JP2008251878A - Thin film mim capacitor and its manufacturing method - Google Patents

Thin film mim capacitor and its manufacturing method Download PDF

Info

Publication number
JP2008251878A
JP2008251878A JP2007091974A JP2007091974A JP2008251878A JP 2008251878 A JP2008251878 A JP 2008251878A JP 2007091974 A JP2007091974 A JP 2007091974A JP 2007091974 A JP2007091974 A JP 2007091974A JP 2008251878 A JP2008251878 A JP 2008251878A
Authority
JP
Japan
Prior art keywords
film
sio
dielectric
thin film
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007091974A
Other languages
Japanese (ja)
Other versions
JP5192712B2 (en
Inventor
Tomoyuki Takahashi
智之 高橋
Yuichi Sasajima
裕一 笹島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2007091974A priority Critical patent/JP5192712B2/en
Publication of JP2008251878A publication Critical patent/JP2008251878A/en
Application granted granted Critical
Publication of JP5192712B2 publication Critical patent/JP5192712B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To simplify a manufacturing process without increasing element size, for shorter manufacturing period and improved yield. <P>SOLUTION: An SiO<SB>2</SB>film 12 of an Si substrate 10 is worked to form an island-like protruding part 14. Then, a lower electrode film 16, a dielectric film 18, and an upper electrode film 20 are sequentially film-formed by sputtering. An electrode film and a dielectric film on the SiO<SB>2</SB>film 12 are removed by CMP. After polishing, cleaning and annealing processes are applied. Since the height of the SiO<SB>2</SB>protruding part 14 agrees with the total thickness of the dielectric film 18 and the upper electrode film 20, the lower electrode film 16 is exposed from the SiO<SB>2</SB>protruding part 14 by a CMP process. Drawing for connection to the outside of the lower electrode film 16 is made from that portion. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、薄膜MIM(Metal-Insulator-Metal)キャパシタ及びその製造方法に関し、特にその製造工程の改良に関する。   The present invention relates to a thin film MIM (Metal-Insulator-Metal) capacitor and a method for manufacturing the same, and more particularly to an improvement in the manufacturing process.

薄膜MIMキャパシタは、半導体技術,真空技術を利用した成膜と加工を繰り返すことで形成する。図5には、その基本的な製造工程が示されており、同図(A)のSi基板100の主面上に、下部電極層102,誘電体層104,上部電極層106が順次積層形成される(図5(B)参照)。次に、上部電極106A(図5(C)参照),誘電体膜104A(図5(D)参照),下部電極102A(図5(E)参照)を順次形成する。   The thin film MIM capacitor is formed by repeating film formation and processing using semiconductor technology and vacuum technology. FIG. 5 shows the basic manufacturing process. A lower electrode layer 102, a dielectric layer 104, and an upper electrode layer 106 are sequentially stacked on the main surface of the Si substrate 100 in FIG. (See FIG. 5B). Next, an upper electrode 106A (see FIG. 5C), a dielectric film 104A (see FIG. 5D), and a lower electrode 102A (see FIG. 5E) are sequentially formed.

電極材料としては、PtやAuなどの金属材料,酸化Irや酸化Ruなどの酸化物材料などが挙げられる。誘電体材料としては、BST((Ba,Sr)TiO),BT(BaTiO)などが挙げられ、スパッタリング法やゾルゲル法などによって成膜される。また、図5(C)〜(E)の加工は、フォトリソグラフィ技術を利用してレジストマスクを形成し、ドライエッチングやウエットエッチングによって行われる。このように、成膜と加工を繰り返して薄膜MIMキャパシタが形成される。 Examples of the electrode material include metal materials such as Pt and Au, and oxide materials such as Ir oxide and Ru oxide. Examples of the dielectric material include BST ((Ba, Sr) TiO 3 ), BT (BaTiO 3 ), and the like, and are formed by a sputtering method, a sol-gel method, or the like. 5C is performed by dry etching or wet etching using a photolithography technique to form a resist mask. In this way, the thin film MIM capacitor is formed by repeating the film formation and processing.

これに対し、CMP(Chemical Mechanical Polishing:化学的機械的研磨)によりMIM積層膜を加工することでプロセスの簡略化を図るようにしたキャパシタの作製方法が提案されている(下記特許文献1参照)。図6には、その断面構造が示されており、工作物112の上に誘電体層114をパターニングしエッチングして、段差形状を形成する。そして複数の導電ライン用の第1パターン116およびMIMキャパシタ用の第2パターン118を画定するトレンチを形成する。そして、第2導電層134,第1誘電体層136,第3導電層138を順次積層形成する。その後、主面に対してCMPを実施し、過剰な材料の層を除去する。この平坦化プロセスにより、第3導電層138,第1誘電体層136,第2導電層134によるMIMキャパシタ142が形成される。
特表2006−500772公報
On the other hand, a capacitor manufacturing method has been proposed in which the MIM multilayer film is processed by CMP (Chemical Mechanical Polishing) to simplify the process (see Patent Document 1 below). . FIG. 6 shows the cross-sectional structure, in which the dielectric layer 114 is patterned and etched on the workpiece 112 to form a stepped shape. Then, trenches defining first patterns 116 for a plurality of conductive lines and second patterns 118 for MIM capacitors are formed. Then, the second conductive layer 134, the first dielectric layer 136, and the third conductive layer 138 are sequentially stacked. Thereafter, CMP is performed on the main surface to remove the excessive material layer. By this planarization process, the MIM capacitor 142 is formed by the third conductive layer 138, the first dielectric layer 136, and the second conductive layer 134.
Special table 2006-500772 gazette

しかしながら、上述した図5の背景技術では、成膜とフォトリソグラフィ技術を利用した加工を繰り返す必要があり、工程数が多く、素子形成プロセスに時間がかかるという課題がある。また、工程数が多いため、ハンドリング回数も増え、基板表面の傷・ゴミや素子パターンの欠けなどが増加し、歩留まりが低下するといった問題もある。更に、工程数が多くなると、必用とするマスク数も増加するため、コストがかかるようになる。   However, in the background art of FIG. 5 described above, it is necessary to repeat film formation and processing using a photolithography technique, and there is a problem that the number of steps is large and the element formation process takes time. In addition, since the number of processes is large, the number of times of handling is increased, and there are problems that the surface of the substrate is scratched / debris, chipped element patterns are increased, and the yield is lowered. Furthermore, as the number of steps increases, the number of necessary masks also increases, which increases costs.

これに対し、図6の背景技術のようにCMP技術を利用する手法では、工程数の削減などの効果が期待できる。しかし、基板上の絶縁膜に段差形状を形成してMIM薄膜キャパシタを形成する場合、素子サイズが大きくなってしまう(図6のΔA参照)。また、電気的接続の観点から、下部電極の厚さを従来必用とされる厚さより厚くする必要があり、下部電極の厚さを厚くすることで、プロセス時間およびコストの増加といった課題が生じる。   On the other hand, in the method using the CMP technique as in the background art of FIG. 6, effects such as a reduction in the number of processes can be expected. However, when the MIM thin film capacitor is formed by forming a step shape in the insulating film on the substrate, the element size becomes large (see ΔA in FIG. 6). Further, from the viewpoint of electrical connection, it is necessary to make the thickness of the lower electrode thicker than the conventionally required thickness, and increasing the thickness of the lower electrode causes problems such as an increase in process time and cost.

一方、電子機器においては、その小型化に伴う電子部品への小型・軽量化,高性能化の要望が高く、キャパシタ素子に対しては薄膜化と同時に高容量化が必要とされており、このような観点からの工夫も必要である。   On the other hand, in electronic devices, there is a strong demand for miniaturization, lightening, and high performance of electronic components due to the miniaturization, and capacitor devices are required to have high capacities as well as thin films. Ingenuity from such a viewpoint is also necessary.

本発明は、以上の点に着目したもので、その目的は、素子サイズの増大を招くことなく製造工程を簡略化することである。他の目的は、製造時間の短縮および歩留まりの向上を図ることである。   The present invention focuses on the above points, and its purpose is to simplify the manufacturing process without increasing the element size. Another object is to shorten the manufacturing time and improve the yield.

前記目的を達成するため、本発明は、薄膜の誘電体と電極を基板上に交互に積層してキャパシタを形成する薄膜MIMキャパシタの製造方法であって、前記基板上に、前記誘電体及び電極の積層膜厚を考慮した高さの少なくとも一つの凸部を形成する工程,この凸部が形成された基板上に、前記誘電体と電極の薄膜を交互に積層する工程,この工程後の基板主面にCMP加工を施すことによって、前記凸部上に電極を露出させる工程,を含むことを特徴とする。   In order to achieve the above object, the present invention provides a method of manufacturing a thin film MIM capacitor in which a thin film dielectric and electrodes are alternately stacked on a substrate to form a capacitor, wherein the dielectric and the electrode are formed on the substrate. A step of forming at least one convex portion having a height in consideration of the laminated film thickness, a step of alternately laminating the dielectric and electrode thin films on the substrate on which the convex portion is formed, a substrate after the step And a step of exposing the electrode on the convex portion by subjecting the main surface to a CMP process.

主要な形態の一つは、前記誘電体の薄膜が複数層形成されている場合に、前記凸部を異なる高さで複数形成するとともに、少なくとも表面以外の電極については、前記凸部のいずれかから露出させたことを特徴とする。他の形態の一つは、下部の電極を露出させる凸部と、該下部の電極と電流の方向が逆の上部の電極を引き出す接続部を、隣接して基板上に配置したことを特徴とする。   One of the main forms is that when the dielectric thin film is formed in a plurality of layers, a plurality of the convex portions are formed at different heights, and at least the electrodes other than the surface are any of the convex portions. It is exposed from the above. One of the other forms is characterized in that a convex portion exposing the lower electrode and a connecting portion for drawing out the upper electrode whose current direction is opposite to that of the lower electrode are arranged on the substrate adjacent to each other. To do.

本発明の薄膜MIMキャパシタは、前記いずれかの方法で製造したことを特徴とする。本発明の前記及び他の目的,特徴,利点は、以下の詳細な説明及び添付図面から明瞭になろう。   The thin film MIM capacitor of the present invention is manufactured by any one of the methods described above. The above and other objects, features and advantages of the present invention will become apparent from the following detailed description and the accompanying drawings.

本発明によれば、基板上に所定高さの凸部を形成してCMP加工を施すことで、簡易的に薄膜MIMキャパシタを製造することができ、加工プロセス数を削減し、プロセス時間の短縮および歩留まりの向上を図ることができる。また、前記凸部から電極を引き出すため、同一の容量であれば、素子サイズを制限することができる。また、異なる高さの前記凸部を複数設けることで、所望の電極を露出させることができ、電極と誘電体が交互に複数層積層された薄膜積層キャパシタにも適用可能である。更に、下部の電極を露出させる凸部と、該下部の電極と電流の方向が逆の上部の電極を引き出す接続部を隣接して配置することで、電極あるいは接続部周りに発生する磁界が相殺されるようになり、ESLの低減を図ることができる。   According to the present invention, a thin film MIM capacitor can be easily manufactured by forming a convex portion of a predetermined height on a substrate and performing CMP processing, thereby reducing the number of processing processes and reducing process time. In addition, the yield can be improved. Further, since the electrodes are drawn from the convex portions, the element size can be limited if the capacitance is the same. Further, by providing a plurality of convex portions having different heights, a desired electrode can be exposed, and the present invention can be applied to a thin film multilayer capacitor in which a plurality of layers of electrodes and dielectrics are alternately laminated. In addition, the magnetic field generated around the electrode or the connection part is offset by arranging the convex part that exposes the lower electrode and the connection part that draws out the upper electrode whose current direction is opposite to that of the lower electrode. Thus, ESL can be reduced.

以下、本発明を実施するための最良の形態を、実施例に基づいて詳細に説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail based on examples.

最初に、図1を参照しながら、本発明の実施例1について説明する。図1には、本実施例の積層MIMキャパシタの主要製造工程と断面構造が示されている。本実施例の製造方法は、基板加工プロセスと、成膜・CMP除去プロセスとに大別される。   First, Embodiment 1 of the present invention will be described with reference to FIG. FIG. 1 shows a main manufacturing process and a cross-sectional structure of the multilayer MIM capacitor of this example. The manufacturing method of the present embodiment is roughly divided into a substrate processing process and a film formation / CMP removal process.

(1)基板加工プロセス
熱酸化SiO膜12が形成されたSi基板10を準備する(図1(A)参照)。このSiO膜上に、レジストマスクをフォトリソグラフィによってパターニングし、RIE(Reactive Ion Etching)によりSiO膜12を加工し、その後レジストをOアッシング除去する。これにより、図1(B)に示すようなSiOからなる島状の凸部14を有する基板が作製される。ここで、SiO凸部14は、例えば400nmの高さに設定する。この値は、例えば、後述する上部電極+誘電体の厚さと一致させる。もちろん、400nm以上であれば差し支えない。別言すれば、図1(B)の断面で見た場合、SiO凸部14の高さは、SiO膜12の外周部12aよりも下部電極の厚さ分だけ低く設定される。
(1) Substrate processing process A Si substrate 10 on which a thermally oxidized SiO 2 film 12 is formed is prepared (see FIG. 1A). A resist mask is patterned on the SiO 2 film by photolithography, the SiO 2 film 12 is processed by RIE (Reactive Ion Etching), and then the resist is removed by O 2 ashing. As a result, a substrate having island-shaped convex portions 14 made of SiO 2 as shown in FIG. Here, the SiO 2 convex portion 14 is set to a height of, for example, 400 nm. This value is matched with, for example, the thickness of the upper electrode and dielectric described later. Of course, it may be 400 nm or more. In other words, when viewed in the cross section of FIG. 1B, the height of the SiO 2 convex portion 14 is set lower than the outer peripheral portion 12a of the SiO 2 film 12 by the thickness of the lower electrode.

(2)成膜・CMP除去プロセス
続いて、上述した加工基板上に、下部電極膜16,誘電体膜18,上部電極膜20を順にスパッタ成膜する(図1(C)参照)。電極材料としては例えばPt(厚さ:250nm)とし、誘電体材料としては例えばBST(厚さ:150nm)とする。次に、SiO0膜12上の電極膜及び誘電体膜をCMPによって除去する。CMPとしては、例えば「GRIND−XCMP装置」を使用し、アルミナスラリを90ml/minで滴下し、テーブル速度,ヘッド速度,加圧圧力をそれぞれ、80rpm,80rpm,0.02MPaとして研磨を行う。このとき、SiO膜12の凸部以外の膜を除去しないよう、凹部をレジストや絶縁膜で保護するようにしてもよい。研磨終了後、洗浄及びアニール処理を行う。アニール処理は、例えばO雰囲気で600℃,30分程度行う。これにより、図1(D)に示すような薄膜MIMキャパシタが得られる。
(2) Film Formation / CMP Removal Process Subsequently, the lower electrode film 16, the dielectric film 18, and the upper electrode film 20 are sequentially formed on the above-described processed substrate (see FIG. 1C). The electrode material is, for example, Pt (thickness: 250 nm), and the dielectric material is, for example, BST (thickness: 150 nm). Next, the electrode film and the dielectric film on the SiO 2 0 film 12 are removed by CMP. As the CMP, for example, a “GRIND-XCMP apparatus” is used, and an alumina slurry is dropped at 90 ml / min, and polishing is performed at a table speed, a head speed, and a pressing pressure of 80 rpm, 80 rpm, and 0.02 MPa, respectively. At this time, the recess may be protected with a resist or an insulating film so as not to remove the film other than the protrusion of the SiO 2 film 12. After polishing, cleaning and annealing are performed. The annealing process is performed in an O 2 atmosphere at 600 ° C. for about 30 minutes, for example. Thereby, a thin film MIM capacitor as shown in FIG. 1D is obtained.

上述したように、SiO凸部14の高さが、SiO膜12の外周部12aよりも下部電極膜16の厚さ分低く設定されている。このため、SiO膜12の外周部12aが露出するようにCMPプロセスによる加工を施すと、SiO凸部14上に下部電極膜16が露出するようになる。従って、この部分から下部電極膜16の外部接続用の引き出しを行うことができる。なお、SiO凸部14が形成されていない部分には、上部電極膜20が露出している。 As described above, the height of the SiO 2 convex portion 14 is set lower than the outer peripheral portion 12 a of the SiO 2 film 12 by the thickness of the lower electrode film 16. For this reason, when processing by the CMP process is performed so that the outer peripheral portion 12 a of the SiO 2 film 12 is exposed, the lower electrode film 16 is exposed on the SiO 2 convex portion 14. Therefore, the lower electrode film 16 can be pulled out from this portion for external connection. Note that the upper electrode film 20 is exposed at a portion where the SiO 2 convex portion 14 is not formed.

次に、以上のようにして得た本実施例の積層MIMキャパシタと、上述した図6の背景技術の積層MIMキャパシタの素子サイズを比較検討する。例えば、上部及び下部の電極の厚さ400nm,誘電体の厚さ200nm,素子サイズ100μm,単位面積当りの容量20nF/mmの積層MIMキャパシタを作製する場合を想定する。本プロセスを用いれば、図1(D)に示すように、キャパシタ素子の一辺の長さを10μm,一つのSiO凸部14の一辺の長さを0.1μmとした場合、容量面積は99.999μm,全容量約2pFのキャパシタを作製することが可能である。 Next, the element sizes of the multilayer MIM capacitor of this example obtained as described above and the multilayer MIM capacitor of the background art of FIG. 6 described above will be compared. For example, it is assumed that a multilayer MIM capacitor having an upper and lower electrode thickness of 400 nm, a dielectric thickness of 200 nm, an element size of 100 μm 2 , and a capacitance of 20 nF / mm 2 per unit area is manufactured. Using this process, as shown in FIG. 1D, when the length of one side of the capacitor element is 10 μm and the length of one side of one SiO 2 convex portion 14 is 0.1 μm, the capacitance area is 99. It is possible to manufacture a capacitor having a capacity of 999 μm 2 and a total capacity of about 2 pF.

これに対し、前記特許文献1の方法では、図6に示すように、素子サイズの一辺の長さを10μmとすると、ΔAで示す端部の距離が第1誘電体層136及び第2導電層134の厚さの和となるため、その分キャパシタとしての面積が低減する。このため、容量面積の一辺の長さは8.8μmとなり、容量面積は77.44μm,容量約1.5pFのキャパシタとなる。両者を比較すれば、素子サイズを同じにすれば、本実施例のほうが先行技術よりも容量の大きなキャパシタを得ることができ、逆に、同一の容量であれば、素子サイズを制限することができる。 On the other hand, in the method of Patent Document 1, as shown in FIG. 6, when the length of one side of the element size is 10 μm, the distance between the end portions indicated by ΔA is the first dielectric layer 136 and the second conductive layer. Since the thickness is the sum of 134, the area as a capacitor is reduced accordingly. Therefore, the length of one side of the capacitance area is 8.8 μm, the capacitance area is 77.44 μm 2 , and the capacitance is about 1.5 pF. Comparing the two, if the same element size is used, a capacitor having a larger capacity than that of the prior art can be obtained in this embodiment. Conversely, if the same capacity is used, the element size can be limited. it can.

次に、本実施例の電気特性について測定例を説明する。サンプルの素子サイズは0.16mmで、CV(容量電圧)特性はLCRメータを用いて測定し、IV(電流電圧)特性評価にはピコアンメータを用いた。その結果、容量及びtanδは、それぞれ22.3nF/mm2,0.0128となった。一方、図5に示した従来技術で作製した薄膜MIMキャパシタの場合、同一素子サイズで、容量及びtanδが、それぞれ21.6nF/mm2,0.0129であり、ほぼ同等である。一方、本実施例のサンプルのIV特性の測定結果は、図4に示すようになり、従来技術とほぼ同等の結果が得られている。これらの結果から、本実施例によれば、CMPによる薄膜MIMキャパシタの簡易作製が可能となるとともに、フォトリソグラフィ技術で作製した従来技術と同等の特性が得られることが確認された。 Next, measurement examples of the electrical characteristics of this example will be described. The element size of the sample was 0.16 mm 2 , CV (capacitance voltage) characteristics were measured using an LCR meter, and a picoammeter was used for IV (current voltage) characteristics evaluation. As a result, the capacitance and tan δ were 22.3 nF / mm 2 and 0.0128, respectively. On the other hand, in the case of the thin film MIM capacitor manufactured by the prior art shown in FIG. 5, the capacitance and tan δ are 21.6 nF / mm 2 and 0.0129, respectively, with the same element size, which are almost equal. On the other hand, the measurement result of the IV characteristic of the sample of the present example is as shown in FIG. 4, and a result almost equal to that of the prior art is obtained. From these results, it was confirmed that according to this example, the thin film MIM capacitor can be easily manufactured by CMP, and characteristics equivalent to those of the conventional technique manufactured by the photolithography technique can be obtained.

以上のように、本実施例によれば、次のような効果がある。
(1) Si基板の上層のSiO絶縁膜を加工し、次いで下部電極/誘電体/上部電極を成膜し、CMPを行って薄膜MIMキャパシタを作製することとしたので、従来技術と比較して製造工程が簡略化され、製造時間の短縮,歩留まりの向上,コスト削減が期待できる。
(2)Si基板の上層のSiO絶縁膜に島状の凸部を形成し、この凸部から下部電極を引き出す構造となっているので、容量面積を同じにすれば、前記従来技術と比較して素子サイズを低減することができる。
(3)下部電極を厚く形成する必要がなく、この点からも、製造時間の短縮,コスト削減を図ることができる。
As described above, according to this embodiment, there are the following effects.
(1) Since the SiO 2 insulating film on the upper layer of the Si substrate is processed, and then the lower electrode / dielectric / upper electrode is formed, and CMP is performed to produce a thin film MIM capacitor. As a result, the manufacturing process is simplified, and shortening of manufacturing time, improvement of yield, and cost reduction can be expected.
(2) Since an island-like convex part is formed on the SiO 2 insulating film on the upper layer of the Si substrate, and the lower electrode is drawn out from this convex part, if the capacitance area is the same, it is compared with the prior art. Thus, the element size can be reduced.
(3) It is not necessary to form the lower electrode thick, and from this point, manufacturing time and cost can be reduced.

次に、図2を参照しながら実施例2について説明する。なお、上述した実施例と同一ないし対応する構成要素には同一の符号を用いる。前記図1の実施例では、電極層が2層,誘電体層が1層であるが、本実施例は、更に複数層積層した例で、電極が3層,誘電体が2層からなる積層キャパシタ(基板/絶縁体/下部電極/下部誘電体/中間電極/上部誘電体/上部電極)の例である。この場合、下部電極及び中間電極を引き出すための高さの異なるSiO凸部を形成すればよい。 Next, Example 2 will be described with reference to FIG. In addition, the same code | symbol is used for the component which is the same as that of the Example mentioned above, or respond | corresponds. In the embodiment shown in FIG. 1, there are two electrode layers and one dielectric layer. However, this embodiment is an example in which a plurality of layers are further laminated, and is a laminate comprising three electrodes and two dielectric layers. It is an example of a capacitor (substrate / insulator / lower electrode / lower dielectric / intermediate electrode / upper dielectric / upper electrode). In this case, SiO 2 convex portions having different heights for extracting the lower electrode and the intermediate electrode may be formed.

電極の厚さを400nm,誘電体の厚さを200nmとする。図1(A)に示したようなSiO膜12が形成されたSi基板10を準備し、RIE加工により、少なくとも2つの高さの異なるSiO凸部50,52をそれぞれ形成する(図2(A)参照)。同図中、段差Haは、少なくとも電極と誘電体の総和である1600nm必要である。なお、段差Haを1600+αnmに設定してもよく、αはオーバCMPのマージンとなる。本例では、α=200nmとする。 The electrode thickness is 400 nm and the dielectric thickness is 200 nm. A Si substrate 10 on which the SiO 2 film 12 as shown in FIG. 1A is formed is prepared, and at least two SiO 2 convex portions 50 and 52 having different heights are formed by RIE processing (FIG. 2). (See (A)). In the figure, the step Ha needs to be at least 1600 nm which is the sum of the electrode and the dielectric. The level difference Ha may be set to 1600 + α nm, and α is a margin for over CMP. In this example, α = 200 nm.

SiO凸部50の直上表面には、後のCMP工程で下部電極が露出する。このため、SiO凸部50の高さHbは、1400nm(=上部電極厚+上部誘電体厚+中間電極厚+下部誘電体厚+α)に設定する。同様に、SiO凸部52の直上表面には、後のCMP工程で中間電極が露出する。このためSiO凸部52の高さHcは、800nm(=上部電極厚+上部誘電体厚+α)に設定する。 A lower electrode is exposed on the surface immediately above the SiO 2 convex portion 50 in a later CMP process. For this reason, the height Hb of the SiO 2 convex portion 50 is set to 1400 nm (= upper electrode thickness + upper dielectric thickness + intermediate electrode thickness + lower dielectric thickness + α). Similarly, the intermediate electrode is exposed on the surface immediately above the SiO 2 convex portion 52 in a later CMP process. For this reason, the height Hc of the SiO 2 convex portion 52 is set to 800 nm (= upper electrode thickness + upper dielectric thickness + α).

以上のようなSiO凸部50,52が形成されたSiO膜12上には、下部電極膜16,下部誘電体膜18L,中間電極膜20M,上部誘電体膜22,上部電極膜24が順に積層形成される(図2(B)参照)。その後、CMPにより余分な電極層や誘電体層を除去すると、図2(C)に示すように、SiO凸部50上に下部電極膜16が露出し、SiO凸部52上に中間電極膜20Mが露出するようになる(図2(C)参照)。 On the SiO 2 film 12 on which the SiO 2 convex portions 50 and 52 as described above are formed, a lower electrode film 16, a lower dielectric film 18L, an intermediate electrode film 20M, an upper dielectric film 22, and an upper electrode film 24 are formed. The layers are sequentially formed (see FIG. 2B). Then, when removing excess electrode layer and the dielectric layer by CMP, as shown in FIG. 2 (C), the lower electrode film 16 is exposed on the SiO 2 protrusions 50, the intermediate electrode on the SiO 2 peaks 52 The film 20M is exposed (see FIG. 2C).

以上のように、本実施例によれば、凸部の高さを制御することで、電極と誘電体が交互に複数積層された積層キャパシタであっても、下部電極や中間電極を良好に表面に露出させて引き出すことができる。   As described above, according to the present embodiment, by controlling the height of the convex portion, even in a multilayer capacitor in which a plurality of electrodes and dielectrics are alternately laminated, the lower electrode and the intermediate electrode are satisfactorily surfaced. Can be exposed and pulled out.

次に、図3(A)を参照しながら、実施例3について説明する。本実施例は、SiO凸部を複数設けるようにした例である。図3(A)には素子の平面図が示されており、SiO膜12の矩形の領域内に、高さが所定の値に設定された複数のSiO凸部50と、接続部54が、電極あるいは接続部周りに発生する磁界が相殺されるように隣接して配置されている。SiO凸部50では下部電極膜16が露出し、接続部54では上部電極膜20が露出している。例えば、下部電極膜16における電流の方向を「+」とすると、上部電極膜20における電流の方向は「−」となる。「+」と「−」の電流引き出しが逆となり、電流の流れる方向が逆となる。このため、電極あるいは接続部周りに発生する磁界が相殺されるようになり、インダクタンスが打ち消しあってESLが低減されるようになる。このように、本実施例によれば、低ESLを特徴とする多端子構造の薄膜キャパシタも作製することができる。 Next, Example 3 will be described with reference to FIG. In this example, a plurality of SiO 2 convex portions are provided. FIG. 3A shows a plan view of the element. In the rectangular region of the SiO 2 film 12, a plurality of SiO 2 convex portions 50 whose height is set to a predetermined value, and connection portions 54. However, they are arranged adjacent to each other so that the magnetic field generated around the electrode or the connection portion is canceled out. The lower electrode film 16 is exposed at the SiO 2 convex portion 50, and the upper electrode film 20 is exposed at the connection portion 54. For example, if the current direction in the lower electrode film 16 is “+”, the current direction in the upper electrode film 20 is “−”. The current extraction of “+” and “−” is reversed, and the direction of current flow is reversed. For this reason, the magnetic field generated around the electrode or the connection portion is canceled, and the inductance cancels out to reduce the ESL. Thus, according to this example, a thin film capacitor having a multi-terminal structure characterized by low ESL can also be manufactured.

なお、本発明は、上述した実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることができる。例えば、以下のものも含まれる。
(1)前記実施例に示した材料,形状,寸法は一例であり、同様の効果を奏するように適宜変更可能である。
(2)前記実施例では、基板上に形成した凸部上に、下部電極や中間電極が露出するようにしたが、全ての電極が凸部上に露出するようにしてもよい。また、凸部が外周部と連続するようにしてもよいし、高さの異なる凸部が連続するようにしてもよい。図3(B)にはその一例が示されている。凸部60は、外周部61と連続している。凸部62は、高さが異なる2つの露出面64,66を備えている。
(3)MIM構造が鋭角となって電界集中が起きないように、凸部の角などに丸みを形成するようにしてもよい。また、凸部にテーパを持たせた形状とすることで、凸部側壁における耐圧低下を防ぐようにしてもよい。
In addition, this invention is not limited to the Example mentioned above, A various change can be added in the range which does not deviate from the summary of this invention. For example, the following are also included.
(1) The materials, shapes, and dimensions shown in the above embodiments are merely examples, and can be appropriately changed so as to achieve the same effect.
(2) In the above embodiment, the lower electrode and the intermediate electrode are exposed on the convex portion formed on the substrate. However, all the electrodes may be exposed on the convex portion. Moreover, a convex part may be made to continue with an outer peripheral part, and a convex part from which height differs may be made to continue. An example is shown in FIG. The convex portion 60 is continuous with the outer peripheral portion 61. The convex portion 62 includes two exposed surfaces 64 and 66 having different heights.
(3) The corners of the convex portions may be rounded so that the MIM structure has an acute angle and electric field concentration does not occur. Moreover, you may make it prevent the pressure | voltage resistant fall in a convex part side wall by setting it as the shape which gave the convex part the taper.

本発明は、薄膜MIMキャパシタ,積層薄膜MIMキャパシタ,低ESL薄膜MIMキャパシタなどに好適である。   The present invention is suitable for thin film MIM capacitors, laminated thin film MIM capacitors, low ESL thin film MIM capacitors, and the like.

本発明の実施例1の主要工程と積層構造を示す図である。It is a figure which shows the main processes and laminated structure of Example 1 of this invention. 本発明の実施例2の主要工程と積層構造を示す図である。It is a figure which shows the main processes and laminated structure of Example 2 of this invention. (A)は本発明の実施例3の平面図,(B)は他の凸部の例を示す図である。(A) is a top view of Example 3 of this invention, (B) is a figure which shows the example of another convex part. 前記実施例1のサンプルのIV特性の測定例を示すグラフである。4 is a graph showing an example of measurement of IV characteristics of the sample of Example 1. 半導体技術及び真空技術を利用した薄膜MIMキャパシタの従来製造方法の主要工程図である。It is a main process figure of the conventional manufacturing method of the thin film MIM capacitor using semiconductor technology and vacuum technology. CMPを利用した従来製造方法によって作製した薄膜MIMキャパシタの積層構造を示す図である。It is a figure which shows the laminated structure of the thin film MIM capacitor produced by the conventional manufacturing method using CMP.

符号の説明Explanation of symbols

10:Si基板
12:SiO
12a:外周部
14:凸部
16:下部電極膜
18:誘電体膜
18L:下部誘電体膜
20:上部電極膜
20M:中間電極膜
22:上部誘電体膜
24:上部電極膜
50,52:凸部
54:接続部
60,62:凸部
61:外周部
64,66:露出面
100:Si基板
102:下部電極層
102A:下部電極
104:誘電体層
104A:誘電体膜
106:上部電極層
106A:上部電極
112:工作物
114:誘電体層
116:パターン
118:パターン
134:導電層
136:誘電体層
138:導電層
142:キャパシタ
10: Si substrate 12: SiO 2 film 12a: Peripheral part 14: Convex part 16: Lower electrode film 18: Dielectric film 18L: Lower dielectric film 20: Upper electrode film 20M: Intermediate electrode film 22: Upper dielectric film 24 : Upper electrode film 50, 52: convex part 54: connection part 60, 62: convex part 61: outer peripheral part 64, 66: exposed surface 100: Si substrate 102: lower electrode layer 102A: lower electrode 104: dielectric layer 104A: Dielectric film 106: Upper electrode layer 106A: Upper electrode 112: Work piece 114: Dielectric layer 116: Pattern 118: Pattern 134: Conductive layer 136: Dielectric layer 138: Conductive layer 142: Capacitor

Claims (4)

薄膜の誘電体と電極を基板上に交互に積層してキャパシタを形成する薄膜MIMキャパシタの製造方法であって、
前記基板上に、前記誘電体及び電極の積層膜厚を考慮した高さの少なくとも一つの凸部を形成する工程,
この凸部が形成された基板上に、前記誘電体と電極の薄膜を交互に積層する工程,
この工程後の基板主面にCMP加工を施すことによって、前記凸部上に電極を露出させる工程,
を含むことを特徴とする薄膜MIMキャパシタの製造方法。
A method of manufacturing a thin film MIM capacitor in which a thin film dielectric and electrodes are alternately stacked on a substrate to form a capacitor,
Forming at least one convex portion having a height in consideration of the thickness of the dielectric and the electrode on the substrate;
A step of alternately laminating the dielectric and electrode thin films on the substrate on which the convex portions are formed;
A step of exposing the electrode on the convex portion by subjecting the substrate main surface after this step to CMP processing;
A method of manufacturing a thin film MIM capacitor, comprising:
前記誘電体の薄膜が複数層形成されている場合に、前記凸部を異なる高さで複数形成するとともに、少なくとも表面以外の電極については、前記凸部のいずれかから露出させたことを特徴とする請求項1記載の薄膜MIMキャパシタの製造方法。   In the case where a plurality of dielectric thin films are formed, a plurality of the convex portions are formed at different heights, and at least the electrodes other than the surface are exposed from any of the convex portions. The method of manufacturing a thin film MIM capacitor according to claim 1. 下部の電極を露出させる凸部と、該下部の電極と電流の方向が逆の上部の電極を引き出す接続部を、隣接して基板上に配置したことを特徴とする請求項1又は2記載の薄膜MIMキャパシタの製造方法。   3. The convex portion for exposing the lower electrode and the connecting portion for drawing out the upper electrode having a current direction opposite to that of the lower electrode are arranged adjacent to each other on the substrate. Manufacturing method of thin film MIM capacitor. 請求項1〜3のいずれかの方法で製造したことを特徴とする薄膜MIMキャパシタ。   A thin film MIM capacitor manufactured by the method according to claim 1.
JP2007091974A 2007-03-30 2007-03-30 Thin film MIM capacitor and manufacturing method thereof Expired - Fee Related JP5192712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007091974A JP5192712B2 (en) 2007-03-30 2007-03-30 Thin film MIM capacitor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007091974A JP5192712B2 (en) 2007-03-30 2007-03-30 Thin film MIM capacitor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008251878A true JP2008251878A (en) 2008-10-16
JP5192712B2 JP5192712B2 (en) 2013-05-08

Family

ID=39976469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007091974A Expired - Fee Related JP5192712B2 (en) 2007-03-30 2007-03-30 Thin film MIM capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5192712B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014016147A3 (en) * 2012-07-25 2014-03-20 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for producing a capacitor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09181258A (en) * 1995-10-27 1997-07-11 Internatl Business Mach Corp <Ibm> Capacitor and its manufacture
JPH11261014A (en) * 1997-12-04 1999-09-24 Fujitsu Ltd Formation of automatic aligning pattern by chemical/ mechanical polishing appropriate to formation of substrate capacitor
JP2007189161A (en) * 2006-01-16 2007-07-26 Fujitsu Ltd Semiconductor device and method for manufacturing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09181258A (en) * 1995-10-27 1997-07-11 Internatl Business Mach Corp <Ibm> Capacitor and its manufacture
JPH11261014A (en) * 1997-12-04 1999-09-24 Fujitsu Ltd Formation of automatic aligning pattern by chemical/ mechanical polishing appropriate to formation of substrate capacitor
JP2007189161A (en) * 2006-01-16 2007-07-26 Fujitsu Ltd Semiconductor device and method for manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014016147A3 (en) * 2012-07-25 2014-03-20 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for producing a capacitor
US9728337B2 (en) 2012-07-25 2017-08-08 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for producing a capacitor

Also Published As

Publication number Publication date
JP5192712B2 (en) 2013-05-08

Similar Documents

Publication Publication Date Title
CN100524613C (en) Metal-insulator-metal (MIM) capacitor structure and methods of fabricating same
US8680649B2 (en) Multi-layer film capacitor with tapered film sidewalls
US7951668B2 (en) Process for fabricating crown capacitors of dram and capacitor structure
CN108962824B (en) Semiconductor element and preparation method thereof
JP2002064184A (en) Manufacturing method of semiconductor device comprising capacitor part
US9911732B2 (en) Vertical metal insulator metal capacitor having a high-k dielectric material
US20140017872A1 (en) Method for fabricating a metal-insulator-metal capacitor
JP5192712B2 (en) Thin film MIM capacitor and manufacturing method thereof
JP2008243931A (en) Manufacturing method for laminated type thin-film capacitor and laminated type thin-film capacitor
JP2008300489A (en) Semiconductor device and manufacturing method thereof
JP5558809B2 (en) Metal, insulator, metal capacitor and manufacturing method thereof
CN111863449A (en) Three-dimensional capacitor structure and manufacturing method thereof
KR100508861B1 (en) Thin film capacitor and fabrication method thereof
KR100613281B1 (en) Fabrication method of thin film capacitor
TWI602309B (en) Capacitor structure and manufacturing method thereof
JP7443734B2 (en) electronic components
CN100394545C (en) Method for manufacturing semiconductor device
KR100641546B1 (en) Method of fabricating a MIMMetal- Insulator-Metal capacitor
JP2010040775A (en) Semiconductor device and manufacturing method thereof
JP2007188935A (en) Mim capacity element and its manufacturing method
TWI462230B (en) Memory device fabricating method for reducing wordline shorting thereof
JP4263671B2 (en) Manufacturing method of semiconductor device
JP2006253268A (en) Semiconductor device and its manufacturing method
CN117954433A (en) Capacitor structure and forming method thereof
JP2024014743A (en) Laminated electronic component and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121229

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130201

R150 Certificate of patent or registration of utility model

Ref document number: 5192712

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160208

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees