JP2008251831A - Aqueous hybrid capacitor - Google Patents

Aqueous hybrid capacitor Download PDF

Info

Publication number
JP2008251831A
JP2008251831A JP2007091173A JP2007091173A JP2008251831A JP 2008251831 A JP2008251831 A JP 2008251831A JP 2007091173 A JP2007091173 A JP 2007091173A JP 2007091173 A JP2007091173 A JP 2007091173A JP 2008251831 A JP2008251831 A JP 2008251831A
Authority
JP
Japan
Prior art keywords
electrode
hybrid capacitor
mainly composed
activated carbon
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007091173A
Other languages
Japanese (ja)
Inventor
Tetsuya Yoshinari
哲也 吉成
Naoki Takahashi
直樹 高橋
Tomoki Shinoda
知希 信田
Toshihiko Nishiyama
利彦 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2007091173A priority Critical patent/JP2008251831A/en
Publication of JP2008251831A publication Critical patent/JP2008251831A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aqueous hybrid capacitor with which high output density can be obtained and whose assembly process is simple. <P>SOLUTION: In the aqueous hybrid capacitor, electrodes which are oppositely arranged through a separator 14 and electrolyte are stored in a basic cell. One electrode is the polarizing electrode 12 which is mainly composed of active carbon, and the other electrode is the electrode 15 which is mainly composed of a proton conductive compound. An electrolyte is an aqueous electrolyte. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電子機器、電気自動車などに用いられる水系ハイブリッドキャパシタに関し、特にエネルギー密度および出力密度の高い水系ハイブリッドキャパシタに関する。   The present invention relates to a water-based hybrid capacitor used for electronic devices, electric vehicles, and the like, and more particularly to a water-based hybrid capacitor having high energy density and output density.

近年、携帯電話に代表される電子機器あるいは、電気自動車の蓄電装置として、ニッケル水素、リチウムイオンに代表される、二次電池が用いられてきた。これらの二次電池はエネルギー密度も高く、多くの携帯機器やハイブリット自動車で実用化されている。   In recent years, secondary batteries typified by nickel metal hydride and lithium ion have been used as electronic devices typified by mobile phones or power storage devices of electric vehicles. These secondary batteries have high energy density and are put into practical use in many portable devices and hybrid cars.

しかし、携帯機器の発達に伴い、高性能CPU・無線LANなどの通信機器のコードレス化や、車載用の電気設備や機器の充実により、ますます負荷電流が大きくなっており、出力密度(W/kg)の点から新しい蓄電装置が求められるようになってきている。  However, with the development of mobile devices, the load current has been increasing due to the cordless communication devices such as high-performance CPUs and wireless LANs, and the enhancement of in-vehicle electrical equipment and devices. kg), a new power storage device has been demanded.

このような蓄電装置としては、電気二重層コンデンサが注目されている。電気二重層コンデンサは、使用電解液により、水系・非水系に大別される。コイン型水系電気二重層コンデンサは例えば図2の断面図に示されるとおり、基本セル22と呼ばれる蓄電作用を有する基本構造体を単独でもしくは直列に積層し、絶縁パッキング23を介してステンレス製缶のケース24とステンレス製キャップ21を機械かしめすることにより得られる。これらの蓄電装置は瞬時の充放電特性に優れ、放電終止電圧に依存することなく数万サイクル以上の充放電にも耐えるという高い出力特性とメンテナンスフリー性を備えており、過放電による寿命劣化もないことから、周辺回路を簡素化できるメリットがあるが、特に水系はエネルギー密度が小さい。   As such a power storage device, an electric double layer capacitor has attracted attention. Electric double layer capacitors are broadly classified into aqueous and non-aqueous depending on the electrolyte used. For example, as shown in the cross-sectional view of FIG. 2, the coin-type water-based electric double layer capacitor has a basic structure called a basic cell 22 that has a power storage function and is laminated alone or in series, and is formed of a stainless steel can through an insulating packing 23. It is obtained by mechanically caulking the case 24 and the stainless steel cap 21. These power storage devices are excellent in instantaneous charge / discharge characteristics, have high output characteristics that can withstand charge and discharge of over tens of thousands of cycles without depending on the end-of-discharge voltage, and maintenance-free characteristics. Since there is no advantage, there is an advantage that the peripheral circuit can be simplified, but the water system has a low energy density.

こうした高エネルギー、高出力特性を要する用途に対応する蓄電装置として、近年、プロトンポリマー電池やリチウムイオン二次電池の蓄電原理と電気二重層キャパシタの蓄電原理とを組み合わせた、ハイブリッドキャパシタとも呼ばれる蓄電装置が注目されている。プロトンポリマー電池とはプロトン伝導型化合物を電極活物質とした電気化学蓄電池である。プロトンポリマー電池は主にプロトンを有する水系電解液を用いる。この蓄電池は電気二重層コンデンサに比べ、エネルギー密度が高く、電気二重層コンデンサと同様、放電終止電圧に依存することなく数万サイクル以上の充放電が可能な電池である。   In recent years, as a power storage device for applications that require such high energy and high output characteristics, a power storage device called a hybrid capacitor that combines the power storage principle of a proton polymer battery or a lithium ion secondary battery and the power storage principle of an electric double layer capacitor. Is attracting attention. The proton polymer battery is an electrochemical storage battery using a proton conductive compound as an electrode active material. A proton polymer battery mainly uses an aqueous electrolyte containing protons. This storage battery has a higher energy density than an electric double layer capacitor, and, like an electric double layer capacitor, is a battery capable of charging and discharging over tens of thousands of cycles without depending on the final discharge voltage.

一方、ハイブリッドキャパシタは、通常、正極に分極性電極を使用し、負極に非分極性電極を使用するもので、例えば、リチウムイオンを吸蔵、脱離しうる負極をリチウム金属と接触させて、予め化学的方法または電気化学的方法でリチウムイオンを吸蔵、担持(以下、ドーピングともいう)させて負極電位を下げることにより、耐電圧を大きくしエネルギー密度を大きくすることを意図したキャパシタである(例えば、特許文献1)。   On the other hand, a hybrid capacitor usually uses a polarizable electrode for the positive electrode and a non-polarizable electrode for the negative electrode. For example, a negative electrode that can occlude and desorb lithium ions is brought into contact with lithium metal in advance. It is a capacitor intended to increase the withstand voltage and increase the energy density by occluding and carrying lithium ions (hereinafter also referred to as doping) by a conventional method or an electrochemical method to lower the negative electrode potential (for example, Patent Document 1).

しかし、この種のハイブリッドキャパシタは耐電圧の低い電気二重層コンデンサ、プロトンポリマー電池と比べると高エネルギー化が期待できるものの、非水系電解液および充放電過程でリチウムイオンのドーピングを利用しているため、電気二重層コンデンサ、プロトンポリマー電池に比べ出力特性が悪い。また、二次電池特有の過放電による寿命劣化もあるため過放電防止回路が必要となる。過放電による寿命劣化は負極活物質を最適化し、耐電圧を下げることにより緩和されるが非水系電解液を用いるため、やはり出力密度が低い(例えば、特許文献2)。   However, although this type of hybrid capacitor can be expected to have higher energy compared to electric double layer capacitors and proton polymer batteries with low withstand voltage, it uses lithium ion doping in the non-aqueous electrolyte and charge / discharge process. Output characteristics are poor compared to electric double layer capacitors and proton polymer batteries. In addition, an overdischarge prevention circuit is required because there is a life deterioration due to overdischarge peculiar to the secondary battery. The life deterioration due to overdischarge is mitigated by optimizing the negative electrode active material and lowering the withstand voltage, but the output density is still low because a non-aqueous electrolyte is used (for example, Patent Document 2).

特開平8−107048号公報Japanese Patent Laid-Open No. 8-1007048 特開2000−195555号公報JP 2000-195555 A

従来のハイブリッドキャパシタは電解液が非水系であることを前提としており、水系電解液に比べ、耐電圧を大きくできることからエネルギー密度的には有利であるが、電解液自身の導電性が低いことから出力密度的には不利である。また、リチウムイオン電池のように負極にドーピングすべきリチウムイオンが正極側に存在しないため、電池組立て前に負極にリチウムイオンを化学的、および電気化学的方法でドーピングする必要がある。そのため、工程が複雑になるという問題がある。   The conventional hybrid capacitor is based on the premise that the electrolyte is non-aqueous, and it is advantageous in terms of energy density because the withstand voltage can be increased compared to the aqueous electrolyte, but the conductivity of the electrolyte itself is low. It is disadvantageous in terms of power density. Further, since lithium ions to be doped into the negative electrode do not exist on the positive electrode side as in the lithium ion battery, it is necessary to dope lithium ions into the negative electrode by chemical and electrochemical methods before assembling the battery. Therefore, there is a problem that the process becomes complicated.

すなわち、本発明の課題は高出力密度が得られ電極ドーピング工程が簡略な水系ハイブリッドキャパシタを提供することにある。   That is, an object of the present invention is to provide a water-based hybrid capacitor having a high output density and a simple electrode doping process.

本発明は上記課題を解決すべくなされたものであり、本発明のハイブリッドキャパシタは、セパレータを介して対向配置した電極と電解液を耐酸性の高い基本セル中に収容したハイブリッドキャパシタであって、一方の電極が活性炭を主体とする分極性電極であり、他方がプロトン伝導型化合物を主体とする電極で、電解液が水系電解液であることを特徴とする。   The present invention has been made to solve the above problems, and the hybrid capacitor of the present invention is a hybrid capacitor in which an electrode and an electrolytic solution arranged opposite to each other via a separator are contained in a basic cell having high acid resistance, One electrode is a polarizable electrode mainly composed of activated carbon, the other is an electrode mainly composed of a proton conductive compound, and the electrolytic solution is an aqueous electrolytic solution.

プロトン伝導型化合物としてはドーピングを施すことによりレドックス対が形成され導電性が発現する高分子を用いることができ、例えばポリアニリン、ポリチオフェン、ポリピロール、ポリアセチレン、ポリ―p―フェニレン、ポリフェニレンビニレン、ポリペリナフタレン、ポリフラン、ポリフルラン、ポリチエニレン、ポリピリジンジイル、ポリイソチアナフテン、ポリキノキサリン、ポリピリジン、ポリピリミジン、ポリインドール、インドール三量体、ポリアミノアントラキノン、ポリイミダゾールおよびこれらの誘導体などのπ共役系高分子、ポリアントラキノン、ポリベンゾキノンなどのヒドロキシル基(キノン酸素が共役によりヒドロキシル基になったもの)含有高分子、2種以上のモノマーから共重合化されたプロトン伝導型高分子などが挙げられる。   As the proton-conducting compound, a polymer that exhibits conductivity by forming a redox pair by doping can be used. For example, polyaniline, polythiophene, polypyrrole, polyacetylene, poly-p-phenylene, polyphenylene vinylene, polyperiphthalene , Π-conjugated polymers such as polyfuran, polyflurane, polythienylene, polypyridinediyl, polyisothianaphthene, polyquinoxaline, polypyridine, polypyrimidine, polyindole, indole trimer, polyaminoanthraquinone, polyimidazole and their derivatives, poly Polymers containing hydroxyl groups such as anthraquinone and polybenzoquinone (quinone oxygen is converted into hydroxyl groups by conjugation), proton transfer copolymerized from two or more monomers Such as the type of polymer, and the like.

また、プロトン伝導型化合物としては窒素原子を有するπ共役系化合物またはπ共役系高分子、キノン系化合物またはキノン系高分子を好適なものとして用いることができる。これらの中でも特に特開2004−342595号公報に記載のインドール三量体化合物、キノキサリン系高分子化合物(ポリフェニルキノキサリン)が好ましい。   As the proton-conducting compound, a π-conjugated compound or π-conjugated polymer having a nitrogen atom, a quinone compound or a quinone polymer can be preferably used. Among these, indole trimer compounds and quinoxaline polymer compounds (polyphenylquinoxaline) described in JP-A No. 2004-342595 are particularly preferable.

例えば、インドール三量体化合物は40%硫酸中でAg/AgClを参照極、Ptを対極としたCV試験(サイクリックボルタモグラム試験)により200mV〜1200mV(対Ag/AgCl)まで良好なサイクル特性を有する。また、例えばキノキサリン骨格を持つポリフェニルキノキサリンは40%硫酸中でAg/AgClを参照極、Ptを対極としたCV試験により−150mV〜500mV(対Ag/AgCl)まで良好なサイクル特性を有する。またこれらは、第1サイクルから第10サイクルにかけて酸化・還元容量の差がほとんどないことから含浸のみで十分にドーピングされていることが示唆される。これは非水系電解液中のリチウムイオンのドーピングに比べ、水系電解液中のプロトンのドーピングの方が反応性が高いためと考えられる。   For example, indole trimer compounds have good cycle characteristics from 200 mV to 1200 mV (vs. Ag / AgCl) by CV test (cyclic voltammogram test) using Ag / AgCl as reference electrode and Pt as counter electrode in 40% sulfuric acid. . For example, polyphenylquinoxaline having a quinoxaline skeleton has good cycle characteristics from −150 mV to 500 mV (vs. Ag / AgCl) in a 40% sulfuric acid by a CV test using Ag / AgCl as a reference electrode and Pt as a counter electrode. Moreover, since there is almost no difference in oxidation / reduction capacity from the first cycle to the tenth cycle, it is suggested that these are sufficiently doped only by impregnation. This is probably because the proton doping in the aqueous electrolyte is more reactive than the lithium ion doping in the non-aqueous electrolyte.

水系電解液としては無機または、有機酸であり、例えば、硫酸、硝酸、塩酸、リン酸、テトラフルオロホウ酸、六フッ化リン酸、六フッ化ケイ酸などの無機酸、飽和化のカルボン酸、脂肪族カルボン酸、オキシカルボン酸、p−トルエンスルホン酸、ラウリン酸などの有機酸が挙げられる。なかでも硫酸水溶液が特に好ましい。   The aqueous electrolyte is an inorganic or organic acid, for example, sulfuric acid, nitric acid, hydrochloric acid, phosphoric acid, tetrafluoroboric acid, hexafluorophosphoric acid, hexafluorosilicic acid or other inorganic acid, saturated carboxylic acid And organic acids such as aliphatic carboxylic acid, oxycarboxylic acid, p-toluenesulfonic acid and lauric acid. Of these, a sulfuric acid aqueous solution is particularly preferable.

本発明は一方の電極を分極性電極、他方の電極をプロトン伝導型化合物を主体とする電極とし、電解液に水系電解液を用い、耐酸性の高い基本セル容器中に収容することで、化学的または電気化学的なドーピング処理が不要であり過放電特性および出力特性に優れた水系ハイブリッドキャパシタを提供できる。   In the present invention, one electrode is a polarizable electrode and the other electrode is an electrode mainly composed of a proton-conducting compound, an aqueous electrolyte is used as an electrolyte, and the chemical is contained in a basic cell container having high acid resistance. It is possible to provide a water-based hybrid capacitor that does not require a chemical or electrochemical doping treatment and has excellent overdischarge characteristics and output characteristics.

始めに、本発明に係る基本セルの製造方法について図面を参照して説明する。図1は本発明の実施の形態での水系ハイブリッドキャパシタに用いる基本セルの断面図である。また、本実施の形態の水系ハイブリッドキャパシタは、基本セルの構造を除き、既に説明した図2のコイン型水系電気二重層コンデンサと同様である。   First, a basic cell manufacturing method according to the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of a basic cell used in an aqueous hybrid capacitor according to an embodiment of the present invention. The aqueous hybrid capacitor of the present embodiment is the same as the coin-type aqueous electric double layer capacitor of FIG. 2 described above except for the basic cell structure.

本実施の形態の基本セルは、図1のように、耐酸性を有する各電極(分極性電極12、プロトン伝導型化合物を主体とする電極15)、集電体11、セパレータ14さらにガスケット13で構成される。集電体11としてはカーボンを添加して導電性を付与したブチルゴムやエラストマーが使用される。一方、ガスケット13はセパレータ14ならびに電極を介して対向する集電体11間の短絡防止と水系電解液封止のためのものでブチルゴムや熱可塑性エラストマーなどの軟質プラスチックが使用される。封止接着は加硫接着または熱融着で行われる。   As shown in FIG. 1, the basic cell according to the present embodiment includes each electrode having acid resistance (polarizable electrode 12, electrode 15 mainly composed of proton conductive compound), current collector 11, separator 14 and gasket 13. Composed. As the current collector 11, butyl rubber or elastomer to which carbon is added to impart conductivity is used. On the other hand, the gasket 13 is used to prevent a short circuit between the current collectors 11 facing each other through the separator 14 and electrodes and to seal the aqueous electrolyte solution, and soft plastic such as butyl rubber or thermoplastic elastomer is used. Sealing adhesion is performed by vulcanization adhesion or heat fusion.

また、セパレータ14は対向する電極間の短絡防止、また、電解質イオンを通すためのもので、材質はポリプロピレンやポリテトラフルオロエチレン、ポリエチレンなどである。   The separator 14 is used for preventing a short circuit between opposing electrodes and for passing electrolyte ions, and is made of polypropylene, polytetrafluoroethylene, polyethylene, or the like.

分極性電極12に使用できる活性炭には、やしがら系、フェノール樹脂系活性炭があり、大容量の電気二重層を得るにはフェノール樹脂系活性炭を用いるのが好ましい。活性炭としては平均粒径が15μm以下、比表面積が1000〜3000m/gのものを使用するのが好ましく、このような活性炭の使用によって容量を大きく、内部抵抗を小さくすることができる。また、導電補助材を添加することで、さらに内部抵抗を下げることが可能だが、導電補助材の添加量は多すぎると容量が小さくなるので活性炭と導電補助材の総重量に対して0〜15重量%(0重量%を含まず)とするのが好ましい。導電補助材としてはケッチェンブラック、アセチレンブラック、VGCF(気相法炭素繊維;vapor grown carbon fiber)、天然黒鉛、人造黒鉛などが挙げられる。活性炭(または活性炭に導電補助材を添加した混合粉末)に対して水系電解液を加え、スラリ化し、ガスケット内に刷り込み分極性電極12とする。水系電解液の量は多すぎると活性炭粉末の充填量が少なくなり、容量が小さくなるので活性炭粉末(または活性炭に導電補助材を添加した混合粉末)に対して250重量%以下が好ましい。 Activated carbons that can be used for the polarizable electrode 12 include coconut palm-based and phenol resin-based activated carbons, and it is preferable to use phenol resin-based activated carbon to obtain a large-capacity electric double layer. As the activated carbon, one having an average particle size of 15 μm or less and a specific surface area of 1000 to 3000 m 2 / g is preferably used. By using such activated carbon, the capacity can be increased and the internal resistance can be decreased. In addition, it is possible to further reduce the internal resistance by adding a conductive auxiliary material, but if the added amount of the conductive auxiliary material is too large, the capacity decreases, so 0 to 15 with respect to the total weight of the activated carbon and the conductive auxiliary material. It is preferable to set it as weight% (excluding 0 weight%). Examples of the conductive auxiliary material include ketjen black, acetylene black, VGCF (vapor grown carbon fiber), natural graphite, and artificial graphite. An aqueous electrolyte is added to activated carbon (or mixed powder obtained by adding a conductive auxiliary material to activated carbon) to make a slurry, which is imprinted in a gasket to form a polarizable electrode 12. If the amount of the aqueous electrolyte is too large, the amount of the activated carbon powder is reduced and the capacity is reduced. Therefore, the amount is preferably 250% by weight or less based on the activated carbon powder (or the mixed powder obtained by adding a conductive auxiliary material to the activated carbon).

水系電解液を用いた場合、プロトン濃度(以下、pH)により、水素発生電位、および酸素発生電位が変化する。例えばpH=1.0の場合、水素発生電位は約−260mV(対Ag/AgCl)、酸素発生電位は約1000mV(対Ag/AgCl)になる。したがって、プロトン伝導型化合物電極の材料は、例えば、インドール三量体化合物のようにプロトンのドーピングに対して比較的高い電位(1000mV(対Ag/AgCl))で酸化還元反応する材料を用いる場合(370mV(対Ag/AgCl)以上)は正極として用い、例えば、ポリフェニルキノキサリンのようにプロトンのドーピングに対して比較的低い電位(式量酸化・還元電位50mV(対Ag/AgCl))で酸化還元反応する材料を用いる場合(370mV(対Ag/AgCl)未満)は負極として用いる方が耐電圧を大きくでき、より好ましい。   When an aqueous electrolyte is used, the hydrogen generation potential and the oxygen generation potential vary depending on the proton concentration (hereinafter referred to as pH). For example, when pH = 1.0, the hydrogen generation potential is about −260 mV (vs. Ag / AgCl) and the oxygen generation potential is about 1000 mV (vs. Ag / AgCl). Therefore, as a material for the proton conductive compound electrode, for example, a material that undergoes a redox reaction at a relatively high potential (1000 mV (vs. Ag / AgCl)) with respect to proton doping, such as an indole trimer compound ( 370 mV (vs. Ag / AgCl) or more) is used as a positive electrode, for example, redox at a relatively low potential (formula oxidation / reduction potential 50 mV (vs. Ag / AgCl)) with respect to proton doping, such as polyphenylquinoxaline. When using the material which reacts (less than 370 mV (vs. Ag / AgCl)), it is more preferable to use as a negative electrode because the withstand voltage can be increased.

以上により得られた基本セル22を単独または直列に複数個積層し、絶縁パッキング23を介して例えばステンレスからなるケース24とキャップ21に収納する。この際、基本セル22の集電体11とケース24およびキャップ21に接触する部分に予め、導電性ペーストを付けても良い。導電性ペーストはフィラーにより銀ペースト、ニッケルペースト、金ペースト、バナジウムペースト、カーボンペースト、黒鉛ペースト等が挙げられるが、接触抵抗の小さい銀ペーストが好ましい。   A plurality of basic cells 22 obtained as described above are singly or stacked in series, and are stored in a case 24 and a cap 21 made of, for example, stainless steel via an insulating packing 23. At this time, a conductive paste may be applied in advance to the portion of the basic cell 22 that contacts the current collector 11, the case 24, and the cap 21. Examples of the conductive paste include a silver paste, a nickel paste, a gold paste, a vanadium paste, a carbon paste, and a graphite paste depending on the filler, but a silver paste having a low contact resistance is preferable.

以下、本発明を具体的な実施例について説明する。   Hereinafter, specific examples of the present invention will be described.

(実施例1)
ブチルゴムにカーボンを分散させて導電性を付与した導電性ブチルゴムシートからなる集電体11上(直径9.0mm、厚さ0.1mm)に非電子伝導性のブチルゴムシートからなるガスケット13(内径(直径)4.5mm、外径(直径)9.0mm、厚さ0.25mm)を同心円状に配置し、ゴムの粘着性を利用し、圧着し、集電体/ガスケットを有するシートを得た(以下、電極シート)。
Example 1
Gasket 13 (inner diameter (non-electron conductive butyl rubber sheet) formed on a current collector 11 (diameter: 9.0 mm, thickness: 0.1 mm) made of a conductive butyl rubber sheet in which carbon is dispersed in butyl rubber to provide conductivity. (Diameter) 4.5 mm, outer diameter (diameter) 9.0 mm, thickness 0.25 mm) are arranged concentrically, and are pressure-bonded using the adhesiveness of rubber to obtain a sheet having a current collector / gasket. (Hereinafter, electrode sheet).

次にポリフェニルキノキサリンを用いた負極作製方法について説明する。プロトン伝導型化合物であるポリフェニルキノキサリンに導電補助材としてケッチェンブラック(商品名:ケッチェンブラックEC600JD)を25重量%(ポリフェニルキノキサリンとケッチェンブラックの総重量を100重量%として)加え、0.24mmの負極シートを得た。得られたシート状負極を打ち抜き刃で、直径4.3mm、厚み0.24mmに打ち抜き、薄円板状の負極(プロトン伝導型化合物を主体とする電極15)を得た。   Next, a method for producing a negative electrode using polyphenylquinoxaline will be described. 25% by weight of Ketjen Black (trade name: Ketjen Black EC600JD) as a conductive auxiliary material is added to polyphenylquinoxaline, a proton-conducting compound, as a total weight of 100% by weight of polyphenylquinoxaline and ketjen black. A negative electrode sheet of 24 mm was obtained. The obtained sheet-like negative electrode was punched with a punching blade into a diameter of 4.3 mm and a thickness of 0.24 mm to obtain a thin disc-like negative electrode (electrode 15 mainly composed of a proton-conducting compound).

電極シートに負極を挿入し、予め直径5.5mmで打ち抜いた厚み0.055mmのセパレータを同心円状に配置しゴムの粘着性を利用して圧着し電解液を注液した。電解液は40%硫酸を用いた。また、セパレータはポリテトラフルオロエチレンからなる多孔性シート(厚み0.05mm)を用いた。   A negative electrode was inserted into the electrode sheet, and a separator having a thickness of 0.055 mm punched out in advance with a diameter of 5.5 mm was concentrically arranged, pressure-bonded using the adhesiveness of rubber, and an electrolyte solution was injected. The electrolyte used 40% sulfuric acid. Moreover, the porous sheet (thickness 0.05mm) which consists of polytetrafluoroethylene was used for the separator.

次に正極(分極性電極12)作製方法について説明する。フェノール系活性炭(比表面積1600m/g、平均粒径5μm)に40%硫酸を140重量%加えて、混練し、活性炭電極スラリを得た。電極シートのガスケット上にPET(ポリエチレンテレフタレート)を内径(直径)4.5mm、外径(直径)10.0mm、厚さ0.1mmで同心円状に配置したPET付電極シート状に活性炭スラリを塗り込んだ後、PETを剥離し、活性炭付電極シートを得た。 Next, a method for producing the positive electrode (polarizable electrode 12) will be described. 140% by weight of 40% sulfuric acid was added to phenol-based activated carbon (specific surface area 1600 m 2 / g, average particle size 5 μm) and kneaded to obtain an activated carbon electrode slurry. An activated carbon slurry is applied to the electrode sheet with PET in which PET (polyethylene terephthalate) is arranged concentrically with an inner diameter (diameter) of 4.5 mm, an outer diameter (diameter) of 10.0 mm, and a thickness of 0.1 mm on the electrode sheet gasket. Then, PET was peeled off to obtain an electrode sheet with activated carbon.

上記、負極付電極シートと活性炭付電極シートを真空中で貼り合わせ、10kgf/cmで加圧し、120℃で2時間加硫接着を行い基本セル22を得た。 The above-mentioned electrode sheet with negative electrode and electrode sheet with activated carbon were bonded together in a vacuum, pressurized at 10 kgf / cm 2 , and vulcanized and bonded at 120 ° C. for 2 hours to obtain a basic cell 22.

この基本セル22をステンレス鋼製キャップ21とステンレス鋼製ケース24からなる外装容器中にポリプロピレン製絶縁パッキング23を介して一体化し、その後、かしめ封止することによりコイン型水系ハイブリッドキャパシタを得た。   The basic cell 22 was integrated into an exterior container composed of a stainless steel cap 21 and a stainless steel case 24 via a polypropylene insulating packing 23, and then caulked and sealed to obtain a coin-type aqueous hybrid capacitor.

(実施例2)
負極シートを25℃の環境下で40%硫酸中に含浸し、予めドーピングを施し、乾燥後打ち抜き電極とした以外は実施例1と同様にコイン型水系ハイブリッドキャパシタを得た。
(Example 2)
A coin-type aqueous hybrid capacitor was obtained in the same manner as in Example 1 except that the negative electrode sheet was impregnated in 40% sulfuric acid in an environment of 25 ° C., doped in advance, and used as a punched electrode after drying.

(実施例3)
ポリフェニルキノキサリンにケッチェンブラックを25重量%(ポリフェニルキノキサリンとケッチェンブラックの総重量を100重量%として)加えた混合粉末に水系電解液を240重量%加えて負極電極スラリとした以外は実施例1と同様にコイン型水系ハイブリッドキャパシタを得た。
(Example 3)
Except for adding 240% by weight of aqueous electrolyte to mixed powder of 25% by weight of ketjen black (total weight of polyphenyl quinoxaline and ketjen black being 100% by weight) to polyphenylquinoxaline. A coin-type aqueous hybrid capacitor was obtained in the same manner as in Example 1.

(実施例4)
プロトン伝導型化合物であるインドール三量体を正極に活性炭分極性電極を負極とした以外は実施例1と同様にコイン型水系ハイブリッドキャパシタを得た。
Example 4
A coin-type aqueous hybrid capacitor was obtained in the same manner as in Example 1 except that indole trimer, which is a proton conductive compound, was used as the positive electrode and the activated carbon polarizable electrode was used as the negative electrode.

インドール三量体を用いた正極作製方法について説明する。インドール三量体に導電補助材として気相成長カーボン20重量%を粉末ブレンダーで混合し、混合物にPTFEポリテトラフルオロエチレン粒子が10重量%となるように60%PTFEディスパージョンを添加し、攪拌脱法機で混合した後、乾燥した。得られた混合物に100重量%加え、乳鉢で混練した。その後、混練物をロール成型機により圧延し、正極シートを得た。得られた正極シートを打ち抜き正極(直径4.3mm、厚み0.24mm)とした。   A method for producing a positive electrode using an indole trimer will be described. The indole trimer is mixed with 20% by weight of vapor-grown carbon as a conductive auxiliary material in a powder blender, and 60% PTFE dispersion is added to the mixture so that the PTFE polytetrafluoroethylene particles become 10% by weight. After mixing in the machine, it was dried. 100% by weight was added to the obtained mixture and kneaded in a mortar. Thereafter, the kneaded product was rolled with a roll molding machine to obtain a positive electrode sheet. The obtained positive electrode sheet was punched into a positive electrode (diameter 4.3 mm, thickness 0.24 mm).

(実施例5)
正極シートを25℃の環境下で40%硫酸中に含浸し、予めドーピングを施し、乾燥後打ち抜き電極とした以外は実施例4と同様にコイン型水系ハイブリッドキャパシタを得た。
(Example 5)
A coin-type aqueous hybrid capacitor was obtained in the same manner as in Example 4 except that the positive electrode sheet was impregnated in 40% sulfuric acid in an environment of 25 ° C., doped in advance, and used as a punched electrode after drying.

(実施例6)
インドール三量体に気相成長カーボンを20重量%(インドール三量体と気相成長カーボンの総重量を100重量%として)加えた混合粉末に水系電解液を160重量%加えて正極電極スラリとした以外は実施例1と同様にコイン型水系ハイブリッドキャパシタを得た。
(Example 6)
A positive electrode slurry was prepared by adding 160% by weight of an aqueous electrolyte to a mixed powder obtained by adding 20% by weight of vapor-grown carbon to indole trimer (with the total weight of indole trimer and vapor-grown carbon being 100% by weight). A coin-type aqueous hybrid capacitor was obtained in the same manner as in Example 1 except that.

(実施例7)
基本セルを外装容器中と一体化する前に予め、ケースおよびキャップに導電性ペーストを塗布した以外は実施例1と同様にコイン型水系ハイブリッドキャパシタを得た。
(Example 7)
A coin-type aqueous hybrid capacitor was obtained in the same manner as in Example 1 except that the conductive paste was applied to the case and the cap in advance before integrating the basic cell with the exterior container.

(実施例8)
活性炭粉末に対してVGCF15重量%(活性炭とVGCFの総重量を100重量%として)加え、得られた混合粉末に水系電解液を200重量%加えて活性炭電極スラリとした以外は実施例1と同様にコイン型水系ハイブリッドキャパシタを得た。
(Example 8)
Same as Example 1, except that 15% by weight of VGCF was added to the activated carbon powder (the total weight of the activated carbon and VGCF was 100% by weight), and 200% by weight of the aqueous electrolyte was added to the resulting mixed powder to obtain an activated carbon electrode slurry. A coin-type water-based hybrid capacitor was obtained.

(比較例1)
活性炭電極スラリを正極側、負極側に塗布した以外は実施例1と同様にコイン型水系電気二重層コンデンサを得た。
(Comparative Example 1)
A coin-type aqueous electric double layer capacitor was obtained in the same manner as in Example 1 except that the activated carbon electrode slurry was applied to the positive electrode side and the negative electrode side.

(比較例2)
フェノール系活性炭(比表面積1600m/g、平均粒径5μm)80重量%、ケッチェンブラック10重量%、ポリテトラフルオロエチレン10重量%からなる混合物にエタノールを加えて混練し、ロール圧延した後、150℃で3時間乾燥し活性炭シート(幅5cm、長さ5cm、厚み0.24mm)を得た。得られた活性炭シートを直径4.3mmの円形に打ち抜き、ステンレス製ケースとキャップにカーボンペーストを用いて接着した。これらを200℃の減圧下で5時間乾燥した後、アルゴン雰囲気のグローブボックス中に移し、有機系電解液を注液含浸した後、セパレータを介して対向配置させポリプロピレン製絶縁パッキングを用いてかしめ封止し、コイン型有機系電気二重層コンデンサを得た。有機系電解液は0.8モル/リットルの濃度のテトラエチルアンモニウムテトラフルオロボレートを含有するプロピレンカーボネート溶液とした。
(Comparative Example 2)
Phenol-based activated carbon (specific surface area 1600 m 2 / g, average particle size 5 μm) 80% by weight, ketjen black 10% by weight, polytetrafluoroethylene 10% by weight, kneaded and roll-rolled, It dried at 150 degreeC for 3 hours, and obtained the activated carbon sheet | seat (width 5cm, length 5cm, thickness 0.24mm). The obtained activated carbon sheet was punched out into a circle having a diameter of 4.3 mm, and adhered to a stainless steel case and a cap using a carbon paste. These were dried at 200 ° C. under reduced pressure for 5 hours, then transferred to a glove box in an argon atmosphere, impregnated with an organic electrolyte solution, placed facing each other through a separator, and caulked with polypropylene insulating packing. Then, a coin-type organic electric double layer capacitor was obtained. The organic electrolyte was a propylene carbonate solution containing tetraethylammonium tetrafluoroborate having a concentration of 0.8 mol / liter.

得られたコイン型水系ハイブリッドキャパシタ、およびコイン型電気二重層コンデンサの内部抵抗、耐電圧、および静電容量を測定した結果を表1に示す。内部抵抗は素子に実効電圧10mV、周波数1kHzの交流を印加した際のインピーダンスとした。   Table 1 shows the results of measuring the internal resistance, withstand voltage, and capacitance of the obtained coin-type aqueous hybrid capacitor and coin-type electric double layer capacitor. The internal resistance was an impedance when an alternating current having an effective voltage of 10 mV and a frequency of 1 kHz was applied to the element.

(比較例3)
フェノール系活性炭(比表面積1600m/g、平均粒径5μm)80重量%、ケッチェンブラック10重量%、ポリテトラフルオロエチレン10重量%からなる混合物にエタノールを加えて混練し、ロール圧延した後、150℃で3時間乾燥し活性炭シート(幅5cm、長さ5cm、厚み0.24mm)を得た。得られた活性炭シートを直径4.3mmの円形に打ち抜き正極(分極性電極)とし、ステンレス製キャップにカーボンペーストを用いて接着した。次に、天然黒鉛粉末90重量%とポリビニリデンフルオリド10重量%の混合物に対し、N−メチルピロリドンを3倍加えスラリとし、スレンレス製ケースに塗布し、負極とした。これらを200℃の減圧下で5時間乾燥した後、アルゴン雰囲気のグローブボックス中に移し、負極上に直径4.3mm、厚さ0.01mmのリチウム金属箔を圧着し、1.0モル/リットルのLiBFを含むエチレンカーボネート、エチルメチルカーボネート(容積比1:1)の溶液を両極に含浸した。その後、セパレータを介して対向配置させポリプロピレン製絶縁パッキングを用いてかしめ封止し、その後65℃の恒温槽中に20時間放置し、コイン型有機系ハイブリッドキャパシタを得た。その特性測定結果を表1に示す。
(Comparative Example 3)
Phenol-based activated carbon (specific surface area 1600 m 2 / g, average particle diameter 5 μm) 80% by weight, ketjen black 10% by weight, polytetrafluoroethylene 10% by weight, kneaded and roll-rolled, Drying was performed at 150 ° C. for 3 hours to obtain an activated carbon sheet (width 5 cm, length 5 cm, thickness 0.24 mm). The obtained activated carbon sheet was punched into a circle having a diameter of 4.3 mm to be a positive electrode (polarizable electrode), and was bonded to a stainless steel cap using a carbon paste. Next, N-methylpyrrolidone was added three times to a mixture of 90% by weight of natural graphite powder and 10% by weight of polyvinylidene fluoride to form a slurry, which was applied to a slenless case to obtain a negative electrode. These were dried under reduced pressure at 200 ° C. for 5 hours, then transferred into a glove box in an argon atmosphere, and a lithium metal foil having a diameter of 4.3 mm and a thickness of 0.01 mm was pressure-bonded onto the negative electrode, and 1.0 mol / liter A solution of ethylene carbonate and ethyl methyl carbonate (volume ratio 1: 1) containing LiBF 4 was impregnated on both electrodes. Thereafter, they were placed opposite to each other with a separator interposed therebetween and caulked with a polypropylene insulating packing, and then left standing in a constant temperature bath at 65 ° C. for 20 hours to obtain a coin-type organic hybrid capacitor. The characteristic measurement results are shown in Table 1.

Figure 2008251831
Figure 2008251831

表1より分かるように本発明で作製した実施例1から8の水系ハイブリッドキャパシタは比較例1の水系電気二重層コンデンサに比べて耐電圧が高く、静電容量も高いことからエネルギー密度が大きいことが分かる。また、比較例2の有機系電気二重層コンデンサおよび比較例3の有機ハイブリッドキャパシタに比べて内部抵抗が著しく低減していることから出力密度が高いことが分かる。また、実施例1、2および4、5の結果から、電極のドーピングには化学的または電気化学的な処理工程によらず、室温中で電極を電解液に含浸する工程だけで、十分な静電容量と内部抵抗が得られることが分かる。   As can be seen from Table 1, the water-based hybrid capacitors of Examples 1 to 8 produced according to the present invention have a higher withstand voltage and higher capacitance than the water-based electric double layer capacitor of Comparative Example 1, and thus have a high energy density. I understand. Moreover, since the internal resistance is remarkably reduced as compared with the organic electric double layer capacitor of Comparative Example 2 and the organic hybrid capacitor of Comparative Example 3, it can be seen that the output density is high. Further, from the results of Examples 1, 2, 4 and 5, the electrode doping is not performed by a chemical or electrochemical treatment process, but only by the process of impregnating the electrode with an electrolyte at room temperature. It can be seen that capacitance and internal resistance can be obtained.

本発明の水系ハイブリッドキャパシタに用いる基本セルの断面図。Sectional drawing of the basic cell used for the water-system hybrid capacitor of this invention. コイン型水系電気二重層コンデンサの断面図。Sectional drawing of a coin type water-system electric double layer capacitor.

符号の説明Explanation of symbols

11 集電体
12 分極性電極
13 ガスケット
14 セパレータ
15 プロトン伝導型化合物を主体とする電極
21 キャップ
22 基本セル
23 絶縁パッキング
24 ケース
11 Current collector 12 Polarized electrode 13 Gasket 14 Separator 15 Electrode 21 mainly composed of proton-conducting compound Cap 22 Basic cell 23 Insulating packing 24 Case

Claims (5)

セパレータを介して対向する電極と電解液を耐酸性材料の容器に収容し、一方の電極が活性炭を主体とする分極性電極であり、他方がプロトン伝導型化合物を主体とする電極であり、電解液が水系電解液であることを特徴とする水系ハイブリッドキャパシタ。   An electrode and an electrolyte solution facing each other through a separator are accommodated in an acid-resistant material container, one electrode is a polarizable electrode mainly composed of activated carbon, and the other is an electrode mainly composed of a proton-conducting compound. An aqueous hybrid capacitor, wherein the liquid is an aqueous electrolyte. 前記プロトン伝導型化合物において、水系電解液中で式量酸化・還元電位370mV(対Ag/AgCl)以上で酸化還元反応する材料を主体とする電極を正極とし、活性炭を主体とする分極性電極を負極とすることを特徴とする請求項1記載の水系ハイブリッドキャパシタ。   In the proton-conducting compound, an electrode mainly composed of a material that undergoes a redox reaction at a formula oxidation / reduction potential of 370 mV (vs. Ag / AgCl) or higher in an aqueous electrolyte is used as a positive electrode, and a polarizable electrode mainly composed of activated carbon. The water-based hybrid capacitor according to claim 1, wherein the water-based hybrid capacitor is a negative electrode. 前記プロトン伝導型化合物において、水系電解液中で式量酸化・還元電位370mV(対Ag/AgCl)未満で酸化還元反応する材料を主体とする電極を負極とし、活性炭を主体とする分極性電極を正極とすることを特徴とする請求項1記載の水系ハイブリッドキャパシタ。   In the proton-conducting compound, an electrode mainly composed of a material that undergoes an oxidation-reduction reaction at a formula oxidation / reduction potential of less than 370 mV (vs. Ag / AgCl) in an aqueous electrolyte is used as a negative electrode, and a polarizable electrode mainly composed of activated carbon. The water-based hybrid capacitor according to claim 1, wherein the water-based hybrid capacitor is a positive electrode. 前記プロトン伝導型化合物を主体とする電極は予め水系電解液に含浸しドーピングを施したものであることを特徴とする請求項1〜3のいずれか1項に記載の水系ハイブリッドキャパシタ。   The water-based hybrid capacitor according to any one of claims 1 to 3, wherein the electrode mainly composed of the proton-conducting compound is previously impregnated in a water-based electrolyte and doped. 前記活性炭を主体とする分極性電極には、導電補助材を、活性炭と導電補助材の混合粉末の総重量に対して15重量%以下(0重量%を含まず)添加したことを特徴とする請求項1〜4のいずれか1項に記載の水系ハイブリッドキャパシタ。   The polarizable electrode mainly composed of activated carbon is characterized in that a conductive auxiliary material is added in an amount of 15% by weight or less (excluding 0% by weight) based on the total weight of the mixed powder of activated carbon and conductive auxiliary material. The water-system hybrid capacitor of any one of Claims 1-4.
JP2007091173A 2007-03-30 2007-03-30 Aqueous hybrid capacitor Pending JP2008251831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007091173A JP2008251831A (en) 2007-03-30 2007-03-30 Aqueous hybrid capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007091173A JP2008251831A (en) 2007-03-30 2007-03-30 Aqueous hybrid capacitor

Publications (1)

Publication Number Publication Date
JP2008251831A true JP2008251831A (en) 2008-10-16

Family

ID=39976433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007091173A Pending JP2008251831A (en) 2007-03-30 2007-03-30 Aqueous hybrid capacitor

Country Status (1)

Country Link
JP (1) JP2008251831A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8477477B2 (en) 2009-09-30 2013-07-02 Semiconductor Energy Laboratory Co., Ltd. Power storage device
KR20140070525A (en) * 2011-07-19 2014-06-10 아퀴온 에너지 인코포레이티드 High voltage battery composed of anode limited electrochemical cells

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8477477B2 (en) 2009-09-30 2013-07-02 Semiconductor Energy Laboratory Co., Ltd. Power storage device
KR20140070525A (en) * 2011-07-19 2014-06-10 아퀴온 에너지 인코포레이티드 High voltage battery composed of anode limited electrochemical cells

Similar Documents

Publication Publication Date Title
KR101959096B1 (en) Nonaqueous electrolyte secondary battery and cathode sheet therefor
KR20040098546A (en) Electrochemical Cell Stack
CA2920365A1 (en) A multicomponent approach to enhance stability and capacitance in polymer-hybrid supercapacitors
US20110043968A1 (en) Hybrid super capacitor
US20020089807A1 (en) Polymer electrochemical capacitors
JP2012089825A (en) Lithium ion capacitor
EP2876709A1 (en) Lithium ion capacitor
US9330855B2 (en) Aqueous-based electric double-layer capacitor
JP2008288028A (en) Electrode for electrochemical cell and electrochemical cell
JP2974012B1 (en) Polymer secondary battery and method of manufacturing the same
JP2008269824A (en) Electrochemical cell
JP2001110423A (en) Secondary battery and material therefor
Cahela et al. Overview of electrochemical double layer capacitors
JP2006236937A (en) Energy storage device
TWI498931B (en) Energy storage device
CN110100332B (en) Electrochemical device
Kim et al. An All-solid-state electrochemical supercapacitor based on Poly3-(4-fluorophenylthiophene) composite electrodes
JP2008251831A (en) Aqueous hybrid capacitor
JP2012028366A (en) Power storage device
JP2005100926A (en) Electrochemical cell laminate
JP2015103602A (en) Lithium ion capacitor
JP5105401B2 (en) Electrode active material and electrochemical device using the same
JP3711015B2 (en) Polarized electrode
US20150138694A1 (en) Method for manufacturing electrode for use in electrical storage device
KR100955233B1 (en) Multilayered electric double layer capacitor