JP2008254038A - Method and equipment of manufacturing string solder - Google Patents

Method and equipment of manufacturing string solder Download PDF

Info

Publication number
JP2008254038A
JP2008254038A JP2007100184A JP2007100184A JP2008254038A JP 2008254038 A JP2008254038 A JP 2008254038A JP 2007100184 A JP2007100184 A JP 2007100184A JP 2007100184 A JP2007100184 A JP 2007100184A JP 2008254038 A JP2008254038 A JP 2008254038A
Authority
JP
Japan
Prior art keywords
solder
molten solder
belt
molten
discharged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007100184A
Other languages
Japanese (ja)
Inventor
Motomichi Ito
元通 伊藤
Kenichi Kubo
賢一 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2007100184A priority Critical patent/JP2008254038A/en
Publication of JP2008254038A publication Critical patent/JP2008254038A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a string solder manufacturing method and equipment by which a solder more brittle than a conventionally used Sn-Pb based solder like a lead-free solder can be continuously formed as a string solder that has a nearly circular cross section and a diameter larger than 0.5 mm. <P>SOLUTION: This is a string solder manufacturing method by which a string solder is formed by discharging molten solder to the surface of a member that moves relatively at a prescribed speed. The method is characterized in that the member is adjusted at a prescribed temperature at least in the position where the molten solder is discharged, that the molten solder is discharged at the prescribed speed synchronized with the moving speed of the member, and that the string solder is formed by essentially solidifying the molten solder in a few seconds. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、線状半田の製造方法及び製造装置に関する。   The present invention relates to a method and an apparatus for manufacturing linear solder.

線状半田は糸半田とも呼ばれ、棒状の半田合金をダイスの貫通孔から押出して形成する線引き法で製造されるのが一般的である。近年、環境問題から半田の鉛フリー化が要請され、従来のSn−Pb系の半田に替わってSn−Ag系、Sn−Zn系などの半田が用いられるようになってきた。これらの半田はSn−Pb系半田に比べて濡れ性が劣るためBiなどを添加して濡れ性を改善することが行われているが、脆くなる傾向があり、前記線引き法で線状半田を加工しようとすると、途中で破断して連続的に形成することが難しいという問題を有している。これに対し、特許文献1には、Sn−Ag−Bi系半田を回転紡糸法を用いて線状化することが開示されており、直径0.2mmの線状半田を得ることができたと説明されている。   The linear solder is also called thread solder, and is generally manufactured by a drawing method in which a rod-shaped solder alloy is formed by extrusion from a through hole of a die. In recent years, lead-free solder has been requested due to environmental problems, and Sn-Ag solder, Sn-Zn solder, etc. have been used in place of conventional Sn-Pb solder. These solders are inferior in wettability compared to Sn—Pb solders, and so Bi has been added to improve the wettability. However, there is a tendency to become brittle. When it is going to process, it has the problem that it is difficult to fracture | rupture in the middle and to form continuously. On the other hand, Patent Document 1 discloses that a Sn-Ag-Bi solder is linearized by using a spinning method, and it is explained that a linear solder having a diameter of 0.2 mm could be obtained. Has been.

回転紡糸法については特許文献2に詳しい技術が説明されている。これによれば、回転紡糸法は、連続回転する円筒状ドラム内に遠心力により液体層を形成し、この液体層中に溶融金属をジェットとして噴射し、前記溶融金属を大きな冷却速度で凝固させることで金属細線を製造する方法であって、大気中に溶湯を噴射して細線を形成した場合では直径が0.1mm以下のものしか得られなかったのに対し、0.5mm程度のものまで連続して得られたと説明されている。
また、特許文献3には、半田ではなくアルミニウム合金を対象としたものであるが、所定組成の元素を添加して溶湯の粘性や表面張力を改善し、細孔或いはスリットより噴出させて冷却媒体に接触させ、連続的に細線を製造する技術が開示されている。これによれば、溶湯を細孔或いはスリットより噴出させて冷却媒体に接触させる方法としては、非晶質リボンの製造に用いられる単ロール法、前述した回転紡糸法、或いは流水中凝固法など公知の方法を用いることができ、回転紡糸法によれば直径が0.3mm程度までの丸状の細線が得られ、単ロール法によれば厚さが0.3mm程度までのテープ状の細線が得られたと説明されている。
A detailed technique is described in Patent Document 2 regarding the rotary spinning method. According to this, in the spinning method, a liquid layer is formed by centrifugal force in a continuously rotating cylindrical drum, and the molten metal is jetted into the liquid layer as a jet to solidify the molten metal at a high cooling rate. This is a method of manufacturing a fine metal wire, and when a thin wire is formed by injecting molten metal into the atmosphere, only a diameter of 0.1 mm or less was obtained, whereas a thickness of about 0.5 mm was obtained. It is explained that it was obtained continuously.
Further, Patent Document 3 is intended for an aluminum alloy instead of solder, but an element having a predetermined composition is added to improve the viscosity and surface tension of the molten metal, and the coolant is ejected from pores or slits. A technique for continuously manufacturing a fine wire in contact with a thin film is disclosed. According to this, known methods such as a single roll method used for producing an amorphous ribbon, the above-described rotary spinning method, or a flowing water coagulation method are known as methods for spraying molten metal from pores or slits and bringing it into contact with a cooling medium A round thin wire having a diameter of about 0.3 mm can be obtained by the rotary spinning method, and a tape-like thin wire having a thickness of about 0.3 mm can be obtained by the single roll method. It is explained that it was obtained.

特開2001−212693号公報JP 2001-212663 A 特開昭55−64948号公報JP 55-64948 A 特開昭59−190336号公報JP 59-190336 A

線状半田を電子部品などの微細部品の接合に用いる場合は、直径は小さい方がよいが、大きな部材の接合に用いるような場合には、1mm程度或いはそれ以上の太さで円形断面のものが要求される場合がある。この時の半田はもちろん鉛フリー半田が望まれる。特許文献1によれば、回転紡糸法によって鉛フリー半田の細線を連続的に形成することができることがわかるが、得られる細線の太さは0.2mm程度である。また、鉛フリー半田に限定しないとしても、特許文献2、3に示されているように、回転紡糸法による細線製造技術では、細線の太さは0.5mm程度が限界であり、単ロール法ではテープ状の細線しか得られないことがわかる。単ロール法では、噴射するジェットがつぶされるためリボン状となるためである。このように、従来の技術では前記要求に対応することができない。   When linear solder is used for joining fine parts such as electronic parts, the diameter should be small, but when used for joining large parts, it has a circular section with a thickness of about 1 mm or more. May be required. Of course, lead-free solder is desired in addition to the solder at this time. According to Patent Document 1, it can be seen that fine wires of lead-free solder can be continuously formed by the spinning method, but the thickness of the fine wires obtained is about 0.2 mm. Moreover, even if it is not limited to lead-free solder, as shown in Patent Documents 2 and 3, in the thin wire manufacturing technology by the spinning method, the thickness of the thin wire is limited to about 0.5 mm, and the single roll method It can be seen that only tape-like thin lines can be obtained. This is because, in the single roll method, the jet to be ejected is crushed and becomes a ribbon. As described above, the conventional technique cannot cope with the request.

従って、本発明は鉛フリー半田のように従来用いられてきたSn−Pb系半田よりも脆い半田を、略円形断面形状で0.5mmよりも大きな直径の線状半田として、連続的に形成することができる線状半田の製造方法及び製造装置を提供することを目的としている。   Therefore, the present invention continuously forms solder that is more brittle than Sn-Pb solder that has been conventionally used, such as lead-free solder, as linear solder having a substantially circular cross-sectional shape and a diameter larger than 0.5 mm. An object of the present invention is to provide a method and apparatus for manufacturing linear solder that can be used.

本発明の線状半田の製造方法は、相対的に所定の速度で移動する部材の表面に溶融半田を吐出し線状の半田に形成する線状半田の製造方法であって、前記部材は少なくとも溶融半田が吐出される位置が所定温度に調整され、溶融半田は該部材の移動速度に合わせた所定速度で吐出され、溶融半田を数秒間で実質的に凝固させることによって線状の半田に形成することを特徴としている。前記発明において、溶融半田は、前記部材により冷却されて数秒間で実質的に凝固されることが好ましい。また、前記発明において、溶融半田は、吐出されてから少なくとも実質的に凝固されるまではほぼ水平に走行されることが好ましい。また、前記発明において、実施態様として、溶融半田は、数十℃に温度調整された部材表面に吐出され、数ミリ/秒〜数十ミリ/秒の速度で走行されることが望ましい。
なお、上記で言う実質的に凝固とは、外形が変形しない程度に外殻が凝固した状態を言い、中心部まで凝固したか否かは問題としていない。また、ほぼ水平に走行とは、溶融半田の走行方向には重力が作用しないように移動するということであるが、線状形状が悪化するほど溶融半田が走行方向に流動しない範囲であれば、わずかな傾きや上下変動はあっても許容される。
The method for producing linear solder of the present invention is a method for producing linear solder in which molten solder is discharged onto the surface of a member that moves at a relatively predetermined speed to form linear solder, and the member is at least The position where the molten solder is discharged is adjusted to a predetermined temperature, the molten solder is discharged at a predetermined speed according to the moving speed of the member, and the molten solder is substantially solidified within a few seconds to form a linear solder. It is characterized by doing. In the present invention, it is preferable that the molten solder is substantially solidified within a few seconds after being cooled by the member. In the above invention, it is preferable that the molten solder runs substantially horizontally until it is at least substantially solidified after being discharged. In the above invention, as an embodiment, it is desirable that the molten solder is discharged onto the surface of the member whose temperature is adjusted to several tens of degrees Celsius and travels at a speed of several millimeters / second to several tens of millimeters / second.
Note that substantially solidified as described above refers to a state where the outer shell is solidified to such an extent that the outer shape is not deformed, and it does not matter whether the outer shell is solidified. Also, running almost horizontally means that the molten solder moves so that gravity does not act in the running direction of the molten solder, but as long as the molten solder does not flow in the running direction as the linear shape deteriorates, A slight tilt or vertical fluctuation is acceptable.

本発明の線状半田の製造装置は、溶融半田を重力方向に吐出する半田吐出部と、吐出された溶融半田を受けて移動させつつ冷却し線状の半田に形成する半田形成部とを備え、 半田吐出部は、溶融半田が収納されるシリンダ部と溶融半田を押出すピストン部とを有するシリンジと、前記ピストン部を速度制御する駆動手段とを備え、半田形成部は、吐出された溶融半田を受けるエンドレスに走行する走行部材と、走行部材の温度を調節する温度制御手段とを備えていることを特徴としている。前記発明において、半田吐出部の前記シリンダ部は、下部に円形断面の細孔が形成され、半田形成部の前記走行部材は、溶融半田が吐出される面が溶融半田に対して濡れ性が悪い材質とされることが好ましい。
また、前記発明において、半田形成部はベルトコンベア構造とされ、走行部材はベルトであり、キャリヤ側ベルトは少なくとも半田吐出部が配置される位置近傍ではほぼ水平に走行され、駆動ローラは回転数制御手段で駆動され、従動ローラは温度制御手段で温度調節され、半田吐出部は従動ローラの頂部近傍に配設されるようにするとよい。この場合、ベルトはメタルベルトとすることが好ましい。
また、前記発明において、半田形成部は回転板構造とされ、走行部材は回転板でほぼ水平に回転され、吐出された溶融半田が実質的に凝固する位置より先方に半田排出部が配設され、回転板から線状半田が導出されるようにしてもよい。
An apparatus for manufacturing linear solder according to the present invention includes a solder discharge unit that discharges molten solder in the direction of gravity, and a solder formation unit that cools and forms the linear solder while receiving and moving the discharged molten solder. The solder discharge part includes a syringe having a cylinder part in which molten solder is accommodated and a piston part for extruding the molten solder, and a drive means for controlling the speed of the piston part. A traveling member that travels endlessly receiving solder and a temperature control unit that adjusts the temperature of the traveling member are provided. In the invention, the cylinder portion of the solder discharge portion has a circular cross-sectional pore formed in the lower portion, and the running member of the solder formation portion has poor wettability with respect to the molten solder on the surface where the molten solder is discharged. The material is preferably used.
Further, in the above invention, the solder forming portion has a belt conveyor structure, the running member is a belt, the carrier side belt runs almost horizontally at least in the vicinity of the position where the solder discharge portion is disposed, and the drive roller controls the rotational speed. It is preferable that the driven roller is temperature-adjusted by the temperature control means, and the solder discharge portion is disposed near the top of the driven roller. In this case, the belt is preferably a metal belt.
In the above invention, the solder forming portion has a rotating plate structure, the running member is rotated substantially horizontally by the rotating plate, and the solder discharging portion is disposed ahead of the position where the discharged molten solder is substantially solidified. The linear solder may be led out from the rotating plate.

上記本発明によれば、従来用いられてきたSn−Pb系半田よりも脆い鉛フリー半田のような半田であっても、0.5mmよりも大きな直径の線状半田として、連続的に形成することができる。   According to the present invention, even solder such as lead-free solder that is more brittle than Sn-Pb solder that has been conventionally used is continuously formed as linear solder having a diameter larger than 0.5 mm. be able to.

(実施の形態1)
本発明の線状半田製造装置は、非晶質金属の製造装置とは異なり、溶融半田を吐出された時の円形断面形状をほぼ維持したまま線状に凝固させることに特徴がある。図1に実施の形態1における本発明の線状半田製造装置30の概略構造を示すが、半田形成部10と半田吐出部20とに大別することができる。
半田形成部10はベルトコンベヤ構造をとり、駆動ローラ2と従動ローラ1が、各回転軸2a、2bを水平にしてその頂部が同じ高さになるよう、かつ互いに平行となるように左右に所定距離離して配設され、図1では左方に示した駆動ローラ2を半時計回りに回転することにより、巻き付けられたベルト3の上部キャリヤ側ベルト3aが水平に左方に走行される。駆動ローラ2の回転軸2aには回転数を精度よく制御できるモータ、例えばサーボモータ又はインバータ制御モータ等が連結され(図示せず)、ベルト3は毎秒数ミリ〜数十ミリ程度の所定速度で走行される。また、下部のリターン側ベルト3bには張力ローラ4が押付けられ、ベルト3が弛まないように所定の張力が与えられる。さらに、ローラ1、2の間隔が広い場合など、キャリヤ側ベルト3aの撓み、波打ちなどを防止すべく、キャリヤ側ベルト3aの下面に当接する支持ローラ5を設けるようにするとよい。
(Embodiment 1)
Unlike the amorphous metal manufacturing apparatus, the linear solder manufacturing apparatus of the present invention is characterized in that it solidifies into a linear shape while maintaining a substantially circular cross-sectional shape when molten solder is discharged. FIG. 1 shows a schematic structure of a linear solder manufacturing apparatus 30 according to the present invention in Embodiment 1, which can be roughly divided into a solder forming part 10 and a solder discharge part 20.
The solder forming part 10 has a belt conveyor structure, and the driving roller 2 and the driven roller 1 are predetermined to the left and right so that the respective rotating shafts 2a and 2b are horizontal and the tops thereof are at the same height and are parallel to each other. The upper carrier side belt 3a of the wound belt 3 is horizontally moved leftward by rotating the drive roller 2 shown leftward in FIG. 1 in a counterclockwise direction. A motor capable of accurately controlling the rotational speed, for example, a servo motor or an inverter control motor (not shown) is connected to the rotating shaft 2a of the driving roller 2 and the belt 3 is at a predetermined speed of several millimeters to several tens of millimeters per second. Traveled. Further, the tension roller 4 is pressed against the lower return side belt 3b, and a predetermined tension is applied so that the belt 3 does not loosen. Further, when the distance between the rollers 1 and 2 is wide, a support roller 5 that contacts the lower surface of the carrier side belt 3a may be provided in order to prevent the carrier side belt 3a from being bent or wavy.

ベルト3は、半田吐出部20(図2参照)から吐出された溶融半田hを連続的に移動させて線状化する走行部材であるが、それに加えて溶融半田hを凝固させる冷却部材としての機能を有している。従って、耐熱性があり、強度や剛性が高く、精度よくエンドレス帯体に加工することができる材質が用いられ、例えばメタルベルト、樹脂ベルト、ゴムベルトなどを用いることができるが、熱伝導性がよいという点でメタルベルトを用いることが好ましい。また、溶融半田を吐出された時の円形断面形状を極力維持させるという点では、ベルトの溶融半田hとの接触部は濡れ性が悪い方がよく、表面が酸化皮膜で覆われているステンレス鋼の帯体を用いるとよい。また、他の材質の帯体であっても、溶融半田hとの接触面に濡れ性が悪い材質を被覆して用いればよく、例えばアルミ合金製帯体の表面をアルマイト処理したものや、帯状鋼材にNiメッキを施したり、アルミナやガラスをコーティングして用いてもよい。なお、溶融半田hの冷却部材としてベルト3を用いることで、損傷を受けても容易に取り替えることができる。   The belt 3 is a traveling member that continuously moves the molten solder h discharged from the solder discharge portion 20 (see FIG. 2) to linearize it, but in addition, as a cooling member that solidifies the molten solder h. It has a function. Accordingly, a material that has heat resistance, high strength and rigidity, and can be processed into an endless belt with high accuracy is used. For example, a metal belt, a resin belt, a rubber belt, or the like can be used, but the heat conductivity is good. In this respect, it is preferable to use a metal belt. Also, in terms of maintaining as much as possible the circular cross-sectional shape when the molten solder is discharged, the contact portion of the belt with the molten solder h should have poor wettability, and the stainless steel whose surface is covered with an oxide film It is recommended to use Further, even if it is a band made of another material, it may be used by coating the contact surface with the molten solder h with a material having poor wettability. For example, the surface of the aluminum alloy band is anodized, The steel material may be Ni-plated or coated with alumina or glass. By using the belt 3 as a cooling member for the molten solder h, it can be easily replaced even if it is damaged.

また、溶融半田hを良好に連続して吐出するとともに、円形断面形状を維持しつつ冷却するという点で、吐出された溶融半田hを数秒〜十数秒間で凝固されるような温度勾配で冷却することが重要である。このため、溶融半田hが吐出される位置のベルト温度は、該半田の溶融温度又は凝固温度に応じた温度に調節しなければならない。本線状半田製造装置30では、ベルト3が接触して送り出される従動ローラ1を熱伝導性のよい金属等の材質とし、従動ローラ1の温度を制御することで、ベルト3の従動ローラ1から送り出された部分の温度を従動ローラ1の温度とほぼ同一にするようにしている。従動ローラ1の熱容量はベルト3に比べて大きいので、接触しているベルトの温度を迅速に安定して調整することができる。従動ローラ1の温度は、対象とする半田の融点又は凝固点及び形成する太さに合わせた所定温度になるようにするが、通常は加熱方向に制御を行う。従動ローラ1の温度を制御する温度制御手段6としては、従動ローラ1内に流体通路を形成して所定温度の流体を流すような内部装着型手段(図示せず)をとることもできるが、熱風発生装置6aを従動ローラ1の外周に配置した外部装着型手段とするようにしてもよい。   In addition, the molten solder h is discharged continuously in a satisfactory manner and cooled while maintaining a circular cross-sectional shape, so that the discharged molten solder h is cooled with a temperature gradient that is solidified within a few seconds to a few dozen seconds. It is important to. For this reason, the belt temperature at the position where the molten solder h is discharged must be adjusted to a temperature corresponding to the melting temperature or solidification temperature of the solder. In the present linear solder manufacturing apparatus 30, the driven roller 1 that is sent out in contact with the belt 3 is made of a material such as a metal having good thermal conductivity, and the temperature of the driven roller 1 is controlled to send out the driven roller 1 from the belt 3. The temperature of this portion is made substantially the same as the temperature of the driven roller 1. Since the heat capacity of the driven roller 1 is larger than that of the belt 3, the temperature of the contacting belt can be quickly and stably adjusted. The temperature of the driven roller 1 is set to a predetermined temperature according to the melting point or solidification point of the target solder and the thickness to be formed, but is usually controlled in the heating direction. The temperature control means 6 for controlling the temperature of the driven roller 1 may be an internal mounting type means (not shown) in which a fluid passage is formed in the driven roller 1 to flow a fluid at a predetermined temperature. The hot air generator 6a may be an externally mounted type means arranged on the outer periphery of the driven roller 1.

半田吐出部20は従動ローラ1の頂部上方に配設される。半田吐出部20は、容器に収納された溶融半田hを、走行しているキャリヤ側ベルト3上に、前述したベルト走行速度に合わせて、同一又は近傍の所定速度で容器先端のノズルから吐出するもので、容器を密閉構造として加圧気体で押出したり、図2に示すように、シリンジ構造としてピストン部23を移動して押出したりする構造をとることができる。ここで、前記ベルトの走行速度は、吐出され表面張力で円形となった溶融半田がその形状をほぼ維持したままでベルトに乗り移って走行できるような速度として規定され、前述したように毎秒数ミリ〜数十ミリ程度という低速とされる。従って、このような遅いベルト走行速度に合わせて、溶融半田hの吐出速度を安定して高精度で実現させるためには、シリンジ構造とする方が好ましく、ピストン部23は例えばサーボモータとボールネジを用いた精密駆動手段21に連結されている。シリンダ部24、ピストン部23の材質は、溶融半田hと反応せずかつ線膨張係数の低いものが望ましく、セラミックスやガラスを用いることができる。シリンダ部24への溶融半田hの供給は、1ショット終了後ピストン部23を外して注入するようにしたり、シリンダ部24の側壁に溶融半田供給口を形成し、配管を通じて別途設けた溶融半田プール(図示せず)からポンプ等で供給するようにしてもよい。   The solder discharge unit 20 is disposed above the top of the driven roller 1. The solder discharge unit 20 discharges the molten solder h accommodated in the container from the nozzle at the tip of the container onto the traveling carrier-side belt 3 at a predetermined speed that is the same as or close to the belt traveling speed described above. Therefore, it is possible to adopt a structure in which the container is extruded as a sealed structure with pressurized gas, or as shown in FIG. 2, the piston part 23 is moved and extruded as a syringe structure. Here, the running speed of the belt is defined as the speed at which the molten solder discharged and circularized by surface tension can move to the belt while maintaining its shape substantially, and as described above, it is several millimeters per second. It is said that the speed is about tens of millimeters. Therefore, in order to realize a stable and highly accurate discharge speed of the molten solder h in accordance with such a slow belt running speed, it is preferable to use a syringe structure. For example, the piston portion 23 includes a servo motor and a ball screw. It is connected to the precision drive means 21 used. The material of the cylinder part 24 and the piston part 23 is preferably a material that does not react with the molten solder h and has a low linear expansion coefficient, and ceramics or glass can be used. The molten solder h is supplied to the cylinder portion 24 by removing the piston portion 23 after one shot is finished, or by forming a molten solder supply port on the side wall of the cylinder portion 24 and separately providing a molten solder pool through a pipe. You may make it supply with a pump etc. from (not shown).

半田吐出部20は、図3にも示すように従動ローラ1の頂部Tの上方に配設されるが、従動ローラ1の接線方向(X方向)、回転軸と平行な方向(Y方向)、半径方向(Z方向)に位置を変えることができるよう3軸移動機構22を備えることが望ましい。これにより、ノズル25の先端を従動ローラ1の頂部T近辺で所定の位置に位置決めすることができる。また、半田吐出部20は、収納された溶融半田hを所定の温度に維持するため、シリンジ部周囲にはヒータ27が配設されている。線状半田Hの太さはノズル25を貫通する細孔26の内径dとベルト3の走行速度で規定され、内径dと同じ直径mの線状半田Hを得たい場合には、半田吐出部20からの吐出速度とベルト3の走行速度を一致させれば良い。   The solder discharge unit 20 is disposed above the top T of the driven roller 1 as shown in FIG. 3, but the tangential direction (X direction) of the driven roller 1, the direction parallel to the rotation axis (Y direction), It is desirable to provide the triaxial moving mechanism 22 so that the position can be changed in the radial direction (Z direction). Thereby, the tip of the nozzle 25 can be positioned at a predetermined position in the vicinity of the top portion T of the driven roller 1. Further, the solder discharge unit 20 is provided with a heater 27 around the syringe unit in order to maintain the stored molten solder h at a predetermined temperature. The thickness of the linear solder H is defined by the inner diameter d of the pore 26 penetrating the nozzle 25 and the traveling speed of the belt 3, and when it is desired to obtain the linear solder H having the same diameter m as the inner diameter d, the solder discharge portion The discharge speed from 20 and the running speed of the belt 3 may be matched.

次に、前記線状半田製造装置30を用いた本発明の線状半田製造方法を説明する。
まず、駆動ローラ2を反時計方向に回転させ、巻き付けられているベルト3を走行させ、キャリヤ側ベルト3aを所定速度sで左方に走行させる。次いで、温風発生装置6aを作動させ、温風を従動ローラ1の外周面に向けて吹き付け、ベルト3及び従動ローラ1の温度を上昇させて設定温度に維持する。温風発生装置6aは、従動ローラ外周面或いは従動ローラ頂部近傍のベルト3の温度をセンサで測定してPID制御等の自動制御がなされるとよいが、予め調整運転を行って、温風温度、風量などの制御パターンを求めておき、従動ローラ1に接しているベルトの温度を温度計で測定しながら、手動で調整を行うようにしてもよい。
Next, the linear solder manufacturing method of the present invention using the linear solder manufacturing apparatus 30 will be described.
First, the driving roller 2 is rotated counterclockwise, the wound belt 3 is caused to travel, and the carrier side belt 3a is caused to travel leftward at a predetermined speed s. Next, the hot air generator 6a is operated, and the hot air is blown toward the outer peripheral surface of the driven roller 1, and the temperatures of the belt 3 and the driven roller 1 are increased and maintained at the set temperature. The hot air generator 6a may perform automatic control such as PID control by measuring the temperature of the belt 3 near the outer peripheral surface of the driven roller or the top of the driven roller with a sensor. Alternatively, the control pattern such as the air volume may be obtained and the adjustment may be performed manually while measuring the temperature of the belt in contact with the driven roller 1 with a thermometer.

一方、半田吐出部20のシリンダ部24には溶融半田hを収納しておく。溶融半田hはヒータ27で所定温度に維持される。半田吐出部20は、従動ローラ1の外周面温度が設定温度に達する頃、ノズル25位置が従動ローラ1の頂部T上方の所定位置になるように位置決めされる。図3に示すように、ノズル25の周方向位置(X方向)は、従動ローラの頂部Tから手前にg1離れた位置と先方にg2離れた位置との間とされる。頂部T及び頂部Tから手前側の位置では、ベルト3は従動ローラ1と接触しているため、走行軌跡が一定しかつ外気による温度変動を受け難いため好ましい。ただし、手前過ぎるとローラの曲率に基づくベルトの走行方向傾きによる溶融半田への重力の影響が無視できなくなるので、前記g1離れた位置は頂部Tを通る垂線となす中心角θが10°以内の範囲とされる。ノズル先端とベルトとの間隔は数mmとされるが、吐出中の溶融半田hが自重で切断されないという点では狭い方がよいが、冷却されて表面張力で円形になった溶融半田の形状が維持されやすいという点では広い方がよく、半田組成、線材直径に合わせて適宜設定される。   On the other hand, the molten solder h is stored in the cylinder portion 24 of the solder discharge portion 20. The molten solder h is maintained at a predetermined temperature by the heater 27. When the outer peripheral surface temperature of the driven roller 1 reaches the set temperature, the solder discharge unit 20 is positioned so that the nozzle 25 is positioned at a predetermined position above the top T of the driven roller 1. As shown in FIG. 3, the circumferential position (X direction) of the nozzle 25 is between a position separated by g1 from the top T of the driven roller and a position separated by g2 ahead. Since the belt 3 is in contact with the driven roller 1 at the top T and a position on the near side from the top T, it is preferable because the traveling locus is constant and the temperature fluctuation due to the outside air is difficult. However, if it is too far, the influence of gravity on the molten solder due to the inclination of the belt in the traveling direction based on the curvature of the roller cannot be ignored. Scope. The distance between the nozzle tip and the belt is several mm, but it is better to be narrow in that the molten solder h being discharged is not cut by its own weight, but the shape of the molten solder that has been cooled and rounded by the surface tension is good. In terms of being easily maintained, a wider one is better, and it is appropriately set according to the solder composition and the wire diameter.

従動ローラ1が設定温度に維持されると、半田吐出部20のピストン部23を所定速度Vで移動し、溶融半田hを吐出速度vでベルト3(3a)上に吐出する。吐出速度vを前記ベルト速度sとほぼ同一となるように設定した場合は、ピストン部の速度Vは、シリンダ部内径D、ノズル細孔径dとすると、V=v(d/D)で算出される。ピストン部23はサーボモータの回転数で速度制御されるので、低速でも精度は極めてよく速度制御も容易に行うことができる。なお、ほとんどの場合、収納されている溶融半田hはピストン部が移動する前にノズル細孔から垂下することはないが、必要に応じて垂下防止のストッパーを設ければよい。 When the driven roller 1 is maintained at the set temperature, the piston part 23 of the solder discharge part 20 is moved at a predetermined speed V, and the molten solder h is discharged onto the belt 3 (3a) at the discharge speed v. When the discharge speed v is set to be substantially the same as the belt speed s, the piston speed V is calculated by V = v (d / D) 2 where the cylinder inner diameter D and the nozzle pore diameter d are set. Is done. Since the speed of the piston portion 23 is controlled by the number of rotations of the servo motor, the accuracy is very good even at a low speed and the speed control can be easily performed. In most cases, the molten solder h stored does not hang down from the nozzle pores before the piston moves, but a stopper for preventing sag may be provided if necessary.

吐出速度vとベルト速度sをほぼ同じにするとともに、所定の温度勾配で冷却されて凝固するようにすることで、ベルト3(3a)上に吐出された溶融半田hは、破断することなく線状の半田となる。ベルト3(3a)は水平方向に移動しているため、線状半田Hの長手方向には重力による引張り力は作用せず、直径が1mm以上あるような太い線状半田であっても切断されることはない。また、ベルト3は溶融半田hとは濡れ性が悪い表面性状としているため、溶融半田hはベルト3(3a)上に広がり難く、断面形状が変化する前に凝固するので、線状半田Hは吐出された時の円形断面がほぼ維持される。ベルト3(3a)上の線状半田Hは、駆動ローラ2に達するまでに十分に凝固され、駆動ローラ2の接線方向に排出される。従って、駆動ローラ2の後方に公知の構造の巻き取り装置(図示せず)を設置して排出される線状半田を巻き取ることで、連続的に線状半田を得ることができる。   By making the discharge speed v and the belt speed s substantially the same, and cooling and solidifying by a predetermined temperature gradient, the molten solder h discharged onto the belt 3 (3a) is linear without breaking. It becomes the shape solder. Since the belt 3 (3a) moves in the horizontal direction, the tensile force due to gravity does not act in the longitudinal direction of the linear solder H, and even a thick linear solder having a diameter of 1 mm or more is cut. Never happen. Further, since the belt 3 has a surface property that is poor in wettability with the molten solder h, the molten solder h hardly spreads on the belt 3 (3a) and is solidified before the cross-sectional shape is changed. The circular cross section when discharged is substantially maintained. The linear solder H on the belt 3 (3a) is sufficiently solidified to reach the driving roller 2 and is discharged in the tangential direction of the driving roller 2. Therefore, a linear solder can be continuously obtained by installing a winding device (not shown) having a known structure behind the driving roller 2 and winding the discharged linear solder.

本発明においては、溶融半田hの吐出速度vと線状半田走行速度としてのベルト走行速度sが極めて精度よく制御できるので、速度関係を制御することで、ノズルの細孔径dを変えなくても線状半田Hの直径mを制御することができる。即ち、v>sとすることでm>dとすることができ、v<sとすることでm<dとすることができる。ただし、vとsの速度差が大きいと形状精度が悪くなる恐れがあり、特にv<sとした場合は、溶融半田冷却時の温度勾配によっては、ノズルからベルトへの乗り移り部で破断されることがある。これに対しては従動ローラ1の温度を高めに調整する等で対処することができる。   In the present invention, since the discharge speed v of the molten solder h and the belt traveling speed s as the linear solder traveling speed can be controlled with extremely high accuracy, the speed relationship can be controlled without changing the pore diameter d of the nozzle. The diameter m of the linear solder H can be controlled. That is, m> d can be achieved by setting v> s, and m <d can be achieved by setting v <s. However, if the speed difference between v and s is large, the shape accuracy may be deteriorated. In particular, when v <s, depending on the temperature gradient at the time of cooling the molten solder, it is broken at the transfer portion from the nozzle to the belt. Sometimes. This can be dealt with by adjusting the temperature of the driven roller 1 higher.

以上、前記実施の形態1においては、半田吐出部20が従動ローラ1の頂部近傍上方に配置されている構成で説明したが、頂部から先方に離れていてもキャリヤ側ベルトが安定して水平走行がなされる部分、例えば支持ローラ5で支持されている部分やその近傍、または従動ローラと支持ローラの間で適切な張力が作用している部分であればその上方に配置することもできる。この場合、溶融半田が吐出される位置ではベルトは従動ローラとは接していないため、この部分の温度を設定温度にするためには、前述した従動ローラの温度制御に加え、支持ローラにも温度制御手段を作用させたり、ベルトに直接温度制御手段を作用させたり、或いは直接ベルトにだけ温度制御手段を作用させるなど、適宜構成に合わせて対応すればよい。また、ベルトを樹脂やゴムなど金属に比べて熱伝導性の悪い材質とした場合は、ベルトによる溶融半田の冷却能は低下し溶融半田の冷却速度が遅くなるため、冷風などの冷媒を直接溶融半田に吹付けて冷却するようにすればよい。   As described above, in the first embodiment, the configuration in which the solder discharge unit 20 is disposed near the top of the driven roller 1 has been described. However, the carrier-side belt can stably travel horizontally even if it is farther away from the top. It is also possible to dispose a portion where the tension is applied, for example, a portion supported by the support roller 5 or the vicinity thereof, or a portion where an appropriate tension is applied between the driven roller and the support roller. In this case, since the belt is not in contact with the driven roller at the position where the molten solder is discharged, in order to set the temperature of this portion to the set temperature, in addition to the temperature control of the driven roller described above, the temperature of the support roller is also determined. What is necessary is just to respond | correspond according to a structure suitably, such as making a control means act, making a temperature control means act on a belt directly, or making a temperature control means act only on a belt directly. In addition, if the belt is made of a material with poor thermal conductivity compared to metals such as resin and rubber, the cooling capability of the molten solder by the belt will be reduced and the cooling rate of the molten solder will be slowed down. What is necessary is just to cool by spraying on solder.

(実施の形態2)
実施の形態1は、半田形成部10をベルトコンベヤ構造とし、ベルト3で吐出された溶融半田hを連続的に移動させつつ凝固させて線状化させる形態であったが、本実施の形態2は、半田形成部50を回転板構造とし、ベルトに換えて回転板で吐出された溶融半田hを連続的に移動させつつ凝固させて線状化させる形態である。以下、半田形成部50について図4をもとに説明するが、半田吐出部20については実施の形態1で説明したものと同様なものであり説明は省略する。また、実施の形態2における線状半田製造方法についても、基本的には実施の形態1の場合と同様であり説明は省略する。
(Embodiment 2)
In the first embodiment, the solder forming unit 10 has a belt conveyor structure, and the molten solder h discharged from the belt 3 is solidified while being continuously moved. This is a form in which the solder forming portion 50 has a rotating plate structure, and the molten solder h discharged from the rotating plate instead of the belt is solidified while being continuously moved and linearized. Hereinafter, the solder forming unit 50 will be described with reference to FIG. 4, but the solder discharge unit 20 is the same as that described in the first embodiment, and a description thereof will be omitted. Also, the method of manufacturing the linear solder in the second embodiment is basically the same as that in the first embodiment, and the description thereof is omitted.

半田形成部50は、半田吐出部20から吐出された溶融半田hを受けるとともに回転軸(図示せず)まわりに水平に連続回転される表面が平滑な回転板51と、回転板51の表面とわずかな隙間をなして所定位置に配設される半田ガイド部52と半田排出部53とを備えている。回転軸には回転数を精度よく制御できるモータ、例えばサーボモータ又はインバータ制御モータ等(図示せず)が連結され、毎分数回転〜数十回転の所定回転数で回転される。回転板51の回転中心Oからr離れた所定位置の表面上方には半田吐出部20が配置され、溶融半田hが吐出される。従って、吐出された溶融半田hは、回転板51の半径rの円周上を移動する。移動速度は、実施の形態1におけるベルト速度と同様毎秒数ミリ〜数十ミリ程度の所定速度とされ、これに合わせて回転板51の回転数を設定すればよい。前記r及びこれから規定される回転板51の外径寸法は、半田吐出部20、半田ガイド部52、半田排出部53などの装置寸法でほぼ規定されるが、rは50〜200mm程度とするとよい。   The solder forming unit 50 receives the molten solder h discharged from the solder discharge unit 20 and has a smooth rotating plate 51 that is continuously rotated horizontally around a rotation axis (not shown), and the surface of the rotating plate 51. A solder guide portion 52 and a solder discharge portion 53 are provided at a predetermined position with a slight gap. A motor, such as a servo motor or an inverter control motor (not shown), which can accurately control the rotation speed is connected to the rotation shaft, and is rotated at a predetermined rotation speed of several to several tens of rotations per minute. A solder discharge part 20 is disposed above the surface at a predetermined position r apart from the rotation center O of the rotary plate 51, and the molten solder h is discharged. Therefore, the discharged molten solder h moves on the circumference of the radius r of the rotating plate 51. The moving speed is set to a predetermined speed of several millimeters to several tens of millimeters per second like the belt speed in the first embodiment, and the rotational speed of the rotating plate 51 may be set in accordance with this. The outer diameter dimension of r and the rotation plate 51 defined from now on is substantially defined by the apparatus dimensions such as the solder discharge part 20, the solder guide part 52, and the solder discharge part 53, but r is preferably about 50 to 200 mm. .

前記半田ガイド部52は、溶融半田hが実質的に凝固して線状半田Hに形成された後に当接するような位置に配設され、例えば線状半田Hの両側にローラを2列に配する構成とするとよい。半田排出部53は、半田ガイド部52の下流に配設され、線状半田Hを回転板51の外部に設けられた公知の構造の巻き取り装置(図示せず)に向けるように、円板或いは平板を半径rの円周を交差するように設けるとよい。これら半田ガイド部52、半田排出部53は、回転板51の外部に設けられたブラケット(図示せず)に取り付けられ、回転板51とは接しないが、線状半田Hとは接するようにされている。   The solder guide portion 52 is disposed at a position where the molten solder h is substantially solidified and formed into the linear solder H and comes into contact therewith. For example, rollers are arranged in two rows on both sides of the linear solder H. It is good to have a configuration to do. The solder discharge part 53 is disposed downstream of the solder guide part 52 and is arranged so as to direct the linear solder H to a winding device (not shown) having a known structure provided outside the rotating plate 51. Or it is good to provide a flat plate so that the circumference of radius r may be crossed. The solder guide portion 52 and the solder discharge portion 53 are attached to a bracket (not shown) provided outside the rotating plate 51 and are not in contact with the rotating plate 51 but are in contact with the linear solder H. ing.

回転板51は、実施の形態1におけるベルト3と同様に、半田吐出部20から吐出された溶融半田hを連続的に移動させて線状化する走行部材であるが、それに加えて溶融半田hを凝固させる冷却部材としての機能を有している。従って、基材の材質や溶融半田hとの接触部の材質はベルト3の場合と同様とすればよく説明は省略する。また、同様に、吐出後の溶融半田hが数秒〜十数秒間で凝固されるよう、回転板51の溶融半田hが吐出される位置の温度は、該半田の溶融温度又は凝固温度に応じた温度に調節される。実施の形態1では、この温度調節を従動ローラの温度を制御することで行っていたが、本形態では回転板51を直接温度調節するとよい。温度制御手段としては、従動ローラの場合と同様、回転板内に流体通路を形成して所定温度の流体を流す内部装着型手段をとることもできるが、熱風発生装置を回転板51の外部に配置した外部装着型手段とした方が簡潔となってよい。   The rotating plate 51 is a traveling member that continuously moves the molten solder h discharged from the solder discharge portion 20 to form a line like the belt 3 in the first embodiment. It has a function as a cooling member for solidifying. Accordingly, the material of the base material and the material of the contact portion with the molten solder h may be the same as in the case of the belt 3, and the description thereof is omitted. Similarly, the temperature of the position where the molten solder h is discharged on the rotating plate 51 depends on the melting temperature or the solidification temperature of the solder so that the molten solder h after discharge is solidified within a few seconds to a few dozen seconds. Adjusted to temperature. In the first embodiment, this temperature adjustment is performed by controlling the temperature of the driven roller. However, in this embodiment, the temperature of the rotating plate 51 may be directly adjusted. As the temperature control means, as in the case of the driven roller, it is possible to adopt an internal mounting type means for forming a fluid passage in the rotating plate to flow a fluid of a predetermined temperature. However, the hot air generator is placed outside the rotating plate 51. It may be simpler to use the externally mounted means arranged.

前記実施の形態1、2は、半田形成部10及び50において、吐出された溶融半田hを走行させる部材が水平に移動するとして説明した。即ち、実施の形態1においてはベルト3は駆動ローラ2と従動ローラ1の間を水平に走行し、実施の形態2においては回転板51は回転軸まわりに水平に回転している。溶融半田hを水平に走行させる意味は、流動性を有した状態の線状の半田の長手方向に重力を作用させないためであり、実質的に凝固して重力が作用しても切れたり形状が変化することがほとんど生じない状態になったものや、或いは重力が作用しても切れたり形状が変化することがほとんど生じないような仕様のものに対しては、必ずしも水平に走行させる必要はない。   In the first and second embodiments, it has been described that the member for running the discharged molten solder h moves horizontally in the solder forming portions 10 and 50. That is, in the first embodiment, the belt 3 runs horizontally between the driving roller 2 and the driven roller 1, and in the second embodiment, the rotating plate 51 rotates horizontally around the rotation axis. The meaning of running the molten solder h horizontally is to prevent gravity from acting in the longitudinal direction of the linear solder in a fluid state. It is not always necessary to run horizontally for a specification that hardly changes, or a specification that hardly breaks or changes its shape even when gravity is applied. .

従って、実施の形態1において、ベルトは少なくとも溶融半田が凝固する位置まで水平に走行されればよく、図1において、支持ローラ5を溶融半田が凝固する位置より少し先方に設置し、この間のベルトを水平に維持するようにすれば、駆動ローラ2は頂部が従動ローラ1の頂部より低くなるように設置してもよい。さらには、線径が小さい場合では、表面張力の作用の方が重力の作用より大きく影響し、切断や断面形状の変化に対して抵抗力があり、かつ凝固時間は短いため、例えば0.5mm程度の線径のものであれば、ベルト3や回転板51は緩やかな傾きがあっても対応できることがある。この場合は、走行部材を単ロールとしても直径を大きくすることで対応できることがある。   Therefore, in the first embodiment, the belt only needs to run horizontally to a position where at least the molten solder solidifies. In FIG. 1, the support roller 5 is installed slightly ahead of the position where the molten solder solidifies, and the belt in the meantime. Is maintained horizontally, the driving roller 2 may be installed such that the top is lower than the top of the driven roller 1. Furthermore, when the wire diameter is small, the action of surface tension has a greater effect than the action of gravity, and is resistant to cutting and cross-sectional shape changes, and the coagulation time is short. The belt 3 and the rotating plate 51 may be able to cope with a gentle inclination as long as the diameter of the wire is approximately the same. In this case, even if the traveling member is a single roll, it may be possible to cope with it by increasing the diameter.

(実施例)
図1に示す構造の本発明の線状半田製造装置30で、Sn−Ag系の高融点(250℃前後)鉛フリー半田の線状半田を連続的に製造した。ベルト3は厚さ0.3mm、幅30mmのSUS304の帯体、ベルト3の温度調節をする従動ローラ1はアルミ製で直径300mm、ベルト3を走行駆動させる駆動ローラ2はアルミ製で直径140mm、両ローラの軸間距離は500mmである。半田吐出部20に用いたシリンジはガラス製とし、シリンダの内径は12mm、長さ60mmで、溶融半田hを約4cc収納した。半田吐出部20は、ノズル25の細孔26中心が従動ローラ1の頂部T直上となるよう、かつノズル25先端とベルト3表面との間隔が5mmになるようにセットした。
(Example)
In the linear solder manufacturing apparatus 30 of the present invention having the structure shown in FIG. 1, Sn-Ag high melting point (around 250 ° C.) lead-free solder linear solder was continuously manufactured. The belt 3 is made of SUS304 having a thickness of 0.3 mm and a width of 30 mm, the driven roller 1 for adjusting the temperature of the belt 3 is made of aluminum and has a diameter of 300 mm, the driving roller 2 for driving the belt 3 is made of aluminum and has a diameter of 140 mm, The distance between the axes of both rollers is 500 mm. The syringe used for the solder discharge part 20 was made of glass, the inner diameter of the cylinder was 12 mm, the length was 60 mm, and about 4 cc of molten solder h was stored. The solder discharge unit 20 was set so that the center of the pore 26 of the nozzle 25 was directly above the top T of the driven roller 1 and the distance between the tip of the nozzle 25 and the surface of the belt 3 was 5 mm.

前記仕様の装置に、ノズル細孔の直径が1.25mmと0.6mmの2種類のシリンジをセットし、各4種類の製造条件で線状半田を製造した。どの条件の場合も溶融半田は300℃に保持した。製造条件とその時の線状半田の形成結果を表1に示す。この製造条件においては、細孔から吐出された溶融半田hは、途中で切れることなくキャリヤ側ベルト3a上に乗り移って送られ、線状に形成されて駆動ローラ端から排出された。排出された線状半田Hは手作業でボビンに巻き取っていった。シリンジ内の溶融半田が正常に吐出されている間は、線状半田Hは連続的に形成された。   Two types of syringes having nozzle pore diameters of 1.25 mm and 0.6 mm were set in the apparatus having the above specifications, and linear solder was manufactured under four types of manufacturing conditions. Under any conditions, the molten solder was kept at 300 ° C. Table 1 shows the manufacturing conditions and the results of forming the linear solder at that time. Under this manufacturing condition, the molten solder h discharged from the fine holes was transferred on the carrier side belt 3a without being cut off in the middle, formed in a linear shape, and discharged from the end of the driving roller. The discharged linear solder H was manually wound around a bobbin. While the molten solder in the syringe was normally discharged, the linear solder H was continuously formed.

Figure 2008254038
Figure 2008254038

製造条件No.1及び5のものは、吐出速度とベルト速度を同一にして、適切な温度勾配で冷却したもので、ノズル細孔径とほぼ同一直径の線状半田が得られた。No.2のものは、吐出速度とベルト速度は同一であるが、従動ローラの温度、即ち溶融半田が着地した位置のベルト温度が高すぎ、冷却温度勾配が緩くなって、外殻が凝固する前に円形断面がつぶれてしまったものと思われる。No.3と6は、吐出速度よりベルト速度を速くすることによって、ノズル細孔径より直径の小さな線状半田が得られた例である。No.4と7は、逆に、吐出速度よりベルト速度を遅くすることによって、ノズル細孔径より直径の大きな線状半田が得られた例である。No.8は、直径が大きな線状半田が得られる条件であるが、従動ローラ温度が高いために線状中心部まで凝固するのに時間がかかり、まだ溶融或いは半溶融状態の半田が溜まっていき、封じ込めている外殻を周期的に押し広げてこぶ状になったものと思われる。これより、ベルトの速度は10〜60mm/sec程度、溶融半田が吐出される位置でのベルトの温度は20〜70℃程度の所定範囲とするとよく、この時、溶融半田は150mm程度走行すると実質的に凝固し、この間の時間は1.6秒〜6秒であることがわかる。   Production condition no. Samples 1 and 5 were cooled at an appropriate temperature gradient with the same discharge speed and belt speed, and linear solder having a diameter substantially the same as the nozzle pore diameter was obtained. No. In the case of No. 2, the discharge speed and the belt speed are the same, but the temperature of the driven roller, that is, the belt temperature at the position where the molten solder has landed is too high, the cooling temperature gradient becomes loose, and the outer shell is solidified. It seems that the circular cross section has been crushed. No. Nos. 3 and 6 are examples in which linear solder having a diameter smaller than the nozzle pore diameter was obtained by increasing the belt speed rather than the discharge speed. No. 4 and 7 are examples in which linear solder having a diameter larger than the nozzle pore diameter was obtained by making the belt speed slower than the discharge speed. No. 8 is a condition for obtaining a linear solder having a large diameter, but since the temperature of the driven roller is high, it takes time to solidify to the central part of the linear, and the molten or semi-molten solder still accumulates. It seems that the enveloping outer shell was periodically expanded to form a hump. Accordingly, the belt speed is preferably about 10 to 60 mm / sec, and the belt temperature at the position where the molten solder is discharged is preferably within a predetermined range of about 20 to 70 ° C. At this time, when the molten solder travels about 150 mm, It can be seen that the time during this period is 1.6 to 6 seconds.

本発明の実施の形態1における線状半田製造装置の概略構造を示す側面図である。It is a side view which shows schematic structure of the linear solder manufacturing apparatus in Embodiment 1 of this invention. 半田吐出部の概念構造を示す図である。It is a figure which shows the conceptual structure of a solder discharge part. 実施の形態1における従動ローラと半田吐出部のノズルの位置関係を説明するための図である。FIG. 6 is a diagram for explaining a positional relationship between a driven roller and a nozzle of a solder discharge unit in the first embodiment. 本発明の実施の形態2における線状半田製造装置の概略構造を示す側面図である。It is a side view which shows schematic structure of the linear solder manufacturing apparatus in Embodiment 2 of this invention.

符号の説明Explanation of symbols

10 半田形成部
1 従動ローラ
2 駆動ローラ
3 ベルト
5 支持ローラ
6 熱風発生装置
20 半田吐出部
21 ピストン部精密駆動手段
22 3軸移動機構
23 ピストン部
24 シリンダ部
25 ノズル
26 細孔
50 半田形成部
51 回転板
53 半田排出部
h 溶融半田
H 線状半田
10 Solder forming part
DESCRIPTION OF SYMBOLS 1 Driven roller 2 Drive roller 3 Belt 5 Support roller 6 Hot air generator 20 Solder discharge part 21 Piston part precision drive means
22 3-axis movement mechanism 23 Piston part
24 Cylinder part 25 Nozzle 26 Fine hole 50 Solder forming part 51 Rotating plate 53 Solder discharging part
h Molten solder H Linear solder

Claims (9)

相対的に所定速度で移動する部材の表面に溶融半田を吐出し線状の半田に形成する線状半田の製造方法であって、前記部材は少なくとも溶融半田が吐出される位置が所定温度に調整され、溶融半田は該部材の移動速度に合わせた所定速度で吐出され、溶融半田を数秒間で実質的に凝固させることによって線状の半田に形成することを特徴とする線状半田の製造方法。 A method of manufacturing linear solder in which molten solder is discharged onto a surface of a member that moves relatively at a predetermined speed to form linear solder, wherein at least the position at which the molten solder is discharged is adjusted to a predetermined temperature. And the molten solder is discharged at a predetermined speed in accordance with the moving speed of the member, and the molten solder is substantially solidified within a few seconds to form the linear solder. . 溶融半田は、前記部材により冷却されて数秒間で実質的に凝固されることを特徴とする請求項1記載の線状半田の製造方法。 2. The method of manufacturing linear solder according to claim 1, wherein the molten solder is cooled by the member and substantially solidified within a few seconds. 溶融半田は、吐出されてから少なくとも実質的に凝固されるまではほぼ水平に走行されることを特徴とする請求項1又は2記載の線状半田の製造方法。 3. The method of manufacturing linear solder according to claim 1, wherein the molten solder travels substantially horizontally until it is at least substantially solidified after being discharged. 溶融半田は、数十℃に温度調整された部材表面に吐出され、数ミリ/秒〜数十ミリ/秒の速度で走行され、数秒間で実質的に凝固されることを特徴とする請求項1、2又は3記載の線状半田の製造方法。 The molten solder is discharged onto the surface of a member whose temperature is adjusted to several tens of degrees Celsius, travels at a speed of several millimeters / second to several tens of millimeters / second, and is substantially solidified within several seconds. A method for producing a linear solder according to 1, 2 or 3. 溶融半田を重力方向に吐出する半田吐出部と、吐出された溶融半田を受けて移動させつつ冷却し線状の半田に形成する半田形成部とを備え、
半田吐出部は、溶融半田が収納されるシリンダ部と溶融半田を押出すピストン部とを有するシリンジと、前記ピストン部を速度制御する駆動手段とを備え、
半田形成部は、吐出された溶融半田を受けるエンドレスに走行する走行部材と、走行部材の温度を調節する温度制御手段とを備え
ていることを特徴とする線状半田の製造装置。
A solder discharge portion that discharges the molten solder in the direction of gravity, and a solder forming portion that cools and forms the linear solder while receiving and moving the discharged molten solder;
The solder discharge part includes a syringe having a cylinder part in which molten solder is accommodated and a piston part for extruding the molten solder, and a drive means for controlling the speed of the piston part,
The solder forming unit includes a traveling member that travels endlessly to receive the discharged molten solder, and a temperature control unit that adjusts the temperature of the traveling member.
半田吐出部の前記シリンダ部は、下部に円形断面の細孔が形成され、半田形成部の前記走行部材は、溶融半田が吐出される面は溶融半田と濡れ性が悪い材質とされていることを特徴とする請求項6記載の線状半田の製造装置。 The cylinder part of the solder discharge part has a circular cross-sectional pore formed in the lower part, and the running member of the solder formation part is made of a material having poor wettability with the molten solder on the surface where the molten solder is discharged The apparatus for producing linear solder according to claim 6. 前記半田形成部はベルトコンベア構造とされ、走行部材はベルトであり、キャリヤ側ベルトは少なくとも半田吐出部が配置される位置近傍ではほぼ水平に走行され、駆動ローラは回転数制御手段で駆動され、従動ローラは温度制御手段で温度調節され、
半田吐出部は従動ローラの頂部近傍に配設され
ていることを特徴とする請求項5又は6記載の線状半田の製造装置。
The solder forming portion has a belt conveyor structure, the running member is a belt, the carrier side belt runs almost horizontally at least near the position where the solder discharge portion is disposed, and the drive roller is driven by the rotation speed control means. The temperature of the driven roller is adjusted by the temperature control means,
7. The apparatus for producing linear solder according to claim 5, wherein the solder discharge portion is disposed near the top of the driven roller.
前記ベルトはメタルベルトであることを特徴とする請求項7記載の線状半田の製造装置。 8. The apparatus for producing linear solder according to claim 7, wherein the belt is a metal belt. 前記半田形成部は回転板構造とされ、走行部材は回転板でほぼ水平に回転され、吐出された溶融半田が実質的に凝固する位置より先方に半田排出部が配設され、回転板から線状半田が導出されることを特徴とする請求項5又は6記載の線状半田の製造装置。 The solder forming part has a rotating plate structure, the running member is rotated almost horizontally by the rotating plate, and a solder discharge part is disposed ahead of the position where the discharged molten solder is substantially solidified. 7. The apparatus for producing linear solder according to claim 5, wherein the solder is led out.
JP2007100184A 2007-04-06 2007-04-06 Method and equipment of manufacturing string solder Pending JP2008254038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007100184A JP2008254038A (en) 2007-04-06 2007-04-06 Method and equipment of manufacturing string solder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007100184A JP2008254038A (en) 2007-04-06 2007-04-06 Method and equipment of manufacturing string solder

Publications (1)

Publication Number Publication Date
JP2008254038A true JP2008254038A (en) 2008-10-23

Family

ID=39978162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007100184A Pending JP2008254038A (en) 2007-04-06 2007-04-06 Method and equipment of manufacturing string solder

Country Status (1)

Country Link
JP (1) JP2008254038A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109834413A (en) * 2019-04-09 2019-06-04 浙江晶科能源有限公司 A kind of string welding machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109834413A (en) * 2019-04-09 2019-06-04 浙江晶科能源有限公司 A kind of string welding machine

Similar Documents

Publication Publication Date Title
AU712797B2 (en) Forming method and forming system
JP2005298326A (en) Method and apparatus for continuously manufacturing glass tube having adjusted circular shape or profile
CN105215298A (en) A kind of non-crystalline thin-band production system
JPS60130453A (en) Method and device for manufacturing ribbon, filament, fiber or film
US20070271963A1 (en) Apparatus and Process for Producing Tubes or Rods
JP2008254038A (en) Method and equipment of manufacturing string solder
JPS5847939B2 (en) Method and apparatus for casting homogeneous vitreous filaments of metal alloys
US4982780A (en) Method of producing metal filament and apparatus materializing same
KR20200089740A (en) Method for forming a thin glass sheet
US20160332220A1 (en) Up-drawing continuous casting method, up-drawing continuous casting apparatus, and continuous casting
KR101500646B1 (en) FABRICATNG APPRATUS OF amorphous ribbon AND WINDING METHOD OF amorphous ribbon USING THEREOF
US8061161B2 (en) Molten glass dropping nozzle, molded glass product manufacturing method and molded glass product manufacturing apparatus
JP5501898B2 (en) Linear member manufacturing method and linear member manufacturing apparatus
TW200916422A (en) Method and apparatus for producing glass formed article
CN114622171B (en) Tube target manufacturing device and tube target manufacturing method
CN113102878A (en) Welding equipment and welding process
JP5256460B2 (en) Zinc ball manufacturing method
JP2018162494A (en) Method and apparatus for manufacturing plated steel wire
JP2021171808A (en) Pulling-up type casting device
WO2015015697A1 (en) Upward continuous casting device and upward continuous casting method
JP2023126554A (en) Alloy element additive and method for manufacturing copper alloy material
JPS6315055B2 (en)
CN109803933A (en) Method and apparatus for glass tape heat management
AU611945B2 (en) Method and device for obtaining metal thread
JPS59206146A (en) Quick cooling device for molten metal