16の駆動回転数の設定値を定める、設定信号Csを出力するコントローラ(制御手段)18とを有する。   The steam recovery facility 1 further includes a motor 16 that is a reduction in driving of the screw compressor 10, a driver 17 that controls the rotational speed of the motor 16, and a setting signal that determines a setting value for the rotational speed of the motor 16 of the driver 17. And a controller (control means) 18 for outputting Cs.

スクリュ圧縮機10は、ケーシング内に互いに噛み合う雌雄一対のスクリュロータを有し、スクリュロータの回転により、蒸気を吸込み、圧縮して吐出する容積式の圧縮機である。スクリュ圧縮機10の容量(出力)は、モータ16の回転数に比例する。   The screw compressor 10 is a positive displacement compressor that has a pair of male and female screw rotors that mesh with each other in a casing, and sucks, compresses, and discharges steam by the rotation of the screw rotor. The capacity (output) of the screw compressor 10 is proportional to the rotational speed of the motor 16.

よって、スクリュ圧縮機10は、回収ライン11を介して、モータ16の回転数に比例した量の蒸気をフラッシュタンク9から吸引し、その内部で圧縮加熱して供給ライン5に導入する。   Therefore, the screw compressor 10 sucks an amount of steam proportional to the number of revolutions of the motor 16 from the flash tank 9 through the recovery line 11, compresses and heats it inside, and introduces it into the supply line 5.

また、スクリュ圧縮機10は、蒸気に油などを混入させないために、オイルフリー式スクリュ圧縮機であることが好ましい。   The screw compressor 10 is preferably an oil-free screw compressor so as not to mix oil or the like into the steam.

また、ドライバ17は、例えば、コントローラ18から入力される設定信号Csに応じて出力周波数が決定されるインバータ(周波数変換器)である。   The driver 17 is, for example, an inverter (frequency converter) whose output frequency is determined according to the setting signal Cs input from the controller 18.

コントローラ18には、圧力センサ14の検出値Pfが入力される。そして、コントローラ18は、コンソール19を介して予め設定された目標圧力Psとの偏差(Pf−Ps)をなくすように、スクリュ圧縮機10の容量を変更するために、ドライバ17の設定信号Csを逐次変更する。   The controller 18 receives the detection value Pf of the pressure sensor 14. Then, the controller 18 sends the setting signal Cs of the driver 17 to change the capacity of the screw compressor 10 so as to eliminate the deviation (Pf−Ps) from the target pressure Ps set in advance via the console 19. Change sequentially.

例えば、コントローラ18は、フラッシュタンク9の圧力Pfの目標値Psに対する偏差(Pf−Ps)を算出し、算出した偏差(Pf−Ps)に正の定数を乗じた値と、偏差(Pf−Ps)の積分値に正の定数を乗じた値と、偏差(Pf−Ps)の微分値に正の定数を乗じた値とを現在のドライバ17の設定値Csに加算するPID制御を行う。   For example, the controller 18 calculates a deviation (Pf−Ps) of the pressure Pf of the flash tank 9 with respect to the target value Ps, a value obtained by multiplying the calculated deviation (Pf−Ps) by a positive constant, and the deviation (Pf−Ps). PID control is performed to add a value obtained by multiplying the integral value of) by a positive constant and a value obtained by multiplying the differential value of the deviation (Pf−Ps) by a positive constant to the set value Cs of the current driver 17.

これにより、フラッシュタンク9の圧力Pfは目標圧力Psに保たれ、フラッシュタンク9内の温水の温度は、圧力Psにおける飽和水蒸気の温度に一致して一定に保たれる。例えば、圧力Pf=Ps=0barG(大気圧)の場合、温水の温度は100℃である。   As a result, the pressure Pf of the flash tank 9 is kept at the target pressure Ps, and the temperature of the hot water in the flash tank 9 is kept constant in accordance with the temperature of the saturated water vapor at the pressure Ps. For example, when the pressure Pf = Ps = 0 barG (atmospheric pressure), the temperature of the hot water is 100 ° C.

このように、温水回収設備に送られる温水の温度が一定になることで、温水回収設備における温水の利用効率が高くなる。   As described above, the temperature of the hot water sent to the hot water recovery facility becomes constant, so that the use efficiency of the hot water in the hot water recovery facility is increased.

また、フラッシュタンク9から回収ライン11に導出された蒸気は、スクリュ圧縮機10によって、圧力6barG、温度159℃以上に圧縮加熱されて、供給ライン5に環流させられる。このため、回収ライン11から環流される過熱蒸気は、供給ライン5における蒸気の乾き度を改善し、蒸気需要設備2の効率をも改善し得る。   Further, the steam led out from the flash tank 9 to the recovery line 11 is compressed and heated to a pressure of 6 barG and a temperature of 159 ° C. or higher by the screw compressor 10 and is circulated to the supply line 5. For this reason, the superheated steam circulated from the recovery line 11 can improve the dryness of the steam in the supply line 5 and can also improve the efficiency of the steam demand facility 2.

また、蒸気需要設備2からフラッシュタンク9に導入、或いは、フラッシュタンク9で再蒸発した蒸気は、その圧力Pfが一定に保たれる。このことは、フラッシュタンク9の容積が一定であるので、新たにフラッシュタンク9に導入または再蒸発した蒸気と同量の蒸気が、スクリュ圧縮機10によって、回収ライン11を介して供給ライン5に環流させられることを意味する。   Moreover, the pressure Pf of the steam introduced into the flash tank 9 from the steam demand facility 2 or re-evaporated in the flash tank 9 is kept constant. This is because the volume of the flash tank 9 is constant, so that the same amount of steam newly introduced or re-evaporated into the flash tank 9 is supplied to the supply line 5 via the recovery line 11 by the screw compressor 10. It means that it can be refluxed.

つまり、蒸気回収設備1のフラッシュタンク9で得られる蒸気の全量は、回収ライン11を介して供給ライン5に環流されて、蒸気需要設備2において全て有効利用される。   That is, the total amount of steam obtained in the flash tank 9 of the steam recovery facility 1 is circulated to the supply line 5 via the recovery line 11 and is all effectively used in the steam demand facility 2.

本実施形態において、蒸気回収設備1の消費電力、つまり、モータ16の消費電力は、回収ライン11を介して供給ライン5に環流される蒸気と同量の蒸気を新たにボイラで発生させるために必要なエネルギーコストよりも例えば20%程度少ないものとなり、大幅な省エネルギー化が実現されている。   In the present embodiment, the power consumption of the steam recovery facility 1, that is, the power consumption of the motor 16 is to generate the same amount of steam as the steam recirculated to the supply line 5 through the recovery line 11 in the boiler. For example, it is about 20% less than the required energy cost, and a significant energy saving is realized.

本発明の1つの実施形態の蒸気回収設備を含むシステムの概略図。1 is a schematic diagram of a system including a steam recovery facility according to one embodiment of the present invention.

符号の説明Explanation of symbols

1 蒸気回収設備
2 蒸気需要設備
5 供給ライン
9 フラッシュタンク
10 スクリュ圧縮機
11 回収ライン
12 温水ポンプ
13 温水ライン
14 圧力センサ(圧力検出手段)
18 コントローラ(制御手段)
DESCRIPTION OF SYMBOLS 1 Steam recovery equipment 2 Steam demand equipment 5 Supply line 9 Flash tank 10 Screw compressor 11 Recovery line 12 Hot water pump 13 Hot water line 14 Pressure sensor (pressure detection means)
18 Controller (control means)

Claims (3)

蒸気供給ラインから供給される蒸気の熱を消費する需要設備から排出される液相の温水と気相の蒸気との気液混合流体から気相の蒸気を回収する蒸気回収設備であって、
前記需要設備から排出される気液混合流体を減圧噴射して再蒸発させるとともに、残留する液相の温水を下部に分離するフラッシュタンクと、
前記フラッシュタンクの上部から気相の蒸気を導出して、圧縮機により圧縮して前記供給ラインに環流させる回収ラインと、
前記フラッシュタンク内の圧力を検出する圧力検出手段と、
前記圧力検出手段が検出した前記フラッシュタンク内の圧力に応じて、前記圧縮機の容量を制御する制御手段とを備えることを特徴とする蒸気回収設備。
A steam recovery facility for recovering vapor phase vapor from a gas-liquid mixed fluid of liquid phase hot water and vapor phase vapor discharged from a demand facility that consumes heat of vapor supplied from a vapor supply line,
A flash tank that injects the gas-liquid mixed fluid discharged from the demand facility under reduced pressure and re-evaporates, and separates the remaining liquid-phase hot water into the lower part,
A recovery line for extracting vapor in the vapor phase from the upper part of the flash tank, compressing it by a compressor and circulating it to the supply line;
Pressure detecting means for detecting the pressure in the flash tank;
Steam recovery equipment comprising control means for controlling the capacity of the compressor in accordance with the pressure in the flash tank detected by the pressure detection means.
前記圧縮機は、回転数の上昇によって容量が増加することを特徴とする請求項1に記載の蒸気回収設備。   The steam recovery facility according to claim 1, wherein the compressor has a capacity that increases as the rotational speed increases. 前記制御手段は、前記フラッシュタンク内の圧力を、予め設定した目標値に近づけるように、前記圧縮機の容量を制御することを特徴とする請求項1または2に記載の蒸気回収設備。   The steam recovery facility according to claim 1 or 2, wherein the control means controls the capacity of the compressor so that the pressure in the flash tank approaches a preset target value.
JP2007099105A 2007-04-05 2007-04-05 Steam recovery equipment Expired - Fee Related JP4787199B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007099105A JP4787199B2 (en) 2007-04-05 2007-04-05 Steam recovery equipment
CN2008100911790A CN101280695B (en) 2007-04-05 2008-04-07 Steam recovery apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007099105A JP4787199B2 (en) 2007-04-05 2007-04-05 Steam recovery equipment

Publications (2)

Publication Number Publication Date
JP2008255888A true JP2008255888A (en) 2008-10-23
JP4787199B2 JP4787199B2 (en) 2011-10-05

Family

ID=39979692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007099105A Expired - Fee Related JP4787199B2 (en) 2007-04-05 2007-04-05 Steam recovery equipment

Country Status (2)

Country Link
JP (1) JP4787199B2 (en)
CN (1) CN101280695B (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024897A (en) * 2008-07-16 2010-02-04 Tlv Co Ltd Power generating device by steam
JP2010164223A (en) * 2009-01-14 2010-07-29 Kobe Steel Ltd Steam generator
JP2012017924A (en) * 2010-07-08 2012-01-26 Miura Co Ltd Steam system
JP2012017942A (en) * 2010-07-09 2012-01-26 Ihi Corp Drain recovery equipment
KR101148070B1 (en) * 2010-06-17 2012-05-24 삼성중공업 주식회사 Method for recovering VOC, VOC recovery system and Ship including the same
KR101331012B1 (en) * 2011-12-28 2013-11-19 한밭대학교 산학협력단 Steam power generation system using centrifugal compressor and method for steam power generation using the same
JP2013253748A (en) * 2012-06-07 2013-12-19 Ebara Refrigeration Equipment & Systems Co Ltd Absorption heat pump and operation method of absorption heat pump
JP2014062699A (en) * 2012-09-24 2014-04-10 Miura Co Ltd Steam generation system
KR101455635B1 (en) 2013-01-10 2014-11-06 삼성중공업 주식회사 Voc recovery system
JP2015132210A (en) * 2014-01-14 2015-07-23 日本化学機械製造株式会社 Heat recovery system in evaporator using vapor compression type root blower
JP2018009728A (en) * 2016-07-13 2018-01-18 株式会社テイエルブイ Waste heat recovery device
JP2019011723A (en) * 2017-06-30 2019-01-24 株式会社Ihi Combined heat and power system
JP2020051706A (en) * 2018-09-28 2020-04-02 三浦工業株式会社 Steam system
GB2622394A (en) * 2022-09-14 2024-03-20 James Cropper Plc A steam supply system and a method of supplying steam

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102635845A (en) * 2012-04-25 2012-08-15 江苏钟腾化工有限公司 Reutilization method of low-pressure byproduct steam in maleic anhydride production process
CN103386212A (en) * 2012-05-11 2013-11-13 四川汇利实业有限公司 Water vapor condensation system
CN102889575B (en) * 2012-10-17 2014-07-09 亿恒节能科技江苏有限公司 Low-humidity steam triple-effect heat exchange system
CN103790658B (en) * 2014-02-26 2015-04-08 刘朋云 Dual-element combined heat pump power generation system
CN104950933B (en) * 2015-05-29 2020-07-14 湖北绿色家园材料技术股份有限公司 Stabilizer for system steam pressure
CN105892521B (en) * 2016-04-19 2018-06-19 山东豪迈机械制造有限公司 High efficiency temperature controlled system and temperature control method
CN110454241A (en) * 2019-07-24 2019-11-15 长兴永能动力科技有限公司 A kind of turbine steam pressure matcher and device driving function with power generation or electricity

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4218575A (en) * 1978-04-10 1980-08-19 Stratford/Graham Engineering Corporation Alkylation effluent flash vaporization with heat recovery
US4493608A (en) * 1982-12-27 1985-01-15 General Electric Company Surge control in compressor
US6410817B1 (en) * 1999-06-29 2002-06-25 Celanese International Corporation Ethylene recovery system
CN2435708Y (en) * 2000-03-24 2001-06-20 青岛旭日节能设备有限公司 Oil production waste heat heat pump recovery and utilization plant

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024897A (en) * 2008-07-16 2010-02-04 Tlv Co Ltd Power generating device by steam
JP2010164223A (en) * 2009-01-14 2010-07-29 Kobe Steel Ltd Steam generator
KR101148070B1 (en) * 2010-06-17 2012-05-24 삼성중공업 주식회사 Method for recovering VOC, VOC recovery system and Ship including the same
JP2012017924A (en) * 2010-07-08 2012-01-26 Miura Co Ltd Steam system
JP2012017942A (en) * 2010-07-09 2012-01-26 Ihi Corp Drain recovery equipment
KR101331012B1 (en) * 2011-12-28 2013-11-19 한밭대학교 산학협력단 Steam power generation system using centrifugal compressor and method for steam power generation using the same
JP2013253748A (en) * 2012-06-07 2013-12-19 Ebara Refrigeration Equipment & Systems Co Ltd Absorption heat pump and operation method of absorption heat pump
JP2014062699A (en) * 2012-09-24 2014-04-10 Miura Co Ltd Steam generation system
KR101455635B1 (en) 2013-01-10 2014-11-06 삼성중공업 주식회사 Voc recovery system
JP2015132210A (en) * 2014-01-14 2015-07-23 日本化学機械製造株式会社 Heat recovery system in evaporator using vapor compression type root blower
WO2015107857A1 (en) * 2014-01-14 2015-07-23 日本化学機械製造株式会社 Heat recovery system in evaporation device using vapor compression roots blower
JP2018009728A (en) * 2016-07-13 2018-01-18 株式会社テイエルブイ Waste heat recovery device
JP2019011723A (en) * 2017-06-30 2019-01-24 株式会社Ihi Combined heat and power system
JP2020051706A (en) * 2018-09-28 2020-04-02 三浦工業株式会社 Steam system
JP7099230B2 (en) 2018-09-28 2022-07-12 三浦工業株式会社 Steam system
GB2622394A (en) * 2022-09-14 2024-03-20 James Cropper Plc A steam supply system and a method of supplying steam

Also Published As

Publication number Publication date
CN101280695A (en) 2008-10-08
CN101280695B (en) 2011-03-09
JP4787199B2 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
JP4787199B2 (en) Steam recovery equipment
CN102817649B (en) Power generation apparatus
JP5691844B2 (en) Heat pump steam generator
KR101442425B1 (en) System combining power generation apparatus and desalination apparatus
US8739537B2 (en) Power generation apparatus
JP6060040B2 (en) Waste heat recovery device and operation control method of waste heat recovery device
JP5593902B2 (en) Heat pump steam generator
CN105386803B (en) Low-grade waste heat power generation system capable of achieving gas-liquid hybrid recycling and control method
JP2010133696A (en) Vapor compression device
KR101342792B1 (en) Water injection type vapor compressor
JP4990008B2 (en) Steam treatment equipment
JP6063196B2 (en) Drying and concentration method and apparatus
JP6291211B2 (en) Drying and concentration method and apparatus
CN103670549A (en) Power generation apparatus and control method thereof
EP3266996B1 (en) Power generation apparatus
CN105745401B (en) Recuperation of heat and method for improving and the compressor for the method
RU2529508C1 (en) Method of improvement of manoeuvrability of atomic power plants
CN104990065B (en) Boiler feedwater circulation deaerating type of cycles in turbine LP rotors
US20160334097A1 (en) Steam compressing and storing device for waste heat boiler
KR101644547B1 (en) Power generation plant including auxiliary power generation system
JP5593906B2 (en) Heat pump steam generator
US20160017761A1 (en) Waste heat recovery apparatus
JP2021113632A (en) Compression system and method for controlling compression system
JP5974385B2 (en) Organic sludge anaerobic solubilization digestion treatment system and organic sludge anaerobic solubilization digestion treatment method
CN203963908U (en) Discharged at lower temperature energy-saving power generation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110714

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees